
Indistinguishability Obfuscation Without
Multilinear Maps:

New Paradigms via Low Degree Weak
Pseudorandomness and Security Amplification?

Prabhanjan Ananth1, Aayush Jain2, Huijia Lin3,
Christian Matt4, and Amit Sahai2

1 MIT
prabhanjan@csail.mit.edu

2 UCLA
{aayushjain,sahai}@cs.ucla.edu
3 University of Washington, Seattle

rachel@cs.washington.edu
4 Concordium, Zurich, Switzerland

cm@concordium.com

Abstract. The existence of secure indistinguishability obfuscators (iO)
has far-reaching implications, significantly expanding the scope of prob-
lems amenable to cryptographic study. All known approaches to con-
structing iO rely on d-linear maps. While secure bilinear maps are well
established in cryptographic literature, the security of candidates for
d > 2 is poorly understood.
We propose a new approach to constructing iO for general circuits. Unlike
all previously known realizations of iO, we avoid the use of d-linear maps
of degree d ≥ 3.
At the heart of our approach is the assumption that a new weak pseudo-
random object exists. We consider two related variants of these objects,
which we call perturbation resilient generator (∆RG) and pseudo flawed-
smudging generator (PFG), respectively. At a high level, both objects
are polynomially expanding functions whose outputs partially hide (or
smudge) small noise vectors when added to them. We further require that
they are computable by a family of degree-3 polynomials over Z. We show
how they can be used to construct functional encryption schemes with
weak security guarantees. Finally, we use novel amplification techniques
to obtain full security.
As a result, we obtain iO for general circuits assuming:

– Subexponentially secure LWE
– Bilinear Maps
– poly(λ)-secure 3-block-local PRGs
– ∆RGs or PFGs

? This paper is a merge of two independent works, one by Ananth, Jain, and Sa-
hai [AJS18], and the other by Lin and Matt [LM18].

1 Introduction

Program obfuscation considers the problem of building an efficient randomized
compiler that takes as input a computer program P and outputs an equivalent
program O(P) such that any secrets present within P are “as hard as possible”
to extract from O(P). This property can be formalized by the notion of indistin-
guishability obfuscation (iO) [BGI+01, GR07]. Formally, iO requires that given
any two equivalent programs P1 and P2 of the same size, it is not possible for a com-
putationally bounded adversary to distinguish between the obfuscated versions
of these programs. Recently, starting with the works of [GGH+13b, SW14], it has
been shown that iO would have far-reaching applications, significantly expanding
the scope of problems to which cryptography can be applied (e.g., [SW14, KLW15,
GGHR14, CHN+16, GPS16, HSW14, BPR15, GGG+14, HJK+16, BFM14]).

The work of [GGH+13b] gave the first mathematical candidate iO con-
struction, and since then more than a dozen candidates have been proposed
and studied [GGH13a, CLT13a, GGH15a, CLT15a, Hal15, BR14a, BGK+14a,
PST14a, AGIS14a], [BMSZ16, CHL+15, BWZ14, CGH+15, HJ15, BGH+15,
Hal15, CLR15, MF15, MSZ16, DGG+16a]. Furthermore, more recent candi-
dates [Lin16a, LV16, AS17, LT17] based iO on simple primtives and assump-
tions. However, all these iO constructions rely on multi-linear maps with de-
gree at least 3. Unfortunately, all known candidates for degree-3 multilinear
maps [GGH13a, CLT13a, GGH15a] have poorly understood security properties,
and even security models [MSZ16, BGMZ18, MZ18].

Our results in a nutshell. Securely building iO remains a central challenge in
cryptography. In this paper, we report on the works of [AJS18, LM18], in which
we develop new techniques that enables building iO without multilinear maps
of degree ≥ 3. Instead, we rely on (relatively) standard assumptions including
(subexponentnailly secure) bilinear maps, LWE, and block-local PRGs [LT17]
(a relaxation of local PRGs, a.k.a. Goldreich’s PRGs [Gol00]), as well as new
types of “weak” pseudo-randomness generators with certain “simple” structures
— either perturbation resilient generators [AJS18] or pseudo flawed-smudging
generators [LM18].

Along the way, we study the notion of Functional Encryption, which was
introduced by [SW05], and formalized by [BSW11, O’N10]. We provide new
general security amplification theorems for amplifying Functional Encryption
with (1/λc)-indistinguishability-based security to Functional Encryption with
standard security [AJS18], and security amplification for amplifying certain leaky
forms of Functional Encryption to standard security [LM18]. We now elaborate.

Prior iO from multilinear maps with degree ≥ 3. The first-generation iO con-
structions [GGH+13b, BR14b, BGK+14b, PST14b, AGIS14b, GLSW14, Zim15,
AB15, GMM+16a, DGG+16b] rely on polynomial-degree multilinear maps or
graded encodings. An L-linear map [BS02] essentially allows to evaluate degree-L
polynomials on secret encoded values, and to test whether the output of such
polynomials is zero or not. While bilinear maps (i.e., L = 2) can be efficiently

2

instantiated from elliptic curves, instantiation of L-linear maps for L ≥ 3 has re-
mained elusive—While candidate constructions of such graded encoding schemes
exist [CLT13b, LSS14, GGH15b, CLT15b], their security is poorly understood
due to several known explicit attacks on certain distributions of encoded val-
ues [CHL+15, BWZ14, CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16]
5.

A line of recent works [Lin16b, LV16, Lin17, AS17] aimed at finding the mini-
mal degree of multilinear maps sufficient for constructing iO, and has successfully
reduced the required degree to L = 3. A key ingredient in these second-generation
constructions are PRGs with small locality6. They showed that to construct iO,
it suffices to have multilinear maps with degree matching exactly the locality
of the PRG [Lin16b, AS17], or even the relaxed notion of block locality [LT17].
These constructions essentially use degree-L multilinear maps to evaluate a
PRG with (block-)locality L, and then bootstrap from there to hide arbitrary
complex computation. Unfortunately, the locality of a PRG cannot be smaller
than 5 [CM01, MST03], and recent attacks [LV17, BBKK18] showed that block-
locality cannot be smaller than 3.7 This raises the following natural question:

Can we build iO without cryptographic multilinear maps of degree ≥ 3?
Are there new types of simple and weak pseudo-randomness generators

that can help?

Our simple and weak pseudorandomness generators. We answer the above ques-
tions positively, relying on either the new notion of perturbation-resilient gen-
erators, ∆RG for short, proposed by [AJS18] (AJS), or pseudo flawed-smuding
generators, PFG for short, proposed by [LM18] (LM). They are weak pseudo-
randomness generators with the same simple structure, and similar intuitive
security guarantees. However, their concrete security formalizations are very
different, requiring different techniques of using them in iO constructions as done
in [AJS18, LM18].

We start with explaining their shared simple structure. A ∆RG/PFG is given
by a polynomially expanding function G from n input (or seed) elements to
m = n1+α output elements in Zp, together with a seed distribution S over Znp
that samples a pair s = (s1, s2) of public and private seeds8. G has the simple
structure that 1) it is a degree 3 polynomial over Zp with degree 1 in the public
seed s1 and degree 2 in the private seed s2, and 2) its output distribution G(S)
is polynomially bounded. At a very high-level, these two structural properties
5 Note that this does not necessarily mean that the resulting iO constructions are
insecure; in particular, there have been efforts (e.g., [GMM+16b]) in constructing
iO in more complex security models for multilinear maps (e.g. [MSZ16]) that have
resisted polynomial-time attacks. There have also been several other iO candidates
proposed which are not known to polynomial-time broken (e.g. [CVW18, BGMZ18]).

6 A function has locality ` if every output element depends on at most ` input elements.
7 The attacks actually leave open a very small window of expansion. Nevertheless, they
have weakened our confidence on the security of PRGs with block-locality 2.

8 n,m, p are parameterized by the security parameter λ

3

ensure that we can essentially compute G in the exponent of bilinear pairing
groups (property 1) and extract the output in the clear via brute force discrete
logarithm (property 2). An acute reader may be curious about the purpose of
the public seed s1. In short, it is a relaxation to requiring G having total degree
2, and as we shall see later, is crucial for the security of the instantiation of G.

Intuitively, the security of ∆RG/PFG guarantees that its output when added
to a small noise vector, producing G(s) + e, weakly “smudge” or “hide” e. In
the literature, noise smudging (or noise flooding) is a commonly used technique
for hiding small noises in LWE samples, which is also our purpose. However,
to completely hide the noise vector e, the smudging noises must be super-
polynomially large. This stands in contrast with the fact that G(s) is polynomially
bounded. To circumvent this, ∆RG and PFG formalizes different weakly hiding
requirements:

– ∆RG guarantees that the distributions ∆RG(s) and (∆RG(s) + e) are
somewhat hard to distinguish as long as the perturbation e is relatively small.
More specifically, it suffices if efficient adversaries fail to distinguish these two
distributions with at least some fixed 1/poly(λ) probability. Thus, a candidate
∆RG would be secure, for instance, if an adversary could distinguish between
∆RG(s) and (∆RG(s) + e) with probability 99%, but no adversary could
distinguish with probability over 99.5%.

– PFG guarantees that G(s) is computationally indistinguishable to a so-called,
flawed-smudging distribution Y ← Y , satisfying that given Y + e, the values
of e at a few o(λ) coordinates are revealed, while the values at the rest
coordinates are hidden.

We elaborate on the security definitions of these generators, and possible instan-
tiations, in Section 2.

Hardness of polynomials over the reals. The security of our candidate∆RGs/PFGs
crucially relies on the hardness of solving certain over-determinined systems of
degree-3 polynomial equations over the reals, and a LWE leakage assumption.
Solving systems of polynomials over the reals has been studied by mathemati-
cians, scientists, and engineers for hundreds of years. This is precisely why we are
taking this approach: we want to relate iO to simple-to-state problems related
to areas of mathematics with long histories of study. Aside from that, our work
also fundamentally diversifies the kinds of assumptions from which iO can be
constructed.

In Section 2.4, we describe specific candidates suggested in follow-up work
by [BHJ+19] that were inspired by the hardness of RANDOM 3-SAT. We hope
that our work will motivate further cryptanalytic study of simple pseudorandom
objects.

Using respecitively ∆RG and PFG, we show how to construct iO without
multilinear maps of degree ≥ 3 in two concurrent works [AJS18, LM18]. Next,
we describe the results in each work slightly more formally.

4

Results in AJS in more detail. AJS constructs iO based on bilinear maps, LWE,
∆RG, and block-locality 3 PRG. For the latter, in fact AJS require only a
weakened forms of 3-blockwise-local PRGs [LT17] where efficient adversaries
fail to distinguish the the PRG output distribution from the uniformly random
distribution with some polynomial probability9.

Theorem 1 (AJS Main Theorem, Informal). For every constants c, there is
a construction of indistinguishability obfuscation for all polynomial-sized circuits
from,

–
(
1− 1

λc

)
-indistinguishable perturbation-resilient generators with aforemen-

tioned structure and security against sub-exponential size adversaries,
– 1

2λc -indistinguishable three-block-local pseudorandom generators [LT17] with
polynomial stretch and security against sub-exponential size adversaries,

– learning with errors secure against sub-exponential size adversaries, and
– assumptions on bilinear maps secure against sub-exponential size adversaries
(that hold unconditionally in the generic bilinear map model).

Here κ-indistinguishability refers to security where the distinguishing advantage
of such adversaries is bounded by κ. Thus, standard security would be negl(λ)-
security, where negl is a negligible function. In contrast (1− p)-security allows
for an adversary that fails to distinguish only with probability p.

Along the way to proving the result above, AJS also obtains a securty
amplification theorem for functional encryption:

Theorem 2 (AJS security amplification theorem, informal). Assume
there exists a constant c > 0, and

– (1− 1/λc)-indistinguishable sublinearly compact secret key FE schemes for
polynomial size circuits of depth λ, and

– learning with errors secure against sub-exponential size adversaries.

There exists sublinearly compact secret key FE schemes for polynomial size circuits
of depth λ with negl(λ)-indistinguishability.

Note that the amplification theorem above relies only on subexponential LWE,
and no new assumptions. Moreover, if we assume the underlying FE schemes
to be secure against subexponential size, then the resulting schemes satisfy
subexponential security. Please refer [AJS18] for a complete formulation.

Results in LM in more detail. LM constructs iO based on bilinear maps, LWE,
PFGs, and constant block-local PRGs.

Theorem 3 (LM Main Theorem, informal). There is a construction of
indistinguishability obfuscation for all polynomial-sized circuits from,

9 There is be a tradeoff between how much AJS can weaken the indistinguishability
requirements of the ∆RG and the 3-block-local PRG.

5

– pseudo flawed-smudging generators with aforementioned structure and security
against sub-exponential size adversaries,

– constant-block-local pseudorandom generators [LT17] with mild structural
properties described in Remark 1, and security against sub-exponential size
adversaries,

– learning with errors secure against sub-exponential size adversaries, and
– the SXDH assumption on bilinear maps secure against sub-exponential size
adversaries.

Remark 1. The block-local PRGs used in LM map n bits to n1+α bits for an
arbitrarily small constant α, where every PRG is defined by a predicate P and an
input-output dependency graph G, such that the i’th output bit yi = P (SeedG(i))
is computed by evaluating the predicate P on a subset of seed bits SeedG(i)

specified by G(i). LM requires the output locality (i.e., maxi |G(i)|) to be a
constant, and the input locality (i.e., the maximal number of output bits that
an input bit influences) to be bounded by o(n1−α). Most candidate constant-
locality PRGs [Gol00, MST03, OW14, AL16] satisfy these structural properties.
In particular, the input-output dependency graph is often chosen at random in
which case the input locality is indeed bounded by o(n1−α). The security of local
PRGs, especially ones with large constant locality, has been studied extensively,
for instance in [CM01, MST03, CEMT09, BQ12, OW14, AL16].

Partially Hiding Functional Encryption. In order to evaluate ∆RGs/PFGs using
bilinear map, we develop the primitive of Partially Hiding Functional Encryption
schemes (PHFE), introduced under the name 3-restricted FE by [AJS18]. The
notion of PHFE is a natural modification of partially-hiding Predicate Encryption
(PE) of [GVW15] by strengthening the security requirement from that of PE to
FE. PHFE schemes can evaluate functions of the form g(x,y) and guarantee that
ciphertexts and secret keys reveal only the outputs and part of its input x, referred
to as the public input, while hiding the remaining part y, referred to as the private
input. Partially-hiding FE naturally interpolates attribute-based encryption and
functional encryption: if the public input x is empty, it is equivalent to functional
encryption, and if g is such that it outputs y when some predicate on x evaluates
to 1, then it corresponds to attribute-based encryption.

In the literature, there are constructions of secret-key FE schemes for quadratic
polynomials from bilinear map groups [Lin17, BCFG17]. In AJS and LM, we
extend these constructions to allow for additional linear computation on a public
input.

Theorem 4 (PHFE in AJS and LM, Informal). There are constructions of
secret-key partially-hiding FE schemes for computing multilinear cubic polynomials
g(x, (y, z)) over Zp with polynomially bounded outputs and x as the public input,
from bilinear pairing groups of order p. The schemes have linear encryption time
poly(λ)N in the input length N = max(|x|, |y|, |z|).

The constructions of PHFE in AJS and LM differ in details. The scheme originally
developed in AJS, referred to as 3-restricted FE there, follows the semi-functional

6

FE framework and is based on assumptions over bilinear maps that hold uncon-
ditionally in the generic bilinear map model. The scheme subsequently developed
in LM, referred to as degree-(1,2) PHFE there, satisfies simulation security for
one ciphertext (meaning that the outputs evaluated on one encryption input can
be programmed) and is based on SXDH.

Finally, we mention that in followup works, our approach has been ex-
tended to i) use ∆RGs/PFGs implementable by polynomials of any constant-
degree [JLMS19], ii) remove the need for block-local PRGs completely [JLS19],
and iii) construct PHFE supporting NC1 public computation and degree 2 private
comptuation [JLS19].

1.1 History

We provide a timeline describing how the results were conceived, to clarify how
this line of work has developed.

06/17/2018: [AJS18] received by Eprint (2018/615).
[AJS18] introduced ∆RGs, 3-restricted FE, and a new general FE amplification
theorem.

Historical notes: Earlier weaker versions of [AJS18] were submitted to EC
2018 (on 9/19/2017) and Crypto 2018 (on 2/13/2018). These earlier versions
contained the notions of 3-restricted FE, and Tempered Cubic Encoding. How-
ever, they did not contain either the notion of ∆RG nor the FE amplification
theorem. The authors of [AJS18] were not aware of the relevant concurrent work
by [Agr18a] or [LM18] until seeing Eprint papers appear.

06/17/2018: [Agr18a] received by Eprint (2018/633).
To hide decryption noises, [Agr18a] introduced different notions of (smudging)
noise generators, which all *perfectly* hides the noises. Hence [Agr18a] did
not develop any FE security amplification technique. In terms of instantiation,
[Agr18a] proposed using MQ or 2 block-local PRG as degree 2 candidates and
used off-the-shelf deg 2 FE to evaluate them. [Agr18a] contains a gap in the
construction: It proposes to use known deg 2 FE to compute the noise generator.
Known deg 2 FE restricts the outputs of the noise generator to be poly-large.
On the other hand, [Agr18a] needs the noise generator to perfectly hide the HE
decryption noise e, which requires the outputs to be super-poly large. (Note: this
is why [AJS18]’s ∆RG and [LM18]’s PFG only provide weak guarantees. This
allows for having poly-large outputs, but opens many challenges in order to deal
with the weak guarantees.)

07/02/2018: [LM18] received by Eprint (2018/646).
In Aug 2017, Lin discussed with Agrawal about her ideas and Agrawal shared
a manuscript. After the discussion, Agrawal and Lin proceeded independently.
Since the shared manuscript has large overlap with the later posted [Agr18a],
[LM18] simply treats entire [Agr18a] as prior work for clarity.

7

Prior to posting, [LM18] has developed for over a year. [LM18] introduced
the notion of Pseudo Flawed-smudging Generator (PFG) and the leakage-based
security amplification technique. They analyzed PFG properties and proposed
using deg 2 polynomials sampled from a special distribution as the candidates.

07/08/2018: [AJS18] updated on Eprint (2018/615).
Added explicit degree 3 ∆RG candidate and associated explicit ∆RG assumption.

08/17/2018: [Agr18a] updated on Eprint (2018/633).
[Agr18a] cites [AJS18] for fixing the aforementioned gap. This means using the
notion of ∆RG and the FE security amplification theorem of [AJS18].

08/19/2018: [BHJ+19] announced at “Beyond Crypto” workshop at
CRYPTO 2018.
This work gave empirical and theoretical evidence of polynomial-time attacks on
all known explicit degree-2 candidates considered in [AJS18, Agr18a, LM18]. It
is explicitly noted that the attacks do not extend to the degree 3 ∆RG candidate
of [AJS18].

10/4/2018: [JS18], [BHJ+19] submitted to Eurocrypt 2019.
[JS18] showed how to construct constant-restricted FE for any constant (i.e.,
(deg-O(1), deg 2)-PHFE) assuming SXDH. This enables using constant degree
candidates, for any constant. [JS18] is clearly marked as a follow-up work to
[AJS18, Agr18a, LM18].

10/9/2018: The second version of [LM18] was updated on Eprint
(2018/646). Added construction of (deg 1, deg 2)-PHFE, which is a variant
of 3-restricted FE, and proposed to use the degree 3 candidate of [AJS18] as
candidate PFGs, which are not subject to [BHJ+19] attacks. This updated
[LM18] clearly cites [AJS18] for this candidate and the idea of using weak
deg-3 FE to evaluate it. However, note that this just replaces the previous deg
2 candidate and deg 2 FE in [LM18], which are very simple and not the main
technical contributions of [LM18].

In this update, there is also a construction of PHFE able to handle public com-
putation of poly degree, but subject to certain size constraints. This construction
does not appear in this current paper for two reasons: 1) Lin and Matt were added
as authors to [JS18] in credit for this concurrent PHFE construction, and 2) it is
later superseded by a full (NC1, deg 2) PHFE construction in a follow-up [JLS19].

10/11/2018: [JS18] received by Eprint (2018/973).

02/01/2019: [JS18], [BHJ+19] accepted at Eurocrypt 2019.
The authors of [JS18] emailed Chairs to add Lin and Matt as authors, resulting
in publication [JLMS19]. The paper [JLMS19] is clearly marked as a follow-up

8

work to [AJS18, Agr18a, LM18].

1.2 Comparison of Techniques

We provide a detailed comparison of the works of [AJS18, LM18, Agr18b, BHJ+19,
JLMS19].

Comparison of the works of [AJS18] and [LM18]. We first start by comparing
the notions of PFGs and ∆RGs. Both notions are geared for the purpose of
generating a smudging noise Y to hide a small polynomially bounded noise e,
however, with different guarantees. The output O of PFGs is computationally
indistinguishable to flawed smudging noises Y such that (e,Y+e) and (e′,Y+e)
are statistically close with probability δ. On the other hand, the output O of
∆RGs directly guarantees that (e,O+ e) and (e′,O+ e) are computationally
indistinguishable up to advantage 1 − δ. Furthermore, in the good case with
probability δ, the output of PFGs may still reveal e at a few coordinates (i.e., e
and e′ agree at a few coordinates), whereas ∆RG ask for weak indistinguishability
between the two cases (i.e. e and e′).

Besides the use of different weak notions of randomness generators, other
differences between [AJS18] and [LM18] include: i) [LM18] rely on constant-
locality PRGs with mild structural properties, while [AJS18] use block-locality 3
PRGs. ii) [AJS18] first showed security in the generic bilinear map model,
subsequently [LM18] relied on the SXDH assumption over bilinear pairing groups.

In terms of techniques, both works start with constructing some weak notions
of FE: [LM18] construct FE for constant-degree polynomials that may leak a
small portion of the input, whereas [AJS18] construct FE for degree 3 polynomials
that bounds the adversarial advantage only by 1− 1/poly(λ). Both works then
design different methods to amplify their respective weak FE to full-fledged
FE. The amplification techniques are similar in parts, for instance, both works
use threshold FHE, but also have differences, for instance, while [LM18] relies
on the use of random permutations and a careful analysis to ensure that the
effect of compromising a few bits of the seed of a constant-locality PRG can be
“controlled”. On the other hand, [AJS18] use techniques from the dense model
theorem to give a general security amplification for Functional Encryption with
weak distinguishing advantage, into Functional Encryption satisfying the standard
notion of security.

Comparison of [AJS18, LM18] with the work of Agrawal [Agr18a]. Follow-
ing [AR17], to obtain compact ciphertexts, Agrawal [Agr18b] (as mentioned in
the timeline, an early version of [Agr18a] was shared by the author of [Agr18b]
with the authors of [LM18]) proposed the approach of using a noise generator
to generate Y. As an abstraction of that, they introduced the notion of noisy
linear functional encryption that adds the smudging noises Y to the outputs.
The noise generator in [Agr18b] is able to produce super-polynomially large
smudging noises, and they propose a constant degree FE scheme supporting

9

super-polynomially large outputs from a new assumption on NTRU Rings. The
works of [AJS18] and [LM18] explore what happens when Y is polynomially
bounded and e may be leaked, which allows us to use FE schemes supporting
only polynomially large outputs from multilinear maps.

Subsequent to [AJS18], Agrawal notes that their construction is compatible
with the approach of [AJS18] using ∆RG with polynomially large outputs and
weak security, and later amplifying the security of FE in a black-box way. Thus,
the construction in the updated version can use known constructions of FE
schemes with restricted output size.

Comparison with the work by Jain, Lin, Matt and Sahai [JLMS19]. As a follow-
up to [AJS18, LM18, Agr18a], Jain, Lin, Matt and Sahai [JLMS19] construct FE
schemes for degree d + 2 functions multilinear in their inputs x1, . . . ,xd, y, z,
where x1, . . . ,xd are public, y and z are private, and d can be any constant. They
further improve upon [AJS18] by only relying on the SXDH assumption instead
of the generic bilinear map model. Moreover, their work provides new candidates
of ∆RGs that can be computed by their FE schemes. Similar to [AJS18, LM18],
their candidates hide the public inputs as noises in LWE samples.

Comparison of [AJS18, LM18] and [GKP+13, GVW15, BTVW17, AR17]. Both
the works of [AJS18, LM18] use a homomorphic encryption scheme (HE) in
conjunction with the newly introduced pseudorandom generators to construct
FE. This approach of using a homomorphic encryption scheme to construct FE is
not new has already been explored in several works [GVW12, GKP+13, GVW15,
BTVW17, AR17, Agr18a]. The challenges to build FE from HE are twofold: 1)
privacy—decrypt a ciphertext CTf,x encrypting an output f(x) = y securely
revealing only y, and 2) integrity—enforce that only ciphertexts for “legitimate”
functions f (ones for which secret keys are generated) can be decrypted. Below,
we briefly discuss how this approach was adopted in previous works.

The work of Goldwasser et al. [GKP+13] use the above template to build
a single-functional encryption scheme. They use an attribute-based encryption
scheme to ensure integrity and garbled circuits to ensure privacy. Then they
combine both these tools along with HE to achieve their result.

Gorbunov, Vaikuntanathan, and Wee [GVW15], also using the above approach,
construct a predicate encryption scheme based on learning with errors; recall that
predicate encryption is a weaker form of functional encryption. They propose
a novel primitive, called partial-hiding predicate encryption scheme and then
combine it with HE to obtain a predicate encryption scheme. Their notion
of partial-hiding predicate encryption scheme incorporates both the privacy
and the integrity properties. In terms of techniques, the starting point to their
construction of partial-hiding predicate encryption scheme is the observation
that the HE decryption corresponds to computing an inner product followed by
a threshold function. Moreover, there are lattice-based constructions of predicate
encryption schemes for threshold of inner product [AFV11, GMW15]. They then
propose a novel method to combine a lattice-based predicate encryption for
threshold of inner product with a lattice-based attribute-based encryption scheme

10

to achieve a partial-hiding predicate encryption scheme. Natural attempts to
extend their construction to achieve functional encryption have been shown to
be broken [Agr17a].

In [AR17], to ensure privacy of HE decryption, they use an FE scheme to
perform linear HE half-decryption and add super-polynomially large smudging
noises Y to hide the decryption noise e. In their scheme, the smudging noises
Y are sampled and encoded into the ciphertext. As a result, the ciphertext size
grows with the output length of the computation, which is non-compact. In
addition, they also developed a new approach to ensure integrity. Instead of
relying on primitives like attribute based encryption or PHFE to ensure integrity
as in [GVW12, GKP+13, GVW15], they employ a special HE scheme whose
decryption equation has the form y+e = cf−Afs, where Af depends only on the
public and reusable random matrix A in LWE samples and the evaluated function
f . Thus, to ensure integrity, it suffices to enforce that only linear functions Afs
for legitimate f can be evaluated on s. The work of [LM18] follows their approach
for integrity. The work of [AJS18], however, takes a different path, by introducing
the notion of 3-restricted FE (that we call partially hiding functional encryption
here).

1.3 Open Questions

Our work opens many interesting questions. First, we call for more study of the
candidate ∆RGs/PFGs. Studying their security as well as finding new candidates
may build interesting connection with algorithm and complexity theory as already
demonstrated in the attack by [BHJ+19] using SOS algorithms.

Secondly, can we further strengthen the construction of FE or iO in order to
further weaken the requirements on the structure and security of ∆RGs/PFGs?
Follow-up works show how to construct PHFE schemes that can perform constant-
degree [JLMS19] computation or even up to NC1 computation [JLS19] in the
public input, instead of just linear (still quadratic in the private input). Such
scheme allows for having more candidate ∆RGs/PFGs.

Thirdly, the reason that we can only work with polynomially bounded smudg-
ing noises is because we do not have constant-degree FE schemes that support
super-polynomially large outputs from multilinear maps and/or standard assump-
tions. For instance, can we build a quadratic FE scheme for super-polynomially
large outputs from standard assumptions? That would lead to a significant
simplification of our construction of NC1-FE as there would be no more leakage.

2 New PRG Assumptions

This section is organized as follows. In Section 2.1 we define the notion of
perturbation resilient generator ∆RG proposed by [AJS18]. In Section 2.2 we
define pseudo-flawed smudging generators (PFGs) proposed by [LM18]. Then,
in Section 2.3 we give an algorithmic framework to realise ∆RG and PFG. Both
of them are PRGs which has seed consisting of one public input and two secret

11

input. These PRGs evaluate degree-3 multilinear polynomials over Zp over these
inputs. In the same section, we give an intuition as to why this structure can be
realised using bilinear maps. In Section 2.4 we give candidate polynomials which
can be used to instantiate these primitives. In Section 2.5, we illustrate a single
assumption which will imply the notion of a perturbation resilient generator
sufficient to build iO [AJS18]. In Section 2.6 we present the state of art in
cryptanalysis of the candidate polynomials.

2.1 Perturbation Resilient Generator

A perturbation-resilient generator, denoted by ∆RG, consists of the following
algorithms:

– Setup, Setup(1λ, 1n, B): On input security parameter λ, the length parameter
n and a polynomial B = B(λ), it outputs a seed Seed and public parameters
pp.

– Evaluation, Eval(pp,Seed): It takes as input public parameters pp, seed
Seed and outputs a vector (h1, ..., h`) ∈ Z`. The parameter ` is defined to be
the stretch of ∆RG.

The following properties are associated with a ∆RG scheme.

Efficiency: The following conditions need to be satisfied.

– The time taken to compute Setup(1λ, 1n, B) is n · poly(λ) for some fixed
polynomial poly.

– For all i ∈ [`], |hi| = poly(λ, n). That is, the norm of each component hi in
Z is bounded by some polynomial in λ and n.

Perturbation Resilience: For every polynomial B(λ), for every large enough
polynomial n = n(λ) and for all large enough λ, the following holds: for every
a1, ..., a` ∈ Z, with |ai| ≤ B(λ), we have that for any distinguisher D of size 2λ,∣∣∣∣∣ Pr

x
$←−D1

[1← D(x)]− Pr
x

$←−D2

[1← D(x)]

∣∣∣∣∣ < 1− 1/λ,

where the sampling algorithms of D1 and D2 are defined as follows:

– Distribution D1: Compute (pp,Seed) ← Setup(1λ, 1n, B) and (h1, ..., h`) ←
Eval(pp,Seed). Output (pp, h1, ..., h`).

– Distribution D2: Compute (pp,Seed) ← Setup(1λ, 1n, B) and (h1, ..., h`) ←
Eval(pp,Seed). Output (pp, h1 + a1, ..., h` + a`).

Note that as is, we are not able to use the notion of a ∆RG to construct iO. We
now define the notion of a perturbation-resilient generator implementable by a
three-restricted FE scheme (3∆RG for short). This notion turns out to be useful
for our construction of iO.

12

∆RG implementable by Three-Restricted FE. A ∆RG scheme imple-
mentable by Three-Restricted FE (3∆RG for short) is a perturbation resilient
generator with some additional structural properties. We describe syntax again
for a complete specification.

– Setup(1λ, 1n, B)→ (pp,Seed). The setup algorithm takes as input a security
parameter λ, the length parameter 1n and a polynomial B = B(λ) and
outputs a seed Seed and public parameters pp. Here, Seed = (Seed.pub,
Seed.priv(1),Seed.priv(2)) is a vector on Zp for a modulus p, which is also
the modulus used in three-restricted FE scheme. There are three components
of this vector, where one of the component is public and two components
are private, each in Znpoly(λ)p . Also each part can be partitioned into sub-
components as follows. Seed.pub = (Seedpub,1, ...,Seedpub,n), Seed.priv(1) =
(Seedpriv(1),1, ...,Seedpriv(1),n) and Seed.priv(2) = (Seedpriv(2),1, ...,Seedpriv(2),n).
Here, each sub component is in Zpoly(λ)

p for some fixed polynomial poly
independent of n. Also, pp = (Seed.pub, q1, .., q`) where each qi is a cubic
multilinear polynomial described in the next algorithm. We require syntacti-
cally there exists two algorithms SetupSeed and SetupPoly such that Setup
can be decomposed follows:
1. SetupSeed(1λ, 1n, B)→ Seed. The SetupSeed algorithm outputs the seed.
2. SetupPoly(1λ, 1n, B)→ q1, ..., q`. The SetupPoly algorithm outputs q1, .., q`.

– Eval(pp,Seed)→ (h1, ..., h`), evaluation algorithm output a vector (h1, ..., h`) ∈
Z`. Here for i ∈ [`], hi = qi(Seed) and ` is the stretch of 3∆RG. Here qi is a
cubic polynomial which is multilinear in public and private components of
the seed.

The security and efficiency requirements are same as before.

Remark 2. To construct iO we need the stretch of 3∆RG to be equal to ` = n1+ε

for some constant ε > 0.

We can construct 3∆RG from a succintly stated, instance independent and a
falsifiable assumption stated in Section 2.5.

2.2 Pseudo-Flawed Smudging Generators

In this section, we first define what it means for a distribution over Z` to be
smudging and flawed-smudging, and then introduce pseudo flawed-smudging
generators.

First, the distribution of a random variable X is smudging if the statistical
distance between X and X + e is small for all e with bounded magnitude.

Definition 1 (Smudging distributions). Let ` be a positive integer, let ε ∈
[0, 1], and let B either be a positive integer or an `-dimensional vector of positive
integers. We say a distribution X over Z` is (B, ε)-smudging if for X ← X and
for all B-bounded e ∈ Z`, we have δ(X,X + e) ≤ ε.

13

We next define distributions obtained by fixing some positions in the output
of a distribution. This will be used for defining flawed-smudging distributions.

Definition 2 (Bit-fixing distributions). Let D be a distribution over strings
in ∆` for some set ∆ and some integer `. Let I ⊆ [`] be a set of indices, and
x an arbitrary string in ∆|I|. Define D|x,I to be the distribution of sampling x
from D conditioned on xI = x. For convenience, we sometimes also write I as
its characteristic vector v, where vi = 1 iff i ∈ I.

We say that D is bit-fixing efficiently samplable if D|x,I is efficiently samplable
for any x, I.

We now define flawed-smudging distributions. On a high level, the distribu-
tion of X is flawed-smudging for a random variable E if there are a few “bad”
coordinates such that X +E “hides” E at all coordinates that are not bad. This
means, given X + E and which coordinates are bad, one cannot distinguish E
from E, where E is a fresh sample conditioned on agreeing with E on the bad
coordinates.

Definition 3 (Flawed-smudging distributions). Let ` be a positive integer
and let X and E be distributions over Z`. Further let K ∈ N and µ ∈ [0, 1].
We say that X is (K,µ)-flawed-smudging for E if there exist randomized predi-
cates

{
BADi : Z`+1 → {0, 1}

}
i∈[`] such that the following two distributions are

identical:

D1 =

E ← E
X ← X

bad =
(
badi ← BADi(Ei, X)

)
i∈[`]

: (E, X + E, bad)

 ,

D2 =

E ← E
X ← X

bad =
(
badi ← BADi(Ei, X)

)
i∈[`]

E ← E|Ebad,bad

:
(
E, X + E, bad

) ,

and in addition, with probability at least 1− µ, the 1-norm of bad is bounded by
|bad|1 ≤ K.

We say the distribution X is (K,µ)-flawed-smudging for B-bounded distribu-
tions if it is (K,µ)-flawed-smudging for every B-bounded distribution E, where
B can either be a positive integer or a vector in Z`.

Remark 3. Amore direct generalization of the definition of smudging distributions
(see Definition 1) would be that for all e, the distribution of X + e is equal (or
statistically close) to the distribution of Y , where Yi = Xi + ei for all bad i, and
Yi = Xi for non-bad i. This is, however, not sufficient for our purposes: We need
that no information about the non-bad coordinates is leaked. While Xi itself
does not leak anything about ei, the fact that i is not a bad coordinate can leak
something about ei, since the predicate BAD depends on ei. Definition 3 resolves
this issue by sampling the non-bad coordinates freshly after sampling bad.

14

Pseudo flawed-smudging generators. We now define pseudo flawed-smudging
generators (PFGs). A PFG is a distribution of efficiently computable functions
and seeds for which the output of the functions is indistinguishable from a
flawed-smudging distribution.

Definition 4. (Pseudo Flawed-Smudging Generator) Let n,m,K,B be polyno-
mials. A family of (K,µ)-pseudo flawed-smudging generators ((K,µ)-PFG) for
B-bounded distributions is an ensemble of distributions PFG = {PFGλ}λ∈N
satisfying the following properties:

Syntax: For every λ ∈ N, every (PFG,Dsd) in the support of PFGλ defines a
function PFG: Zn(λ) → Zm(λ) and a distribution Dsd over seeds.

Efficiency: There is a uniform Turing machine M satisfying that for every
λ ∈ N, every (PFG,Dsd) ∈ Support(PFGλ) and Seed ∈ Support(Dsd),
M(PFG,Seed) runs in time poly(λ) and we haveM(PFG,Seed) = PFG(Seed).
Furthermore, PFG and all Dsd in the support of PFGλ are efficiently sam-
plable.

(K,µ)-pseudo-flawed-smudging for B-bounded distributions: There ex-
ists an ensemble {Xλ} of distributions, such that the distribution Xλ is
(K(λ), µ(λ))-flawed-smudging for all B(λ)-bounded distributions, and the
following ensembles are µ-indistinguishable:{

(PFG,Dsd)← PFGλ;Seed← Dsd : (PFG,PFG(Seed))
}
λ∈N

,{
(PFG,Dsd)← PFGλ;X ← Xλ : (PFG, X)

}
λ∈N

.

Degree 3 PFG with Partial Public Input: As mentioned in the introduction
and as described w.r.t. ∆RG, it suffices if our PFG has the simple structure that
every funtion PFG sampled from PFGλ is a degree 2 polynomial over Zp, where
p is a modulus that eventually matches the modulus that our PHFE supports,
which in turn is the modulus associated with the bilinear maps. However, so
far, we do not know how to instantiate a truly degree 2 PFG. Instead, we can
work with the following slightly weaker structure, where the PFG is a degree
3 multilinear polynomial, and the first input vector can be made public, more
specifically:

Structure: For every λ, every (PFG,Dsd) ∈ PFGλ satisfies that Dsd is a
distribution over (x,y, z) ∈ Z3

p for some modulus p, and PFG(x,y, z) is a
multilinear degree 3 polynomial over Z3

p.
Security with partial public input: The security in Definition 4 is strength-

ened so that the following distributions are indistinguishable:{
(PFG,Dsd)← PFGλ;Seed = (x,y, z)← Dsd : (PFG,x,PFG(Seed))

}
λ∈N

,{
(PFG,Dsd)← PFGλ;Seed = (x,y, z)← Dsd;X ← Xλ : (PFG,x, X)

}
λ∈N

.

15

Weaker variant: Flawed-smudging with 1/poly(λ) probability. In the
full version [LM18], we show how to further weaken the requirements on PFGs.
Roughly speaking, the PFG outputs are indistinguishable to a flawed-smudging
distribution only with some 1/poly(λ) probability. We show that using essentially
the same technique for handling the partial hiding guarantee of PFG can also be
used to handle this weakening. We omit details here; see [LM18] for more details.

Properties of (Flawed-)Smudging Distributions In the full version [LM18],
we prove some properties of smudging and of flawed-smudging distributions. More
specifically, we show the following:

– Polynomially bounded distributions cannot be smudging with negligible ε.
More precisely, if X is B-bounded and (B′, ε)-smudging, then ε ≥ 1

2B+1 .
– Adding independent values preserves the (flawed-)smudging property, i.e., if
X and Y are independent and the distribution of X is (flawed-)smudging,
then the distribution of X+Y is (flawed-)smudging with the same parameters.

– Probabilistically mixing (flawed-)smudging distributions yields a (flawed-)
smudging distribution. That is, if the distributions of Xi are (B, εi)-smudging
(or (K,µi)-flawed-smudging) and αi ∈ [0, 1] such that

∑
i αi = 1, then the

distribution of X with Pr[X = x] =
∑
i αi Pr[Xi = x] is

(
B,
∑
i αiεi

)
-

smudging (or
(
K,
∑
i αiµi

)
-flawed-smudging).

– The joint distribution of mutually independent smudging distributions is
flawed-smudging. More precisely, we show that if X is a distribution over Z`
such that for (X1, . . . , X`)← X , X1, . . . , X` are mutually independent and
the distribution of each Xi is (B, ε)-smudging for ε ≤ K+1

22`·(2B+1) , then X is
(K, 2−K)-flawed-smudging for B-bounded distributions.

– The product of flawed-smudging distributions is flawed-smudging. That is, for
distributions X (1) and X (2) such that X (i) is

(
K(i), µ(i)

)
-flawed-smudging,

we have that X (1) ×X (2) is
(
K(1) +K(2), µ(1) + µ(2)

)
-flawed-smudging.

– If the distribution of X is flawed-smudging for the distribution of E and
E = E(V) is a function of some random vector V such that each coordinate
of E(V) depends only on a few coordinates of V , then E(V) +X hides V at
all but a few locations.

2.3 Framework for Algorithms of 3∆RG and PFG

We now describe a framework of algorithms that can be used to instantiate ∆RG
and PFG. However for the sake of succinctness and clarity we describe it in
terms of a perturbation resilient generator 3∆RG. For concreteness, we use a
large enough prime modulus p = O(2λ), which is the same as the modulus used
by 3−restricted FE/(1,2)-PHFE. Then, let χ be a distribution used to sample
input elements over Z. Let Q denote a polynomial sampler. Next we describe the
algorithms in terms of χ and Q but give concrete instantiations later in Section
2.4.

16

– Setup(1λ, 1n, B) → (pp,Seed). Sample a secret s ← Z1×d
p for d = poly(λ)

such that LWEd,n·d,p,χ holds. Here χ is a bounded distribution with bound
poly(λ). Let Q denote an efficiently samplable distribution of homogeneous
degree 3 polynomials (instantiated later). Then proceed with SetupSeed as
follows:
1. Sample ai ← Z1×d

p for i ∈ [n] along with ei, yi, zi ← χ for i ∈ [n].
2. Compute LWE samples wi = (ai, ri = 〈ai, s〉+ ei mod p) for i ∈ [n].
3. Output Seed.pub(i) = wi for i ∈ [n], Seed.priv(1, j) = yi ⊗ (−s, 1) for
j ∈ [n] and Seed.priv(2, k) = zk for k ∈ [n].

– SetupPoly : Now we describe SetupPoly. Fix η = n1+ε.
1. Sample polynomials q′` for ` ∈ [η] as follows. q′`(e1, ..., en, y1, ..., yn, z1, ..., zn) =
ΣI=(i,j,k)cIei · yj · zk where coefficients cI are bounded by poly(λ). These
polynomials {q′`} are sampled according to Q

2. Define qi be a multilinear homogeneous degree 3 polynomial takes as
input Seed = ({wi}i∈[n],y′1, . . . ,y′n, z). Then it computes each monomial
cIeiyj · zk as follows and then adds all the results:
• Compute cI〈wi, (−s, 1)〉 · yj · zk. This step requires y′i = yi ⊗ (−s, 1)

to perform this computation.
3. Output q1, ..., qη. Observe that qi(Seed) = q′i(e,y, z) for all i.

– Eval(pp,Seed)→ (h1, ..., hη), evaluation algorithm output a vector (h1, ..., hη) ∈
Zη. Here for i ∈ [η], hi = qi(Seed) and η is the stretch of 3∆RG. Here qi is
a degree 3 homogenenous multilinear polynomial (defined above) which is
degree 1 in public and 2 in private components of the seed.

We prove that the above candidate satisfies the efficiency property of a perturbation-
resilient generator.

Efficiency:

1. Note that Seed contains n LWE samples wi for i ∈ [n] of dimension d. Along
with the samples, it contains elements y′i = yi ⊗ t for i ∈ [n] and elements zi
for i ∈ [n]. Note that the size of these elements are bounded by poly(λ) and
is independent of n.

2. The values hi = qi(Seed) = ΣI=(i,j,k)cIei · yj · zk. Since χ is a bounded
distribution, bounded by poly(λ, n), and coefficients cI are also polynomially
bounded, each |hi| < poly(λ, n) for i ∈ [m].

Intuition behind candidate with partially-public inputs. Starting from
a cubic multilinear candidate g(x,y, z) where all inputs are private, and the first
input x is from a distribution that can be used as LWE noises, we transform
it into another function h(C,y′, z) where the first input can be made public.
The key idea is hiding x in LWE samples C = (A,As′ + x) mod p as the noise
terms. Then computing g translates into computing another function h where x
is replaced with Cs mod p for s = (−s′||1),

h(C, y′ = (y⊗s), z) :=
∑
j

g(C[?, j], sjy, z) = g (Cs,y, z) = g(x,y, z) (mod p) ,

17

where C[?, j] is the vector containing the j’th element of all LWE samples. Now C
is the public input of h. By providing the tensor y⊗ s as input, the polynomial h
is multilinear. For h to be secure when C is public, the output of g needs to be
indistinguishable from a pseudo flawed-smudging distribution, say D, even when
its first input is hidden in some LWE samples,

{ g(x,y, z), C = (A,As′ + x) } ≈ { ∆← D, C = (A,As′ + x) } .

The family of cubic polynomials with partially-public input of [AJS18] corresponds
exactly to h obtained by applying the above transformation to the degree d = 3
candidates g(x,y, z) =

∑
i1,i2,i3

ci1,i2,i3xi1yi2zi3 with small inputs and coefficients
described in Instantiation 1. We observe that for every fixed public input C,
the function h is quadratic in y and z, but its computation over Zp does not
degenerate to computation over Z, as it does trigger wrap-around modulo p due
to LWE “decryption”.

2.4 Our Instantiation of Polynomials for ∆RG and PFG.

We now give various instantiations ofQ. Let χ be the discrete gaussian distribution
with 0 mean and standard deviation n. The following candidate is proposed by
[BHJ+19] and [AJS18] based on the investigation of the hardness of families of
expanding polynomials over the reals. For any vector v, denote by v[i], the ith
component of the vector.

Instantiation: 3XOR Based Candidate. Let t = B2λ. Sample each polynomial
q′i for i ∈ [η] as follows. q′i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . , zt) = Σj∈[t]q

′
i,j(xj,yj, zj).

Here xj ∈ χd×n and yj , zj ∈ χn for j ∈ [t]. In other words, q′i is a sum of t
polynomials q′i,j over t disjoint set of variables.

Now we describe how to sample q′i,j for j ∈ [η].

1. To sample q′i,j do the following. Sample three indices randomly and indepen-
dently i1, i2, i3 ← [n].

2. Set q′i,j(xj,yj, zj) = xj[i1] · yj [i2] · zj [i3]

Remark: The candidate above was generalised to have a constant degree d
in a followup. This can be found in [JLMS19]. One could also consider arithmetic
versions of various boolean predicates. For example, any clause of the form
a1 ∨ a2 ∨ a3 can be written as 1− (1− a1)(1− a2)(1− a3) over integers where
a1, a2, a3 are literals in first case and take values in {0, 1}, and thus any random
satisfiable 3SAT formula can be converted to polynomials in this manner.

2.5 Pseudorandomness Assumption in Ananth-Jain-Sahai

Below we describe the actual hardness assumption needed by [AJS18], when
combined with subexponentially secure LWE, bilinear maps, and 3-block-local
PRGs, to imply iO.

18

The AJS Assumption. This assumption states the following. There exists a poly-
nomially bounded distribution χ over the integers, and there exists a polynomial
sampler Q over families of multilinear degree-3 polynomials. Let δi ∈ Z be output
by the adversary given only the parameters (1λ, 1n), such that for all i ∈ [n1+ε],
we have that |δi| < λc for some constant c. Then consider the following two
distributions:

Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ε) to obtain
polynomials (q1, ..., qbn1+εc). Sample a secret s ← Zλp and sample ai ← Zλp for
i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ, and write e = (e1, . . . , en),
y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with
{qk, qk(e,y, z)}k∈[n1+ε]

Distribution D2 is the same as D1, except that we consider polynomial
evaluations perturbed with δi. The output is now

{ai, 〈ai, s〉+ ei mod p}i∈[n]

along with
{qk, qk(e,y, z) + δk}k∈[n1+ε]

Then we require that for all subexponential-time adversary A it holds that:

| Pr
Z

$←−D1

[A(Z) = 1]− Pr
Z

$←−D2

[A(Z) = 1]| ≤ 1− 1/λ

Remark 4. For concreteness, the candidate for the sampler Q can be found in
Section 2.4.

Decomposing the assumption into two parts. To help understand the assumption
above, next we make the following observation. The assumption described above
is sufficient to build iO and it turns out the assumption above is true if the
following two simpler assumptions are true. This implication is one sided and
indeed it may be true that one of the two assumptions below is false but the
assumption above still holds. We present the assumptions below only to help
the reader conceptually understand the assumption above. The first assumption
called “Weak LWE with Leakage" states that given the polynomial samples,
it is computationally hard to determine whether the LWE sample is chosen
with the same error over which the polynomials are evaluated or a completely
independently chosen error.

Explaining the AJS Assumption, Part 1. Weak LWE with leakage. This as-
sumption states that there exists a polynomially bounded distribution χ over
the integers, and there exists a polynomial sampler Q over families of multilin-
ear degree-3 polynomials such that the following two distributions are weakly
indistinguishable (specified later).

19

Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ε) to obtain
polynomials (q1, ..., qbn1+εc) for some constant c > 0. Sample a secret s← Zλp and
sample ai ← Zλp for i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ, and
write e = (e1, . . . , en), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉+ ei mod p}i∈[n]
along with

{qk, qk(e,y, z)}k∈[n1+ε]

Distribution D2 is the same as D1, except that we additionally sample e′j ← χ
for i ∈ [n]. The output is now

{ai, 〈ai, s〉+ e′i mod p}i∈[n]
along with

{qk, qk(e,y, z)}k∈[n1+ε]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$←−D1

[A(Z) = 1]− Pr
Z

$←−D2

[A(Z) = 1]| ≤ 1/λ

We can think of the polynomials qk(e,y, z) as “leaking” some information
about the LWE errors ei. The assumption above states that such leakage provides
only a limited advantage to the adversary. Critically, the fact that there are
n2 > n1+ε quadratic monomials involving just y and z above, which are not used
in the LWE samples at all, is crucial to avoiding linearization attacks over Zp in
the spirit of Arora-Ge [AG11]. For more discussion of the security of the above
assumption in the context of D = 3, see [BHJ+19].

The second assumption deals only with expanding degree-3 polynomials over
the reals, and requires that these polynomials are weakly perturbation resilient.

Explaining the AJS Assumption, Part 2. Weak Perturbation-Resilience. This
assumption states that for the same distribution of polynomials and inputs as
above the following distributions are weakly indistinguishable. Let δi ∈ Z be
output by the adversary given only the parameters (1λ, 1n), such that for all
i ∈ [n1+ε], we have that |δi| < λc for some constant c. Consider the following two
distributions:

Distribution D1 consists of the evaluated polynomial samples. That is, we output:

{qk, qk(e,y, z)}k∈[n1+ε]

Distribution D2 consists of the evaluated polynomial samples with added pertur-
bations δi for i ∈ [n1+ε]. That is, we output:

{qk, qk(e,y, z) + δk}k∈[n1+ε]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$←−D1

[A(Z) = 1]− Pr
Z

$←−D2

[A(Z) = 1]| ≤ 1− 3/λ

20

2.6 Known Cryptanalysis

Now, we discuss various preliminary cryptanalysis attempts made on these
candidates. These attacks can be categorised in the following categories:

Linearisation Attacks: The system of degree-3 polynomials described above can
be converted to a degree-2 system over Zp by performing back substitution of
ei, from the LWE sample (ai, 〈ai, s〉+ ei mod p). However, the resulting system
has about Ω(n) variables y ⊗ s and z, but only about n1+ε equations. Thus, all
known linearization attack fail. This was considered in the work of [BHJ+19].

Sum-of-Squares Attacks: [BHJ+19] systematically studies SDP attacks on such
system and they gave an evidence why the assumptions above instantiated
using degree-2 polynomials over reals is unlikely to be true. However, they also
conjecture that for degree-3 and higher, these systems exhibit SoS lower bounds
(at least, the lower bounds are known to hold in the case when inputs are chosen
from {−1, 1} [Gri01, Sch08]). The lower bounds hold when number of equations
m ≤ nd/2 for a general degree d ≥ 3. Thus for our case when m = n1+ε for any
ε > 0, the SoS algorithm is unlikely to attack such systems in polynomial time.
Please refer [BHJ+19] for further details.

Gradient Descent: We implemented gradient descent to cryptanalyze all our
candidates. It seems like given the signs of the planted inputs, gradient descent
was able to recover the planted inputs in most cases. For degree-2 candidates,
gradient descent was able to recover the planted inputs even with random starting
points (even with no information on the signs). For degree-3 and higher, our
implementation of gradient descent did not yield any attack starting from random
signs. This matches our intuition developed in SoS literature, since the lower
bounds hold when inputs are sampled from {+1,−1} (thus implying finding signs
is hard).

3 Technical Overview of Ananth-Jain-Sahai 18

We now begin with a very high-level overview of our techniques in [AJS18].

The story so far. Prior work, culminating in the most recent works of [AS17, Lin17,
LT17] showed us that the powerful primitive of indistinguishability obfuscation
can be based on trilinear maps and (sub-exponential) 3-block-local pseudorandom
generators. Importantly for us, these works also (implicitly) demonstrate that
in order to achieve indistinguishability obfuscation, it suffices to construct (sub-
exponentially secure) secret-key sublinear FE for cubic polynomials, satisfying
semi-functional security. Unfortunately, these prior approaches necessarily relied
on multilinear maps with degree at least 3 to build such a cubic FE scheme.

That is because intuitively such a cubic FE scheme guarantees a way to eval-
uate a cubic polynomial on encrypted inputs without revealing any information
about the input except the evaluation of the polynomial. In other words, such

21

a scheme provides a way to output the decryption of a degree-3 polynomial
evaluated “homomorphically” on encoded inputs. However, we seek to accomplish
this without the use of degree-3 maps.

Since we seek to operate homomorphically on encoded values, a natural
starting idea is to use fully homomorphic encryption (for concreteness and
simplicity, in this paper we rely on the GSW fully homomorphic encryption
scheme [GSW13]) with polynomially bounded error in order to perform cubic
evaluations on encrypted inputs. The main challenge, however, is to reveal the
output of cubic evaluation without compromising security.

Initial approach. Our first observation is that computing the inner product
〈GSW.sk,GSW.CT〉 of a GSW secret key with a GSW ciphertext encrypting
message M , outputs (M · bq/2c+ e) where the LWE modulus is q and e is a small
error. With the assistance of a bilinear map, this inner product can be carried
out via pairings, such that the output (M · bq/2c+ e) appears as an exponent
in the target group. Next, one can hope to test whether the message M is zero
by computing a discrete logarithm by brute-force checking all possible values,
provided the output range is polynomial, which would happen if M = 0.

A reader familiar with GSW will observe that this approach already runs
into major hurdles. The first problem is that brute-force computing the message
M also reveals the error e to a potential adversary, which is problematic when
we try to invoke the semantic security of GSW. In fact, recent work shows how
knowledge of such error can be used to build devastating attacks [Agr17b]. We
will crucially deal with this issue, but before we tackle this, let us first consider
how we can force the adversary to obtain only inner products 〈GSW.sk,GSW.CT〉
where the messages correspond to cubic computations that the adversary is
allowed to obtain.

3-Restricted FE. To accomplish this, we first define a restricted version of
functional encryption (FE) – which allows for the computation of multilinear
cubic polynomials of three inputs, where one remains unencoded and is called
the public component and the other two are encoded; these are the private
components. In other words, our restricted FE is a partially hiding FE, or PHFE
for short. The input to the encryption algorithm is split into three parts x,y,
and z, where x is not hidden by the encryption, but y and z are kept hidden.

One of our key technical contributions is to achieve a new way of (indistin-
guishably) enforcing the output of such a 3-restricted FE scheme, despite the
fact that one of the encodings is publicly known to the adversary. We use these
techniques to achieve security for this 3-restricted variant of FE relying solely on
asymmetric bilinear maps. While we only need the resulting 3-restricted FE to
be sublinear, our construction in fact achieves compactness, where the size of
encoding is only linear in the input length.

Constructing Three-Restricted FE. Before getting to 3 restricted FE, let’s first
recap how secret key quadratic functional encryption schemes [AS17, Lin17] work
at a high level. Let’s say that the encryptor wants to encrypt y, z ∈ Znp. The

22

master secret key consists of two secret random vectors β, γ ∈ Znp that are used
for enforcement of computations done on y and z respectively. The idea is that
the encryptor encodes y and β using some randomness r, and similarly encodes z
and γ together as well. These encodings are created using bilinear maps in one of
the two base groups. These encodings are constructed so that the decryptor can
compute an encoding of [g(y, z)− rg(β, γ)]t in the target group for any quadratic
function g. The function key for the given function f is constructed in such a
manner that it allows the decryptor to compute the encoding [rf(β, γ)]t in the
target group. Thus the output [f(y, z)]t can be recovered in the exponent by
computing the sum of [rf(β, γ)]t and [f(y, z)− rf(β, γ)]t in the exponent. As
long as f(y, z) is polynomially small, this value can then be recovered efficiently.

Clearly the idea above only works for degree-2 computations, if we use bilinear
maps. However, we build upon this idea nevertheless to construct a 3-restricted
FE scheme. Recall, in a 3-restricted FE one wants to encrypt three vectors
x,y, z ∈ Znp. While y and z are required to be hidden, x is not required to be
hidden.

Now, in addition to β, γ ∈ Znp in case of a quadratic FE, another vector
α ∈ Znp is also sampled that is used to enforce the correctness of the x part of
the computation. As before, given the ciphertext one can compute [y[j]z[k] −
rβ[j]γ[k]]t for j, k ∈ [n]. But this is clearly not enough, as these encodings do not
involve x in any way. Thus, in addition, an encoding of r(x[i]−α[i]) is also given
in the ciphertext for i ∈ [n]. Inside the function key, there are corresponding
encodings of β[j]γ[k] for j, k ∈ [n] which the decryptor can pair with encoding of
r(x[i]− α[i]) to form the encoding [r(x[i]− α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] ·
(
y[j]z[k]− rβ[j]γ[k]

)
+ r(x[i]− α[i]) · β[j]γ[k]

=x[i]y[j]z[k]− rα[i]β[j]γ[k]

Above, since x[i] is public, the decryptor can herself take (y[j]z[k]−rβ[j]γ[k]),
which she already has, and multiply it with x[i] in the exponent. This allows her
to compute encoding of [x[i]y[j]z[k]− rα[i]β[j]γ[k]]t. Combining these encodings
appropriately, she can obtain [g(x,y, z)−rg(α, β, γ)]t for any degree-3 multilinear
function g. Given the function key for f and the ciphertext, one can compute
[rf(α, β, γ)]t which can be used to unmask the output. This is because the
ciphertext contains an encoding of r in one of the base groups and the function
key contains an encoding of f(α, β, γ) in the other group and pairing them results
in [rf(α, β, γ)]t.

In full version [AJS18], we provide details of our 3-restricted FE; specifically,
we define a notion of semi-functional security [AS17] (variant of function-hiding)
associated with a three-restricted FE scheme. Once we have such a restricted FE,
making the leap to cubic FE would require us to also keep the public encoding
hidden. Therefore, it is not clear whether we have achieved anything meaningful
yet.

Applying Three-Restricted FE. One way that we can hope to protect or hide the
input that goes into the public component of the 3-restricted FE, is to let this

23

component itself be a GSW-based fully homomorphic encryption of the input. We
can then rely on 3-restricted FE to homomorphically evaluate the cubic function
itself and obtain a GSW encryption of the output of cubic evaluation. Note,
however, that releasing such a GSW encryption by itself is useless, because it
does not allow even an honest evaluator to recover the output of cubic evaluation.

At this point, let us go back to the initial approach described at the beginning
of this section. Notice that instead of relying on 3-restricted FE to only homomor-
phically evaluate the cubic function itself, we can also perform a GSW decryption
via 3-restricted FE. The secret key for GSW decryption can be embedded as
input into one of the private components of the 3-restricted FE. We show how
this can be carefully done via degree three operations only, to obtain output
the GSW plaintext with some added error, that is, we obtain out = µb q2c + e.
Our actual method of bootstrapping three-restricted FE to sublinear FE for
cubic polynomials involves additional subtleties, and in particular, we define and
construct what we call tempered cubic encodings that serve as a useful abstraction
in this process. We now further discuss one of the main technical issues that
arises in this process.

Because the error e is sampled from a (bounded) polynomial-sized domain,
it is possible to iterate, in polynomial time, over all possible values of out
corresponding to µ = 0 and µ = 1, and therefore recover µ. Unfortunately, this
process also reveals the error e, which can be devastating as we noted before.

Preventing the revelation of error terms. To prevent this issue, we will reveal the
value out = µb q2c+ e but with some added noise, so as to hide the error e via
noise flooding. Unfortunately, this idea still suffers from two major drawbacks:

– How should we generate such noise? A natural idea is to rely a pseudorandom
generator that can be computed via quadratic operations only. However,
this is exactly the reason why previous approaches from the literature could
not rely on bilinear maps – in fact, the recent works of [LV17, BBKK17]
showed that such PRGs are quite difficult to construct. To overcome this
problem, we introduce and rely on a very weak variant of a pseudorandom
object, that instead of guaranteeing pseudorandomness, only guarantees
perturbation resilience. Furthermore, we will implement this object with
degree-3 polynomials. We will soon explain this object in more detail.

– For an honest evaluator to recover µ by iterating over all possible values
of out = µb q2c + e, we crucially require the added noise be sampled from
a polynomial-sized domain. But such noise appears to be insufficient for
security, in particular, an adversary would have advantage at least 1

poly(λ)

in distinguishing a message with added noise from a message without noise.
Another key technical contribution of our work is to find a way to amplify
security, via tools inspired by the dense model theorem. In the next two
bullets, we describe these ideas in additional detail.

The challenge of constructing degree-3 pseudorandomness: a barrier at degree
2. As we’ve outlined above, we need a way to create pseudorandomness to

24

(at least partially) hide noise values. The most straightforward way to do this
would be to build a degree-2 pseudorandom generator (PRG) whose output
is indistinguishable from some nice m-dimensional distribution, like a discrete
gaussian. Intuitively, if such a degree-2 object existed, a bilinear map would
be sufficient to implement it. However, the works of [BBKK17, LV17] showed
that there are fundamental barriers to constructing such PRGs due to attacks
arising from the Sum of Squares paradigm. Because we will propose a direction
to overcome this barrier, we now review how these attacks work at a high level.

For simplicity, let’s restrict our attention to polynomials where every monomial
is of degree exactly 2. We can represent any such polynomial p as a symmetric
n-by-n matrix P , where Pi,j = Pj,i is equal to half the coefficient of the monomial
xixj if i 6= j, and Pi,i is equal to the coefficient of the monomial x2i . Then we
observe that p(x) = x>Px. Suppose, then, we have a candidate PRG consisting
of m degree-2 polynomials that we represent by matrices M1, . . . ,Mm. Thus,
to sample from this PRG, we sample a seed vector x from a bounded-norm
distribution, and obtain the outputs yi = x>Mix. The goal of an attack would be
to distinguish such outputs from a set of independent random values r1, . . . , rm,
say from a discrete gaussian distribution centered around zero.

The works of [BBKK17, LV17] suggest the following attack approach: Suppose
we receive values z1, . . . , zm. Then we construct the matrix

M =

m∑
i=1

ziMi

Observe now, that if zi = yi corresponding to some seed vector x, then we have:

x>Mx =

m∑
i=1

yix
>Mix =

m∑
i=1

y2i

Intuitively, because the above sum is a sum of squares, this will be a quite large
positive value, showing that there exists x of bounded norm such that x>Mx
can be quite large.

However, if the zi = ri, then the entries of the matrix M arise from a “random
walk,” and thus intuitively, the matrix M should behave a lot like a random
matrix. However a random matrix has bounded eigenvalues, and thus we expect
that there should not exist any x of bounded norm such that x>Mx is large.
Indeed, this intuition can be made formal and gives rise to actual attacks on many
degree-2 PRGs [BBKK17, LV17]. The attack above was generalized further in a
followup work to this paper [BHJ+19], showing that several families of degree-2
pseudorandom objects cannot exist. While there are still potential caveats to
known degree-2 attacks, we propose a different, more conservative, way forward:

Perturbation-Resilient Generators (∆RG). We observe that even though the most
natural way to “drown out” the GSW error term above is by adding some nice noise
distribution, all we actually need is something we will call a perturbation-resilient
generator (∆RG): Informally speaking, we want that for every polynomial bound

25

B(λ), there should exist a low-degree10 ∆RG using polynomially bounded seeds
and coefficients, such that for any perturbation vector a ∈ [−B,B]m, it should be
true that all efficient adversaries must fail to distinguish between the distributions
∆RG(x) and (∆RG(x) + a) with probability at least 1/poly(λ), which is a fixed
inverse polynomial in the security parameter. We stress again that we are not
seeking a ∆RG with standard negligible security, but only some low level of
security. Indeed, even if an efficient adversary could distinguish between ∆RG(x)
and (∆RG(x)+a) with probability 1−1/poly(λ), but still fail to distinguish on at
least 1/poly(λ) probability mass, our approach will succeed due to amplification
(see below).

Crucially, instead of requiring the ∆RG to be computable via polynomials of
degree two, we define a notion of∆RG implementable by degree three polynomials
via our notion of 3-restricted FE.

The seed for a ∆RG consists of one public and two private components, and
perturbation-resilience is required even when the adversary has access to the
public component of the seed. Furthermore, the use of cubic (as opposed to
quadratic) polynomials gives reason to hope that our ∆RGs do not suffer from
inversion attacks and achieve the weak form of security described above. Further
in-depth research is certainly needed to explore our new assumptions. Indeed, we
see our work as strongly motivating the systematic exploration of the limits of
various types of low degree pseudorandom objects over Z using the Sum of Squares
paradigm and beyond. Indeed, our work reveals a fascinating connection between
achieving iO and studying distributions of expanding low-degree polynomials
over the reals that are hard to solve. We refer the reader to [BHJ+19] for further
discussion on this topic.

Implementing Degree-3 ∆RGs. Having constructed a three-restricted FE scheme,
we now describe how to implement the degree-3 ∆RG as described above. Let
e = (e1, . . . , en), y = (y1, . . . , yn) and z = (z1, ..., zn) and we want to compute
degree three polynomials of the form q`(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk where
` ∈ [η] is the stretch. Here all variables and coefficients are polynomially bounded
in absolute value.

At first glance, one could think to could encrypt e in the public component
and y, z in the private component of the three restricted FE scheme. Then, one
could issue function keys for polynomials q` for ` ∈ [η]. However, such a scheme
would essentially yield a degree 2 system of polynomials in y and z as e is public,
and not provide any additional security beyond using degree-2 polynomials. In
order to fix this issue, we take a different approach.

Encrypting e as an LWE-style error. Instead, we sample a secret s ∈ Zd
p where

d is some polynomial in the security parameter. We also sample vectors ai ← Zd
p

for i ∈ [n]. Then we compute ri = 〈ai, s〉+ ei. Let wi = (ai, ri) for i ∈ [n]. Thus

10 In an earlier version of this paper, this overview focused on constructing degree-2
∆RGs. However, as we describe now, our technical approach is more general, and we
describe it in greater generality here.

26

we have encrypted e using the secret s. Now to implement degree-3 randomness
generator we consider the polynomial:

q`(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk

This polynomial can be re-written as:

q`(e,y, z) = ΣI=(i,j,k)cI · (ri − 〈ai, s〉) · yj · zk

Now suppose in the private component that contained y, we also put y ⊗ s
(where ⊗ denotes the tensor operation). Then observe that if wi for i ∈ [n]
are all public values, then the entire polynomial can now be computed using a
three-restricted FE scheme.

For this approach to be secure, intuitively we want that e is sampled from
an “error” distribution with respect to which the LWE assumption holds. (For
simplicity, we can think of y and z also being sampled from such a distribution.)
The security of our ∆RG would then rely on a variant of the LWE assumption.
Experience teaches that one should be cautious when considering the security of
variants of LWE, and our case is no exception. This variant was studied in a follow-
up work of [BHJ+19], where several unsuccessful attacks were considered. We
briefly review one of these now. The most common source of devastating attacks
to LWE variants is linearization. However, a key barrier to such attacks in our
setting is the fact that the LWE-based public values wi contain no information
whatsoever about y and z. Thus, over Zp, we would obtain a set of roughly n1+ε
quadratic equations in y ⊗ s and z, but crucially with large coefficients in Zp.
These large coefficients would arise from the fact that ri and ai are large values.
Such systems, called MQ systems, have been widely studied cryptanalytically
and are widely believed to be hard to solve [Wol02, KS99] in general. We again
refer the reader to [BHJ+19] for further discussion. Specific candidates for the
degree-3 polynomials q` above, inspired by the hardness of RANDOM 3-SAT
and suggested by [BHJ+19], are also given in Section 2.

Security Amplification. Crucially, we want allow an adversary to have a very large
distinguishing advantage when attempting to distinguish between ∆RG(x) and
(∆RG(x) + a), since this is a new assumption. For simplicity for this technical
overview, we will assume that the ∆RG we introduce above is 1

λ -secure. (More
generally, we can tolerate any fixed inverse polynomial in the security parameter.)

Using ideas already discussed above, it is possible to show (as we do in our
technical sections) that relying on 1

λ -secure ∆RG in the approach outlined above,
allows us to achieve a “weak” form of sublinear FE (sFE), that only bounds
adversarial advantage by 1

λ . Unfortunately, such an FE scheme it not known to
yield iO, and for our approach to succeed, we must find a way to amplify security
of sublinear FE.

How should we amplify security? An initial idea is to implement a direct-
product type theorem for functional encryption. However, a simple XOR trick
does not suffice: since we are trying to amplify security of a complex primitive
like FE while retaining correctness, we will additionally need to rely on a special

27

kind of secure computation. More precisely, we will use (subexponentially secure)
n-out-of-n threshold fully homomorphic encryption (TFHE [MW16, BGG+18]),
that is known to exist based on LWE [Reg05]. Recall that such a threshold (public
key) fully homomorphic encryption scheme allows to encrypt a ciphertext in such
a way that all secret key holders can partially decrypt the ciphertext, and then
can recover the plaintext by combining these partial decryptions. However, any
coalition of secret key holders of size at most n− 1 learns no information about
the message.

A simplified overview of our scheme, that makes use of t = λ2 weak sublinear
FEs, is as follows:

– The setup algorithm outputs the master secret keysmski for all weak sublinear
FEs.

– In order to generate the encryption of a plaintext M , generate a public key
TFHE.pk and t fresh secret keys TFHE.ski for a threshold FHE, and encrypt
M using the public key for threshold FHE to obtain ciphertext TFHE.ct.
Additionally, for all i, encrypt (TFHE.ct,TFHE.ski) using the master secret
key mski for the ith weak sublinear FE.

– To generate a function secret key for circuit C, generate t function secret
keys for the sFEs, each of which computes the output of the ith TFHE
partial decryption of the result of homomorphic evaluation of the circuit C
on TFHE.ct.

– Finally, to evaluate a functional secret key for circuit C on a ciphertext,
combine the results of the TFHE threshold decryptions obtained via the t
outputs of sFE evaluation of the t function secret keys.

The correctness of our scheme follows immediately from the correctness
properties of the TFHE scheme. Intuitively, security seems to hold because of the
following argument. Upon combining λ2 independent, random instances of the
weak sFE, with overwhelming probability, at least one must remain secure. As
long as a single instance remains secure, the corresponding secret key for TFHE
will remain hidden from the adversary. Now, TFHE guarantees semantic security
against any adversary that fails to obtain even one secret key, and as a result, the
resulting FE scheme should be secure. While this intuition sounds deceptively
simple, many of these intuitive leaps assume information-theoretic security. Thus,
this template evades a formal proof in the computational setting, and we must
work harder to obtain our proof of security, as we now sketch.

From a cryptographic point of view, one of the early hurdles when trying to
obtain such a proof is the following. A reduction must rely on an adversary that
breaks security of the final FE scheme with any noticeable probability, in order
to break 1

λ security of one of the λ2 “weak” FEs. However, the reduction does not
know which of the λ2 repetitions is secure, and therefore does not directly know
where to embed an external challenge. To deal with this, we rely on the concept
of a hardcore measure [Imp95, MT10]. Roughly speaking, we obtain measures of
probability mass roughly 1

λ over the randomness of the sFE schemes, such that
no efficient adversary can break the security of the sFE scheme even with some
inverse subexponential probability.

28

However, unfortunately these hardcore measures can depend on other pa-
rameters in our system, such as the TFHE public key. And unfortunately, this
dependence is via extreme inefficiency; the hardcore measure is not efficiently
sampleable. This means that, for example, the hardcore measure could in principle
contain information about the TFHE master secret key. If this information is
leaked to the adversary, this would destroy the security of our scheme.

We overcome this issue through the following idea, which can be made formal
via the work on simulating auxiliary input [JP14, CCL18]. Because the hardcore
measure has reasonable probability mass 1

λ , it cannot verifiably contain useful
information to the adversary. For example, even if the hardcore distribution
revealed the first few bits of the TFHE master secret key, the adversary could
not know for sure that these bits were in fact the correct bits. Indeed, we use the
works of [JP14, CCL18] to make this idea precise, and show that the hardcore
measures can be simulated in a way that fools all efficient adversaries, with a
simulation that runs in subexponential time.

Finally, using complexity leveraging, we can set the security of the TFHE
scheme to be such that its security holds against adversaries whose running time
exceeds this simulation. Thus, for example, even if the original hardcore measure
was revealing partial information about the TFHE master secret key, we show
that we can give the adversary access to a simulated hardcore measure that
provably does not reveal any useful information about the TFHE master secret
key, and the adversary can’t tell the difference!

In this way, we accomplish security amplification for sFE, which allows us to
achieve iO for general circuits when combined with previous work [AS17, LT17].
Along the way, our amplification technique also shows that we can weaken the
security requirement on the relatively new notion of a 3-block-local PRG due
to [LT17], in a way that still allows us to achieve iO. Our amplification result
can be stated as the following theorem.

Theorem 5. Assuming there exists a constant c > 0 and there exists:

– (2λ
c

, adv = 1− 1/λ)−secure sublinear semi-functional FE scheme for Cn′,s′ .
– (2λ

c

, 2−λ
c

)−secure threshold homomorphic encryption scheme.
– (2λ

c

, 2−λ
c

)−secure PRFs in NC1.
– (2λ

c

, 2−λ
c

)−secure statistically binding commitments.

There exists a sublinear secret key FE scheme for circuit class Cn,s with (2λ
c′

, 2−λ
c′

)
security for some constant c′ > 0.

Combining these ideas, we obtain the following result.

Theorem 6. Assuming

– LWE secure against subexponential sized circuits.
– Secure Three restricted FE scheme.
– PRGs with
• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality three.

29

• Security with negl distinguishing gap against adversaries of subexponential
size.

– Perturbation resilient generators implementable by three restricted FE scheme
with:
• Stretch of k1+ε for some ε > 0.
• Security with distinguishing gap 1− 1/λ against adversaries of subexpo-
nential size.

there exists a secure iO scheme for P/poly.

In a follow-up to our work [JLMS19] showed a construction of a d-restricted
FE scheme for any constant d ≥ 3 from SXDH over bilinear maps.

Theorem 7 ([JS18, LM18, JLMS19]). Assuming SXDH over bilinear maps,
there exists a construction of a three-restricted FE scheme.

Thus, in full generality we can prove the following result.

Theorem 8. Let adv1, adv2 be two distinguishing gaps such that adv1 + adv2 ≤
1− 1/p(λ) for any fixed polynomial p(λ) > 1. Then assuming,

– LWE secure against adversaries of subexponential size.
– SXDH secure against adversaries of subexponential size.
– PRGs with
• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality three.
• Security with distinguishing gap bounded by adv1 against adversaries of
subexponential size.

– Perturbation resilient generators implementable by three restricted FE scheme
with:
• Stretch of k1+ε for some ε > 0.
• Security with distinguishing gap adv2 against adversaries of subexponential
size.

there exists a secure iO scheme for P/poly.

3.1 Reader’s Guide

In the technical overview and the introduction, we have already described our
notions of three restricted FE scheme and perturbation resilient generator (∆RG).
In the sequel, for clarity, we will denote by 3∆RG a ∆RG that is implementable
by three restricted FE. Below we give a high level description of various terms
used above that we have not already discussed.

Tempered Cubic Encoding: Tempered cubic encoding is a natural abstraction
encapsulating a 3∆RG and cubic homomorphic evaluation. This framework is
compatible with our notion of a three restricted FE scheme and is used to build
Functional Encryption for cubic polynomials.

30

Semi-Functional FE for cubic polynomials. A semi-functional FE scheme for
cubic polynomials (FE3 for short) is a secret key functional encryption scheme
supporting evaluation for cubic polynomials where the size of the ciphertext is
linear in the number of inputs. It satisfies semi-functional security: where you
can hard code secret values in the function key which will be decrypted only
using a single special ciphertext (known as a semi-functional ciphertext). Note
that all our primitives satisfy 1− 1/poly(λ) security. They are finally amplified
to construct fully secure primitives.

TCE

Semi− Functional FE for Cubic Polynomials

iO

Bilinear Maps

+subexp− LWE

+subexp− LWE

+

Cubic Randomizing Polynomials

with Sublinear Complexity

(

n ! n
1+"

)

(

Single−Key; 1
poly(λ)

− Security
)

(Single−Key; negl(λ)− Security)

(

n
1+"

− Bounded Key; 1
poly(λ)

− Security
)

3− Restricted FE

[LT17]

+subexp− LWE

Semi− Functional FE for Circuits

Sublinear FE for Circuits

[BNPW16]

∆RG

Fig. 1. Steps involved in the construction of iO in [AJS18].

31

NFE with
poly noise

degree-d FE

degree-d PFG

PFG with
public input

PHFE

Leaky O(1)-deg FE

Bit-Fixing
Homom. Sharing

NC1-FE iO

Fig. 2. Overview of constructions in [LM18] leading to iO.

Semi-Functional FE for Circuits. A semi-functional FE scheme for circuits is a
secret key functional encryption scheme supporting evaluation of circuits where
the size of the ciphertext is sublinear in the maximum size of circuit supported.
This notion also satisfies semi-functional security.

We present a diagrammatic view of construction of iO in Figure 3.1.

4 Technical Overview of Lin-Matt 18

We now describe techniques in [LM18] in more detail. An overview is depicted in
Figure 2.

NC1-FE from PFGs and FE that computes them. It is known that to
construct iO, it suffices to construct secret-key FE schemes for computing NC1

circuits that have sublinearly compact ciphertexts of size polynomial in the
security parameter λ and input length N , and sublinear in the size S of the circuits
computed. Towards constructing functional encryption schemes for NC1, we follow
the same two-step approach as previous works [Lin16b, LV16, Lin17, AS17]: They
showed that the task of constructing NC1-FE can be reduced to the task of
constructing FE for computing NC0 functions, i.e., constant-degree constant-
locality polynomials, by converting any NC1 function into a NC0 function using
randomized encoding and a low locality PRG. In this work, we develop a new
technique for constructing constant-degree FE and a new bootstrapping method
to NC1-FE that is “leakage resilient”.

Basic Ideas: Constant-degree FE via HE and Noisy Linear FE. Existing
compact constant-degree FE schemes [GGHZ16, AS17, Lin17] use multilinear
map groups to directly compute the constant-degree polynomial in the exponent.
We here explore a different natural approach, that has already appeared in
the literature [GVW12, GVW15, BTVW17, GKP+13, AR17, Agr18b] and that
performs the computation homomorphically over the encrypted input via an HE
scheme. The output ciphertext is eventually decrypted using multilinear maps.

32

The rough template is as follows: Let the FE scheme encrypt an input x
using an HE scheme and a secret vector s to obtain a ciphertext c. To compute a
function f on x, the decryptor can homomorphically evaluate f on c and obtain
a ciphertext CTf encrypting the output y = f(x). The two challenges are

– privacy—how to decrypt CTf in a secure way that reveals only y and hides
all other information about x, and

– integrity—how to enforce that only ciphertexts associated with a “legitimate”
function f (ones for which secret keys have been generated) can be decrypted.

Previous works [GVW12, GKP+13, GVW15, BTVW17, AR17, Agr18b] developed
novel techniques for achieving privacy and integrity, using various tools from
garbled circuits, partially hiding predicate encryption, to noisy linear FE. But
the resulting schemes either achieve weaker security guarantees as in Predicate
Encryption [GVW15, BTVW17], or lose ciphertext compactness [GKP+13, AR17],
or make use of strong primitives that are themselves hard to instantiate [GVW12,
Agr18b]. Building upon their techniques, we propose new ones toward solving
the challenges.

Observe that the decryption of most HE schemes, such as [BV11, BGV12]
based on LWE, involves i) a linear operation, Ldec(CTf , s) (e.g., 〈CTf , s〉), which
produces an approximate output, y + 2e, perturbed by a small noise vector e,
referred to as “half-decrypt”, ii) followed by a threshold function (complex, in NC1)
to remove the noise. Privacy entails that we must hide the secret s and the noise e.
Hiding the secret is relatively easy as we have FE schemes for computing a linear
function, here L, over a secret, here s, from various assumptions (e.g., DDH, LWE,
Paillier). However, the output of the linear FE would be the approximate output
y + 2e, and the noise e is sensitive, revealing information about the input x, the
noises used for generating the original ciphertext c encrypting x, and (indirectly)
the secret s. On the other hand, removing the noise e requires a high-degree
computation (such as mod2). The works of [AR17, Agr18b] propose to hide e
using another bigger smudging noise—compute instead the approximate output
y + 2e+ 2Y further shifted by a large noise Y that hides e. Agrawal [Agr18b]
further encapsulated the task to be done in a primitive called noisy linear FE,
which performs a linear computation, here the half-decrypt, and adds a fresh
noise to the decrypted output of every pair of ciphertext and secret key. Let us
now delve deeper into noisy linear FE.

4.1 Noisy Linear Functional Encryption

Noisy secret-key FE schemes have the same syntax as regular secret-key FE
schemes, but decrypting a ciphertext nct of v with a secret key nskL for a linear
function L yields a perturbed output L(v) +Y (over Zp for some modulus p),
where the noise Y is distributed indistinguishably to a distribution η — we call
such a scheme a η-noisy linear FE. We further only require weak correctness in
the sense that decryption only needs to succeed if all coordinates of L(v) lie in a
polynomially sized range, and Y is polynomially bounded.

33

In terms of security, we require a notion of 1-ciphertext simulation security in
the sense that the simulator is required to be able to “program” the output of
computation on the encrypted input of a challenge ciphertext. More specifically,
there exists a simulator that can simulate a secret key nskL and a ciphertext
nct? for input v? given only L and L(v?) + Y, where Y is sampled from η.
However, in the secret key setting, adversaries cannot produce ciphertexts on
their own and we must directly model security when multiple ciphertexts are
available. On the other hand, is well know that simulation security is impossible
when the number of ciphertexts is unbounded and ciphertexts are sublinearly
compact. Instead, we do not require the simulator to “program” the outputs for
all encrypted input, it only needs to do so for one challenge ciphertexts, and is
given with the actual encrypted inputs for all other ciphertexts — hence the
name 1-ciphertext simulation security. Note that this notion is not new, as many
works achieve indistinguishability based security via showing such 1-ciphertext
simulation security. More precisely, we require

{
nskL, nct

?, {ncti}i∈[t]
}
≈
{
e← η : Sim

(
L, L

(
x?
)
+ e, {xi}i∈[t]

)}
.

where nskf and nct? are the challenge key and ciphertext and every ncti is an
honestly generated ciphertext for an arbitrary input xi, which is given to the
simulator.

Compared to noisy linear function encryption by Agrawal [Agr18a], our notion
differs in three points: First, we parametrize the notion by the noise distribution η,
while Agrawal’s notion is parametrized by a bound on the decryption error and
distributions restricting the adversary’s challenge messages. Secondly, we only
require weak correctness. And thirdly, we consider simulation-security, whereas
Agrawal defines indistinguishability-based security.

Construction from PHFE and noise generator. There is a simple con-
struction of an η-noisy secret-key linear FE scheme if there is a PHFE scheme for
a function class G and a noise generator G in the same class whose outputs are
indistinguishable to η. Take for example our PHFE scheme from bilinear map
(Theorem 4) for computing multilinear cubic polynomials g(z1, z2, z3) in Zp with
z1 public and z2, z3 private. Assume there is a family of noise generators and
seed distributions (G,Dsd)← NG observing the same structure, whose output
distribution G(s1, s2, s3) (with (s1, s2, s3 ← Dsd) is indistinguishable to η when
s1 is made public. We can construct η-noisy linear FE as follows:

– To encrypt a vector v, the encryptor samples a seed (s1, s2, s3) and encrypts
z1 = s1 as the public input, and z2 = (v||s2), z3 = s3 as the private inputs.

– To generate a key for a function f , it generates a key for the function
g(z1, z2, z3) = L(v) +Y where Y = G(s1, s2, s3).

Decryption clearly recovers L(v)+Y, where by the property of the noise generator
G, Y is distributed indistinguishably to η. For the 1-ciphertext simulation security

34

to hold, we correspondingly need the underlying PHFE to satisfy 1-ciphertext
simulation security (defined similarly that a simulator can “program” the output
for a single challenge ciphertext), which our construction achieves. Finally, observe
that the ciphertexts are sublinear compact, as long as G has superlinear stretch.
We provide a formal description and proofs of the construction in the full
version [LM18].

Back to Constant-Degree FE Recall that we want to use a noisy linear FE
scheme to perform the linear half decryption on the output ciphertext CTf ,
Ldec(CTf , s), and obtain y+ 2e+ 2Y (think of η as a distribution over 2Y). We
still face two challenges:

– privacy: Our PHFE from bilinear maps (and all known sublinearly com-
pact degree-d FE from degree-d multilinear maps) only allows decryption if
outputs reside in a polynomially sized range. (This is because computation
is performed in the exponent, and outputs are extracted via brute force
discrete logarithm.) This means y+ 2e+ 2Y must be polynomially bounded.
However, as argued in the introduction, a polynomially-bounded Y cannot
hide e entirely. But revealing e at even one coordinate potentially reveals
information about x.

– integrity: How can we ensure that only output ciphertexts CTf for legitimate
constant-degree polynomials f can be decrypted? To ensure that, we would
like to give out a noisy linear FE secret key nsk for the function Ldec(CTf , ?)
and ciphertext nct encrypting the HE secret key s. However, the key generator
has no idea what CTf is.

For the privacy problem, we weaken the requirements on the noise generators,
formulating PFG, so that outputs are polynomially bounded and e is guaranteed
to be partially hidden; then, we manage the leakage on e to still achieve meaningful
security. For the integrity problem, we follow the approach of [AR17, Agr18a] of
using special (1-time) HE that has a special decryption equation. We elaborate
in the next section.

4.2 Weak and Leaky Constant-Degree FE

Let’s first consider the privacy problem: How to manage leakage of the value
ei’s at a few coordinates i’s? Since ei does depend on x, some information of
x is for sure leaked. Hence, we aim for what is the best possible: ensuring that
revealing e at a few coordinates translates to revealing x at a few coordinates, if
the function computed has small locality. We show that this can be done, and
construct constant-degree FE with (1-key) weak and leaky 1-ciphertext simulation
security. Roughly speaking, it guarantees that for every distribution of f ← FN
and every distribution of x← X , the secret key skf for f and the ciphertext CTx

for x can be simulated a simulator Sim using the output y = f(x), as well as the
value of x at a few coordinates. In addition, in the multi-ciphertext setting, the
adversaries also see a set of additional ciphertexts CTxi for arbitrary inputs xi,

35

and the simulator is required to simulate them given the actual inputs xi. More
precisely, there is correlated random variables K and x∗ representing the set of
leaked coordinates and their values, such that |x∗| = |K| = o(λ) and

{ x, skf ,CTx, {CTxi} } ≈ { x, Sim ((x∗,K), f, y = f(x), {xi})} ,
where (x∗,K)← Fix, and x← X|x∗,K .

In other words, given skf ,CTx, and many other ciphertexts the encrypted input
x appears random up to a few coordinates being fixed and the output being y.

We now give some intuition on why weak and leaky simulation security is
achievable. Assume that Y + e reveals a few coordinates of e, say with index set
J , and hides all other coordinates. We carefully analyze what information eJ
depends on: if the function computed has small locality, output elements in J
depend only on a few input elements at coordinates J ′. Suppose an ideal case
where the HE scheme satisfies the following properties:

HE properties:
1. Preserving locality: the homomorphic evaluation preserves this locality and

eJ depends only on ciphertexts cJ′ encrypting xJ′ ,
2. Preserving entropy: revealing information related to a few ciphertexts cJ′

only reduces the entropy of s by a small amount, and
3. Robustness: the HE scheme used is robust to small leakage of the secret key.

We can assert that ciphertexts encrypting other coordinates of x outside J ′
remain hiding, and hence only a few coordinates of x at J ′ are leaked.

For the above argument to go through, we need a slightly stronger version
of the flawed-smudging property: For any B-bounded noise vector distribution
χ = e(R), where the noise e is the output of a local function over another
distributional secret w← R, there is a correlated random variable I such that

{ I, w, Y + e(w) } ≈ { I, w′, Y + e(w) } , where w′ ← χ|wI ,I .

This means given Y + e(w), only a few coordinates of w get fixed and leaked.
In our construction, w depends on the input x, the HE secret s, and the noises
used originally for encrypting x. The above property then allows us to bound
what information of them is leaked through e. We further show that this stronger
flawed-smudging property is in fact implied by the normal flawed-smudging
property that is agnostic of how e is generated.

Let us now consider the integrity problem: How can we ensure only CTf for
the right f is decrypted? The works of [AR17, Agr18b] presented HE schemes
whose ciphertexts cx consists of A, hCTx, where A is public and indepenedent
of the input x (e.g., A could be LWE matrices, or RLWE scalars) and only
hCTx depends on x. Furthermore, homomorphic evaluation operates on A and
(A, hCTx) respectively to obtain Af and hCTf , and decryption does:

36

4. Special decryption equation:

sf = Ldec(Af , s), hCTf + sf = f(x) + 2e11 (mod p)

We can view sf as a decryption key for f and it is computed from s independently
of hCTf ! We can now ensure integrity as follows:

– Fix A at set-up time. This means the same A is reused for all HE ciphertexts.
– The key generator publishes a noisy linear FE key nsk for Ldec(Af , ?)
– Tne encryptor publishes hCTx encrypting x using secret s and generates a

noisy linear FE ciphertext nct encrypting s.
– The decryptor decrypts nct, nsk to obtain sf +2Y, and computes hCTf from

hCT, from which y + 2e+ 2Y is revealed.

Note that since A is fixed and reused for all HE ciphertext, each secret key s
can only be used once. This is not a problem as the encryptor can sample a fresh
secret key s for each encryption.

Instantiating the HE scheme. The question now is whether there is a HE
scheme that simultaneously has the special decryption equation (property 4) and
is robust to leakage (properties 1-3). The schemes in [AR17, Agr18a] unfortunately
are complicated and we do not know how to analyze their robustness to leakage.
Nevertheless, we manage to construct a HE scheme satisfying all 4 properties,
based on the simple HE scheme by [BV11] from LWE. We sketch our design. First,
it was shown in [GKPV10, AKPW13], that the LWE assumption is robust, in the
sense that when the LWE secret s comes from a small domain (e.g., [−1, 0, 1]λ),
the hardness of LWE holds as long as s has sufficient entropy. Thus, it is easy to
observe that the HE schemes of [BV11, BGV12] are robust. Furthermore, the
simple BV-scheme without relinearization, which can already handle constant-
degree computations, also satisfies properties 1) and 2).

However, the simple-BV scheme does not have the special decryption equation.
Inspired by [AR17, Agr18a], we use a recursive construction to homomorphically
evaluate the BV-decryption itself similar to bootstrapping, but for a different
purpose. In slightly more details, we can decompose the BV evaluation-and-
decryption procedure HE.Dec(s,HE.Eval(f, hCT)) into a public part Pub that
does not depend on the secret key s and a private part Priv that depends on s.

CTf = Pub(f, hCT,A) sf = Priv(f,A, hCT, s)

CTf + sf = f(x) + 2e

A wishful thinking is giving out noisy linear FE key nsk for Priv(f,A, ?, ?) and
ciphertext nct for (hCT, s), to enable computing sf . This does not work as Priv
has degree d in s and degree d− 1 in hCT, where d is the degree of f . The high
11 The schemes in [AR17, Agr18a] has more complicated decryption equation, where

the decryption noise is of form
∑

i piei where {pi} is a set of increasing moduli. Here
we omit this complexity.

37

degree in s can be dealt with as the encryptor can compute all degree d monomials
in s and encrypt them, and there are only nd of them where n = |s| = poly(λ).
But, the same cannot be applied to hCT which is long (length S1−ε, where S
is the output length of L) and encrypting even the quadratic monomials would
make the ciphertexts non-compact. However, the good news is that the degree
in hCT is d− 1 — one less than the degree of the computation f . Therefore, by
recursively encrypting ((hCT, 1)⊗ (s, 1)⊗ (s, 1)) in a ciphertext hCT′ using an
independent secret key s′, we can compute sf by homomorphically evaluating
Priv on hCT′ in degree d− 1 and then decrypt. The key observation is that the
new private computation Priv′(Priv,A′, hCT′, s′) now has only degree d − 2 in
hCT′. Thus, we can recursively reduce the degree of private computation, till we
obtain a scheme whose Priv is linear in its ciphertext hCT and degree 2 in its
secret key s. Hence,

Priv(f,A, hCT, s) = Lf,A((hCT, 1)⊗ (s, 1)⊗ (s, 1))

where the total the number of monomials to be encrypted is |hCT|n2, keeping
sublinear compactness. In summary, our weak and leaky FE for local constant
degree computation operates as follows:

– Fix A at set-up time.
– The key generator publishes a noisy linear FE key nsk for Lf,A.
– Tne encryptor publishes a ciphertext hCT encrypting x under secret key s

using our recursively constructed HE scheme, and generates a noisy linear
FE ciphertext nct encrypting (hCT, 1)⊗ (s, 1)⊗ (s, 1).

– The decryptor decrypts nct, nsk to obtain sf + 2Y and computes hCTf =
Pub(f, hCT,A), from which y + 2e+ 2Y is revealed.

The above description is simplified; please see the full paper [LM18] for a formal
description and analysis of our constant degree FE scheme.

4.3 New Bootstrapping to FE for NC1

We next present a new bootstrapping technique to FE for NC1 from weak
and leaky constant-degree FE. Our bootstrapping follows the same paradigm
as previous works [Lin16b, LV16, Lin17, AS17, LV17]: it uses a randomized
encoding [IK02, AIK04] to transform an NC1 computation g(v) into a simple
constant-degree constant-locality polynomial ĝ(v; r), and uses a constant locality
PRG to supply pseudorandom coins r = PRG(Seed) needed for the randomized
encoding. The fact that the underlying constant-degree FE is weak and leaky
means both the input v, as well as the PRG seed Seed may be fixed and leaked
at a few coordinates. To deal with this, we introduce a new primitive called
Bit-Fixing Homomorphic Sharing in order to make the original computation g
robust.

Our (T, t1, t2)-bit-fixing homomorphic sharing resembles the recent new con-
cept of Homomorphic Secret Sharing (HSS) [BGI15] in syntax, but differs in
security and efficiency requirements. It enables compiling a single computation

38

g(v) into a collection of computations o1 = h1(x1), . . . , oT = hT (xT) that operate
on a secret sharing x1, . . . , xT of the original input v, and from the collection
of output shares o1, . . . , oT , the original output g(v) can be reconstructed. Se-
curity ensures that the original input v remains hidden, given all output shares
o1, . . . , oT and a subset of t2 input shares. Moreover, the security is robust to a
few t1 bits in the input shares being fixed. In terms of efficiency, we allow the
output share size to scale with the size of the computation g, however, it should
not depend on the number of computations to be preformed — in other words,
the shares are reusable.

In comparison, HSS shares need to be succinct and output reconstruction
needs to be simple, which are not required here. In terms of security, HSS is
secure against an adversary seeing a subset of the input shares only. From these
input shares, the adversaries can always derive the corresponding output shares,
but not all output shares. In contrast, our bit-fixing homomorphic sharing is
secure against adversaries seeing all output shares. Note, however, HSS with
additive reconstruction i.e., o =

∑
i oi, does satisfy this stronger security, since the

adversaries knowing the output o can easily reverse sample the missing additive
output shares 12.

We give a construction of bit-fixing homomorphic sharing BF from multi-key
FHE with threshold decryption as constructed in [MW16], which roughly works
as follows:

– BFsetup samples a CRS crs for the multi-key FHE.
– BFshare shares a string v as follow: It additively shares v into v = ss1⊕. . .⊕ssT ,

generates T key-pairs (PKi, ski) of the multi-key FHE scheme, and encrypts
the ith share ssi under PKi to obtain ciphertext CTi. It additionally samples
a PRF key Ki. Finally, the i’th share is set to

xi =
{
{CTi,PKi}i∈[T] , ski,Ki

}
– BFeval on input crs, xi, i, g evaluates g on the i’th share as follows: It homomor-

phically evaluates the function g on all ciphertexts CT1, . . . ,CTT obtaining
CTf . By properties of the multi-key FHE scheme, this output ciphertexts can
be decrypted in a distributed way using each secret key ski independently.
Hence, the i’th output share oi is set to the value decrypted from CTg by
ski. (The decryption procedure of MKFHE is actually randomized. BFeval
uses the PRF Ki to generate the pseudorandom coins).

– BFdec reconstructs the final output o from o1, · · · , oT using the reconstruction
procedure of the multi-key FHE.

Security of this scheme follows simply from the security of the multi-key FHE
scheme and the fact that less than T additive shares ssi reveal nothing about v.

Next, to construct FE for NC1, instead of using our weak and leaky constant-
degree FE to compute the randomized encodings {RE(gj , v ; PRGj(Seed))}j for
each output bit gj(v) directly, where PRGi(Seed) denotes the j’th chunck of output
12 Thanks Yuval Ishai and Elette Boyal for pointing this out.

39

bits of PRG, we compute the randomized encodings {RE(BFeval, (crs, xi, i, gj);
PRGi,j(Seed))}i∈[T],j for evaluating each gj on each input share xi. By the weak
and leaky security of constant-degree FE, only a few coordinates of its encrypted
input, here {(crsxi, i, g)} and Seed, are leaked. Small leakage on {(crsxi, i, g)}
alone is harmless, as the security of bit-fixing homomorphic sharing ensures that
the original input v would remain hidden under such leakage.

However, small leakage on Seed is problematic. Consider a typical local PRG
where every output bit depends on O(1) randomly chosen seed bits. Since PRG
maps S1−α bits to S bits where S is proportional the size of g, each seed bit Seedk
influences a large number, Sε on average, of output bits. If Seedk is leaked, all
these output bits are no longer pseudorandom — call them corrupted. In turn, all
the randomized encodings that use these output bits are no longer hiding, which
may leak all input shares xi. To circumvent this, instead of having only a single
set of shares {xi}i∈[T], we will have M = S1−α sets of shares {xti}t∈[M],i∈[T]. We
divide the output bits of g into M chunks, each containing Sα bits, and the t’th
chunk is computed using the t’th set of input shares as described above. Why
does this help? Suppose that the locations of the corrupted PRG output bits are
distributed randomly. Since there are only about poly(λ)Sα corrupted output
bits, whereas way more M = S1−α chunks, with overwhelming probability, no
chunk ends up using more than λ corrupted PRG output bits. As a result, for
each set of input shares {xti}, at most λ input shares are leaked, and the security
of bit fixing homomorphic sharing kicks in again, and hence v is hidden. To
ensure that corrupted PRG output bits indeed distribute randomly, we apply
a random permutation π to the output of the PRG. In other words, the i’th
pseudorandom bit is the π(i)’th PRG output bit.

In summary, our FE scheme for NC1 depth Dep proceeds as follows: DFE is
our weak and leaky FE for local constant degree computation.
FE.Setup(1λ): Generate a DFE master secret key DMSK, and a CRS for the
bit-fixing homomorphic sharing scheme crs. Output MSK = (DMSK, crs).
FE.KeyGen(MSK, g): g is a NC1 function with input-length N , output-length S,
and depth Dep. Assume w.l.o.g. that every output bit gi is computable in some
fixed polynomial size = poly(λ).13

– Generate a polynomial f as follows:
• Divide the output bits of g into M = S1−α (assume for convenience that
M divides S) consecutive chunks I1, . . . , IM , where chunk Ij includes
output bits (j − 1)S/M + 1, . . . , jS/M . For every j ∈ [M], let gIj =
{gk}k∈Ij denote the collection of circuits that computes output bits in
chunk Ij .

• For every j ∈ [M] and i ∈ [λ], let Dj
i be the circuit that on input the i’th

share xji of the j’th sharing xj of v, homomorphically evaluates gIj , i.e.,

Dj
i (x

j
i) = BFeval(crs, xji , i, gIj) = oji .

13 If not, one can always use garbled circuits to turn g into another circuit where every
output bit is computable in size poly(λ), at the cost of increasing the size, input
length, and output length of the circuit by a multiplicative poly(λ) factor.

40

• Choose a random permutation π : [λ] × [M] × [φ] → [λMφ]. For every
j ∈ [M] and i ∈ [λ], let f ji be the following function:

f ji (x
j
i ,Seed) = REnc

(
Dj
i , x

j
i ; PRGΠji

(Seed)
)
.

Above, PRGΠji (Seed) contains PRG output bits at locations {π(i, j, k)}k∈[φ]
determined by the random permutation π and is sufficiently long for sup-
plying the random coins needed for computing the randomized encoding.

Finally, set

f

({
xj =

{
xji
}
i∈[λ]

}
j∈[M]

,Seed

)
:=
{
f ji (x

j
i ,Seed)

}
j,i
.

– Generate a DFE secret key of f , Dsk ← DFE.KeyGen(DMSK, f).
This can be done since by the efficiency of the bit-fixing homomorphic
sharing and randomized encoding, the input length and size of f is N ′ =
|{xji}| + |Seed| = poly(λ, s)λM + poly(λ)S1−α = poly(λ)S1−α and S′ =

|f ji |λM = poly(λ)S. Since the AIK randomized encoding algorithm REnc
and PRG both have constant locality, f also has constant locality `. Moreover,
over the field Z2, it has at most degree `.

Output sk = Dsk.
FE.Enc(MSK, v): On input MSK = (DMSK, crs) and v ∈ {0, 1}N , do:

– For every j ∈ [M], generate the j’th BF sharing of v, xj =
{
xji
}
i∈[λ] ←

BFshare(crs, v).
– Sample randomly a PRG seed Seed.
– Encrypt X =

(
{xj}j ,Seed

)
using DFE, DCT← DFE.Enc(DMSK, X).

Output CT = DCT.
FE.Dec(sk,CT) : On input sk = Dsk and CT = DCT, do

– Decrypt the DFE ciphertext DCT with the secret key Dsk to obtain y =
f(X) = DFE.Dec(Dsk,DCT).

– Parse y = {yji }, and for every j ∈ [M] and i ∈ [λ], decode yji using REval to
obtain oji = REval(yji).

– For every j ∈ [M], decode the output shares {oji}i∈[λ] to obtain the actual
output uj = BFdec(crs, {oji}).

Output u = {uj}.
Correctness of the construction can be shown as follows: By the correctness

of DFE, we have

y = f(X) =
{
yji = f ji (x

j
i ,Seed)

}
j,i
,

yji = REnc(Dj
i , x

j
i ; PRGΠji

(Seed)) .

41

By the correctness of RE, we have that

oji = REval(yji) = Dj
i (x

j
i) = BFeval(crs, xji , i, gIj) = oji .

By the correctness of BF, we have that uj = gIj (v).
In the full version [LM18], we formally prove that the above construction

is a sublinearly compact secret key FE scheme for NC1 satisfying standard
indistinguishability-based security, which implies iO.

Acknowledgments. Huijia Lin and Christian Matt thank Shweta Agrawal
for sharing an early version of [Agr18a], and Stefano Tessaro for many general
discussions. This work was done in part when both of these two authors were at
the University of California, Santa Barbara.

Prabhanjan Ananth, Aayush Jain and Amit Sahai thank Dakshita Khurana
for collaboration in the initial stages of this research, for contributing to the
writeup, and for countless discussions and comments supporting this work and
improving the write up. Eventually, the current set of authors had to reluctantly
agree to Dakshita’s repeated requests to not be listed in the set of authors, and
hence she is in these acknowledgements instead. We thank Boaz Barak, Sam
Hopkins and Pravesh Kothari for insights and extremely helpful suggestions
about how attacks based on the Sum of Squares paradigm could impact our new
assumptions on perturbation-resilient generators.

Huijia Lin and Christian Matt were supported by NSF grants CNS-1528178,
CNS-1514526, CNS-1652849 (CAREER), a Hellman Fellowship, the Defense
Advanced Research Projects Agency (DARPA) and Army Research Office (ARO)
under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through
Galois. The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation,
or the U.S. Government.

Prabhanjan Ananth, Aayush Jain and Amit Sahai were supported in part
from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and
NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a
Google Faculty Research Award, an equipment grant from Intel, and an Okawa
Foundation Research Grant. Aayush Jain is also supported by a Google PhD
fellowship award in Privacy and Security. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the ARL
under Contract W911NF-15-C- 0205. The views expressed are those of the authors
and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, the U.S. Government or Google.

References

AB15. Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-
order graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
Theory of Cryptography, pages 528–556, Berlin, Heidelberg, 2015. Springer.

42

AFV11. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan.
Functional encryption for inner product predicates from learning with
errors. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, pages 21–40, Berlin, Heidelberg, 2011.
Springer.

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of
errors. In Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I, pages 403–415, 2011.

AGIS14a. Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Opti-
mizing obfuscation: Avoiding Barrington’s theorem. In ACM CCS, pages
646–658, 2014.

AGIS14b. Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimiz-
ing obfuscation: Avoiding Barrington’s theorem. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’14, pages 646–658, New York, NY, USA, 2014. ACM.

Agr17a. Shweta Agrawal. Stronger security for reusable garbled circuits, general
definitions and attacks. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, pages 3–35, Cham, 2017. Springer
International Publishing.

Agr17b. Shweta Agrawal. Stronger security for reusable garbled circuits, general
definitions and attacks. In CRYPTO, pages 3–35, 2017.

Agr18a. Shweta Agrawal. New methods for indistinguishability obfuscation: Boot-
strapping and instantiation. Cryptology ePrint Archive, Report 2018/633,
2018. https://eprint.iacr.org/2018/633.

Agr18b. Shweta Agrawal. Personal communication and a previous version of eprint
report 2018/633, 2018.

AIK04. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 166–175, 10 2004.

AJS18. Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability
obfuscation without multilinear maps: iO from LWE, bilinear maps, and
weak pseudorandomness. Cryptology ePrint Archive, Report 2018/615,
2018. https://eprint.iacr.org/2018/615.

AKPW13. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learn-
ing with rounding, revisited. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, pages 57–74, Berlin, Heidelberg,
2013. Springer.

AL16. Benny Applebaum and Shachar Lovett. Algebraic attacks against random
local functions and their countermeasures. In Proceedings of the Forty-
eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages
1087–1100, New York, NY, USA, 2016. ACM.

AR17. Shweta Agrawal and Alon Rosen. Functional encryption for bounded
collusions, revisited. In Yael Kalai and Leonid Reyzin, editors, Theory of
Cryptography, pages 173–205, Cham, 2017. Springer International Publish-
ing.

AS17. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional
encryption and indistinguishability obfuscation from degree-5 multilinear
maps. In EUROCRYPT. Springer, 2017.

43

https://eprint.iacr.org/2018/633
https://eprint.iacr.org/2018/615

BBKK17. Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh Kothari.
Limits on low-degree pseudorandom generators (or: Sum-of-squares meets
program obfuscation). Electronic Colloquium on Computational Complexity
(ECCC), 24:60, 2017.

BBKK18. Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh K. Kothari.
Limits on low-degree pseudorandom generators (or: Sum-of-squares meets
program obfuscation). In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2018, pages 649–679, Cham, 2018.
Springer International Publishing.

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain
Gay. Practical functional encryption for quadratic functions with appli-
cations to predicate encryption. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, pages 67–98, Cham,
2017. Springer International Publishing.

BFM14. Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguisha-
bility obfuscation and uces: The case of computationally unpredictable
sources. In CRYPTO, pages 188–205, 2014.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, pages 565–596,
2018.

BGH+15. Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrede Lepoint, Amit Sahai,
and Mehdi Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH.
Cryptology ePrint Archive, Report 2015/845, 2015. http://eprint.iacr.
org/.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2001.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015, pages 337–367, Berlin, Heidelberg, 2015. Springer.

BGK+14a. Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Protecting obfuscation against algebraic attacks. In CRYPTO,
pages 221–238, 2014.

BGK+14b. Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sa-
hai. Protecting obfuscation against algebraic attacks. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT
2014, pages 221–238, Berlin, Heidelberg, 2014. Springer.

BGMZ18. James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return
of GGH15: provable security against zeroizing attacks. In Theory of
Cryptography - 16th International Conference, TCC 2018, Panaji, India,
November 11-14, 2018, Proceedings, Part II, pages 544–574, 2018.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ITCS ’12, pages
309–325, New York, NY, USA, 2012. ACM.

44

http://eprint.iacr.org/
http://eprint.iacr.org/

BHJ+19. Boaz Barak, Samuel B. Hopkins, Aayush Jain, Pravesh Kothari, and Amit
Sahai. Sum-of-squares meets program obfuscation, revisited. In Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I, pages 226–250, 2019.

BMSZ16. Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry.
Post-zeroizing obfuscation: New mathematical tools, and the case of evasive
circuits. In Advances in Cryptology - EUROCRYPT, pages 764–791, 2016.

BPR15. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic
hardness of finding a nash equilibrium. In FOCS, 2015.

BQ12. Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s
one-way function. Comput. Complex., 21(1):83–127, March 2012.

BR14a. Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for
all circuits via generic graded encoding. In TCC, pages 1–25, 2014.

BR14b. Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for
all circuits via generic graded encoding. In Yehuda Lindell, editor, Theory
of Cryptography, pages 1–25, Berlin, Heidelberg, 2014. Springer.

BS02. Dan Boneh and Alice Silverberg. Applications of multilinear forms to
cryptography. 324, 11 2002.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defini-
tions and challenges. In Theory of Cryptography, pages 253–273. Springer,
2011.

BTVW17. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck
Wee. Private constrained PRFs (and more) from LWE. In Yael Kalai and
Leonid Reyzin, editors, Theory of Cryptography, pages 264–302, Cham,
2017. Springer International Publishing.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science, pages 97–106, 10 2011.

BWZ14. Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear
maps against zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930,
2014.

CCL18. Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of
simulating auxiliary input. IACR Cryptology ePrint Archive, 2018:171,
2018.

CEMT09. James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s
one-way function candidate and myopic backtracking algorithms. In
Omer Reingold, editor, Theory of Cryptography, pages 521–538, Berlin,
Heidelberg, 2009. Springer.

CGH+15. Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, He-
manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi
Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and
their limitations. In CRYPTO, 2015.

CHL+15. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and
Damien Stehlé. Cryptanalysis of the multilinear map over the integers. In
EUROCRYPT, 2015.

CHN+16. Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan,
and Daniel Wichs. Watermarking cryptographic capabilities. In STOC,
2016.

45

CLR15. Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the
new clt multilinear maps. Cryptology ePrint Archive, Report 2015/934,
2015. http://eprint.iacr.org/.

CLT13a. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical
multilinear maps over the integers. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 476–493, 2013.

CLT13b. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical
multilinear maps over the integers. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, pages 476–493, Berlin,
Heidelberg, 2013. Springer.

CLT15a. Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New
multilinear maps over the integers. In CRYPTO, 2015.

CLT15b. Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New
multilinear maps over the integers. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, pages 267–286,
Berlin, Heidelberg, 2015. Springer.

CM01. Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in
NC0. In Jiří Sgall, Aleš Pultr, and Petr Kolman, editors, Mathematical
Foundations of Computer Science 2001, pages 272–284, Berlin, Heidelberg,
2001. Springer.

CVW18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond
permutation branching programs: Proofs, attacks, and candidates. In
Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part II, pages 577–607, 2018.

DGG+16a. Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay
Mukherjee. Obfuscation from low noise multilinear maps. IACR Cryptology
ePrint Archive, 2016:599, 2016.

DGG+16b. Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay
Mukherjee. Obfuscation from low noise multilinear maps. Cryptology
ePrint Archive, Report 2016/599, 2016. https://eprint.iacr.org/2016/
599.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In EUROCRYPT, 2014.

GGH13a. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2013.

GGH+13b. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 40–49. IEEE Computer Society, 2013.

GGH15a. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilin-
ear maps from lattices. In TCC, pages 498–527, 2015.

46

http://eprint.iacr.org/
https://eprint.iacr.org/2016/599
https://eprint.iacr.org/2016/599

GGH15b. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multi-
linear maps from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, Theory of Cryptography, pages 498–527, Berlin, Heidelberg, 2015.
Springer.

GGHR14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-
round secure MPC from indistinguishability obfuscation. In Theory of
Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24-26, 2014. Proceedings, pages 74–94, 2014.

GGHZ16. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional
encryption without obfuscation. In Theory of Cryptography - 13th Inter-
national Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II, pages 480–511, 2016.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and succinct
functional encryption. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 555–564. ACM, 2013.

GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption. In Inno-
vations in Computer Science - ICS 2010, Tsinghua University, Beijing,
China, January 5-7, 2010. Proceedings, pages 230–240, 2010.

GLSW14. Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. In-
distinguishability obfuscation from the multilinear subgroup elimination
assumption. IACR Cryptology ePrint Archive, 2014:309, 2014.

GMM+16a. Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram
Srinivasan, and Mark Zhandry. Secure obfuscation in a weak multilin-
ear map model. In Martin Hirt and Adam Smith, editors, Theory of
Cryptography, pages 241–268, Berlin, Heidelberg, 2016. Springer.

GMM+16b. Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram
Srinivasan, and Mark Zhandry. Secure obfuscation in a weak multilinear
map model. In Martin Hirt and Adam Smith, editors, Theory of Cryp-
tography: 14th International Conference, TCC 2016-B, Beijing, China,
October 31-November 3, 2016, Proceedings, Part II, pages 241–268, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

GMW15. Romain Gay, Pierrick Méaux, and Hoeteck Wee. Predicate encryption for
multi-dimensional range queries from lattices. In Jonathan Katz, editor,
Public-Key Cryptography – PKC 2015, pages 752–776, Berlin, Heidelberg,
2015. Springer.

Gol00. Oded Goldreich. Candidate one-way functions based on expander graphs.
Electronic Colloquium on Computational Complexity (ECCC), 7(90), 2000.

GPS16. Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting
the cryptographic hardness of finding a nash equilibrium. In CRYPTO,
2016.

GR07. Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In
TCC, pages 194–213, 2007.

Gri01. Dima Grigoriev. Linear lower bound on degrees of positivstellensatz
calculus proofs for the parity. Theor. Comput. Sci., 259(1-2):613–622,
2001.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO, pages 75–92, 2013.

47

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. In
Advances in Cryptology–CRYPTO 2012, pages 162–179. Springer, 2012.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate
encryption for circuits from LWE. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, pages 503–
523, Berlin, Heidelberg, 2015. Springer.

Hal15. Shai Halevi. Graded encoding, variations on a scheme. IACR Cryptology
ePrint Archive, 2015:866, 2015.

HJ15. Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology
ePrint Archive, 2015:301, 2015.

HJK+16. Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent
Waters, and Mark Zhandry. How to generate and use universal samplers.
In ASIACRYPT, pages 715–744, 2016.

HSW14. Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a ran-
dom oracle: Full domain hash from indistinguishability obfuscation. In
EUROCRYPT, 2014.

IK02. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computa-
tion via perfect randomizing polynomials. In Peter Widmayer, Stephan Ei-
denbenz, Francisco Triguero, Rafael Morales, Ricardo Conejo, and Matthew
Hennessy, editors, International Colloquium on Automata, Languages, and
Programming (ICALP), pages 244–256, Berlin, Heidelberg, 2002. Springer.

Imp95. Russell Impagliazzo. Hard-core distributions for somewhat hard problems.
In FOCS, pages 538–545, 1995.

JLMS19. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage
hardness of constant-degree expanding polynomials over R to build iO. In
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, pages 251–281,
2019.

JLS19. Aayush Jain, Huijia Lin, and Amit Sahai. Removing the need block-local
prgs to build io. IACR Cryptology ePrint Archive, 2019, 2019.

JP14. Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In
TCC, pages 566–590, 2014.

JS18. Aayush Jain and Amit Sahai. How to leverage hardness of constant-degree
polynomials over r to build io. IACR Cryptology ePrint Archive, 2018:973,
2018.

KLW15. Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistin-
guishability obfuscation for turing machines with unbounded memory. In
STOC, 2015.

KS99. Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key
cryptosystem by relinearization. In Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, pages 19–30, 1999.

Lin16a. Huijia Lin. Indistinguishability obfuscation from constant-degree graded
encoding schemes. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 28–57. Springer, 2016.

Lin16b. Huijia Lin. Indistinguishability obfuscation from constant-degree graded
encoding schemes. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, pages 28–57, Berlin, Hei-
delberg, 2016. Springer.

48

Lin17. Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps
and locality-5 prgs. In CRYPTO, pages 599–629. Springer, 2017.

LM18. Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and
their application to indistinguishability obfuscation. IACR Cryptology
ePrint Archive, 2018:646, 2018.

LSS14. Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More
efficient multilinear maps from ideal lattices. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,
pages 239–256, Berlin, Heidelberg, 2014. Springer.

LT17. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from
trilinear maps and block-wise local PRGs. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 630–660,
Cham, 2017. Springer International Publishing.

LV16. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation
from ddh-like assumptions on constant-degree graded encodings. In FOCS,
pages 11–20. IEEE, 2016.

LV17. Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseu-
dorandom generators and applications to indistinguishability obfuscation.
In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography, pages
119–137, Cham, 2017. Springer International Publishing.

MF15. Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilin-
ear map over the integers. Cryptology ePrint Archive, Report 2015/941,
2015. http://eprint.iacr.org/.

MST03. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators
in NC0. In 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., pages 136–145, 10 2003.

MSZ16. Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for
multilinear maps: Cryptanalysis of indistinguishability obfuscation over
GGH13. In Advances in Cryptology - CRYPTO, 2016.

MT10. Ueli M. Maurer and Stefano Tessaro. A hardcore lemma for computational
indistinguishability: Security amplification for arbitrarily weak prgs with
optimal stretch. In TCC, pages 237–254, 2010.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In EUROCRYPT, pages 735–763, 2016.

MZ18. Fermi Ma and Mark Zhandry. The mmap strikes back: Obfuscation and
new multilinear maps immune to CLT13 zeroizing attacks. In Theory of
Cryptography - 16th International Conference, TCC 2018, Panaji, India,
November 11-14, 2018, Proceedings, Part II, pages 513–543, 2018.

O’N10. Adam O’Neill. Definitional issues in functional encryption. IACR Cryptol-
ogy ePrint Archive, 2010:556, 2010.

OW14. Ryan O’Donnell and David Witmer. Goldreich’s PRG: Evidence for
near-optimal polynomial stretch. In 2014 IEEE 29th Conference on Com-
putational Complexity (CCC), pages 1–12, June 2014.

PST14a. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfus-
cation from semantically-secure multilinear encodings. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 500–517,
2014.

PST14b. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfus-
cation from semantically-secure multilinear encodings. In Juan A. Garay

49

http://eprint.iacr.org/

and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
pages 500–517, Berlin, Heidelberg, 2014. Springer.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93, 2005.

Sch08. Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps.
In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 593–602,
2008.

SW05. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 457–473, 2005.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 475–484. ACM, 2014.

Wol02. Christopher Wolf. “hidden field equations" (HFE) - variations and at-
tacks. Master’s thesis, Universität Ulm, December 2002. http://www.
christopher-wolf.de/dpl.

Zim15. Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015,
pages 439–467, Berlin, Heidelberg, 2015. Springer.

50

http://www.christopher-wolf.de/dpl
http://www.christopher-wolf.de/dpl

	Indistinguishability Obfuscation Without Multilinear Maps: New Paradigms via Low Degree Weak Pseudorandomness and Security Amplification

