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Abstract. In this paper we present exchange equivalence attacks which
is a cryptanalytic attack technique suitable for SPN-like block cipher
designs. Our new technique results in a secret-key chosen plaintext dis-
tinguisher for 6-round AES. The complexity of the distinguisher is about
288.2 in terms of data, memory and computational complexity. The dis-
tinguishing attack for AES reduced to 6 rounds is a straight-forward
extension of an exchange attack for 5-round AES that requires about
230 in terms of chosen plaintexts and computation. This is also a new
record for AES reduced to 5 rounds. The main result of this paper is
that AES up to at least 6 rounds is biased when restricted to exchange

invariant sets of plaintexts.
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1 Introduction

Block ciphers are typically designed by iterating an e�ciently computable round
function many times in the hope that the resulting composition behaves like a
randomly drawn permutation. The designer is typically constrained by various
practical criterion, e.g. security target, implementation boundaries, and special-
ized applications, that might lead the designer to introduce symmetries and
structures into the round function as a compromise between e�ciency and se-
curity. In the compromise, a round function is iterated enough times to make
sure that any symmetries and structural properties that might exist in the round
function vanish. Thus, a round function is typically designed to increasingly de-
correlate with structure and symmetries after several rounds. However, what
actually constitutes structure is an open question which requires continuous in-
vestigation as long as using randomly drawn codebooks is out of reach.

Low data- and computational-complexity distinguishers and key-recovery at-
tacks on round-reduced block ciphers have recently gained renewed interest in
the literature. There are several reasons for this. In one direction cryptanalysis
of block ciphers has focused on maximizing the number of rounds that can be
broken without exhausting the full codebook and key space. This often leads to



2 Navid Ghaedi Bardeh and Sondre Rønjom

attacks marginally close to that of pure brute-force. These are attacks that typ-
ically have been improved over time based on many years of cryptanalysis. The
most successful attacks often become de-facto standard methods of cryptanal-
ysis for a particular block cipher and might discourage anyone from pursuing
new directions in cryptanalysis that do not reach the same number of rounds.
This in itself might hinder new breakthroughs, thus it can be important to in-
vestigate new promising ideas that might not have reached its full potential yet.
New methods of cryptanalysis that break or distinguish fewer rounds faster but
with lower complexity than established cryptanalysis is therefore interesting in
this process. Many constructions employ reduced round AES as part of their
design. On the other hand, reduced versions of AES have nice and well-studied
properties that can be favorable as components of larger designs (see for instance
Simpira[12]).

The security of Rijndael-type block cipher designs is believed to be a well-
studied topic and has been in the focus of a large group of cryptanalysts during
the last 20 years (e.g. see [15, 3, 14, 7, 5, 4, 8, 10]). Thus, it is rather surprising
that new and quite fundamental results continuously appear for 2-4 rounds of
AES that enables completely new types of more e�cient attacks for an increasing
number of rounds of AES. At Crypto 2016, the authors of [17] presented the very
first secret-key 5-round distinguisher for AES. Secret-key (or key-independent)
means that the attack does not care about the particular round keys (e.g. in
contrast to related-key attacks). They extend a 4-round integral property to 5-
rounds by exploiting properties of the AES MixColumn matrix. Although their
distinguisher requires the whole codebook, it spawned a series of new funda-
mental results for AES. It was later improved to 298.2 chosen plaintexts with
2107 computations by extending a 4-round impossible di↵erential property to a
5-round property. Then, at Eurocrypt 2017, the authors of [11] proposed the first
5-round secret-key chosen plaintext distinguisher which requires 232 chosen texts
with a computational cost of 235.6 look-ups into memory of size 236 bytes. They
showed that by encrypting cosets of certain subspaces of the plaintext space the
number of times the di↵erence of ciphertext pairs lie in a particular subspace of
the state space always is a multiple of 8.

Later, at Asiacrypt 2017, the authors of [16] presented new fundamental
properties for Rijndael-type block cipher designs leading to new types of 3- to
6-round secret-key distinguishers for AES that beats all previous records.The
authors introduced a new deterministic 4-round property in AES, which states
that sets of pairs of plaintexts that are equivalent by exchange of any subset of
diagonals encrypts to a set of pairs of ciphertexts after four rounds that all have
a di↵erence of zero in exactly the same columns before the final linear layer. This
was further explored in [9] under the name ”mixture cryptanalysis”.

We have very recently become aware of a new 6-round distinguisher for AES

that was published in [1] and that has surprisingly similar complexity to ours.

Thus, it seems that the recent focus on round reduced attacks has led to a very

interesting progress on AES.
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1.1 Our Contribution

The first 5-round secret-key chosen-plaintext distinguisher for AES was intro-
duced at Crypto 2016, almost 20 years after Rinjdael was first proposed as a

candidate in the AES-competition, and required the whole codebook. In this pa-
per, only 3 years later, we introduce the first 6-round secret-key distinguisher for
AES that has complexity of about 288.2 computations and ciphertexts. This is
a giant leap in for cryptanalysis of AES. Our distinguishers are based on simple
techniques which are easy to verify theoretically and in practice. Moreover, we
prove that AES up to at least 6 rounds is biased on exchange invariant sets. The
5-round distinguisher has been practically verified on a scaled down version in
C/C++ on a standard laptop1.

1.2 Overview of This Paper and Main Results

In Section 2 we briefly describe results and notation that makes up the machinery
for the rest of this paper. In particular, we describe what we call exchange
operators, exchange invariant sets and exchange equivalence classes, and their
relations to AES. In Section 3, we prove that 5 full rounds of AES is biased on
exchange invariant sets and in Section 4 and Section 5 we turn this result into
simple distinguishers for AES reduced to 5 and 6 rounds.

The currently best secret-key distinguishers for 5- and 6-round AES are
given in Table 1. We adopt that data complexity is measured in a minimum
number of chosen plaintexts/ciphertexts CP/CC or adaptively chosen plain-
texts/ciphertexts ACP/ACC. Time complexity is measured in equivalent num-
ber of AES encryptions (E), memory accesses (M) and/or XOR operations
(XOR) - adopting that 20M ⇡ 1 round of AES.

Table 1: Secret-Key Distinguishers for AES

Property Rounds Data Cost Ref.

Impossible Di↵ 5 2128 CP 2129.6 XORs [17]

Expectation of TD 5 265 CP 270.2 M [1]

Multiple-8 5 232 CP 235.6 M [11]

Exchange Attack 5 230 CP 230E Sect. 4

Zero di↵erence 6 2122.8 ACC 2121.8 XOR [16]

Expectation of TD 6 289.43 CP 296.52 M [1]

Exchange Attack 6 288.2 CP 288.2E Sect. 5

1 https://github.com/Symmetric-crypto/ExchangeAttack.git
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2 Preliminaries

The Advanced Encryption Standard (AES)[6] is the most widely adopted block
cipher in the world today and is a critical component in protecting information
in both commercial and high-assurance communication. The AES internal state
is typically represented by a 4 by 4 matrix in F4⇥4

28 . The matrix representation is
for the most part purely representational as the actual properties of the matrix
(e.g. rank, order etc.) are not actually exploited for anything. One full round
of AES consists of SubBytes (SB), ShiftRows (SR), MixColumns (MC) and
AddKey (AK). The SB-layer applies a fixed permutation over F28 independently
to each byte of the state, the SR-layer cyclically shifts the ith row by i positions,
while the MC-layer applies a fixed linear transformation to each column. The
key addition adds a secret round-dependent value to the state. One full round
is composed as R = AK �MC � SR � SB. We follow standard convention and
simplify notation by writing R

t(x) to mean t rounds of AES where each round
key is fixed to some random value.

In this section we recall some basic results and introduce necessary notation.
We begin by defining what we call column exchange di↵erences.

Definition 1. For a vector v 2 F4
2 and a pair of states ↵,� 2 F4⇥4

28 define the

column exchange di↵erence �v
def
= �

↵,�
v 2 F4⇥4

28 where the i-th column is defined

by

(�v)i = (↵i � �i)vi

where ↵i and �i are the ith columns of ↵ and �.

A pair of states define a set of 2wtc(↵��) possible column exchange di↵erences
where wtc(x) denotes the number of non-zero columns of x. We can now de-
fine three related operators that exchange diagonal, column and mixed values
between a pair of AES states.

Definition 2 (Column exchange). For a vector v 2 F4
2 and a pair of states

↵,� 2 F4⇥4
28 , define column exchange according to v as

⇢
v
c (↵,�) = ↵��v.

It is easy to see that the pair of states (⇢vc (↵,�), ⇢
v
c (�,↵)) = (↵ ��v,� ��v)

are formed by exchanging individual columns between ↵ and � according to the
binary coe�cients of v. Thus, for any v it is easy to see that

↵� � = ⇢
v
c (↵,�)� ⇢

v
c (�,↵).

From the definition of column exchange, we may define diagonal exchange as
follows.

Definition 3 (Diagonal exchange). For a vector v 2 F4
2 and a pair of states

↵,� 2 F4⇥4
28 , define diagonal exchange according to v as

⇢
v
d(↵,�) = ↵� SR

�1(�SR(↵)),SR(�)
v ).
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The new pair (⇢vd(↵,�), ⇢
v
d(�,↵)) is formed by exchanging individual diagonals

between ↵ and � according to the binary coe�cients of v. The relationship
between exchange of diagonals and exchange of columns is intuitively straight-
forward.

Lemma 1. From the definition of ⇢
v
d and ⇢

v
c it follows that

R(⇢vd(↵,�)) = ⇢
v
c (R(↵), R(�)).

Proof. By definition of diagonal exchange, it follows that

MC � SR(⇢vd(↵,�)) = ⇢
v
c (MC � SR(↵),MC � SR(�))

and since both ⇢d and ⇢c commute with SB, it follows that

R(⇢vd(↵,�)) = ⇢
v
c (R(↵), R(�)).ut

The last exchange operation involves exchanging more general looking sub-
space components belonging to the subspaces formed by applying SR and MC
to single columns.

Definition 4 (Mixed exchange). For a vector v 2 F4
2 and a pair of states

↵,� 2 F4⇥4
28 define mixed exchange according to v as

⇢
v
m(↵,�) = a� L(�L�1(↵),L�1(�)

v )

where L = MC � SR.

Lemma 2. From the definition of ⇢
v
c and ⇢

v
m it follows that

R(⇢vc (↵,�)) = ⇢
v
m(R(↵), R(�)).

Proof. By definition of ⇢vm, we have that

⇢
v
m(R(↵), R(�)) =MC � SR(SR�1 �MC

�1(R(↵)��
0
v))

=MC � SR � (SB(↵)� SB(�v))

=MC � SR � SB(⇢vc (↵,�))

=R(⇢vc (↵,�)).ut

Although the following trivial two-round property in AES is straight-forward,
we add it as a simple theorem to summarise the exchange operators.

Theorem 1. For two random states ↵,� and some non-zero vector v 2 F4
2, we

have that

R
2(⇢vd(↵,�)) = ⇢

v
m(R2(↵), R2(�)).

Proof. Follows by combining Lemma 1 and Lemma 2. ut
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The exchange operators are related to a type of sets called exchange invariant

sets.

Definition 5. A set A ⇢ F4⇥4
28 is called exchange invariant if it satisfies

A = {⇢v(a) | a 2 A, v 2 F4
2}

where ⇢ is either of the three exchange operators.

Diagonal exchange invariant sets have the following form. Let A = A0 � A1 �
A2 � A3 where Ai corresponds to a subset of F4⇥4

28 of matrix states where only
the i’th diagonal is non-zero. It then follows from the definition of the diagonal
exchange operator that

A = {⇢vd(a) | a 2 A, v 2 F4
2}.

Similarly, we have that a column exchange invariant set B has the form

B =SR(A)

=SR(A0)� SR(A1)� SR(A2)� SR(A3)

=B0 �B1 �B2 �B3 �B4

and similarly, a mixed exchange invariant set has the form

C =SR �MC(B)

=SR �MC(B0)� SR �MC(B1)� SR �MC(B2)� SR �MC(B3)

=C0 � C1 � C2 � C3.

Then from the definition of exchange invariant sets and the definition of the
exchange operator, it follows that two rounds of AES maps a diagonal exchange
invariant set A = A0 � A1 � A2 � A3 to a mixed exchange invariant set C =
C0 �C1 �C2 �C3 where |Ci| = |Ai|. The adversary may predict the exact size
of each set Ci (since they are equal to the size of Ai’s), but he may even predict
new plaintext/ciphertext pairs over two rounds. For instance, let A = A0 � A1

with A0 = {a0, a1} and A2 = {b0, b1} (i.e. |A| = 4). Then the adversary may
encrypt two out of four plaintexts from the set A, say a0 � b0 and a1 � b1, for
two rounds to a pair of ciphertexts c0 and c

1 that provides him with a minimal
set of generators (relative to the mixed exchange operator) which allows him to
predict the remaining ciphertexts corresponding to the remaining two plaintexts
in A, i.e.

C = {⇢vm(c0, c1) | v 2 F4
2}.

Assume that we have one pair of states ↵,� that di↵er in exactly 0  t  4
of the diagonals, indicated by some H ✓ {0, 1, 2, 3}. Let H⇤ be the subset of H
formed by removing any element from H.

Definition 6. Let ↵,� be a pair of states that are di↵erent in diagonals indicated

by H ⇢ {0, 1, 2, 3} and let H
⇤ ⇢ H denote the set formed by removing one

element from H. Then we define the exchange equivalence class relative to (↵,�)
as

S↵,� = {(⇢v
I

d (↵,�), ⇢v
I

d (�,↵)) | I ✓ H
⇤
.}
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All pairs in S↵,� are exchange equivalent to each other. Since 2t�1 of the 2t

possible exchange equivalent pairs are unique (e.g. ⇢v+(1,1,1,1)
d (↵,�) = ⇢

v
d(�,↵)

when |H| = 4), we fix one index in H in all pairs (i.e. we do not exchange it)
and call it H⇤.

Theorem 2. Let A = A0 �A1 �A2 �A3 be a diagonal exchange invariant set

and assume |Ai| = mi such that |A| = m0 ·m1 ·m2 ·m3. Then there are exactly

Lt(m0,m1,m2,m3) =
X

I⇢{0,1,2,3}
wt(I)=t

Y

i2I

✓
mi

2

◆ Y

j2{0,1,2,3}\I

mj

representative pairs ↵,� 2 A which are di↵erent in exactly t diagonals and where

each define a unique exchange equivalence class S↵,� of size 2t�1
. It follows that

4X

t=1

Lt(m0,m1,m2,m3)2
t�1 =

✓Q3
i=0 mi

2

◆

is the total number of pairs in A and

4X

t=1

Lt(m0,m1,m2,m3)

is the number of distinct exchange equivalence classes in A.

Proof. The number of pairs in A that are di↵erent in t diagonals I and equal
in the remaining (4� t) diagonals J , is given by

Q
i2I

�mi

2

�Q
j2J mj . Each such

combination corresponds to one unique exchange equivalence class Sa,b of size
2t�1. By inspecting the terms in the sums over the Lt, it can also easily be seen
that it is equivalent to

�m1·m2·m3·m4

2

�
. ut

Thus, the space of
�|A|

2

�
pairs can be grouped into

P4
t=1 Lt(m0,m1,m2,m3)

exchange equivalence classes, which provides us with a fine grained view of the
exchange equivalence structure of the sets.

We way write a pair in terms of their exchange indicators v, e.g. av =
(⇢vd(↵,�), ⇢

v
d(↵,�)) where v is drawn from a (t � 1)-dimensional vector space

(to ensure that we generate only unique pairs) defined by fixing one of the active

diagonals in all exchanged pairs. Taking the
�2t�1

2

�
combinations of all possible

pairs av, au can be viewed as combining (t� 1)-dimensional vectors u and v. We
are interested in determining the number of combinations of pairs from a set
S↵,� in which the first pair can be derived from the other by exchanging exactly
t diagonals. Thus we will need the following.

Lemma 3. The number of distinct pairs of vectors in Fn
2 whose di↵erence has

Hamming weight t, is given by

c(n, t) =

✓
n

t

◆
2n�1

.
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Proof. There are
�n
t

�
vectors of weight t. For each such vector, we need to identify

the unique pairs that sum to this vector. For the t positions where the vector is 1,
the two vectors can be set to 2t�1 unique combinations such that those positions
sum are 1. The remaining positions in the two vectors must be identical, thus
there are 2n�t choices for this part. The proof follows. ut

We can generate
�2t�1

2

�
unique combinations of pairs (av, au) from Sa,b where

c(t� 1, j) counts the number of combinations of pairs (au, av) in Sa,b which are
exchange equivalent if one pair can be obtained from the other by exchanging
exactly j diagonals. In other words, c(t � 1, j) of the combinations of pairs
in St(↵,�) are equivalent if exactly j diagonals are exchanged between them.
Moreover, it follows that

t�1X

i=1

c(t� 1, j) =
t�1X

i=1

✓
t� 1

j

◆
2t�2

=2t�2 · (2t�1 � 1)

=
2t�1 · (2t�1 � 1)

2

=

✓
2t�1

2

◆
.

For a state s 2 F4⇥4
28 , define L

�1(s) = SR
�1 �MC

�1(s) and let ⌫(s) denote the
binary indicator vector which is 1 in position i if the i’th column of L�1(s) is non-
zero and 0 otherwise. We use this notation to simplify the results and to avoid
working with more complicated state spaces. Thus, ⌫(s) simply indicates the non-
zero columns of the state before the last linear layer. For a subset I ⇢ {0, 1, 2, 3},
we write v

I 2 F4
2 to mean the indicator vector which has value v

I
i = 1 if i 2 I

and 0 otherwise.
We will need the following modified theorem from [16], which states an ex-

change di↵erence relation over 4 rounds of AES. Let R4 denote 4 full rounds of
AES with randomly fixed round keys. Then Theorem 1 of [16] is equal to the
following (slightly re-formulated) theorem.

Theorem 3 (4-round exchange di↵erence relation). Let ↵,� 2 F4⇥4
28 and

↵
0 = ⇢

v
d(↵,�),�

0 = ⇢
v
d(�,↵) for any v 2 F4

2, then

⌫(R4(↵)�R
4(�)) = ⌫(R4(↵0)�R

4(�0)).

In other words, the pattern of non-zero and zero columns in the di↵erence
L
�1(R4(↵)�R

4(�)) is preserved by diagonal exchange of plaintext pairs ↵ and
�, i.e. on exchange equivalence classes S↵,� . Figure 1 depicts this relation for
the case when the exchanged pair of plaintexts is formed by exchanging the first
diagonal and the first pair is zero in the last column before the last linear layer.
If we let wt(x) denote the ordinary Hamming weight of a binary vector, then
one last property of AES will be important in this paper.
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R R R R

R R R R

Fig. 1: 4-round exchange trail.

Theorem 4. Assume a pair of states ↵ and � with wt(⌫(↵� �)) = w1. Then

Pr(wt(⌫(R(↵)�R(�))) = w2) =

✓
4

4� w2

◆
(2�8)w1(4�w2).

Proof. If SR�1 �MC
�1(↵)�SR

�1 �MC
�1(�) has w1 active columns, then each

column of ↵�� can be written as a linear function of w1 independent bytes. E.g.
the probability that one column is zero, is thus exactly (28)�w1 . Moreover, the
probability that exactly w2 of the columns are non-zero (i.e. 4�w2 of the columns
are zero) is thus exactly

� 4
4�w2

�
(28)�w1(4�w2). Since the s-box layer preserves zero

di↵erences in bytes (and thus columns), it follows that ⌫(R(↵)� R(�)) has the
desired probability. ut

3 When Column Exchange Equals Diagonal Exchange

In the previous section we showed that exchanging diagonals between plaintexts
is the same as exchanging column values after one round. In this section we
describe the intersection of column exchange and diagonal exchange, i.e. the
probabilistic case when exchange of some diagonals between a pair of plaintexts
is equal to exchange of (possibly some other) diagonals after one round. We then
combine this with Theorem 3 to form a probabilistic version of Theorem 3 that
instructs us how to construct a chosen-plaintext distinguisher for 5 rounds of
AES. For this we will need to count the number of bytes that are simultaneously
active in both a fixed set of diagonals and a fixed set of columns. Thus, we define
sets of indices related to diagonals and columns.

Definition 7. For a set I ⇢ {0, 1, 2, 3}, let DI denote the set of indices DI =
{(k, k+ i) mod 4) | 0  k < 4, i 2 I} where (i, j) 2 DI if the byte at index (i, j)
is activated by any of the diagonals indicated by I.

Definition 8. For a J ⇢ {0, 1, 2, 3}, let CJ = {(k, i) | 0  k < 4 , i 2 J} denote

the set of indices (i, j), where the byte at position (i, j) is activated by any of the

columns indicated by J .

It is easy to see that the number of bytes that are simultaneously in a set of
diagonals I and set of columns J is equal to |DI \CJ | = |I| · |J |. Thus, it follows
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that |DI[CJ | = 4(|I|+ |J |)� |I| · |J | bytes are activated in total by the diagonals
I and by the columns J .

Assume we have a pair of plaintexts (p0, p1) that we encrypt one round to a
pair of ciphertexts (c0, c1). Then assume that we make a new pair of plaintexts

(p00, p01) = (⇢(1000)d (p0, p1), ⇢(1000)d (p1, p0)),

by exchanging the first diagonal such that the new pair of ciphertexts satisfy

(R(p00), R(p01)) =(⇢(1000)c (c0, c1), ⇢(1000)c (c1, c0))

=(c00, c01).

We simply have a new pair of ciphertexts (c00, c01) formed by exchanging the
first column between c

0 and c
1. Now let I = {0} such that CI contains the

indices of the first column and imagine that there exist a set J such that the
di↵erence c

0 � c
1 is zero in all indices in CI [DJ except exactly the indices in

the intersection CI \DJ , where it can be random. Then, certainly, if the column
bytes indicated by CI were exchanged between the ciphertexts (c0, c1) to get
(c00, c01), then certainly we must also have had that diagonal bytes indicated by
DJ , and thus the diagonals indicated by J , were exchanged too. Hence, the pair
of states are in a configuration where exchanging columns and diagonals means
the same thing. The following theorem summarizes the probability of this event.

Theorem 5. Let I, J,K ⇢ {0, 1, 2, 3} and ↵,� 2 F4⇥4
28 be two random states.

Then the probability that a set of diagonals J are exchanged, given that a set of

columns I are exchanged when the di↵erence ↵� � is zero in columns indicated

by K, i.e.

Pr((⇢v
J

d (↵,�), ⇢v
J

d (�,↵)) = (⇢v
I

c (↵,�), ⇢v
I

c (�,↵)))

is given by

p(|I|, |J |, |K|) = (2�8)4(|I|+|J|)�|K||J|�2|I|·|J|
.

Proof. We restrict the state di↵erence ↵�� to bytes indicated by indices CI[DJ

and require that all byte di↵erences in this restriction is zero except for the
bytes in the intersection CI \ DJ . Since |CI \ DJ | = |I| · |J | and |CI [ DJ | =
4(|I|+ |J |)� |I| · |J |, and since the bytes take on 28 values, it follows that with
a probability

(28)|I|·|J|/(28)4(|I|+|J|)�|I|·|J| = (2�8)4(|I|+|J|)�2|I|·|J]

we have that exchanging columns I is equivalent to exchanging diagonals J (and
vice versa). If columns K are equal this means that I can not take on values from
K (else the relation become trivial), but only take on values I ⇢ {0, 1, 2, 3} \K
not in K such that |I| < 4� |K|. Thus, if the states are equal in K columns, then
since the restriction of CK to CI [DJ is equal to CK \DJ = |K| · |J | bytes, the
probability is increased by a factor of (28)|K|·|J| to (2�8)4(|I|+|J|)�|K||J|�2|I||J|.

ut
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R

R

(a) |K| = 0

R

R

(b) |K| = 1

R

R

(c) |K| = 2

Fig. 2: Example conditions for column/diagonal exchange equivalence.

In other words we have that with some fixed probability, exchanging diagonals
between plaintexts is the same as exchanging (possibly some other) diagonals
between the intermediate states after one round. And if some diagonals are ex-
changed after one round, then with probability 1 we also have that Theorem 3
applies. For instance, suppose two random plaintexts verify the di↵erential char-
acteristic of one of the examples in Figure 2. Then if we exchange the first
diagonal between these two plaintexts, then after one round encryption only the
first byte is exchanged between the intermediate states. As a consequence, both
the first column and the first diagonal are exchanged between the intermediate
pair after one round, and thus Theorem 3 can be extended to 5 rounds. This is
summarized as follows.

Theorem 6. Let ↵,� 2 F4⇥4
28 denote two plaintexts equal in |K| diagonals indi-

cated by K ⇢ {0, 1, 2, 3} and assume 0 < wt(⌫(R5(↵)�R
5(�))) < 4. Then for a

non-trivial choice of I ⇢ {0, 1, 2, 3} \K the relation

⌫(R5(↵)�R
5(�))) = ⌫(R5(⇢v

I

d (↵,�))�R
5(⇢v

I

d (�,↵)))

holds with probability

p5(|I|, |K|) =
3X

d=1

✓
4

d

◆
p(|I|, d, |K|)

Proof. The relation follows trivially by combining Theorem 3 and Theorem 5.
Theorem 3 states that

⌫(R4(⇢vd(R(↵), R(�)))�R
4(⇢vd(R(�), R(↵)))) = ⌫(R5(↵)�R

5(�))

for any non-zero v 2 F4
2. Theorem 5 states that, if diagonals indicated by I

are exchanged between the plaintexts ↵ and �, then there is a probability
p(|I|, |J |, |K|) = (2�8)4(|I|+|J|)�|K||J|�2|I|·|J| that this equals exchanging diag-
onals J after one round, i.e.

(⇢v
J

d (R(↵), R(�)), ⇢v
J

d (R(�), R(↵))) = (R(⇢v
l

d (↵,�)), R(⇢v
l

d (�,↵)).

Then by summing over the probabilities for each possible choice of J , for a fixed
I and K, gives the desired expression. ut
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R R R R R

R R R R R

Fig. 3: 5-round exchange trail.

For instance, if |K| = 2 and |I| = 1, the relation holds with probability p5(1, 2) =
2�28.19. Note that we could set � in front of the probabilities in Theorem 5 and
Theorem 6 instead of equality, since the case when exchange of columns does not
equal an exchange of diagonals contributes a tiny fraction to the total probability
of the event. However, for our applications this contribution is vanishingly small,
thus we may think of it as equality. This will in the worst case mean that our
attack analysis is pessimistic since a higher probability will only decrease the
complexity of all of our attacks.

Assume an diagonal exchange invariant set A = A0�A1�A2�A3. We then
have the following result.

Theorem 7. For a diagonal exchange invariant set A = A0 � A1 � A2 � A3

where |Ai| = mi, the expected number of combinations of pairs (a, b), (c, d) =
(⇢vd(a, b), ⇢

v
d(b, a)) that satisfy

(⇢ud(R(a), R(b)), ⇢ud(R(b), R(a))) = (R(c), R(d))

for any u and v is expected to be

G(m1,m2,m3,m4) =
4X

t=1

Lt(m1,m2,m3,m4) ·
t�1X

j=1

c(t� 1, j) · p5(j, 4� t). (1)

Proof. Let S↵,� denote one of the exchange equivalence classes in A of size 2t�1.
Then there are c(t � 1, j) combinations of two pairs au, av from S↵,� such that
⇢
z
d(au) = av for a vector z of weight j. For each of those combinations, the

probability is p5(j, 4� t) that the relation holds, and thus

t�1X

j=1

c(t� 1, j) · p5(j, 4� t)

is the expected number of combinations of pairs from one such set S↵,� of size
2t�1 that satisfy the condition. Then since there are Lt(m1,m2,m3,m4) ex-
change equivalence classes of size 2t�1, the expression follows. ut
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4 The Exchange Attack on 5 Rounds AES

Theorem 6 can be used directly to show that AES limited to five full rounds

is biased when plaintexts are closed under the action of diagonal exchange op-

erations, i.e. diagonal invariant sets. We show this using the following ap-
proach. Assume f(x) is a random permutation acting on the same state space
as AES and two random plaintexts pi, pj together with the exchanged plaintexts
p
0i = ⇢

v
d(p

i
, p

j), p0j = ⇢
v
d(p

j
, p

i). We assume that p
i and p

j are di↵erent in at
least two diagonal positions or else the exchanged pair will be equivalent to the
original pair. Then let ci = f(pi), cj = f(pj), c0i = f(p0i) and c

0j = f(p0j). Then
we ask the question; what is the probability that

0 < wt(⌫(ci � c
j)) = d < 4

and simultaneously

⌫(ci � c
j) = ⌫(c0i � c

0j)?

In other words, what is the probability that SR�1�MC
�1(ci�c

j) is zero in 4�d

columns and that SR�1 �MC
�1(c0i � c

0j) is zero in exactly the same columns ?
For a single combination of pairs, the probability that c

i and c
j satisfy

wt(⌫(ci � c
j)) = d (i.e. SR

�1 � MC
�1(ci) and SR

�1 � MC
�1(cj) collide in

4� d columns) is given by

pfirst =

✓
4

4� d

◆
(28)�(4�d)

.

For instance, the probability that two ciphertexts satisfy wt(⌫(ci � c
j)) = 3 is

given by
�4
1

�
·(28)�4 = 2�30, and the probability that the pair has wt(⌫(ci�c

j)) =

2 is given by
�4
2

�
· (28)�8 = 6 · 2�64, and so on. The probability that the second

pair is zero in the exact same columns as the first is then in general

psecond = (28)�(4�d)
.

Thus, in the random case the probability of the two events is given by

prand =pfirst · psecond (2)

=

✓
4

d

◆
(28)�(4�d) · (28)�(4�d)

. (3)

But for AES, Theorem 6 states that the probability is p5(|I|, |K|) for the second
event, where I is the set of exchanged diagonals while K is the set of diagonals
that are equal in the initial plaintext pair. Thus, the total probability for AES
becomes instead

pAES = pfirst · p5(|I|, |K|). (4)

For instance, if we set |I| = 1 (i.e. one diagonal is exchanged) and |K| = 2 (i.e.
the di↵erence of the plaintexts is zero in two diagonals), we get that p5(1, 2) <
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228.2, while it is 2�32 for random. Notice that the second term of prand, psecond,
is a function of the ciphertext collision event while the second term of pAES ,
p5(|I|, |K|), is fixed and independent of this ciphertext collision condition. Thus,
while the second term in the probability for the random case depends on the
size of the space that the di↵erence c

0i � c
0j is required to collide in (e.g. has

probability 2�96 for the second event), the second term of pAES is fixed and
independent of this (e.g. has always probability 2�28.2 for the second event).
Thus, since the probability of the exchange equivalence condition of Theorem 5
can easily be made higher than the random collision condition for the second
pair, a distinguishing condition follows.

For 5 rounds, the adversary base the distinguisher more concretely on the
following question with respect to a larger subset of plaintexts:
For a subset of plaintexts P , what is the probability that there exist two distinct

pairs au, av from any of the exchange equivalence classes Sa,b in P that satisfy

⌫(R5(a)�R
5(b)) = ⌫(R5(c)�R

5(d))

and

0 < wt(⌫(R5(a)�R
5(b))) = d < 4.

Theorem 6 and Theorem 7 in the previous section can be used directly to
set up a straight-forward 5-round chosen plaintext distinguisher for AES. If the
adversary observes a pair of plaintexts (p0, p1) corresponding to a pair of cipher-
texts that satisfy 0 < wt(⌫(c0, c1)) < 4, then Theorem 6 states that for any other
pair (p00, p01) 2 Sp0,p1 , the probability of the event ⌫(c00�c

01) = ⌫(c0�c
1) is sig-

nificantly higher than for the random case. In Theorem 7 we showed that the ex-
pected number of combinations of diagonal exchange equivalent pairs (a, b), (c, d)
from the diagonal exchange invariant set A = A0�A1�A2�A3 that are also di-
agonal exchange equivalent after one round, is given by G(m1,m2,m3,m4) where
mi = |Ai|. In this case, the combination of pairs also obey the additional 4 round
exchange di↵erence relation of Theorem 3, thus G(m1,m2,m3,m4) is also the ex-
pected number of combinations of exchange equivalent plaintext pairs that enjoy
the 4-round exchange di↵erence relation for 5 rounds. Since G(m1,m2,m3,m4)
is the expected number of combinations of exchange equivalent pairs au, av that
satisfy Theorem 6, it follows that

EAES = G(m1,m2,m3,m4) ·
✓
4

d

◆
(2�8)4(4�d)

is the expected number of combinations of pairs from the exchange equivalence
classes whose ciphertexts satisfy

⌫(c00 � c
01) = ⌫(c0 � c

1)

when wt(⌫(c0 � c
1)) = d. For the random case, the same probability becomes

Erand = H(m1,m2,m3,m4) ·
✓
4

d

◆
(2�8)4(4�d) · (2�8)4(4�d)



The Exchange Attack: How to Distinguish 6 Rounds of AES 15

where

H(m1,m2,m3,m4) =
4X

t=1

Lt(m1,m2,m3,m4)

✓
2t�1

2

◆

follows from Theorem 7 and is the total number of combinations of two pairs
from each possible exchange equivalence class Sa,b.

An algorithm for the 5-round distinguisher is presented in Algorithm 1. In our
distinguisher for 5 rounds, we pick two random subsets A0 and A1 of F4

28 , each of
sizem, and encrypt the resulting diagonal exchange invariant set ofm2 plaintexts
P formed by spanning the first diagonal with the possible elements from A0 and
the second diagonal with elements from A1, while setting the remaining bytes
to random constants. The structure of the plaintext subset is determined by
optimizing EAES relative to Erand with the condition that d = 3, i.e. the two
pairs of ciphertexts must collide in the same column before the last linear layer.

In this particular case, when only two diagonals are active in the plaintexts,
the set of plaintexts contains exchange equivalence classes of size 1 and 2 (note
that we can not draw pairs from an exchange equivalence class of size 1). If we
set m = 215, we get that

EAES = G(m,m, 1, 1) · 2�30

⇡ 1

while

Erand = H(m,m, 1, 1) · 2�62

⇡ 2�4
.

Thus, by encrypting a plaintext set P = A0�A1�A2�A3 where |A0| = |A1| = m

and |A2| = |A3| = 1 (i.e. |P | ⇡ 230), we are able to distinguish AES. An
unoptimized algorithm for the distinguisher is presented in Algorithm 1.

4.1 Complexity of Distinguisher

The algorithm consists of two parts. In the first part, the adversary encrypts
D = m

2 = 230 plaintexts and inserts the index (i, j) into each of the four tables
Tk according to the integer column values of L�1(ci·m+j) , i.e. the index (i, j) is
inserted into Tk[|L�1(ci·m+j)k|] where |L�1(ci·m+j)k| is the integer value of the
k’th column of L�1(ci·m+j). The complexity of this part is roughlyD encryptions
times four insertions to the hash tables Tk, which is roughly about

Cpart1 =
(4 ·D)

80
<225.7

if we use the convention that one encryption (i.e. 5 · 16 = 80 s-box lookups)
corresponds to one unit of computation. To determine the complexity of the
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Input: m = 215, D = 230

Result: 1 if AES, �1 otherwise.
L�1  SR�1 �MC�1

Choose m random values A = {a0, a1, . . . , am�1} ⇢ F4
28

Choose m random values B = {b0, b1, . . . , bm�1} ⇢ F4
28

Choose random constants z2, z3 2 F4
28

C  {}
T0, T1, T2, T3 = {} // empty hash tables containing unordered sets(e.g.
unordered multisets)

/* Encrypt and order 230 plaintexts */
for i from 0 to m� 1 do

for j from 0 to m� 1 do
l i ·m+ j
pl  (ai, bj , z2, z3) // r’th entry is the r’th diagonal

cl  EK(pl)
/* Add (i, j) to Tk[z] according to value z of column k of

L�1(cl) */
for k from 0 to 3 do

z  |L�1(cl)k| // |L�1(cl)k| is integer value of k’th column
Tk[z] Tk[z] [ (i, j)

end

C  C [ cl

end

end
/* Search for double collisions */

for each ci in C do
/* coeffs(i) returns coefficients a, b s.t. a ·m+ b = i */
i1, j2  coeffs(i)
for j from 0 to 3 do

for a 2 Tj [|cij |] do
i2, j2  Tj [|cij |][a]
if i1 6= i2 and j1 6= j2 then

if L�1(C[i2 ·m+ j1]� C[i1 ·m+ j2])k equals 0 then
/* Two pairs forming double collision found */
return 1

end

end

end

end

end
return �1

Algorithm 1: Pseudo-code for 5-round distinguisher.

second part, we need to estimate approximately the expected number of entries
that contains 0 values, 1 values, 2, values etc. using the formula for the expected
number of multicollisions. For a subset of size D drawn from a set of size N > D,
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the expected number of l-multicollisions (see [13]) is:

s(D,N, l) =

Ql
i=1 D + 1� i

l!N l�1
. (5)

For D = 230 and N = 232, we do not expect any multicollisions involving
more than 7 ciphertexts (i.e. s(D,N, 8) ⇡ 0.7) and thus Tk[r] contains at most
7 values such that the complexity of testing each combination of ciphertexts
related to an index entry of Tk[r] takes at most

�7
2

�
= 21. But to get a more

accurate complexity estimate, we may iteratively compute the expected number
of sets Tk[r] which contains l = 7 elements (i.e. correspond to a 7-multicollision),
which contains l = 6 elements, and so forth. To do this, we let s7 = s(D,N, 7).
Then the number of 6-multicollisions not already inside a 7-multicollision is given
by

s6 = s(D,N, 6)� s7 ·
✓
7

6

◆
.

Then the number of 5-multicollisions that are not already inside a 6-multicollision,
is given by

s5 = s(D,N, 5)� s6 ·
✓
6

5

◆

and so forth, obeying the recurrence

st = s(D,N, t)� st+1 ·
✓
t+ 1

t

◆

until we arrive at s1, which is the expected number of entries which contains
only one element. Moreover, we should have that

P7
t=1 st · t ⇡ D, and indeed

we get that

7X

t=1

st · t ⇡ 230

as expected. From this, we can compute the complexity corresponding to finding
collisions in one of the tables Tk in part 2 as

C
0
part2 =s1 +

7X

t=2

st

✓
t

2

◆

⇡(229.7 + 229) · C
⇡230

such that the total complexity of part 2 roughly becomes

Cpart2 =
4 · C 0

part2

80
⇡225.7
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if we adopt the convention that one operation equals one encryption, which
can be viewed as 16 · 5 = 80 s-box lookups). Hence, 5 rounds of AES can be
distinguished using a chosen plaintext distinguisher with D = 230 data and
about the same computational complexity. In the next section, we show that
with a change of parameters the same distinguisher can be used to distinguish
6 rounds of AES.

5 The Exchange Attack on 6 Rounds AES

In this section we present a 6-round secret-key chosen plaintext distinguisher for
AES, which follows from a straight-forward extension of Theorem 6. Imagine a
setup similar to the 5-round distinguisher, but where we encrypt two random
plaintexts pi and p

j which are non-zero in all bytes except the last diagonal. As
before, let p0i = ⇢

v
d(p

i
, p

j) and p
0j = ⇢

v
d(p

j
, p

i).
Now assume the following two conditions, where the first one is given by

wt(⌫(R5(pi)�R
5(pj))) =1 (6)

and second one is given by

wt(⌫(R6(pi)�R
6(pj))) =1. (7)

At random, the first condition happens with probability 2�94 and thus the second
condition happens with probability

�4
3

�
(28)3 = 2�22 by Theorem 4 conditioned

on the first event. By symmetry of Theorem 4, the same condition applies in
the reverse direction. If we observe that the second condition (7) holds, which
happens with probability 2�94 at random, then the first condition (6) holds with
probability 2�22 by Theorem 4. So assume that we observe a pair of ciphertexts
c
i = R

6(pi) and c
j = R

6(pj) that happens to satisfy the second condition (7),
i.e. SR�1 � MC

�1(ci � c
j) contains exactly one active column. Such an event

happens at random with probability

pR6 = 2�94
.

Then by Theorem 4 applied in the reverse direction, the probability of the first
condition (6) conditioned on the event (7) is given by

pR5 = 2�22
,

i.e. SR�1 �MC
�1(R5(pi)�R

5(pj)) contains exactly one active column too. But
if the first event (6) occurs, then by Theorem 6 we also have that the event

⌫(R5(p0i)�R
5(p0j)) = ⌫(R5(pi)�R

5(pj))

happens with probability probability PR1 = p5(3, 1) ⇡ 2�38 for the exchanged
pair. Hence, both pairs satisfy

wt(⌫(R5(p0i)�R
5(p0j))) =wt(⌫(R5(pi)�R

5(pj)))

=1
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and thus it follows from Theorem 4 applied to the exchanged pair in the fifth
round that the probability of the two simultaneous events (conditioned on the
previous events)

wt(⌫(R6(p0i)�R
6(p0j))) = wt(⌫(R6(pi)�R

6(pj))) = 1

is given by pR60 = 2�22. Hence, if the adversary observes a pair of ciphertexts
that satisfy (7), then the probability that the event wt(⌫(R6(p0i)�R

6(p0j))) = 1
occur (i.e. the same event happens for the exchanged pair too) is given by

psecond =pR5 · p5(3, 1) · pR6

⇡2�44 · 2�38

=2�82
.

In the random case, however, the probability that the second ciphertext pair
satisfies the last condition (7) is 2�94 for both pairs of ciphertexts. Thus, for
a random plaintext/ciphertext pair (pi, pj) ! (ci, cj) and an exchanged pair
(p0i, p0j) ! (c0i, c0j), the probability that

wt(⌫(ci � c
j)) = wt(⌫(c0i � c

0j)) = 1

is for a random permutation given by

prand =2�94 · 2�94

=2�188

while it is equal to

pAES =2�94 · 2�82

=2�176

for AES. We may summarize the result as follows.

Theorem 8. Let P = A0 � A1 � A2 � A3 with |A0| = |A1| = |A2| = 229.4 and

|A3| = 1 such that |P | = 288.2, then the expected number of combinations of pairs

(a, b), (c, d) from the exchange equivalence classes in P whose ciphertexts satisfy

Pr(wt(⌫(R6(a)�R
6(b))) = wt(⌫(R6(c)�R

6(d))) = 1)

is given by

EAES = G(m,m,m, 1) · 2�44 · 2�94

⇡ 1

while

Erand = H(m,m,m, 1) · 2�94 · 2�94

⇡ 2�11

for random.
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R R R R R R

R R R R R R

Fig. 4: 6-round exchange trail.

Proof. Proof follows straight forwardly by combining Theorem 6, Theorem 7
and Theorem 4. Assume that two exchange equivalent pairs satisfy the 5 round
exchange relation and assume that one of them satisfy relation 6. Then the
other pair must satisfy this relation. The probability that both pairs satisfy this
condition is therefore 2�94 (in comparison to 2�94�94 for random). Then due to
Theorem 4, it follows that the probability that both pairs of ciphertexts obey
relation 7, is 2�22 · 2�22 = 2�44. ut

Hence, if the adversary encrypts a set of D = (229.4)3 = 288.2 plaintexts, we
expect to find 1 combination of pairs that satisfy our condition, while we expect
to find 2�10 double collisions for a random permutation. Thus, we have the basis
for a distinguisher which can distinguish 6 full rounds of AES that requires 288.2

chosen plaintexts.

5.1 Distinguishing Attack Algorithm for 6 Rounds

Similar to the 5-round distinguisher, we pick three sets A0, A1 and A2, each
of size ⇡ 229.4 such that we may generate a diagonal exchange invariant set of
D = 288.2 plaintexts in such a way that the i’th diagonal of each plaintext is
spanned by the possible elements of Ai while the last diagonal is set to a random
constant. In fact, the algorithm is exactly the same as the 5-round distinguisher,
except for a change of parameters and collision condition. Moreover, this time
each of our hash-tables may in the worst case contain up to 288.2 values. The
algorithm for 6 rounds AES is presented in Algorithm 2 and it readily seen
that it is essentially the same as for 5 rounds. However, if we observe a pair of
ciperhtexts c

i and c
j that have our desired collision property and which stems

from a plaintext pair pi and p
j which di↵er in all three diagonals, then we need

to generate the remaining 3 possible exchanges of those to test the secondary
condition. Due to our use of indices for locating ciphertexts in the algorithm,
exchanging a pair of plaintexts corresponds to exchanging indices between the
corresponding ciphertexts. However, in the algorithm we are more explicit for
ease of understanding.

5.2 Complexity of Distinguisher

The analysis of the 6-round distinguisher pretty much follows the same line as the
5-round distinguisher. The distinguisher consists of two parts; first the adversary



The Exchange Attack: How to Distinguish 6 Rounds of AES 21

populates the tables Tk followed by a collision search. The first part is estimated
in the same way as for the 5 rounds, i.e. we get roughly

Cpart1 =
(4 ·D)

96
⇡283.6.

where we adopt the convention that one unit equals one encryption, where one
encryption equals 96 s-box look-ups for 6 full rounds. For part 2, searching for
collisions, the analysis is the same as for 5 rounds. Again, by using the recurrence
(5) for multicollisions, we find that more than 10 collisions in the same entry
Tk[r] is unlikely (i.e. s(288.2, 296, 10) ⇡ 2�4). Thus, again we may apply the
recursion

st = s(D,N, t)� st+1 ·
✓
t+ 1

t

◆

to compute s8 down to s1 given that s9 is expected to be s(D,N, 9). This way,
we find the expected number of entries in each table which has 9 elements, 8
elements, and so on. If the computation is correct, we should have that

9X

t=1

st · t ⇡ 288.2

which we indeed get. From this, we can compute the complexity corresponding
to finding collisions in one of the tables Tk in part 2 as

C
0
part2 =s1 +

9X

t=2

stt
2 · C

⇡288.19 + 281.4 · C
⇡288.2

where C is the number of ciphertext-lookups we do for each combinations of
pairs. Note that the algorithm will spend most of the time detecting entries with
no collision. In the second term above, each table index of size t is visited t

times (once for each ciphertext in it, which is not optimal). We can do at most
3 additional exchanges between the observed pairs, or else we can do 1 or zero
exchanges, depending on the size of the exchange equivalence class these pairs
belong to (either size 1, 2 or 4). In any case, this last term does not contribute
to the final complexity C

0
part2 . Thus, the expected complexity of evaluating the

4 tables then roughly becomes

Cpart2 =
4 · Cpart2

96
⇡283.6

where we adopt the convention that one unit equals one encryption, where one
encryption equals 96 s-box look-ups for 6 full rounds. Thus, the total complexity
of the algorithm is dominated by the number of required ciphertexts, D = 288.2,
in terms of data, memory and computation.
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6 Conclusion

In this paper we have introduced a 6-round secret-key chosen-plaintext distin-
guisher for AES using a new type of attack called exchange equivalence attacks

(or simply, exchange attacks). The distinguisher has data and computational
complexity of only 288.2 and can thus be viewed as a giant leap in the cryptanal-
ysis of AES when one considers that the first 5-round secret-key distinguisher for
AES appeared nearly 20 years after the publication of Rijndael. All of our attacks
can easily be turned into chosen ciphertext attacks on the inverted block cipher
due to the inherent symmetry of the properties we are using. Moreover, it is pos-
sible to turn this 6-round distinguisher into a ”yoyo”-variant with a favourable
complexity to this one. Our results are easily generalized to any SPN-like ci-
pher, and in particular, we note that the theory in this paper can be generalized
to extend the attacks for more rounds for ciphers with slower di↵usion (e.g.
lightweight designs). We are confident that our results lead the way to further
breakthroughs on ciphers such as AES.
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Input: m = 229.4, D = 288.2

Result: 1 if AES, �1 otherwise.
L�1  SR�1 �MC�1

Choose m random values A = {a0, a1, . . . , am�1} ⇢ F4
28

Choose m random values B = {b0, b1, . . . , bm�1} ⇢ F4
28

Choose m random values C = {c0, c1, . . . , cm�1} ⇢ F4
28

Choose random constants z3 2 F4
28

C  {}
T0, T1, T2, T3 = {} // empty hash tables containing unordered sets(e.g.

unordered multisets )
/* Encrypt 288.2 plaintexts */
for i from 0 to m� 1 do

for j from 0 to m� 1 do
for k from 0 to m� 1 do

l i ·m2 + j ·m+ k
pl  (ai, bj , ck, z3) // r’th entry is the r’th diagonal value

cl  EK(pl)

/* Tr[z] contains indices (i, j, k) for ciphertext ci·m
2+j·m+k

with value z in the r’th column of L�1(ci·m
2+j·m+k) */

for r from 0 to 3 do
z  |L�1(cl)r| // |L�1(cl)r| is integer value of r’th

column
Tr[z] Tr[z] [ (i, j, k)

end

C  C [ cl

end

end

end
/* Search for double collisions */

for each ci in C do
/* coeffs(i) returns coefficients a, b, c s.t. a ·m2 + b ·m+ c = i */
i1, j2, k2  coeffs(i)
for j from 0 to 3 do

for a 2 Tj [|cij |] do
i2, j2, k2  Tk[|clk|][a]
/* Gi,j is the set of ciphertexts corresponding to exchange

equivalence class Spi,pj */
S  G(i1,j1,k1),(i1,j2,k2) //|G|  4
for each pair (a, b) 2 S do

if wt(⌫(R6(a))�R6(b)) equals 1 then
/* Two pairs forming double collision found */
return 1

end

end

end

end

end
return �1

Algorithm 2: Pseudo-code for 6-round distinguisher.


