
Compact linkable ring signatures and applications

Brandon Goodell1, Sarang Noether1, and RandomRun2

1Monero Research Lab, {surae,sarang}@getmonero.org
2Independent researcher

Abstract

We describe an efficient linkable ring signature scheme, compact linkable spontaneous anonymous
group (CLSAG) signatures, for use in confidential transactions. Compared to the existing signature
scheme used in Monero, CLSAG signatures are both smaller and more efficient to generate and verify for
ring sizes of interest. We generalize the construction and show how it can be used to produce signatures
with coins of different type in the same transaction.

1 Introduction

Ring signatures are used in Monero to provide transaction signer ambiguity. Originally, a simple Schnorr-like
linkable ring signature [4] was used that included previous one-time output public keys as possible signers.
Later, the addition of Pedersen commitments to hide amounts necessitated a generalization to the signature
[5] in order to prove transaction balance without revealing the signer.

The current ring signature construction used in Monero, MLSAG signatures, scale linearly with the
number of ring members included in the signature. In particular, they require the inclusion of two scalars
per ring member.

We note that the MLSAG signature scheme, while general enough to permit linking across multiple sets
of input keys, is in practice used as a hybrid approach to a linkable ring signature. Indeed, each signature
input consists of two keys: the first is a standard one-time output public key, and the second is a key
computed using the associated Pedersen commitments. Linkability is only used for the first key, to ensure
that double-spending does not occur.

This construction is flexible. For example, the format can be used for usual ring confidential transactions
or could be modified to describe colored ring confidential transactions with multiple so-called coin colors,
allowing users to transact with multiple assets simultaneously.

1.1 Our contribution

In this work, we introduce a d-dimensional linkable ring multisignature (d-LRMS) scheme suitable for use
in a colored ring confidential transaction scheme with d colors. Our scheme is compact in the sense that
signature size scales with the sum of ring size and the dimension d; that is, increasing d yields the same
additional number of signature elements, regardless of the ring size. We prove our scheme is unforgeable up
to the hardness of the k-one-more discrete logarithm problem.

We call our signature scheme d-dimensional compact linkable spontaneous anonymous group (d-CLSAG)
signatures. We demonstrate how to use this scheme for ring confidential transactions in Monero by replacing
multi-layered linkable spontaneous anonymous group (MLSAG) signatures with d-CLSAG signatures. The
resulting scheme is more efficient in both signature size and verification time than current Monero transaction
structures, and can be seamlessly integrated into the Monero transaction protocol.

1

2 Notation

In this document, we denote algorithms with typefont majuscule English letters like A, B, or O, or typefont
names like Setup, KeyGen, and so on.

Group parameters are denoted as a tuple (p,G, d,G) where G is an elliptic curve group with prime order
p, d is a dimension, and G is a generator of G. We denote integers, bits, indices, and scalars in Z/pZ with
minuscule English letters x, y, z, b, c, i, j, k, etc. and we denote group elements with majuscule English letters,
G,X,W , and so on. We use miniscule Greek letters like σ to describe signatures and majuscule calligraphic
Latin letters like T when describing linkability tags.

We denote column vectors in boldface, e.g. (x1, . . . , xd)
> = x, and matrices in underlined boldface, e.g.

((x1,1, x1,2, . . . , x1,n), . . . , (xd,1, . . . , xd,n)) = (x1,x2, . . . ,xn) = x is a d×n matrix. We denote the Hadamard
product of two vectors with ◦, so for any x = (x1, x2, . . . , xd) = (xi)

d
i=1, and for any y = (yi)

d
i=1, we denote

the sequence (xi · yi)di=1 with x ◦ y. We denote bitwise concatenation with the symbol ||.
We distinguish oracles with calligraphic font, e.g. CO denotes a corruption oracle, SO denotes a signing

oracle. If the codomain of a random oracle is the field of scalars Z/pZ, we denote this Hs (hash-to-scalar).
If the codomain is G, we denote this Hp (hash-to-point).

3 Linkable ring multisignatures

In this section, we recall linkable ring signature (LRS) schemes, we modify the definition to account for
d-dimensional keys for linkable ring multisignature (LRMS) schemes, and we provide two examples. We
emphasize that our description does not present multisignatures as computed between mutually untrusted
parties. We use the term to mean a d-of-d threshold multisignature with all keys controlled by the same
signer; in particular, we have none of the communication steps necessary for computing a multisignature.

3.1 LRS and LRMS schemes

Definition 3.1 (LRS). A linkable ring signature scheme is a tuple (Setup, KeyGen, Sign, Verify, Link)
satisfying the following.

• Setup(1λ)→ par. Setup takes as input a security parameter 1λ, produces some public parameters par.

• KeyGen(1λ, par)→ (sk, pk). KeyGen takes as input a security parameter 1λ and public parameters par.
KeyGen produces as output a private-public keypair (sk, pk).

• Sign
(
1λ, par, (m,pk, sk)

)
→
{
⊥Sign, (σ,T)

}
. Sign takes as input a security parameter 1λ, public

parameters par, an arbitrary message m ∈ {0, 1}∗, an ad hoc ring of public keys pk = {pk1, . . . , pkn},
and a secret key sk. Sign produces as output either a distinguished failure symbol out = ⊥Sign or a
signature-tag pair out = (σ,T).

• Verify
(
1λ, par, (m,pk, (σ,T))

)
→ {0, 1}. Verify takes as input a security parameter 1λ, public

parameters par, a message m, a ring of public keys pk, and a signature-tag pair (σ,T). Verify

produces as output a bit b ∈ {0, 1}.

• Link
(
1λ, par, (σ,T), (σ′,T′)

)
. Link takes as input a security parameter 1λ, public parameters par, and

a pair of signature-tag pairs (σ,T), (σ′,T′). Link produces as output a bit b ∈ {0, 1}.

We extend this to a scheme with d-dimensional keys.

Definition 3.2 (d-LRMS). A d-dimensional linkable ring multisignature scheme is a tuple of algorithms
(Setup, KeyGen, Sign, Verify, Link) satisfying the following.

• Setup(1λ)→ par. Setup works as described in 3.1.

• KeyGen(1λ, par) → (sk,pk). KeyGen takes as input a security parameter 1λ and public parameters
par. KeyGen produces as output a private-public keypair (sk,pk) where each key is a d-dimensional
vector. We refer to the first coordinate of each of these keys as the linking key and the d− 1 remaining
coordinates (if there are any) are the auxiliary keys.

2

• Sign
(
1λ, par, (m,pk, sk)

)
→
{
⊥Sign, (σ,T)

}
. Sign takes as input a security parameter 1λ, public

parameters par, a message m, a vector of public keys pk = {pk1, . . . ,pkn} where each pki is a
d-dimensional public key, and a d-dimensional secret key sk. Sign produces as output either a distin-
guished failure symbol ⊥Sign or a signature-tag pair (σ,T).

• Verify
(
1λ, par, (m,pk, (σ,T))

)
→ {0, 1}. Verify takes as input a security parameter 1λ, public

parameters par, a message m, a matrix of public keys pk, and a signature-tag pair (σ,T). Verify

produces as output a bit b ∈ {0, 1}.

• Link
(
1λ, par, (σ,T), (σ′,T′)

)
. Link works as described in 3.1.

We refer to the linkability tag as the key image for consistency with terminology in Monero. We also use
the following terminology if the scheme satisfies the respective properties.

Correctly verified: For any message m, d-dimensional secret key sk with corresponding public key pk,
and appropriately-sized matrix pk = {pk1, . . . ,pkn}, if there exists an index 1 ≤ ` ≤ n such that
pk = pk`, then Verify(Sign(m,pk, sk)) = 1.

Correctly linkable: For any messages m, m′, any d-dimensional secret keys sk and sk′ with equal link-
ing keys (that is, with sk0 = sk′0) and with corresponding public keys pk and pk′ respectively,
any appropriately-sized pair of matrices pk and pk′, if (σ,T) ← Sign(m,pk, sk) and (σ′,T′) ←
Sign(m′,pk′, sk′) such that pk

`
= pk and pk

`′
= pk′, then Link((σ,T), (σ′,T′)) = 1.

Note that linkability is only considered with respect to a single component of a matrix entry. When
applied to Monero, this is important since only one such entry corresponds to an output public key for
double-spend detection purposes.

3.2 Examples

Example 3.1. The LSAG signature scheme from [4] is a 1-LRMS. In this example, Setup always deter-
ministically sets d := 1 (so we only use the linking key and there are no auxiliary keys). Setup selects
some G ∈ G to be a group generator for the group parameters (p,G, 1, G), two cryptographic hash functions
Hs : {0, 1}∗ → Z/pZ and Hp : {0, 1}∗ → G. Setup outputs par = (p,G, 1, G,Hs,Hp).

KeyGen produces as output a private key x ∈ Z/pZ and a public key X = xG. Sign takes as input
a private key y ∈ Z/pZ, a message m, and a ring X = {X1, . . . , Xn}, and produces as output either a
distinguished failure symbol ⊥Sign or a signature-tag pair (σ,T).

The signature scheme originally described in [4] signs a message m with a ring of keys X = {X1, . . . , Xn}
and a secret key x corresponding to some X`, using the linkability tag (key image) T := xHp(X). Unfortu-
nately, this key image is unsuitable for use in Monero, as changing ring members will change the key image.
This would allow the same key to be used twice in two different ring signatures. For use in Monero, we
modify this key image to be independent of the non-signing ring members, T := xHp(X`). This allows these
key images to be used for double-spend protection.

An LSAG signature on a message m with ring X using these key images is computed in the following way.
First, the signer samples α, s`+1, s`+2, . . . , s`−1 ∈ Z/pZ at random. Next, the signer computes basepoints
Hi = Hp(Xi). Next, the signer computes c`+1 = Hs(X || m || αG || αH`) and the signer computes each
ci+1 = Hs(X || m || siG+ ciXi || siHi + ciT) for i = `+ 1, . . . , `− 1, naturally identifying index 1 with index
n + 1. The signer finishes by computing s` = α − c`x` and publishing the signature-tag pair (σ,T) where
σ = (c1, s1, . . . , sn).

A purported LSAG signature-tag pair on a message m with ring X is verified in the following way. The
verifier sets c′1 = c1 and computes c′i+1 = Hs(X || m || siG + c′iXi || siHi + c′iT) for i = 1, 2, . . . , n. The
verifier outputs 1 when c′n+1 = c1 and 0 otherwise. Note that all verifiers must list the keys in X in an
agreed-upon order for the above verification to work; either they should agree upon lexicographic or some
other ordering. LSAG signature-tag pairs are linked merely by comparing key images: two valid signatures
with the same key image were signed with the same secret key (and, in the case of Monero, would signal an
attempt to double-spend funds).

3

Remark 3.1. The key image modification in Example 3.1 is due to the basepoint of the key image T. As
noted in [4], easy variations on key image formats are available. How or whether the security properties of
LSAG signatures are retained in practical use given more flexible key image formats, while interesting, is
beyond the scope of this work.

Example 3.2. The MLSAG signature scheme from [5] is a 2-LRMS. In this example, Setup always deter-
ministically sets d := 2. Public keys are taken to be pairs of group elements (X,Z) ∈ G2. Sign takes as
input a private key vector (x, z), a message m, and a matrix of public keys pk = {pk1, . . . ,pkn} where each
pki = (Xi, Zi), each Xi is the public key of a one-time transaction output, and each Zi is computed using
combinations of Pedersen commitments that depend on the particular transaction type in use.

A signature-tag pair (σ,T) is computed in the following way. Two rows of random signature data are
sampled, say α, α′, s`+1, s

′
`+1, s`+2, s

′
`+2, . . . , s`−1, s

′
`−1 and the basepoints Hi = Hp(Xi) are computed from

the signing keys Xi of each ring member (Xi, Zi). The key image T = x`H` is computed. The following
challenges are computed

c`+1 =Hs(X || m || αG || αH` || α′G′)
ci+1 =Hs(X || m || siG+ ciXi || siHi + ciT || s′iG′ + ciZi).

The values s` = α−c`x` and s′` = α′−c`z` are computed. The signature is set σ := (c1, s1, s
′
1, . . . , sn, s

′
n) and

the signature-tag pair is published (σ,T). Verification proceeds as one would expect, succeeding if c′n+1 = c1
after the verifier computes each Hi and each challenge

c′2 =Hs(X || m || s1G+ c1X1 || s1H1 + c1T || s′1G′ + c1Z1)

c′i+1 =Hs (X || m || siG+ c′iXi || siHi + c′iT || s′iG′ + c′iZi) .

Note this scheme is not compact in the sense that doubling key dimension going from d = 2 in Example 3.1
to d = 2 results in an asymptotic doubling of signature size.

4 A compact d-LRMS scheme

We present a multisignature variant of LSAG signatures that is more compact than the previous examples.
We loosely say that a d-LRMS scheme is compact if its signature sizes are not proportional to d. We call this
scheme d-CLSAG to be concise. We show how to apply a 2-CLSAG for use in ring confidential transactions,
and how to apply d-CLSAG for colored ring confidential transactions. We make remarks on efficiency for
both applications. In particular, we show that our 2-CLSAG construction is more efficient in both space and
verification time than the equivalent MLSAG construction.

4.1 Implementation

Definition 4.1 (d-CLSAG). The following tuple (Setup, KeyGen, Sign, Verify, Link) is a compact d-LRMS.

• Setup(1λ, d) → par. Setup takes as input a security parameter 1λ and a public dimension d. Setup

selects a prime p, a group G with prime order p, selects a group generator G ∈ G uniformly at random,
selects d cryptographic hash functions Hs0, . . . ,Hsd−1 with codomain Z/pZ, selects a cryptographic hash

function Hp with codomain G. Setup outputs par =
(
p,G, d,G,

{
Hsj
}d−1
j=0

,Hp
)

.1

• KeyGen(1λ, par)→ (sk,pk). KeyGen takes as input the security parameter 1λ, public parameters par.
KeyGen samples sk ← (Z/pZ)d, which we denote sk = (x, z1, . . . , zd−1), and computes pk := sk ◦G
for G = (G,G, . . . , G) ∈ Gd. KeyGen outputs (sk,pk). We say x is the linking key and the remaining
keys {zj} are the auxiliary keys.

• Sign
(
1λ, par, (m,pk, sk)

)
→
{
⊥Sign, (σ,T)

}
. Sign takes as input the security parameter 1λ, public

parameters par, a message m ∈ {0, 1}∗, a matrix of public keys pk = (pk1, . . . ,pkn) where each

pki = (Xi, Zi,1, . . . , Zi,d−1) ∈ Gd, and a secret key vector sk = (x, z1, . . . , zd−1) ∈ (Z/pZ)d. Sign does
the following.

1Note that domain separation can be used here to take one Hs and construct each Hs
j by defining Hs

j(x) := Hs(j || x).

4

1. Sign looks for the signing index ` such that (x, z1, . . . , zd−1) ◦ (G,G, . . . , G) = pk`. If no such
index exists, Sign outputs ⊥Sign and terminates.

2. Otherwise, Sign samples α ∈ Z/pZ and {si}i 6=` ∈ (Z/pZ)n−1.

3. Sign computes the aggregation coefficients µX and {µj}d−1j=1 , the linkability tag or key image T,

and auxiliary key images {Dj}d−1j=1 :

T←xHp(X`) µX ←Hs0(pk || T || {Dj}d−1j=1)

{Dj} ←{zjHp(X`)} µj ←Hsj(pk || T || {Dj}d−1j=1).

4. For i = `, `+ 1, . . . , `− 1, identifying index n with index 1 as usual, Sign computes

L` =αG Li =siG+ ci

µXXi +

d−1∑
j=1

µjZi,j

R` =αHp(X`) Ri =siHp(Xi) + ci

µXT +

d−1∑
j=1

µjDj

c`+1 =Hs0(pk || m || L` || R`) ci+1 =Hs0(pk || m || Li || Ri)

and lastly computes s` = α− c`(µXx` +
∑d−1
j=1 µjz`,j).

5. Sign sets the signature σ = (c1, s1, . . . , sn, {Dj}d−1j=1) and publishes the signature-tag pair (σ,T).

• Verify
(
1λ, par,m,pk, (σ,T)

)
→ {0, 1}. Verify takes as input the security parameter 1λ, public

parameters par, a message m, a matrix pk = ((Xi, Zi,1, . . . , Zi,d−1))ni=1, and a signature-tag pair
(σ,T). Verify does the follwoing.

1. If n > N , or any coordinate of any ring member is not in G, or if σ cannot be parsed as
(c1, s1, . . . , sn,D1, . . . ,Dd−1) for some c1 ∈ Z/pZ, some si ∈ Z/pZ, and some Dj ∈ G, or if T /∈ G,
Verify produces 0 as output and terminates.

2. Otherwise, Verify parses (c1, s1, . . . , sn, {Dj}d−1j=1)← σ, computes each Hp(Xi), and compute the
aggregation coefficients as above.

3. Verify sets c′1 := c1 and, for i = 1, 2, . . . , n− 1, computes the following.

Li :=siG+ c′i

µXXi +

d−1∑
j=1

µjZi,j

Ri :=siHp(Xi) + c′i

µXT +

d−1∑
j=1

µjDj

c′i+1 :=Hs0

(
pk || m || Li || Ri

)
4. If c′n+1 = c1, Verify produces 1 as output. Otherwise, Verify produces 0 as output.

• Link
(
1λ, par, (σ1,T1), (σ2,T2)

)
→ {0, 1}. Link takes as input the security parameter 1λ, public pa-

rameters par, and two signature-tag pairs ((σ1,T1), (σ2,T2)). If T1 ∈ G and T2 ∈ G and T1 = T2,
Link produces 1 as output. Otherwise, Link produces 0 as output.

We use the usual definition of correct verification and correct linkability, both of which are straightforward
to verify directly from the implementation. Later, we discuss the security of this implementation.

Remark 4.1. It may be possible to compress signatures further by computing the coefficients µj without
the inputs Dj and publishing σ = (c1, s1, . . . , sn,

∑
j µjDj) only, reducing signature sizes for d > 1 further.

The security of this variant is not proven here and is a good avenue for future work. The variant is not
relevant for Monero, since d = 1 for single-asset ring confidential transactions.

5

Remark 4.2. Note that the signature is computed with the aggregated secret w = µXx` +
∑
j µjz`,j . This

method of aggregating keys has two properties of importance.
First, under the random oracle model, the map defined by mapping (x, z1, . . . , zd−1) 7→ w is collision

resistant and anyone with knowledge of (x`, z`,1, . . . , z`,d−1) can compute the aggregated secret key w. More
than one choice of (x`, z`,1, . . . , z`,d−1) could map to the same aggregated key, but collision resistance implies
second pre-image resistance. Hence, given some W = wG for an unknown aggregated secret key w aggregated
from some secret key (x`, z`,1, . . . , z`,d−1), an attacker has at most a negligible chance of finding a second
secret key (x′`, z

′
`,1, . . . , z

′
`,d−1) that aggregates to the same secret w. This prevents the attacker from using

an adversarially generated secret key that coincidentally aggregates to the same w as some challenge key.
Second, under the random oracle model, the map is resistant to key cancellation. That is to say, an

attacker has at most a negligible chance of selecting a secret key (x`, z`,1, . . . , z`,d−1) with coordinates that
cancel in the sum w; except with negligible probability, w is dependent upon all bits of all coordinates of a
secret key (x, z1, . . . , zd−1).

4.2 Efficiency

Consider the space and time efficiency of Definition 4.1. A d-CLSAG signature with a ring size of n contains
n + 1 scalars and d group elements, so this scheme is compact. In practice, signatures are broadcast with
additional information such as references to the ring members. However, this is outside the scope of our
definitions.

To examine the verification time complexity, let ks and kp be the time complexity of evaluating the hash-
to-scalar functions Hs and of evaluating the hash-to-point function Hp, respectively. Let k(i) be the time
complexity to evaluate a scalar-point linear combination of i terms; using specialized algorithms like Straus
or Pippenger multiexponentiation (or others, based on i), such a linear combination can be evaluated much
more quickly than a simple term-by-term computation. We note that it is also possible to cache multiples of
points that are reused within verification for faster linear combination evaluation, but we do not differentiate
this here. Using these, the time complexity of d-CLSAG verification is (n+ d)ks + nkp + 2nk(d+1).

To compare to the current MLSAG scheme in Monero, note that 2-CLSAG has equivalent functionality.
The current Monero implementation requires 2n+ 1 scalars and 1 group element.

To determine the feasibility of implementation in Monero, we produced a test implementation using
the Monero codebase and tested signing and verification for MLSAG and 2-CLSAG on a 2.1 GHz Opteron
processor. Table 1 shows the results for different ring sizes. In particular, we note that for ring sizes of
interest to Monero (the current network-enforced size is 11), CLSAG is uniformly faster than MLSAG.
However, at very large ring sizes, MLSAG is faster due to additional computations involved in computing
aggregation coefficients and key prefixing.

Verify Sign
Ring size MLSAG CLSAG MLSAG CLSAG

2 2.4 2.0 2.3 2.7
4 4.7 4.0 4.6 4.6
8 9.5 7.8 9.4 8.5

16 18.9 15.9 18.9 16.5
32 37.8 32.3 37.8 33.0
64 75.4 67.5 75.9 68.3

128 150 147 151 148
256 301 344 303 346

Table 1: Signing and verification times (ms) for MLSAG and 2-CLSAG

6

5 Applications

5.1 Single-asset ring confidential transactions

As mentioned above, it is possible to use 2-CLSAG as a replacement for MLSAG signatures in Monero for
equivalent functionality. Currently, Monero uses MLSAG signatures for two different transaction types: full
and simple.

Full transactions are only used when spending a single input. They leverage the fact that in a balanced
transaction, the difference between input and output commitments is a commitment to zero; the signer can
therefore use such differences as the second component of key vectors in the signature and sign using the
known secret key at the signing index.

Simple transactions are used when spending multiple inputs. Each spent input requires a separate
signature, as a naive extension of full transactions presents an index linking issue. The signer first generates
auxiliary commitments for each spent input using the same value but a different blinder. This means it is
possible to use the difference between input and auxiliary commitments as a commitment to zero for the
purpose of signing. By choosing all blinders at random except one, the signer can construct the auxiliary
commitments such that the difference between auxiliary and output commitments is zero, proving balance.

Both transaction types can be used with 2-CLSAG, since linkability is not considered for the second key
component used in the transaction protocols.

5.2 Multi-asset ring confidential transactions (MARCTs)

It is possible to use a straightforward d-CLSAG construction to accommodate transactions spending d − 1
types or colors of assets separately within the same transaction and signature. To do so, Monero outputs are
extended to have a separate commitment to each asset type value. When spending an output, either a full
or simple transaction (discussed above) is used; we simply copy the method used to compute commitment
public keys in the signature to additional dimensions of the d-CLSAG signature, using only the commitments
for a particular asset type in each. This separation ensures that the transaction balances in each asset type
separately, while taking advantage of the scaling benefits of d-CLSAG compared to the equivalent MLSAG
signature construction.

5.2.1 Informal description of MARCT implementation

In this section, we leverage Π
(d)
C for use in ring confidential transactions on d− 1 different assets (or colors)

with a pegged exchange rate between colors. We analyze the cost (in terms of weight and sync time) to the
blockchain of our proposal compared to a similar proposal using d-MLSAG signatures. We present only the
case d = 3 in this section to represent two colors, leaving extensions for future work.

Consider the canonical example of colored currency with a fixed peg between two colors: dollars and
pennies with a 100 : 1 exchange rate between them. Define an exchange rate by determining some constants
γC , γD on

{
1, 2, . . . , 2ξ−1

}
, (in this example, γC = 1 and γD = 100). Let G,G′ be public group elements with

unknown discrete logarithms with respect to each other where G is the output from Setup for a d-CLSAG.
Let (Prove, Ver) be a zero-knowledge sound range proving scheme, such as that described in [3], and let
(Com, Open) be a Pedersen commitment scheme such that Com(r, v) = rG+ vG′.

For the sake of this example, we define a public trading key to be a tuple (X,C,D, P) where X,C,D ∈ G,
C and D are commitments and P is a batched range proof from Prove covering the values of both C and
D. We define a transaction key to be a tuple (m,Q,O, (fC , fD), (σ,T), aux) where Q is a ring of n public

trading keys Q = {(Xi, Ci, Di, Pi)}ni=1, O is a set of n′ output public trading keys O = {(X ′i, C ′i, D′i, P ′i)}
n′

i=1,
fC is a plaintext list of fees to be paid from C, fD is a plaintext list of fees to be paid from D, S = (σ,T) is
a CLSAG signature-tag pair.

We say a simple transaction key is valid if the following are satisfied:

• every input ring member (Xi, Ci, Di, Pi) ∈ Q has a valid range proof Pi so Ver(Pi) = 1; and

• every output range proof P ′k is valid so Ver(P ′k) = 1; and

7

• the signature-tag pair (σ,T) passes d-CLSAG verification Verify(m,pk, (σ,T)) = 1 for the modified
ring

pk =

(
X1 X2 · · · Xn

Z1 Z2 · · · Zn

)
where each Zi = γC(Ci − fCG′ −

∑
k C
′
k) + γD(Di − fDG′ −

∑
kD
′
k).

As before, this CLSAG signature demonstrates knowledge of the discrete logarithm of some x`, knowledge
of the opening information for the input and output commitments, and that the opening information for the
commitments balance with the fees fC and fD. After all, when the amounts in C` and D` balance with the
fees fC and fD together with the sum of the amounts in each C ′k and D′k, and when the signer knows all the
openers for all these commitments, the point γC(C` − fCG′ −

∑
k C
′
k) + γD(D` − fDG′ −

∑
kD
′
k) will be a

usual public key with basepoint G whose secret key is known by the signer.

5.2.2 Flexible pegs, coin spectra, privacy, and further extensions

The validity of a MARCT without any exchange at all between assets is also possible, allowing for assets to
be segregated.

On the other hand, different exchange coefficients γC and γD are certainly possible. Just so long as
there is a way for validators to come to an agreement upon exchange rate coefficients, validators can also
convince themselves that transactions accordingly balance. Extending the model of simple ring confidential
transactions with two colors to more than two colors is a straightforward exercise.

Further extensions with more immediate value may be possible. One open question is how to modify
the above scheme to mask exchange rates. Another open question involves formalizing flexible-peg models
of full colored ring confidential transactions between many colors (a spectrum?). These extensions represent
fundamental building blocks for a system of smart transactions that respect user privacy.

A Security: Unforgeability

A.1 Hardness

Unforgeability comes from the k-OMDL hardness assumption.

Definition A.1 (k-OMDL problem). Let k ∈ N. We say a PPT algorithm A is a (t, ε)-solver of the k-OMDL
problem if, within time at most t and with probability at least ε, A can succeed at the following.

1. The challenger uses group parameters (p,G, G) and picks G1, G2, . . . , Gk, Gk+1 ∈ G (the targets)
uniformly at random from G. The challenger sends the group parameters and {Gi} to A.

2. A is granted access to a corruption oracle CO that takes as input some Gi sent to A and produces as
output the discrete logarithm of Gi with respect to G, i.e. some xi ∈ Z/pZ such that Gi = xiG.

3. A produces as output a sequence of k + 1 scalars x1, . . . , xk+1 ∈ Z/pZ, counting as a success if:

(i) for each xi, there exists some index 1 ≤ j(i) ≤ k + 1 such that Gj(i) = xG and

(ii) A made no more than k queries to CO.

A.2 Defining forgeries

We use a modified version of the definition of existential forgery with insider corruption for a ring signature by
Bender, Katz, and Morselli [2]. By using linkability tags, our definition is slightly stronger; we allow forgeries
to count as successful either with partially-corrupted rings or with messages that the signing oracle has signed
before, just so long as neither the signature nor the linkability tag from the forgery appear as output from
any oracle query in any transcript. This prevents a malicious party with the ability to persuade users to
sign maliciously selected messages with maliciously selected ring members from constructing ostensibly valid,
previously-unseen signature-tag pairs.

8

We use the following in the next definition. Let n(−) be a positive polynomial. Let Hs : {0, 1}∗ → Z/pZ
be modeled as a random oracle. Let CO be a corruption oracle that takes as input a public key pk from the
list of challenge keys and produces as output the corresponding secret key sk and the linkability tag T. Let
C be the set of all keys in the transcript of queries made by A to CO. Let TC be the set of all linkability tags
that appear as output from such a query. Let SO be a signing oracle that takes as input some (m,pk′, `)

such that pk′ is a matrix of challenge key vectors (i.e. each column is in pk) and produces as output a

signature-tag pair (σ,T) such that Verify(m,pk′, σ,T) = 1 and T is the linkability tag for the `th key in

pk′.

Definition A.2 (Existential unforgeability of linkable ring signatures with respect to insider corruption).
We say a PPT algorithm A is a (t, ε, qh, qc, qs, n(−))-forger of a linkable ring signature scheme if, within time
at most t and with at most qh oracle queries to Hs, at most qc oracle queries to CO, and at most qs queries
to SO, A can succeed at the following game with probability at least ε.

1. The challenger selects {(ski,pki)}
n(λ)
i=1 ← KeyGen(1λ) and sends pk = {pki}

n(λ)
i=1 to A.

2. A is granted access to a corruption oracle CO, random oracle Hs, and the signing oracle SO.

3. A outputs a message m, a ring of at most n public keys pk′, and a signature-tag pair (σ,T). This output

is a success if pk′ ⊆ pk and T /∈ TC and σ has not been output by SO and Verify(m,pk′, σ,T) = 1.

These success requirements ensure that (i) any ring member whose linkability tag is T has not yet had
its corresponding private key corrupted by CO; and (ii) the signature itself has not been produced by the
signing oracle. This allows the attacker to perhaps re-use a message m and linkability tag T from a previous
oracle query. If the attacker can produce a new signature σ′ on a message that has been signed before by
the oracle then the new signature should still count as a forgery.

Remark A.1. Note that if the corruption oracle merely acted by computing arbitrary discrete logarithms,
then an adversary could do the following: take some target pk from the challenge set, apply a permutation to
the coordinates of pk, pass the permuted key through CO, obtain the discrete logarithm of the first (signing)
key of pk, compute the linkability tag for this signing key, and lastly produce a signature using Sign.

Such a signature would pass validation and not be described as a forgery according to our definition. Our
definition avoids this problem by requiring the corruption oracle only be queried with challenge keys. This
way, a corruption oracle can be simulated for the black box execution of A.

A.3 The Forking Lemma

To prove that the existence of a forger implies that of a k-OMDL solver, we use the forking lemma. In the
following, we presume the bit length η is used to describe group elements in G and scalars in Z/pZ, i.e.
η = O(|p|).

Lemma A.1 (General Forking Lemma). Let q, η ≥ 1. Let A be any PPT algorithm which takes as input
some xA = (x, h) where h = (h1, . . . , hq) is a sequence of oracle query responses (η-bit strings) and returns
as output yA either a distinguished failure symbol ⊥ or a pair (idx, y) where idx ∈ [q]2 and y is some output.
Let εA denote the probability that A does not output ⊥A (where this probability is taken over all random coins
of A, the distribution of x, all choices h). Let F = FA be the forking algorithm for A described below. The
accepting probability of F satisfies

εF ≥ εA
(
εA
q
− 1

2η

)
.

We refer the reader to [1] for a proof of this lemma, which demonstrates that if executing some A

has non-negligible acceptance probability, then forking A does as well. Since all queries before the (j∗)th

query are identical in both transcripts, the input of the (j∗)th query is also identical. Since oracle queries
h′j∗ , h

′
j∗+1, . . . are newly sampled upon receiving the first output from A, the queries hj∗ 6= h′j∗ except with

negligible probability. All subsequent computations in the signature that are common in both transcripts
will have the same results only with negligible probability.

9

A.3.1 Using a forger in the Forking Lemma

Note that a forger according to Definition A.2 is not directly compatible with the forking lemma; the output
is some y = (m,pk, σ,T) and no idx is included. However, without loss of generality, we can execute A in a
black box that extracts from the transcript of A some idx = (j∗, i∗) in the following way.

For each query for any ci+1 that appears in the successful forgery, there exists a corresponding index j(i)
that satisfies ci+1 = hj(i). The black box executing A looks at the transcript and extracts the index pair
idx = (i∗, j∗) that indicates where in the random oracle transcript we can find the very first oracle query
made by A to Hs for any challenge ci∗+1 used in the successful forgery. If such a pair (i∗, j∗) can be found,
the algorithm wrapping A can then output (idx, y) with only a negligible difference in advantage.

Moreover, each ci+1 used in the signature verification is computed by A by querying Hs in the transcript
of A leading to a successful forgery. In particular, the challenge could not have been guessed without making
the query (except with negligible success). Indeed, a probabilistic algorithm could flip coins to guess the
hash output, but this is successful with negligible probability. Of course, although the index i∗ may not have
been decided by A when the query was made, but by the time the forgery is complete, the index i∗ has been
assigned.

Hence, without loss of generality, we can assume that A has been appropriately wrapped so is compatible
with the forking lemma without impacting its advantage. One algorithm FA that works in Lemma A.1 works
in the following way.

1. F takes as input some x and F selects the random tape for A.

2. F selects some h = (h1, . . . , hq) at random by flipping coins, and F executes yA ← A(x, h).

3. If yA = ⊥A, then F outputs ⊥F and terminates. Otherwise, yA = (idx, y) for some idx = (i∗, j∗)
and some output y and F selects new oracle queries h′j∗ , h

′
j∗+1, . . . , h

′
q, and glues the hash challenges

together h′ = (h1, . . . , hj∗−1, h
′
j∗ , h

′
j∗+1, . . . , h

′
q).

4. If hj∗ = h′j∗ , then F outputs ⊥F and terminates. Otherwise, hj∗ 6= h′j∗ and F executes y′A ← A(x, h′).

5. If y′A = ⊥A, then F outputs ⊥F and terminates. Otherwise, y′A = (idx′, y′). If idx 6= idx′, F outputs ⊥F
and terminates. Otherwise, F outputs (idx, y, h, y′, h′).

We note that FA executed in a black box can be fed the oracle queries h and h′ and so these can be
assumed to be output as well without loss of generality or impacting acceptance probability.

Of course, if A runs in time at most t, FA runs in time at most 2t + s where s denotes the (negligible)
time it takes FA to select the random tape for A, select the oracle query sequences h and h′, and output the
results.

A.4 The Oracles

Of course, any oracle queries made by A must be handled by FA somehow, and we have already described
how FA handles random oracle queries made by A: by flipping coins at random and keeping a hash table of
the results to maintain consistency with future queries. The forger also has corruption oracle and signing
oracle access. We assume that FA is granted access to a corruption oracle (say, through the k-OMDL game
challenger), so we only need to describe the signing oracle.

The signing oracle access granted to A is simulated by FA through backpatching in the following way.
FA selects c`+1 at random without knowing the corresponding query to Hs. FA uses the query results h to
get each ci+1 and stores the results in a hash table for consistency in later queries. FA finally computes c`,
FA and can compute the group points L`, R` such that c`+1 = Hs(pk || m || L` || R`). FA back-patches the
hash table.

A.5 Playing k-OMDL

We now construct a master algorithm M that plays the k-OMDL game for k = 2d · qc + d− 1 that operates
in the following way.

10

1. M receives group parameters (p,G, G) and target group elements G1, . . . , Gk+1 from the k-OMDL
challenger.

2. M sets pki := (Gd(i−1)+1, Gd(i−1)+2, . . . , Gdi) for i = 1, . . . , k+1
d and uses {pki}

k+1
d

i=1 as input for FA,
responding to queries made by FA for a key pki by querying CO directly with each coordinate and
responding with the result.

3. If FA outputs ⊥, so does M and M terminates.

4. Otherwise, FA succeeds executing A twice, each time taking no more than qc queries to corrupt d-
dimensional keys, resulting in no more than 2 · d · qc queries to the discrete logarithm oracle CO. FA

produces (idx, y1, h, y2, h
′) where y1 = (m1,pk′1, σ1,T1) and y2 = (m2,pk′2, σ2,T2) are forgeries using

oracle queries h and h′, respectively, and idx = (i∗, j∗) as described previously. The messages and rings
are identical in these forgeries because they must have been selected before the first challenge query,
except with negligible probability. So M can parse

y1 =(m,pk′, σ1,T1) σ1 =(c1, s1, . . . , sn, {Dj}j)

y2 =(m,pk′, σ2,T2) σ2 =(c′1, s
′
1, . . . , s

′
n,
{
D′j
}
j
)

5. In the transcript of FA, M finds ci∗+1 = hj∗ and in the second transcript ci∗+1 = h′j∗ for some hj∗ 6= h′j∗ .
In both transcripts, ci∗+1 is the response to the query Hs(X || m || L || R) for the same group elements
L,R. Moreover, since this is the query for ci∗+1 in both transcripts, the M finds that L = si∗G+ ci∗W
where W = µXXi∗ +

∑
j µjZi∗,j in the first transcript and that L = s′i∗G + c′i∗W in the second

transcript, where L and W are common to both transcripts.

6. If µX = 0 then M outputs ⊥ and terminates.

7. Otherwise, M computes the discrete logarithm w =
s′i∗−si∗
(ci∗−c′i∗)

without querying CO.

8. M makes up to d− 1 queries to CO to find the discrete logarithms of the elements of any (d− 1)-subset
of {Xi∗ , Zi∗,1, . . . , Zi∗,d−1}.

9. M uses w to solve for the final discrete logarithm.

10. M outputs the 2 · d · qc queries made by FA and outputs the vector (xi∗ , zi∗,1, . . . , zi∗,d−1).

Note that if M does not terminate and output ⊥, then M makes up to 2 · d · qc queries to CO for FA and
makes an an additional d− 1 queries to CO, and yet produces as output d · (qc + 1) > d · qc + d− 1 discrete
logarithms, i.e. M successfully plays the k-OMDL game for k = 2 · d · qc + d − 1. Furthermore, if M already
corrupted these discrete logarithms, even fewer queries could be made, tightening k and making M a more
powerful solver.

Also note that, as previously mentioned, since the map (x, z1, . . . , zd−1) 7→ w is collision resistant, M can
skip steps and guess w in step 7 only with negligible success.

We previously noted that if A runs in time O(t), FA runs in time O(2t). M takes an additional time
s due to: simulating oracle queries with coin flips and hash table modifications throughout the execution,
constructing keys in step 2, making termination checks in steps 3, 6, parsing the transcripts in step 4,
retrieving L and W from the transcript in step 5, computing the discrete logarithm w in step 7, computing
the d-linear system of equations in step 9.

A.6 Security proof

All that remains to prove the unforgeability of the d-CLSAG scheme from Section 4.1 is to show that M as
described has a non-negligible acceptance probability.

Theorem A.1. Let d, qh, qc, qs ∈ N and let (p,G, G) be some group parameters. If a (t, ε, qh, qc, qs, n(−))-
forger of the d-CLSAG implementation in Section 4.1 exists then a (2t, ε′)-solver of the k-OMDL problem in

G exists for k = d · qc + d− 1 where ε′ ≥ ε
(
ε
qc
− 1

2η

)
− p−1.

11

Proof. Let where d, qh, qc, qs satisfy the hypotheses and let A be a (t, ε, qh, qc, qs, n)-forger of the d-CLSAG
scheme of Section 4.1, let FA be the forking algorithm for A, and let M be the master algorithm previously
described. M terminates and outputs ⊥ in steps 3 and 6 only; otherwise, M succeeds at the k-OMDL game.
Hence, if E3 is the event that M outputs ⊥ in step 3 and E6 is the event that M outptus ⊥ in step 6, then
E3, E6 are disjoint and the acceptance probability for M is 1 − P(E3 ∪ E6) = 1 − P(E3) − P(E6). The
probability that M outputs ⊥ in step 6 is the probability that the hashed coefficient µX = 0, which occurs
with probability p−1. M outputs ⊥ in step 3 when FA produces ⊥, but the forking lemma gives us that the

acceptance probability of FA is bounded from below by ε
(
ε
qc
− 1

2η

)
. Hence, M succeeds with probability at

least
(
ε
(
ε
qc
− 1

2η

)
− p−1

)
.

B Security: Signer ambiguity

B.1 Hardness

We show our scheme is computationally signer-ambiguous if the following DDH game is hard in G.

Definition B.1 (Decisional Diffie-Hellman). Let A be any PPT algorithm, (p,G, G) and let n ∈ N.

1. The challenger selects (ri,1, ri,2, ri,3) (Z/pZ)
3

uniformly and independently for i = 1, . . . , n. The chal-

lenger computes the public keys Ri,1 = ri,1G, Ri,2 = ri,2G, R
(0)
i,3 = ri,1ri,2G, R

(1)
i,3 = ri,3G.

2. The challenger selects a bit b independently and uniformly from {0, 1} and sends
{

(Ri,1, Ri,2, R
(b)
i,3)
}n
i=1

to A.

3. A outputs a bit b′, succeeding if b = b′.

Note any algorithm can flip a coin and guess correctly half the time. We say the advantage of A is the
difference between the probability of success for A and 1/2. If A can solve this with an advantage at least ε
in time at most t, we say A is a (t, ε)-solver of the DDH problem in G.

We note that due to the random self-reducibility of the DDH game, the classic DDH game is no harder
than Definition B.1

B.2 Defining signer ambiguity

Definition B.2. We say A is a (t, ε, n1, n2)-solver of the signer ambiguity game if it can succeed with
non-negligible advantage at the following game.

1. The challenger selects n1 secret keys {ski} ⊆ (Z/pZ)d, computes the corresponding public keys pki =
ski ◦G, and sends {pki} to A.

2. A outputs an arbitrary message m and a ring of n2 distinct members pk′ ⊆ {pki}.

3. The challenger selects a ring index 1 ≤ ` ≤ n2 uniformly at random, retrieves the private key sk, and
sends a valid signature-tag pair (σ,T)← Sign(m,pk′, sk) to A.

4. A outputs an index `′, succeeding if ` = `′.

Note that a simulator in place of A without any input can guess any index from {1, . . . , n2} with coin flips,
succeeding with probability at least 1/n2. We define the advantage of A as the difference in acceptance
probability and 1/n2.

Note that if the secret index ` is leaked in the signer ambiguity game, this is equivalent to leaking
information about the bit b used in the DDH game. Also note that the game could be generalized to allow A

repeated and adaptive access to a signing oracle, just so long as so-called ring intersection attacks are taken
into account when defining the advantage of A. However, such a generalization is equivalent to ours.

12

B.3 Security proof

If G satisfies the DDH hardness assumption, then the distribution of the triple (r1G, r2G, r3G) is compu-
tationally indistinguishable from the triple (r1G, r2G, r1r2G), where the ri are independently uniform on
Z/pZ. If Hp : {0, 1}∗ → G is modeled as a random oracle with output that is independent of its input, the
distribution of a tuple (r1G, r2G, r3G) is identical to the distribution of (r1G,Hp(r1G), r3G) where r1, r3 are
independently uniform on Z/pZ. Hence, under the random oracle model and assuming G is DDH-hard, the
distribution of triples (r1G,Hp(r1G), r1Hp(r1G)) where r1 is uniformly random from Z/pZ is computation-
ally indistinguishable from the distribution of triples (r1G,Hp(r1G), r3G) where r1, r3 are uniformly random
from Z/pZ.

Now note that a solver of the signer ambiguity game is given Xi and Hp(Xi) for each ring member and the
linkability tag T = x`Hp(X`). The solver with a non-negligible advantage at guessing ` has a non-negligible
advantage in distinguishing whether a given triple (Xi,Hp(Xi),T) satisfies T = xiHp(Xi) or not.

Theorem B.1. If a (t, ε, n1, n2)-solver of the signer-ambiguity game exists, there exists a (t, ε2)-solver of the
DDH game.

Proof. We assume A is an algorithm that can succeed at the game in Definition B.2 with non-negligible
advantage. We construct a master algorithm M that plays the game in Definition B.1 by executing A in a
black box such that M plays the role of the challenger in Definition B.2.

M receives a set of DDH challenge tuples
{

(Ri,1, Ri,2, R
(b)
i,3)
}n
i=1

. M keeps two internal hash tables to main-

tain consistency between oracle queries made toHp andHs, and flips coins to determine hash outcomes except
as specified below. M sets Xi := Ri,1, backpatches the key image basepoints Hp(Xi) := Ri,2, and sets the

purported key images Ti := R
(b)
i,3 . The algorithm selects Zi,j at random and sets pki := (Xi, Zi,1, . . . , Zi,d−1).

The algorithm M then operates in the following way:

1. M sends the public keys pk = {pki}
n
i=1 to A.

2. A outputs a message m and a ring pk′.

3. If pk′ 6⊆ pk, M outputs ⊥ and terminates. Otherwise, the algorithm M can find a one-to-one correspon-

dence between ring indices in pk′ and key indices in pk, so that for each ring index 1 ≤ ` ≤ n2 in pk′,
there exists some key index 1 ≤ i(`) ≤ n1 in pk such that the ring member is Xi(`) = Ri(`),1, has key

image basepoint Hp(Xi(`)) = Ri(`),2, and has key image Rbi(`),3.

4. M simulates a signature in the following way.

(a) M selects a random index 1 ≤ ` ≤ n2, selects a random scalar c`+1 ∈ Z/pZ, and selects random
scalars s1, s2, . . . , sn ∈ Z/pZ.

(b) For i = `+ 1, `+ 2, . . . , n− 1, n, 1, 2, . . . , `− 1, M computes

Li :=siG+ ci

µXXi +
∑
j

µjZi,j

Ri :=siHp(Xi) + ci

µXTi(`) +
∑
j

µjDj

ci+1 :=Hs

(
pk′ || m || Li || Ri

)
(c) M computes c`, L`, and R` as above. If Hs has been queried before with

(
pk′ || m || L` || R`

)
, M

outputs ⊥ and terminates. Otherwise, M backpatches Hs
(
pk′ || m || L` || R`

)
← c`+1.

(d) M sends to A the signature-tag pair
(
σ,Ti(`)

)
where σ = (c1, s1, . . . , sn, {Dj}j).

5. A outputs a signing index `′. If ` = `′, M outputs b′ = 0. Otherwise, M flips a coin and outputs a bit b′

selected uniformly at random.

13

Note that M only terminates and outputs ⊥ if A asks for a signature with a ring containing a key that
is not a DDH challenge key or if Hs has been queried with

(
pk′ || m || L` || R`

)
before step 4c. We can

assume A never asks for a signature with a bad ring like this. Moreover, the points L` and R` are uniformly
distributed, so the probability that any algorithm can guess the input for backpatching is negligible. Hence,
M carries out the game in Definition B.1 except with negligible probability.

The law of total probability gives us that P [M wins] = 1
2P [1← M | b = 1] + 1

2P [0← M | b = 0]. Moreover,
the event that 1 ← M is exactly the event that `′ ← A and `′ 6= `, and the event that 0 ← M is exactly
the event that `′ ← A and `′ = `. If b = 1, then M received random points, not the DDH exchange key,
so the signature sent to A consists of uniformly random points and scalars. A can do no better than to
guess the index `′ uniformly at random. So P [1← M | b = 1] = P [`′ ← A, `′ 6= ` | b = 1] = n−1

n . On the other
hand, if b = 0, then M received the DDH exchange key. In this case, A has an advantage ε at guessing the
successful index, so P [`′ ← A, ` = `′ | b = 0] = 1

n + ε. Hence, M succeeds at the DDH game with probability
1
2

(
1− 1

n

)
+ 1

2

(
1
n + ε

)
= 1

2 + ε
2 .

References

[1] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS
’06, pages 390–399, New York, NY, USA, 2006. ACM.

[2] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and con-
structions without random oracles. In Theory of Cryptography Conference, pages 60–79. Springer, 2006.

[3] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 315–334. IEEE, 2018.

[4] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous group signature
for ad hoc groups. In Australasian Conference on Information Security and Privacy, pages 325–335.
Springer, 2004.

[5] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.

14

