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Abstract. We introduce an efficient linkable ring multisignature con-
struction, compact linkable spontaneous anonymous group (CLSAG) sig-
natures. These admit d-dimensional keys with a specified linking coor-
dinate but do not have signature sizes directly proportional to d. Com-
pared to existing constructions used for signer-ambiguous confidential
transactions without trusted setup, CLSAG signatures are smaller and
more efficient in terms of both proving and verification time. CLSAG
signatures also satisfy some rigorous security definitions: unforgeability
depends upon the k-OMDL hardness assumption, linkability depends on
unforgeability as well as the collision resistance of key aggregation, and
signer-ambiguity depends on the DDH assumption. We demonstrate an
application for CLSAG signatures for use in transacting multiple assets
over ring signature-based transaction protocols.

1 Introduction

First introduced in [20] in the RSA setting and in [13] in the discrete loga-
rithm setting, ring signatures permit a non-interactive signature on behalf of
a set of public keys rather than a single public key. Ring signatures see myr-
iad applications ranging from lightweight anonymous authentication as in [25]
to transaction protocols like Monero in [16] and CryptoNote in [24]. A verifier
is assured that the signer knows the private key of at least one of these pub-
lic keys, which are called ring members. Ring signatures are signer-ambiguous
by nature because the verifier does not learn additional information from the
signature about which key is the signer. We stress that methods of practical
analysis such as those of [15, 19] can exploit metadata in real-life applications of
signer-ambiguous protocols to reduce ambiguity.

Group signature constructions preceding [20, 13] require some degree of in-
teractivity, a fixed set of participants, a trusted group manager (or some other
trusted setup), or hardness assumptions not based on the discrete logarithm
problem. Since [20], ring signatures have enjoyed many improvements, expan-
sions, and modifications. An incomplete list of examples includes: ring signatures
are constructed in the bilinear pairing setting in [26], key structures are gener-
alized in [1], security definitions are improved in [4], signature size is improved
in [7, 11], and traceability is introduced in [8].
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Linkable ring signatures were first introduced in [13]; in the context of dis-
tributed ledgers like Monero, linkable ring signatures are the basis for signer-
ambiguous transaction authentication. Linkable ring signatures guarantee that
two signatures with the same ring on arbitrary messages can be publicly linked if
signed using the same key. An implementation is presented in [13] in the discrete
logarithm setting; that implementation functions for similar reasons as Schnorr
signatures in [21].

The key images in [13] are unsuitable for applications where signatures must
be linked key-by-key, not ring-by-ring (such as for “double-signing” protection
in a setting where users generate new keys over time and select ad hoc ring
members). Resistance to double-spend attempts is ensured using key images as
described in [24]. More recent work of [16] extends the approach of [13] to enable
a signer-ambiguous confidential transaction model with ad hoc ring member se-
lection. In [16], transaction amounts are replaced with Pedersen commitments to
amounts together with range proofs. Signatures are constructed from key vectors
including differences of amount commitments as one of the keys. However, the
proofs in [16] are informal and not based on rigorous security models.

Alternatives to ring signatures like more general zero-knowledge proving sys-
tems typically require a trusted party to honestly perform a setup process (as
in [9, 3, 10]) or lack practical efficiency for large circuits (as in [6]), meaning that
such systems may not be appropriate for distributed ledger applications. How-
ever, more recent approaches such as [5, 12] show both improvements to the trust
requirement as well as improvements in efficiency.

1.1 Our contribution

We first introduce a formal definition of d-dimensional linkable ring signatures.
We present an implementation of a new signature scheme, d-CLSAG signatures.
These have d-dimensional keys and are compact linkable spontaneous anonymous
group signatures in the sense that signature size scales with the sum of ring size
and the dimension d. Equivalent MLSAG signatures of [16] produce signatures
that scale with the product of ring size and d rather than the sum. Size efficiency
comes from an aggregation of keys across components, similar to the approach
from [14, 18], resulting in d-CLSAG signatures that are about half the size of
[16], and can be generated and verified more quickly.

We present linkable ring signatures and some examples in Section 2. We
present a compact d-LRS scheme we call d-CLSAG in Section 3 and measure effi-
ciency. We present an informal description of a transaction protocol for confiden-
tially transacting multiple asset types simultaneously, which we call a multi-asset
ring confidential transaction or MARCT in Section 4.2. We reserve discussion
of security for the appendix, where we make a new definition for unforgeability
in linkable ring signatures that takes into account both insider corruption and
forgeries from partially-corrupted rings. We prove that d-CLSAG signatures are
unforgeable up to the hardness of the k-one-more discrete logarithm (k-OMDL)
problem under this definition in the random oracle model in Appendix A. We
also make some comments on signer ambiguity and linkability in Appendix B.



3

1.2 Notation

We denote algorithms with typefont majuscule English letters like A, B, or O, or
typefont names like Setup, KeyGen, and so on. For any prime p, denote the field
with p elements as Fp := Z/pZ, and denote the non-zero elements as F∗p.

Group parameters are denoted as a tuple (p,G, d,G) where G is an elliptic
curve group with prime order p, d is a dimension, and G is a generator of G.
We denote integers, bits, indices, and scalars in Fp with minuscule English let-
ters x, y, z, b, c, i, j, k, etc. and we denote group elements with majuscule English
letters, G,X,W , and so on. We use miniscule Greek letters like σ to describe
signatures and majuscule calligraphic Latin letters like T when describing key
images.

For these group parameters, the secret key space is F∗p and the public key
space is G. For any non-zero secret key sk ∈ F∗p, the corresponding public key
pk is computed from the generator G through exponentiation in G as usual.
However, we use notation for a module over the field Zp to maintain consistency
with, say [24] and [16].

We denote column vectors in boldface, e.g. (x1, . . . , xd)
> = x, and ma-

trices in underlined boldface, e.g. ((x1,1, x1,2, . . . , x1,n), . . . , (xd,1, . . . , xd,n)) =
(x1,x2, . . . ,xn) = x is a d×n matrix. We denote the Hadamard product of two
vectors with ◦, so for any x = (x1, x2, . . . , xd) = (xi)

d
i=1, and for any y = (yi)

d
i=1,

we denote the sequence (xi · yi)di=1 with x ◦ y. We denote bitwise concatenation
with the symbol ||.

We distinguish oracles with calligraphic font, e.g. CO denotes a corruption
oracle, SO denotes a signing oracle. If the codomain of a random oracle is the
field of scalars Fp, we denote this Hs (hash-to-scalar). If the codomain is G, we
denote this Hp (hash-to-point).

2 Linkable ring multisignatures

In this section, we recall linkable ring signature (LRS) schemes, definitions of
correctness in verification and linkability, and we provide two examples.

2.1 LRS schemes

Definition 1 (LRS). A linkable ring signature scheme is a tuple (Setup, KeyGen,
Sign, Verify, Link) satisfying the following.

– Setup(1λ) → par. Setup takes as input a security parameter 1λ, produces
some public parameters par.

– KeyGen(1λ, par) → (sk, pk). KeyGen takes as input a security parameter 1λ

and public parameters par. KeyGen produces as output a private-public key-
pair (sk, pk).

– Sign
(
1λ, par, (m,pk, sk)

)
→
{
⊥Sign, σ

}
. Sign takes as input a security pa-

rameter 1λ, public parameters par, an arbitrary message m ∈ {0, 1}∗, an
ad hoc ring of public keys pk = {pk1, . . . , pkn}, and a secret key sk. Sign
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produces as output either a distinguished failure symbol out = ⊥Sign or a
signature out = σ.

– Verify
(
1λ, par, (m,pk, σ)

)
→ {0, 1}. Verify takes as input a security pa-

rameter 1λ, public parameters par, a message m, a ring of public keys pk,
and a signature σ. Verify produces as output a bit b ∈ {0, 1}; 0 indicates
the signature is not verified, and 1 indicates the signature is verified.

– Link
(
1λ, par, (m,pk, σ), (m′,pk′, σ′)

)
. Link takes as input a security param-

eter 1λ, public parameters par, and a pair of tuples (m,pk, σ), (m′,pk′, σ′)
for messages m,m′, rings pk, pk′, and ring signatures σ, σ′. Link produces
as output a bit b ∈ {0, 1}; 0 indicates the signatures are not linked or invalid,
and 1 indicates the signatures are valid and linked.3

In the sequel, we implicitly assume all algorithms in a LRS take 1λ as input,
and all algorithms (except Setup) takes par as input. We suppress this notation
in the sequel. For example, we write par ← Setup instead of par ← Setup(1λ)
and σ ← Sign(m,pk, sk) instead of σ ← Sign(1λ, par,m,pk, sk).

Note the dimension of keys in Definition 1 is not specified. If the keys from
KeyGen have dimension d > 1, we instead say the LRS is a d-LRS and use
the vector notation introduced in Section 1.2 representing keys in boldface (e.g.
pk instead of pk) and rings in underlined boldface (pk instead of pk). We
always assume the first coordinate of a secret key is the linking coordinate, and
linkability depends only on the linking coordinate of the signing key vector.
For ring confidential transactions, this is important since only one such entry
corresponds to an output public key for double-spend detection purposes and
the rest of the keys could have been adversarially generated.

Definition 2 (Correctly verified). Let m be any message, sk be any secret
key with corresponding public key pk, and let pk be a multiset of public keys
pk = {pk1, . . . , pkn}. If there exists an index 1 ≤ ` ≤ n satisfying pk = pk`, then

Verify(m,pk, Sign(m,pk, sk)) = 1.

Soundness in verification is the property of unforgeability. See Appendix A.

Definition 3 (Correctly linkable). Let m,m′ be any messages, sk, sk′ be any
secret keys with corresponding public keys pk, pk′. Let pk, pk′ be multisets of
public keys with indices `, `′, respectively, such that pk` = pk and pk′`′ = pk′.
Let sk, sk′ be the respective private keys for pk, pk′ with respective linking coordi-
nates sk0 and sk′0. Correct linkability means being both positively and negatively
linkable, in the following sense.

– Positively linkable: If the linking coordinates satisfy sk0 = sk′0, then

Link((m,pk, Sign(m,pk, sk)), (m′,pk′, Sign(m′,pk′, sk′))) = 1

except with negligible probability.

3 This is the opposite of the conventions in, say, [23], which outputs 0 to indicate two
signatures are linked (i.e. rejected) and outputs 1 to indicate two signatures are not
linked (i.e. accepted).
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– Negatively linkable: If the linking coordinates satisfy sk0 6= sk′0, then

Link((m,pk, Sign(m,pk, sk)), (m′,pk′, Sign(m′,pk′, sk′))) = 0

except with negligible probability.

Soundness in linkability means informally that an adversarial algorithm can
only produce tuples y = (m,pk, σ) and y′ = (m′,pk′, σ′) such that Link(y, y′) =
1 by computing σ, σ′ from Sign using secret keys sk, sk′ with matching linking
coordinates. See Appendix B.

2.2 Examples

In the following examples, all verifiers must list the keys in pk in an agreed-
upon order for the above verification to work; either they should agree upon
lexicographic or some other ordering. Linking occurs merely by comparing key
images: two valid signatures with the same key image were signed with the same
secret key (and, in transaction applications, would signal an attempt to double-
spend funds).

Example 1. The signature scheme of [13] is an LRS; we present the key image
variant from [24] with a key image appropriate for linking signatures key-by-key.
The signature scheme originally described in [13] signs a message m with a ring
of keys pk = {pk1, . . . , pkn} and a secret index-key pair (`, sk) corresponding to
some pk`, using the key image T := sk · Hp(pk).

Unfortunately, this key image is unsuitable for transaction applications, as
changing ring members will change the key image, allowing the same key to sign
twice. For use in a transaction protocol and following [24], we modify this key
image from that of [13] to be T := sk ·Hp(pk`), which is independent of the non-
signing ring members. This allows these key images to be used for double-spend
protection, as discussed previously.

Setup always deterministically sets d := 1 so we only use the linking key and
there are no auxiliary keys. Setup selects a generator G ∈ G to be a group gener-
ator for the group parameters (p,G, d,G), two cryptographic hash functions Hs :
{0, 1}∗ → Fp and Hp : {0, 1}∗ → G. Setup outputs par = (p,G, d,G,Hs,Hp).

KeyGen produces as output a secret key sk ∈ F∗p and the corresponding public
key pk = sk ·G ∈ G.

Sign takes as input a (non-zero) private key sk ∈ F∗p, a message m, a ring
pk = {pk1, . . . , pkn}, and produces as output either a distinguished failure
symbol ⊥Sign or a signature σ, computed as follows. First, the signer samples
α, s`+1, s`+2, . . . , s`−1 ∈ Fp at random. Next, the signer computes basepoints
Hi = Hp(pki) and the key image T = sk · Hp(pk`), the first challenge

c`+1 = Hs(pk || m || αG || αH`)

and each subsequent challenge

ci+1 = Hs(pk || m || siG+ ci · pki || siHi + ciT)



6

for i = `+1, . . . , `−1, naturally identifying index 1 with index n+1. The signer
finishes by computing s` = α − c` · sk and publishing the signature σ where
σ = (c1, s1, . . . , sn,T).

Verify takes as input a message m, a ring pk, and a purported signature σ′.
Verify parses (c1, s1, . . . , sn,T) ← σ. If c1 /∈ Fp or any si /∈ Fp or T /∈ G, then
Verify outputs 0. Otherwise, the verifier computes Hi := Hp(Xi) for each ring
member, sets c′1 := c1, and computes the challenges

c′i+1 = Hs(pk || m || siG+ c′i · pki || siHi + c′iT)

for i = 1, 2, . . . , n. The verifier outputs 1 when c′n+1 = c1 and 0 otherwise.
Link checks the validity of both signatures. If both are valid, Link parses the

key images T and T′. If either are not in G, the linker outputs 0 and terminates.
Otherwise, the linker outputs 1 when T = T′ and 0 otherwise.

Remark 1. The key image modification in Example 1 is due to the basepoint
of the key image T. As noted in [13], variations on key image formats may
be desirable. How or whether the security properties of LSAG signatures are
retained in practical use given more flexible key image formats, while interesting,
is beyond the scope of this work.

Example 2. This example extends the LRS of the previous example to a so-called
MLSAG scheme [16], which is a 2-LRS for use in signer-ambiguous confidential
transactions. Setup always deterministically sets d := 2, so we use one linking
key and one auxiliary key, but otherwise works as before.

KeyGen produces as output a secret key sk = (x, z) ∈ F∗p × F∗p and the cor-
responding public key pk := sk ◦G = (xG, zG) ∈ G2 where G = (G,G) ∈ G2.
The key x is the linking key. The auxiliary key z is a blinder that opens a Peder-
sen commitment to zero demonstrating transaction balance in ring confidential
transactions in the style of [16].

Sign takes as input a (non-zero) private key sk ∈ F∗p × F∗p, a message m, a
ring pk ∈ G2×n, and produces as output either a distinguished failure symbol
⊥Sign or a signature σ, computed as follows. First, the signer samples rows of
signature data α, α′, s`+1, s

′
`+1, s`+2, s

′
`+2, . . . , s`−1, s

′
`−1 ∈ Fp at random. Next,

the signer computes the basepoints Hi = Hp(Xi) from the linking keys Xi of each
ring member pki = (Xi, Zi). The linking key image T = xH` is computed from
the linking key. An auxiliary key image with the same basepoint but discrete
logarithm z` is computed, D = z`H`. The signer computes the challenges

c`+1 = Hs(pk || m || αG || αH` || α′G || α′H`)

and

ci+1 = Hs(pk || m || siG+ ciXi || siHi + ciT || s′iG+ ciZi || s′iHi + ciD).

The values s` = α− c`x` and s′` = α′ − c`z` are computed. The signature is set
σ := (c1, s1, s

′
1, . . . , sn, s

′
n,T,D) and is output.
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Verify takes as input a message m, a ring pk, and a signature σ. The verifier
parses (c1, s1, s

′
1, . . . , sn, s

′
n,T,D)← σ. If this is not possible, or c1 /∈ Fp, or any

si or s′i /∈ Fp, or if T /∈ G, then the verifier outputs 0. Otherwise, the verifier
parses (pk1, . . . ,pkn′)← pk. If any pki /∈ G2, or if n 6= n′, the verifier outputs 0.
Otherwise, the verifier parses each pki as (Xi, Zi), computes each Hi = Hp(Xi),
sets c′1 := c1, and computes the challenges

c′i+1 = Hs(pk || m || siG+ c′iXi || siHi + c′iT || s′iG+ c′iZi || s′iHi + c′iD)

for i = 1, 2, . . . , n. The verifier outputs 1 when c′n+1 = c1 and 0 otherwise.
Lastly, Link works as before, by checking key images.

3 A compact d-LRS scheme

We informally say that a d-LRS scheme is compact or concise if signature sizes
are not directly proportional to d. We present a multisignature variant of LSAG
signatures that is asymptotically more compact than the previous examples.
We call this scheme d-CLSAG. We take a look at efficiency for usage in ring
confidential transactions by comparing 2-CLSAG signatures against equivalent
MLSAG signatures.

3.1 Implementation

Definition 4 (d-CLSAG). The tuple (Setup, KeyGen, Sign, Verify, Link) sat-
isfying the following is a d-CLSAG signature scheme.

– Setup → par. Setup selects a prime p, a group G with prime order p, se-
lects a group generator G ∈ G uniformly at random, selects d cryptographic
hash functions Hs0, . . . ,Hsd−1 with codomain Fp, selects a cryptographic hash
function Hp with codomain G. Setup outputs the group parameter tuple and

the hash functions, par :=
(
p,G, d,G,

{
Hsj
}d−1
j=0

,Hp
)

.4

– KeyGen → (sk,pk). When queried for a new key, KeyGen samples a fresh
secret key and computes the associated public key:

sk =(x, z1, . . . , zd−1)← (F∗p)d

pk :=sk ◦G = (X,Z1, . . . , Zd−1) ∈ Gd

where G = (G, . . . , G) ∈ Gd. KeyGen outputs (sk,pk). We say x is the
linking key and the remaining keys {zj} are the auxiliary keys.

– Sign
(
m,pk, sk

)
→
{
⊥Sign, σ

}
. Sign takes as input a message m ∈ {0, 1}∗,

a ring pk = (pk1, . . . ,pkn) for ring members pki = (Xi, Zi,1, . . . , Zi,d−1) ∈
Gd, and a secret key sk = (x, z1, . . . , zd−1) ∈ (F∗p)d. Sign does the following.

4 Note that domain separation can be used here to take one Hs and construct each
Hs

j by defining Hs
j(x) := Hs(j || x).
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1. If pk /∈ Gd×n for some n, Sign outputs ⊥Sign and terminates.

2. Otherwise, Sign parses5 pk to obtain each pki. If the public key asso-
ciated with the input sk is not a ring member in pk, then Sign outputs
⊥Sign and terminate.

3. Otherwise, Sign finds the signing index ` such that pk` = sk◦(G, . . . , G).
Sign samples α ∈ Fp, samples {si}i 6=` ∈ (Fp)n−1, and computes the
points Hi = Hp(Xi) for each i. Sign computes the aggregation coef-
ficients µX and {µj}d−1j=1 , the key image T, the auxiliary key images

{Dj}d−1j=1 , the aggregated public keys and their key images:

T :=xH` {Dj} :={zjH`}
µX :=Hs0(pk || T || {Dj}d−1j=1) µj :=Hsj(pk || T || {Dj}d−1j=1)

Wi :=µXXi +

d−1∑
j=1

µjZi,j W :=µXT +

d−1∑
j=1

µjDj

and the aggregated secret key w` := µXx +
∑d−1
j=1 µjzj. For i = `, ` +

1, . . . , `−1, (and by identifying index n+1 with index 1), Sign computes

L` =αG R` =αH` c`+1 =Hs0(pk || m || L` || R`)
Li =siG+ ciWi Ri =siHi + ciW ci+1 =Hs0(pk || m || Li || Ri)

and lastly computes s` = α− c`w`.
4. Sign sets the signature σ = (c1, s1, . . . , sn,T, {Dj}d−1j=1) and publishes the

signature σ.

– Verify
(
m,pk, σ

)
→ {0, 1}. Verify takes as input a message m, a matrix

pk = (pk1, . . . ,pkn), and a signature σ.

1. If pk /∈ Gd×n for some n, or if σ /∈ Fn′+1
p × Gd for some n′, Verify

outputs 0 and terminates. Otherwise, if n′ 6= n, Verify outputs 0 and
terminates.

2. Verify parses6 (pk1, . . . ,pkn)← pk for keys pki ∈ Gd for i = 1, . . . , n,
and parses each public key (Xi, Zi,1, . . . , Zi,d−1) ← pki. Verify also
parses (c1, s1, . . . , sn,T,D1, . . . ,Dd−1)← σ. Verify computes each Hi =
Hp(Xi), computes the aggregation coefficients, and computes aggregated
public keys and their images:

µX :=Hs0(pk || T || {Dj}d−1j=1) µj :=Hsj(pk || T || {Dj}d−1j=1)

Wi :=µXXi +

d−1∑
j=1

µjZi,j W :=µXT +

d−1∑
j=1

µjDj

3. Verify sets c′1 := c1 and, for i = 1, 2, . . . , n− 1, computes the following.

Li :=siG+ c′iWi, Ri :=siHi + c′iW, c′i+1 :=Hs0
(
pk || m || Li || Ri

)
5 Note that this parsing always succeeds if Sign does not fail in the previous step.
6 This parsing is always successful if the previous step does not terminate Verify.
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4. If c′n+1 = c1, Verify outputs 1, and otherwise outputs 0.

– Link
(
(m,pk, σ), (m′,pk′, σ′)

)
→ {0, 1}. Link takes as input two message-

ring-signature triples.
1. If Verify(m,pk, σ) = 0 or Verify(m′,pk′, σ′) = 0, Link outputs 0 and

terminates.
2. Otherwise, Link parses7 the signatures to obtain

(c1, s1, . . . , sn,T,D1, . . . ,Dd−1)←σ and

(c′1, s
′
1, . . . , s

′
n,T

′,D′1, . . . ,D
′
d−1)←σ′.

Link outputs 1 if T = T′ and 0 otherwise.

Later, we discuss the security of this implementation.

3.2 Efficiency

Consider the space and time efficiency of Definition 4. We disregard additional
information broadcast alongside the signature, such as descriptions of the ring
members.

A d-CLSAG signature with a ring size of n contains n+1 scalars and d group
elements, so this scheme is compact; signature size is ks(n + 1) + kpd where ks
describes the size of scalar field elements and kp describes the size of points on
the curve.

To examine the verification time complexity, instead let ks and kp be the
time complexity of evaluating the hash-to-scalar functions Hs and of evaluating
the hash-to-point function Hp, respectively. Let k(i) be the time complexity to
evaluate a scalar-point linear combination of i terms; using specialized algorithms
like Straus [22] or Pippenger [17] multiexponentiation (or others, based on i),
such a linear combination can be evaluated much more quickly than a simple
term-by-term computation. We note that it is also possible to cache multiples of
points that are reused within verification for faster linear combination evaluation,
but we do not differentiate this here. Using these, the time complexity of d-
CLSAG verification is (n+ d)ks + nkp + 2nk(d+1).

To compare to the efficiency of an MLSAG implementation, note that 2-
CLSAG has equivalent functionality to an MLSAG signature (which is a 2-
LRS). An MLSAG signature used in this way requires 2n + 1 scalars and 1
group element.

We produced a test implementation in C++ and tested signing and veri-
fication for MLSAG and 2-CLSAG on a 2.1 GHz Opteron processor. Table 1
shows the results for different ring sizes. In particular, we note that for smaller
anonymity sizes, CLSAG is uniformly faster than MLSAG. However, at very
large ring sizes, MLSAG is faster due to additional computations involved in
computing aggregation coefficients and key prefixing.

7 As before with Verify, this parsing is always successful if the previous step does not
terminate Link.
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Verify Sign

Anonymity set MLSAG CLSAG MLSAG CLSAG

2 2.4 2.0 2.3 2.7
4 4.7 4.0 4.6 4.6
8 9.5 7.8 9.4 8.5

16 18.9 15.9 18.9 16.5
32 37.8 32.3 37.8 33.0
64 75.4 67.5 75.9 68.3

128 150 147 151 148
256 301 344 303 346

Table 1. Signing and verification times (ms) for MLSAG and 2-CLSAG

4 Applications

4.1 Single-asset ring confidential transactions

As mentioned above, it is possible to use 2-CLSAG as a replacement for MLSAG
signatures in ledger applications (like Monero) for equivalent functionality. For
example, Monero currently uses MLSAG signatures for two different transaction
types: full and simple.

Full transactions are only used when spending a single input. They leverage
the fact that in a balanced transaction, the difference between input and output
commitments is a commitment to zero; the signer can therefore use such differ-
ences as the second component of key vectors in the signature and sign using
the known secret key at the signing index.

Simple transactions are used when spending multiple inputs. Each spent
input requires a separate signature, as a naive extension of full transactions
presents an index linking issue. The signer first generates auxiliary commitments
for each spent input using the same value but a different blinder. This means
it is possible to use the difference between input and auxiliary commitments as
a commitment to zero for the purpose of signing. By choosing all blinders at
random except one, the signer can construct the auxiliary commitments such
that the difference between auxiliary and output commitments is zero, proving
balance.

Both transaction types can be constructed with 2-CLSAG signatures since
linkability is not considered for the second key component used in the transaction
protocols.

4.2 Multi-asset ring confidential transactions (MARCTs)

It is possible to use a straightforward d-CLSAG construction to accommodate
transactions spending d− 1 types or colors of assets separately within the same
transaction and signature. To do so, transaction outputs are extended to have
a separate commitment to each asset type value. When spending an output,
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either a full or simple transaction (discussed above) is used; we simply copy the
method used to compute commitment public keys in the signature to additional
dimensions of the d-CLSAG signature, using only the commitments for a par-
ticular asset type in each. This separation ensures that the transaction balances
in each asset type separately, while taking advantage of the scaling benefits of
d-CLSAG compared to the equivalent MLSAG signature construction.

4.3 Informal description of MARCTs with unmixable colors

We informally describe an example of MARCTs with two unmixable colors using
3-CLSAG. Let (Prove, Ver) be a zero-knowledge sound range proving scheme,
such as that described in [6], and let (Com, Open) be a Pedersen commitment
scheme such that Com(r, v) = rG+ vG′.

For the sake of this example, we define a public trading key to be a tuple
(X,C,D, P ) where X,C,D ∈ G, C and D are amount commitments and P is a
batched range proof from Prove covering the values of both C and D. Here, C
and D play the role of the Zj points, and P is additional data required for the
transaction protocol.

We define a transaction key to be a tuple (m,Q,O, (fC , fD), σ, aux) where
Q is a ring of n public trading keys Q = {(Xi, Ci, Di, Pi)}ni=1, O is a set of n′

output public trading keys O = {(X ′i, C ′i, D′i, P ′i )}
n′

i=1, fC is a plaintext list of
fees to be paid from C, fD is a plaintext list of fees to be paid from D, and σ
is a 3-CLSAG signature. We say a transaction key is valid if the following are
satisfied:

– every input ring member (Xi, Ci, Di, Pi) ∈ Q has a valid range proof Pi so
Ver(Pi) = 1; and

– every output range proof P ′k is valid so Ver(P ′k) = 1; and
– for the ring

pk =

X1 X2 · · · Xn

Z1 Z2 · · · Zn
Z ′1 Z

′
2 · · · Z ′n


where each Zi = Ci − fCG′ −

∑
k C
′
k and each Z ′i = Di − fDG′ −

∑
kD
′
k,

Verify(m,pk, σ) = 1.

This 3-CLSAG signature demonstrates knowledge of the discrete logarithm
of some x`, knowledge of the opening information for the input and output
commitments, and that the transaction amounts balance with the fees fC and
fD. After all, when the amounts in C` and D` balance with the fees fC and fD
together with the sum of the amounts in each C ′k and D′k, and when the signer
knows all the openers for all these commitments, Z` and Z ′` can be regarded as
usual public keys with basepoint G whose secret key is known by the signer.

Unfortunately, this model does not allow for exchanging amounts of the first
color with amounts of the second color. In the next section, we present another
toy model that allows for transferring between colors at a fixed/pegged exchange
rate.
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Informal description of MARCTs with a fixed exchange rate We modify
the previous example to use a 2-CLSAG. Consider the canonical example of
colored currency with a fixed peg between two colors: dollars and pennies with
a 100 : 1 exchange rate between them. Define an exchange rate by determining
a constant ξ and some constants γC , γD on

{
1, 2, . . . , 2ξ−1

}
, (in this example,

γC = 1 and γD = 100).
As before, we define a public trading key to be a tuple (X,C,D, P ) and

a transaction key to be a tuple (m,Q,O, (fC , fD), σ, aux). We interpret these
identically as in the previous step, except using 2-CLSAG signatures instead
of 3-CLSAG signatures, and of course we compute them differently. We say a
simple transaction key is valid if the following are satisfied:

– every input ring member (Xi, Ci, Di, Pi) ∈ Q has a valid range proof Pi so
Ver(Pi) = 1; and

– every output range proof P ′k is valid so Ver(P ′k) = 1; and
– for the modified ring

pk =

(
X1 X2 · · · Xn

Z1 Z2 · · · Zn

)
where each Zi = γC(Ci − fCG′ −

∑
k C
′
k) + γD(Di − fDG′ −

∑
kD
′
k), the

signature σ passes the 2-CLSAG verification, Verify(m,pk, σ) = 1 .

Unlike the previous example, this example allows for the fixed exchange rate
between colors determined by γC and γD.

A Security: Unforgeability

We prove the unforgeability of our implementation in Definition 4. A good
forgery game should grant the adversary the power to persuade otherwise honest
users to hand over their keys (modeled by a corruption oracle) or sign adversar-
ially selected messages with adversarially selected rings (modeled by a signing
oracle), and our algorithm is based on the random oracle model. Of course, any
oracle queries made by a forgery algorithm A being run in a black box must
be handled by whatever algorithm is executing A, so we describe how these are
simulated in Section A.2.

A.1 Hardness Assumption

Unforgeability comes from the k-OMDL hardness assumption.

Definition 5 (k-OMDL problem). Let k ∈ N. We say a PPT algorithm A

is a (t, ε)-solver of the k-OMDL problem if, within time at most t and with
probability at least ε, A can succeed at the following.

1. The challenger uses group parameters (p,G, G) and picks a collection of
group elements G1, G2, . . . , Gk, Gk+1 ∈ G (the targets) uniformly at random
from G. The challenger sends the group parameters and {Gi} to A.
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2. A is granted access to a corruption oracle CO that takes as input some Gi
sent to A and produces as output the discrete logarithm of Gi with respect to
G, i.e. some xi ∈ F∗p such that Gi = xiG.

3. A produces as output a sequence of k+ 1 scalars x1, . . . , xk+1 ∈ F∗p, counting
as a success if:

(i) for each xi, there exists some index 1 ≤ j(i) ≤ k + 1 such that Gj(i) =
xiG and

(ii) A made no more than k queries to CO.

A.2 The Oracles

Random oracle queries made by A are handled by looking to a random tape h
available to the simulator to generate hashes for new queries made to the oracle
Hs. These are stored in a hash table for consistency in later queries. We assume
whatever algorithm is executing A in a black box has pre-generated a set of
private-public key pairs for use in simulating a corruption oracle CO for A. This
leaves only the signing oracle, which is simulated through back-patching in the
following way.

The simulator reserves the next random oracle query on the random tape
h to select c`+1 for back-patching. The random signature data α and {si}i 6=`
are sampled as usual, and each challenge ci+1 for i 6= ` is simulated from h as
described before and stored in a hash table. After all challenges are computed,
the simulator compute the group points L`, R`, and back-patches their hash
table to force Hs(pk || m || L` || R`)← c`+1.

A.3 Defining forgeries

We use a modified version of the definition of existential forgery with insider
corruption for a ring signature by Bender, Katz, and Morselli [4]. In contrast
with the definition of unforgeability with respect to insider corruption in [4], our
modification allows for a forger to succeed at the forgery game with partially
corrupted rings.

Let n(−) be a positive polynomial. Let Hs : {0, 1}∗ → Fp be modeled as a
random oracle. Let CO be a corruption oracle that takes as input a public key pk
from the list of challenge keys and produces as output the corresponding secret
key sk and the key image T. Let SO be a signing oracle that takes as input some
(m,pk′, `) such that pk′ is a matrix of challenge key vectors (i.e. each column

is in pk) and produces as output a signature σ such that Verify(m,pk′, σ) = 1

and such that the key image T ∈ σ is the key image for the `th key in pk′.

Definition 6 (Existential unforgeability of linkable ring signatures with
respect to insider corruption).

We say a PPT algorithm A is a (t, ε, qh, qc, qs, n(−))-forger of a linkable ring
signature scheme if, within time at most t and with at most qh oracle queries
to Hs, at most qc oracle queries to CO, and at most qs queries to SO, A can
succeed at the following game with probability at least ε.
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1. Challenge keys {(ski,pki)}
n(λ)
i=1 ← KeyGen(1λ) are selected and the public

keys pk = {pki}
n(λ)
i=1 are sent to A.

2. A is granted access to a corruption oracle CO, random oracle Hs, and the
signing oracle SO.

3. A outputs a message m, a ring of at most n public keys pk′, and a signature
σ. This output is a success if
(a) σ is not output from any query made to SO; and
(b) the key image T does not correspond to a corrupted ring member; and
(c) Verify(m,pk′, σ) = 1.

A forgery challenger can play the forgery game of Definition 6 with A in
a black box, can simulate SO and CO, and can check whether the purported
forgeries by A are successful; the challenger simply keeps a history of all oracle
queries, and computes key images of corrupted keys to check.

This definition allows the attacker to attempt a successful forgery by re-
using messages, rings, or indices from previous SO queries (but not by reusing
queries per totum). It also allows key images that are unrelated to the ring
members and it allows key images found in previous SO queries. Hence, proving
the implementation of Definition 4 unforgeable under this definition implies these
attempts will fail. A forger gains no advantage by re-using messages (or rings or
indices) that have already been used in SO. The forger gains no advantage by
including key images that are unrelated to the ring members, or by using the
key images from SO queries.

Moreover, consider some (m,pk′, σ) output by an alleged forger A. If the
scheme is unforgeable, one of the above conditions must fail. If the signature
passes verification, one of the first two conditions must fail, so any valid signature
must violate one of these first two conditions. If the first condition is violated, the
forger is merely attempting to pass off an oracle signature or some previously
computed signature as their own. If the second condition is violated, then T
corresponds to a corrupted ring member (in which case A knows the key) or
corresponds to none of the ring members.

That is to say: if A produces a valid signature, then either A knows the key
or the key image does not correspond to a ring member.

Moreover, presume that A produces a message m, a ring pk, and a signa-
ture σ that passes verification, and yet such that the key image T ∈ σ does
not correspond to any ring member. Under the random oracle model, A cannot
simultaneously satisfy the verification equations

c2 =Hs0(pk || m || s1G+ c1W1 || s1H1 + c1W)

...

cn =Hs0(pk || m || sn−1G+ cn−1Wn−1 || sn−1Hn−1 + cn−1W)

c1 =Hs0(pk || m || snG+ cnWn || snHn + cnW)

except with negligible probability, because the discrete logarithm of W cannot
be written as xiHp(Xi) for any i. We conclude that A must have known the
discrete logarithm of the signing key to produce this signature.
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Remark 2. Note that if the corruption oracle merely acted by computing arbi-
trary discrete logarithms, then an adversary could do the following: take some
target pk from the challenge set, apply a permutation to the coordinates of pk,
pass the permuted key through CO, obtain the discrete logarithm of the first
(signing) key of pk, compute the key image for this signing key, and lastly pro-
duce a signature using Sign. For example, to find the discrete logarithm of the
linking key in pk = (A,B), the adversary may query CO with (B,A), bypassing
our definition.

Such a signature would pass validation and not be described as a forgery
according to our definition. Our definition avoids this problem by requiring the
corruption oracle only be queried with challenge keys. This has the added benefit
that it is possible to simulate the corruption oracle for a the black box execution
of A.

A.4 The Forking Lemma

To prove that the existence of a forger implies that of a k-OMDL solver, we
use the forking lemma. In the following, we presume the bit length η is used to
describe group elements in G and scalars in Fp, i.e. η = O(|p|).

Lemma 1 (General Forking Lemma). Let q, η ≥ 1. Let A be any PPT algo-
rithm which takes as input some xA = (x,h) where h = (h1, . . . , hq) is a sequence
of oracle query responses (η-bit strings) and returns as output yA either a distin-
guished failure symbol ⊥ or a pair (idx, y) where idx ∈ [q]2 and y is some output.
Let εA denote the probability that A does not output ⊥A (where this probability
is taken over all random coins of A, the distribution of x, all choices h). Let
F = FA be the forking algorithm for A described below. The accepting probability
of F satisfies

εF ≥ εA
(
εA
q
− 1

2η

)
.

We describe the general forking algorithm below, and refer the reader to [2]
for a proof of this lemma, which demonstrates that if executing some A has non-
negligible acceptance probability, then forking A does as well. Since all queries
before the (j∗)th query are identical in both transcripts, the input of the (j∗)th

query is also identical. Since oracle queries h′j∗ , h
′
j∗+1, . . . are newly sampled upon

receiving the first output from A, the queries hj∗ 6= h′j∗ except with negligible
probability. All subsequent computations in the signature that are common in
both transcripts will have the same results only with negligible probability.

Using a forger in the Forking Lemma Note that a forger according to
Definition 6 is not directly compatible with the forking lemma; the output is
some y = (m,pk, σ) and no idx is included. However, without loss of generality,
we can execute A in a black box that extracts from the transcript of A some
idx = (i∗, j∗) for j∗ = j(i∗) in the following way.
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For each query for any ci+1 that appears in the successful forgery, there exists
a corresponding index j(i) that satisfies ci+1 = hj(i). The black box executing A

looks at the transcript and extracts the index pair idx = (i∗, j∗) that indicates
where in the random oracle transcript we can find the very first oracle query
made by A to Hs for some challenge used in signature verification

ci∗+1 = Hs0
(
pk || m || Li∗ || Ri∗

)
used in the successful forgery. Such a pair (i∗, j∗) can be found by merely in-
specting the transcript, so the algorithm wrapping A can output (idx, y) without
harming its advantage.

Without loss of generality, we can assume that A has been appropriately
wrapped so is compatible with the forking lemma without impacting its advan-
tage.

Forking the forger at this query preserves the input to the query (pk,m,Li∗ , Ri∗)
but does not preserve the challenge ci∗+1. Moreover, each ci+1 used in the signa-
ture verification is computed by A by querying Hs in the transcript of A leading
to a successful forgery; the outputs of these queries cannot be guessed except
with negligible probability, and so the oracle must have actually been queried
(see, for example, [13]). Of course, although the index i∗ may not have been
decided by A when the query was made, but the index i∗ is assigned before the
end of the transcript.

That is to say, a forked forger presents two forgeries with the same ring, mes-
sage, and idx except with negligible probability, with the pair of points Li∗ , Ri∗

common in both transcripts.
A forking algorithm FA satisfying Lemma 1 works in the following way.

1. F takes as input some x and F selects the random tape for A.
2. F selects some h = (h1, . . . , hq) at random by flipping coins, and F executes
yA ← A(x,h).

3. If yA = ⊥A, then F outputs ⊥F and terminates. Otherwise, yA = (idx, y)
for some idx = (i∗, j∗) and some output y and F selects new oracle queries
h′j∗ , h

′
j∗+1, . . . , h

′
q, and glues the hash challenges together:

h′ = (h1, . . . , hj∗−1, h
′
j∗ , h

′
j∗+1, . . . , h

′
q)

4. If hj∗ = h′j∗ , then F outputs ⊥F and terminates. Otherwise, hj∗ 6= h′j∗ and

F executes y′A ← A(x,h′).
5. If y′A = ⊥A, then F outputs ⊥F and terminates. Otherwise, y′A = (idx′, y′). If

idx 6= idx′, F outputs ⊥F and terminates. Otherwise, F outputs the tuple
(idx, y,h, y′,h′).

We note that FA executed in a black box can be fed the oracle queries h and
h′ and so these can be assumed to be output as well without loss of generality
or impacting acceptance probability. Of course, if A runs in time at most t, FA

runs in time at most 2t + s where s denotes the time it takes FA to select the
random tape for A, select the oracle query sequences h and h′, perform lookups
in hash tables to maintain oracle query consistency, and outputting the results.
These times are all negligible, so FA runs in O(2t) time.
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A.5 Playing k-OMDL

We now construct a master algorithm M that plays the k-OMDL game for k =
2d · qc + d− 1 that operates in the following way. Recall that M is granted access
to up to k queries at a discrete logarithm oracle.

1. M receives group parameters (p,G, G) and target group elementsG1, . . . , Gk+1

from the k-OMDL challenger.
2. M blocks (G1, . . . , Gk+1) into d-length blocks and reserve them for public

keys using the following equations.

pk1 =(G1, . . . , Gd)

pk2 =(Gd+1, . . . , G2d)

...

pk2qc+1 =(G2qcd+1, . . . , Gk+1)

M uses {pki}
2qc+1
i=1 as input for FA, responding to corruption oracle queries

made by FA for a key pki by querying CO directly with each coordinate and
responding with the result. Denote Xi := G(i−1)d+1 and Zi,j := G(i−1)d+1+j

for consistency with our earlier notation.
3. If FA outputs ⊥, so does M and M terminates. Otherwise, FA succeeds ex-

ecuting A twice, each time taking no more than qc queries to corrupt d-
dimensional keys, resulting in no more than 2 · d · qc queries to the discrete
logarithm oracle CO. FA produces (idx, y,h, y′,h′) where y = (m,pk, σ) and

y′ = (m,pk, σ′) are forgeries using oracle queries h and h′, respectively, and
idx = (i∗, j∗) as described in Section A.4.
The messages and rings are identical in these forgeries because they must
have been selected before the first challenge query, except with negligible
probability. So M can parse

y =(m,pk, σ) σ =(c1, s1, . . . , sn,T, {Dj}j)

y′ =(m,pk, σ′) σ′ =(c′1, s
′
1, . . . , s

′
n,T

′,
{
D′j
}
j
)

except with negligible probability (in which case M outputs ⊥M and termi-
nates).

4. In the transcript of FA, M can find ci∗+1 = hj∗ and in the second transcript
ci∗+1 = h′j∗ for some hj∗ 6= h′j∗ , except with negligible probability (in which
case M outputs ⊥M and terminates).

5. M parses the random oracle transcript to find the query yielding the signature
challenge ci∗+1 ← Hs(pk || m || Li∗ || Ri∗). Both transcripts match until
this line, and the oracle responses stored in ci∗+1 in these transcripts don’t
match (i.e. hj∗ 6= h′j∗ except with negligible probability). The algorithm M

parses the first transcript to look for constants si∗ , ci∗ and the group point
W = µXXi∗ +

∑
j µjZi∗,j such that Li∗ = si∗G + ci∗W . From the second

transcript, and with the same Li∗ and W , M parses to find constants s′i∗ , c
′
i∗

such that Li∗ = s′i∗G+ c′i∗W .
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6. If µX = 0 then M outputs ⊥ and terminates. Otherwise, M computes the
discrete logarithm

w =
s′i∗ − si∗
ci∗ − c′i∗

without querying CO.
7. M makes up to d − 1 queries to CO to find the discrete logarithms of the

elements of any (d− 1)-subset of {Xi∗ , Zi∗,1, . . . , Zi∗,d−1}.
8. M uses w to solve for the final discrete logarithm.
9. M outputs the 2·d·qc corruptions queries and the d-vector (xi∗ , zi∗,1, . . . , zi∗,d−1),

totaling k + 1 discrete logarithms.

Note that if M does not terminate and output ⊥, then M makes up to 2 · d · qc
queries to CO for FA and makes an an additional d − 1 queries to CO, and
yet produces as output d · (qc + 1) > d · qc + d − 1 discrete logarithms, i.e. M
successfully plays the k-OMDL game for k = 2 · d · qc + d− 1. Furthermore, if M
already corrupted these discrete logarithms, even fewer queries could be made,
tightening k and making M a more powerful solver.

Also note that, as previously mentioned, since the map (x, z1, . . . , zd−1) 7→ w
is collision resistant, M can skip steps and guess w in step 7 only with negligible
success.

Recall that FA takes time O(2t) to execute. M executes FA and then performs
parsing of transcripts and some additional computations, so M takes time O(2t+
s′) for some s′ due to parsing and processing transcript data.

The additional time s′ is due to:

– Lookup time in a hash table for each CO query, each random oracle query,
and each extraction of a value from the random tapes h, h′ by FA throughout
the transcript.

– Parsing and constructing keys in step 2.
– Parsing purported forgeries in step 3.
– Parsing transcripts and computing multi-exponentiations to verify equations

in step 5.
– Computing the discrete logarithm w using field arithmetic in Step 6.
– Computing the discrete logarithm of the challenge key using field arithmetic

in step 8.
– Outputting the results.

All of these are negligible, so M also takes time O(2t).

A.6 Proof

All that remains to prove the unforgeability of the d-CLSAG scheme from Section
3.1 is to show that M as described has a non-negligible acceptance probability.

Theorem 1. Let d, qh, qc, qs ∈ N and let (p,G, G) be some group parameters.
If a (t, ε, qh, qc, qs, n(−))-forger of the d-CLSAG implementation in Section 3.1
exists then a (2t, ε′)-solver of the k-OMDL problem in G exists for k = d·qc+d−1

where ε′ ≥ ε
(
ε
qc
− 1

2η

)
− p−1.
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Proof. Let where d, qh, qc, qs satisfy the hypotheses and let A be a (t, ε, qh, qc, qs, n)-
forger of the d-CLSAG scheme of Section 3.1, let FA be the forking algorithm
for A, and let M be the master algorithm previously described. M terminates and
outputs ⊥ in steps 3 and 6 only; otherwise, M succeeds at the k-OMDL game.
Hence, if E3 is the event that M outputs ⊥ in step 3 and E6 is the event that M

outputs ⊥ in step 6, then E3, E6 are disjoint and the acceptance probability for
M is 1 − P(E3 ∪ E6) = 1 − P(E3) − P(E6). The probability that M outputs ⊥ in
step 6 is the probability that the hashed coefficient µX = 0, which occurs with
probability p−1. M outputs ⊥ in step 3 when FA produces ⊥, but the forking
lemma gives us that the acceptance probability of FA is bounded from below by

ε
(
ε
qc
− 1

2η

)
. Hence, M succeeds with probability at least

(
ε
(
ε
qc
− 1

2η

)
− p−1

)
.

Note that, as a corollary, we can conclude that if a signature passes verifi-
cation, then the key image corresponds to one of the ring members except with
negligible probability. Indeed, these signatures soundly prove knowledge of the
discrete logarithm of the signing key as well as equality of the discrete loga-
rithm with the signing key and the key image, so constructing a signature that
convinces the verifier of one but not the other succeeds with at most negligible
probability.

B Security: Definitions other than unforgeability

B.1 Linkability

Correctness in linkability for the implementation of Definition 4 is easily ver-
ified. We consider soundness in linkability. Soundness relies upon the collision
resistance of the map from a secret key to the key image T and unforgeability
(which, in turn, relies on the k-OMDL hardness assumption).

Soundly linkable: We say Definition 4 is soundly linkable or non-slanderable if
it is infeasible for an algorithm to produce messages m, m′, signatures σ, σ′,
rings pk, pk′, and indices `, `′ such that the key image T ∈ σ corresponds

to the `th member of pk, the key image T′ ∈ σ′ corresponds to the (`′)th

member of pk′, the linking coordinate of pk` does not equal the linking

coordinate of pk′`′ , and Link((m,pk, σ), (m′,pk′, σ′)) = 1.

Assume an algorithm attempts to slander and generates a pair of tuples
(m,pk, σ) and (m′,pk′, σ′) such that Link((m,pk, σ), (m′,pk′, σ′)) = 1. Since
Link outputs 1, both signatures pass verification and the key image T is the same
in both signatures, T = T′. Since both signatures pass verification and Definition
4 is unforgeable, the slanderer has, except with negligible probability, computed
the signatures Sign, i.e. σ ← Sign(m,pk, sk) and σ′ ← Sign(m′,pk′, sk′).

Since the map from sk to the key image T is collision-resistant, this im-
plies that the linking coordinates are equal, sk0 = sk′0, except with negligible
probability, so no one is slandered.
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B.2 Signer ambiguity

Hardness We show our scheme is computationally signer-ambiguous if the fol-
lowing DDH game is hard in G.

Definition 7 (Decisional Diffie-Hellman). Let A be any PPT algorithm,
(p,G, G) and let n ∈ N.

1. The challenger selects (ri,1, ri,2, ri,3) ∈ (Fp)3 uniformly and independently
for i = 1, . . . , n. The challenger computes the public keys Ri,1 = ri,1G,

Ri,2 = ri,2G, R
(0)
i,3 = ri,1ri,2G, R

(1)
i,3 = ri,3G.

2. The challenger selects a bit b independently and uniformly from {0, 1} and

sends
{

(Ri,1, Ri,2, R
(b)
i,3)
}n
i=1

to A.

3. A outputs a bit b′, succeeding if b = b′.

Note any algorithm can flip a coin and guess correctly half the time. We say
the advantage of A is the difference between the probability of success for A and
1/2. If A can solve this with an advantage at least ε in time at most t, we say A

is a (t, ε)-solver of the DDH problem in G.

We note that due to the random self-reducibility of the DDH game, in the
sense that solving one instance of the problem has complexity no worse than
solving a sequence of random instances of the problem, the classic DDH game
is no harder than Definition 7.

Definition 8 (Signer Ambiguity). We say A is a (t, ε, n1, n2)-solver of the
signer ambiguity game if it can succeed with non-negligible advantage at the
following game.

1. The challenger selects n1 secret keys {ski} ⊆ (F∗p)d, computes the corre-
sponding public keys pki = ski ◦G, and sends {pki} to A.

2. A outputs an arbitrary message m and a ring of n2 distinct members pk′ ⊆
{pki}.

3. The challenger selects a ring index 1 ≤ ` ≤ n2 uniformly at random, retrieves
the private key sk, and sends a valid signature σ ← Sign(m,pk′, sk) to A.

4. A outputs an index `′, succeeding if ` = `′.

Note that a simulator in place of A without any input can guess any index from
{1, . . . , n2} with coin flips, succeeding with probability at least 1/n2. We define
the advantage of A as the difference in acceptance probability and 1/n2.

Note that if the secret index ` is leaked in the signer ambiguity game, this is
equivalent to leaking information about the bit b used in the DDH game. Also
note that the game could be generalized to allow A repeated and adaptive access
to a signing oracle, just so long as so-called ring intersection attacks are taken
into account when defining the advantage of A. However, such a generalization
is equivalent to ours.
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Proof of Signer Ambiguity If G satisfies the DDH hardness assumption, then
the distribution of the triple of group elements (r1G, r2G, r3G) is computation-
ally indistinguishable from the triple (r1G, r2G, r1r2G), where the ri are inde-
pendently uniform on Fp. IfHp : {0, 1}∗ → G is modeled as a random oracle with
output that is independent of its input, the distribution of a tuple (r1G, r2G, r3G)
is identical to the distribution of (r1G,Hp(r1G), r3G) where r1, r3 are indepen-
dently uniform on Fp. Hence, under the random oracle model and assuming G
is DDH-hard, the distribution of triples (r1G,Hp(r1G), r1Hp(r1G)) where r1 is
uniformly random from Fp is computationally indistinguishable from the distri-
bution of triples (r1G,Hp(r1G), r3G) where r1, r3 are uniformly random from
Fp.

Now note that a solver of the signer ambiguity game is given Xi and Hp(Xi)
for each ring member and the key image T = x`Hp(X`). The solver with a
non-negligible advantage at guessing ` has a non-negligible advantage in distin-
guishing whether a given triple (Xi,Hp(Xi),T) satisfies T = xiHp(Xi) or not.

Theorem 2. If a (t, ε, n1, n2)-solver of the signer-ambiguity game exists, there
exists a (t, ε2 )-solver of the DDH game.

Proof. We assume A is an algorithm that can succeed at the game in Definition
8 with non-negligible advantage. We construct a master algorithm M that plays
the game in Definition 7 by executing A in a black box such that M plays the role
of the challenger in Definition 8.

M receives a set of DDH challenge tuples
{

(Ri,1, Ri,2, R
(b)
i,3)
}n
i=1

. M keeps two

internal hash tables to maintain consistency between oracle queries made to Hp
and Hs, and flips coins to determine hash outcomes except as specified below. M
sets Xi := Ri,1, backpatches the key image basepoints Hp(Xi) := Ri,2, and sets

the purported key images Ti := R
(b)
i,3 . The algorithm selects Zi,j at random and

sets pki := (Xi, Zi,1, . . . , Zi,d−1). The algorithm M then operates in the following
way:

1. M sends the public keys pk = {pki}
n
i=1 to A.

2. A outputs a message m and a ring pk′.

3. If pk′ 6⊆ pk, M outputs ⊥ and terminates. Otherwise, the algorithm M can

find a one-to-one correspondence between ring indices in pk′ and key indices

in pk, so that for each ring index 1 ≤ ` ≤ n2 in pk′, there exists some key
index 1 ≤ i(`) ≤ n1 in pk such that the ring member is Xi(`) = Ri(`),1, has

key image basepoint Hp(Xi(`)) = Ri(`),2, and has key image Rbi(`),3.

4. M simulates a signature in the following way.

(a) M selects a random index 1 ≤ ` ≤ n2, selects a random scalar c`+1 ∈ Fp,
and selects random scalars s1, s2, . . . , sn ∈ Fp.
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(b) For i = `+ 1, `+ 2, . . . , n− 1, n, 1, 2, . . . , `− 1, M computes

Li :=siG+ ci

µXXi +
∑
j

µjZi,j


Ri :=siHp(Xi) + ci

µXTi(`) +
∑
j

µjDj


ci+1 :=Hs

(
pk′ || m || Li || Ri

)
(c) M computes c`, L`, and R` as above. If Hs has been queried before

with
(
pk′ || m || L` || R`

)
, M outputs ⊥ and terminates. Otherwise, M

backpatches Hs
(
pk′ || m || L` || R`

)
← c`+1.

(d) M sends to A the signature
(
σ,Ti(`)

)
where the signature σ = (c1, s1, . . . , sn, {Dj}j).

5. A outputs a signing index `′. If ` = `′, M outputs b′ = 0. Otherwise, M flips a
coin and outputs a bit b′ selected uniformly at random.

Note that M only terminates and outputs ⊥ if A asks for a signature with
a ring containing a key that is not a DDH challenge key or if Hs has been
queried with

(
pk′ || m || L` || R`

)
before step 4c. We can assume A never asks

for a signature with a bad ring like this. Moreover, the points L` and R` are
uniformly distributed, so the probability that any algorithm can guess the input
for backpatching is negligible. Hence, M carries out the game in Definition 7
except with negligible probability.

The law of total probability gives us that P [M wins] = 1
2P [1← M | b = 1] +

1
2P [0← M | b = 0]. Moreover, the event that 1 ← M is exactly the event that
`′ ← A and `′ 6= `, and the event that 0← M is exactly the event that `′ ← A and
`′ = `. If b = 1, then M received random points, not the DDH exchange key, so
the signature sent to A consists of uniformly random points and scalars. A can do
no better than to guess the index `′ uniformly at random. So P [1← M | b = 1] =
P [`′ ← A, `′ 6= ` | b = 1] = n−1

n . On the other hand, if b = 0, then M received the
DDH exchange key. In this case, A has an advantage ε at guessing the successful
index, so P [`′ ← A, ` = `′ | b = 0] = 1

n + ε. Hence, M succeeds at the DDH game
with probability 1

2

(
1− 1

n

)
+ 1

2

(
1
n + ε

)
= 1

2 + ε
2 .
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