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Abstract. A Verifiable Delay Function (VDF) is a function that takes
at least T sequential steps to evaluate and produces a unique output
that can be verified efficiently, in time essentially independent of T . In
this work we study tight VDFs, where the function can be evaluated in
time not much more than the sequentiality bound T .
On the negative side, we show the impossibility of a black-box con-
struction from random oracles of a VDF that can be evaluated in time
T + O(T δ) for any constant δ < 1. On the positive side, we show that
any VDF with an inefficient prover (running in time cT for some con-
stant c) that has a natural self-composability property can be generically
transformed into a VDF with a tight prover efficiency of T +O(1). Our
compiler introduces only a logarithmic factor overhead in the proof size
and in the number of parallel threads needed by the prover. As a corol-
lary, we obtain a simple construction of a tight VDF from any succinct
non-interactive argument combined with repeated hashing. This is in
contrast with prior generic constructions (Boneh et al, CRYPTO 2018)
that required the existence of incremental verifiable computation, which
entails stronger assumptions and complex machinery.

1 Introduction

Verifiable Delay Functions (VDFs), introduced by Boneh et al [5], is a recent
cryptographic primitive which allows one to put protocol parties on halt for a
set amount of time. VDFs are functions that are characterized by three proper-
ties. For a time parameter T , (i) it should be possible to compute the function in
sequential time T . Furthermore, a VDF should be T -sequential in the sense that
(ii) it should not be possible to compute such a function in (possibly parallel)
time significantly less than T . Finally, (iii) the function should produce a proof π
which convinces a verifier that the function output has been correctly computed.
Such a proof π should be succinct, in the sense that the proof size and the ver-
ification complexity are (essentially) independent of T . These properties enable
a prover to prove to the verifier that a certain amount of time has elapsed, say,
by computing the function on an input provided by the verifier.

After the seminal work of Boneh et al. [5], VDFs have rapidly generated
interest in the community and several follow-up constructions have recently been
proposed [17, 21], and there is active work in implementing and optimizing them



for near-term practical use [8]. This is partially motivated by the large range of
applications of this primitive. As an example, VDFs can turn blockchains into
randomness beacons – introducing a delay in the generation of the randomness
prevents malicious miners from sampling blocks adaptively to bias the outcome
of the beacon. VDFs are also useful as a computational time-stamp and have
further applications in the context of proofs of replications [1] and resource-
efficient blockchains [9].

One of the major efficiency metrics for a VDF is the prover’s computational
complexity, in relation to the time parameter T . This determines the time taken
to evaluate a VDF by an honest prover, and therefore the gap with respect to the
best possible successful malicious machine (which we bound to take time atleast
T ). In the ideal case this gap is non-existent, i.e., the prover can compute the
VDF in time exactly T without resorting to massive parallelization. This work
asks the followin question:

When do VDFs with tight prover complexity exist?

Our Negative Result: Motivated by concerns about concrete efficiency, we
first investigate the possibility of black-box constructions of VDFs from other
cryptographic primitives. In particular, given the prevalence of strong and effi-
cient candidates for simple cryptographic primitives like one-way functions and
collision-resistant hash functions (SHA256, for instance), we would ideally like
to use these as black-boxes to get similarly strong and efficient VDFs. As a nega-
tive result, we show that it is impossible to construct a T -sequential VDF where
the prover runtime is close to T (with any number of processors) in a black-box
manner from random oracles (and thus one-way functions or collision-resistant
hash functions).

Theorem 1 (Informal). There is no black-box construction of a T -sequential
VDF from a random oracle where the prover makes at most T + O(T δ) rounds
of queries to the oracle for some constant δ < 1.

Our Positive Result: On the other hand, we find that the natural generic
non-blackbox approach to constructing a VDF can actually be made tight. All
known constructions of VDF proceed by iteratively applying some function f to
the given input – that is, computing f(x), f(f(x)), and so on. A proof that this
was done correctly is computed either afterwards or during this computation.
We show that, assuming a modest parallelism of the prover, we can bootstrap
any such VDF where the prover complexity may not be tight into a VDF where
the prover runtime matches the sequentiality bound T . More specifically, we
construct VDFs that can be computed in parallel time T +O(1) using O(log(T ))
processors and space.

Our bootstrapping theorem consists of a compiler that transforms any VDF
with a somewhat natural self-composability property into a VDF with a tight
prover complexity. Roughly speaking, we require that the evaluation of a VDF
on time parameter T can be decomposed into two (sequential) evaluations of the
same VDF on parameters T1 and T2 such that T1 + T2 = T . This is satisfied
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by all known VDF candidates. The resulting scheme is as secure as the underly-
ing VDF. Furthermore, the transformation is practically efficient and simple to
implement.

Theorem 2 (Informal). If there exists a self-composable VDF with a prover
runtime bounded by c·T for some constant c, then there exists a VDF with prover
runtime bounded by T +O(1).

As our transformation mentioned above is black-box, Theorems 1 and 2 together
rule out black-box constructions from random oracles of a self-composable VDF
where the prover makes at most cT rounds of queries for some constant c. We
highlight a few other interesting corollaries of our theorem:

(1) Assuming the existence of an inherently sequential function and (not neces-
sarily incremental) succinct non-interactive arguments [14, 16], there exists
a T -sequential VDF, for any T , where the prover runs in time T using a
poly-logarithmic number of processors.

This improves over generic constructions from prior work [5], which required
incremental verifiable computation [20, 3], which is a stronger primitive.4 Next,
we turn our attention to specific number-theoretic constructions. In this context
we improve the prover efficiency of the construction of Pietrzak [17], where the
prover runs in time approximately T +

√
T .

(2) Assuming the security of Pietrzak’s VDF, there exists a T -sequential VDF
with prover parallel runtime exactly T using loglog(T ) processors and space.
The proof size is increased by a factor of loglog(T ) and the verifier parallel
complexity is unchanged.

Our result generalizes a prior work by Wesolowski [21] which obtains a specific
construction of a tight VDF. We discuss the consequences of our bootstrapping
theorem in greater detail in Section 4. Regarding the additional parallelism used
by our prover, we stress that a log(T ) parallelism by the prover is also (implicitly)
assumed by prior work: In the circuit model, even computing a simple collision-
resistant hash with security parameter λ already requires at least λ (> log(T ) in
our setting) parallel processors. Our compiler adds an extra logarithmic factor,
which is well in reach of modern GPUs.

1.1 Our Techniques

In this section we give a brief overview of the main ideas behind this work. To
simplify the exposition, we first discuss our bootstrapping theorem and then we
give some intuition behind our impossibility result.

Self-Composability and Weak Efficiency. In the standard syntax of VDFs,
both the output value y and the proof π are computed by a single function Eval.

4 Known constructions of incremental verifiable computation require succinct argu-
ments with knowledge extraction.

3



For the purposes of this work, it is instructive to think of the algorithms which
compute a VDF function values y and proofs π as separate algorithms Comp and
Prove: Comp takes as input the time parameter T and an input x and outputs
a function value y and auxiliary information α. On the other hand Prove takes
as input α and outputs a proof π. The first property that we assume for the
underlying VDF is weak-efficiency : On time parameter T , the Comp algorithm
runs in time T whereas Prove runs in time at most cT , for some constant c.
While our argument is generic, for the purpose of this outline we always assume
that c = 1, i.e., it takes the same number of steps to compute the function via
(y, α)← Comp(T, x) and to compute the proof π ← Prove(α).

We also assume that the function Comp is self-composable. Namely, let that
T = T1 + T2 for any T1, T2 > 0. For any input x, we require that if (y1, ·) ←
Comp(T1, x), (y2, ·)← Comp(T2, y1) and (y, ·)← Comp(T, x), then it holds that
y2 = y. In other words, we require that the function (y, ·)← Comp(T, x) can be
computed in two smaller steps, where we feed the result of the first step back
into the function to obtain the actual output.

We argue that these are mild requirements for VDFs, in fact all of the re-
cent constructions fit into this paradigm and therefore can be used as input for
our compiler. This includes the more structured approach of repeated squaring
over hidden order groups [17, 21] and even the straightforward combination of
repeated hashing and succinct arguments [5].

Bootstrapping VDFs. In favor of a simpler presentation, throughout the
following informal discussion we assume that T = 2t, for some integer t. The
more general case is handled in the main body of the paper and follows with
minor modifications. Recall that, by the self-composability property, we can
split the computation (y, α)← Comp(2t, x) into two separate blocks (y1, α1)←
Comp(2t−1, x) and (y, α2)← Comp(2t−1, y1). Our main insight is that we do not
need to compute a proof π for the full trace of the computation, instead we can
compute two separate proofs for the corresponding subroutines. Then the final
proof will consist of the concatenation of the two proofs. More specifically, we
will set π = (π1, π2), where π1 ← Prove(α1) and π2 ← Prove(α2).

This modification allows us to leverage parallelism. To evaluate the function
on input x, one first computes (y1, α1) ← Comp(2t−1, x) in a single threaded
computation. Once this step is reached, the computation forks into two parallel
threads: A thread S1 that computes (y, α2) ← Comp(2t−1, y1) and a thread S2

which computes π1 ← Prove(α1). Note that by the weak efficiency of the VDF,
the runtime of the algorithm Prove is identical to that Comp(2t−1, x), i.e., 2t−1

steps. It follows that S1 and S2 will terminate simultaneously. In other words,
both y and π1 will be available at the same time.

At this point only the computation of the proof π2 is missing. If we were to do
it naively, then we would need to add an extra 2t−1 steps to compute Prove(α2),
after the computation of (y, α2)← Comp(2t−1, y1) terminates. This would yield
a total computation time of T + T/2, which is still far from optimal. However,
observe that our trick has cut the original computation overhead by a factor of
2. This suggest a natural strategy to proceed: We recursively apply the same
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algorithm as above on Comp(2t−1, y1) and further split the proof π2 into two
sub-proofs for two equal-length chunks of computation. The recursion proceeds
up to the point where the computation of the function consists of a single step,
and therefore there is no proof needed. Note that this happens after t = log(T )
iterations. Since we spawn a new thread for each level of the recursion, this also
bounds the total amount of parallelism of the prover.

Our actual proof π now consists of ((y1, π1), . . . , (yt, πt)), i.e. the proof π
consists of t components. We verify π in the canonical way, that is, setting
y0 = x we compute Vf(2t−i, yi−1, yi, πi) for all 1 ≤ i ≤ t and accept if all verify
and yt = y.

Black-Box Impossibility. We show that there cannot be a black-box con-
struction of a VDF from a random oracle if the overhead in computing the proof
in the VDF is small. That is, if the number of sequential rounds of queries that
the algorithm Eval makes to the oracle is less than T +O(T δ) for some constant
δ < 1. Note that our transformation sketched above is itself black-box, and thus
our result also rules out black-box constructions of self-composable VDFs with
a constant-factor overhead in generating the proof.

The central idea behind the impossibility is observation that since the verifi-
cation algorithm Vf makes only a small number of queries, it cannot tell whether
Eval actually made all the queries it was supposed to. For simplicity, suppose that
Eval makes exactly T sequential rounds of queries, and that the sequentiality of
the VDF guarantees that its output cannot be computed in less than T rounds
of queries. On input x, suppose Eval(x) = (y, π). Efficiency and completeness of
the VDF require that the verification algorithm Vf, making only poly(log(T ))
queries to the oracle, accepts when given (x, y, π). Whereas, soundness requires
that the same Vf rejects when given (x, y′, π′) for any y′ 6= y and any π′. We
show that all of these cannot happen at the same time while making only black-
box use of the random oracle, if this oracle is the only source of computational
hardness.

Consider an alternative evaluation algorithm Eval that behaves the same as
Eval except that on one of the rounds of queries that Eval makes, instead of
making the queries to the oracle, it sets their answers on its own to uniformly
random strings of the appropriate length. Otherwise it proceeds as Eval does,
and outputs whatever Eval would output. Now, unless the algorithm Vf makes
one of the queries that Eval skipped, it should not be able to distiniguish between
the outputs of Eval and Eval. As these skipped queries are only a 1/T fraction of
the queries that Eval made, Vf, which only makes poly(log(T )) queries, catches
them with only this small probability. Thus, if Vf accepts the output (y, π) of
Eval(x), then it should also mostly accept the output (y′, π′) of Eval(x).

On the other hand, as Eval made less than T rounds of queries to the oracle,
sequentiality implies that y′ should be different from y (except perhaps with
negligible probability). Thus, with high probability, Vf accepts (y′, π′) where
y′ 6= y, contradicting soundness.
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1.2 Related Work

A related concept is that of Proofs of Sequential Work (PoSW), originally in-
troduced by Mahmoody, Moran, and Vadhan [15]. A PoSW can be seen as a
relaxed version of a VDF where the output of the function is not necessarily
unique: PoSW satisfy a loose notion of sequentiality where the prover is required
to perform at least αT sequential steps, for some constant α ∈ [0, 1]. In contrast
with VDFs, PoSWs admit efficient instantiations that make only black-box calls
to a random oracle [10, 11].

Time-lock puzzles [19] allow one to hide some information for a certain (poly-
nomial) amount of time. This primitive is intimately related to sequential com-
putation as it needs to withstand attacks from massively parallel algorithms.
Time lock-puzzles have been instantiated in RSA groups [19] or assuming the
existence of succinct randomized encodings and of a worst case non-parallelizable
language [4]. Time-lock puzzles can be seen as VDFs with an additional encryp-
tion functionality, except that there is no requirement for an efficient verification
algorithm. In this sense the two primitives are incomparable.

Two constructions of tight VDFs were proposed in the seminal work of Boneh
et al. [5], one assuming the existence of incremental verifiable computation and
the other from permutation polynomials (shown secure against a new assump-
tion). The latter scheme achieves only a weak form of prover efficiency since it
requires T parallel processors to be evaluated tightly. Shortly after, two number
theoretic constructions have been presented independently by Pietrzak [17] and
Wesolowski [21], based on squaring in groups of unknown order. In their original
presentation, neither of these schemes was tight as the prover required additional√
T and T/logT extra steps, respectively [6].

However, Wesolowski [21] later updated his paper with a paragraph that
sketches a method to improve the prover complexity of his construction from
T +O(T/logT ) to T +O(1), using techniques similar to the ones in our compiler.
Our bootstrapping theorem can be seen as a generalization of these techniques
and can be applied to a broader class of constructions. Finally we mention of
a new VDF instance from supersingular isogenies [12] where the validity of the
function output can be checked without the need to compute any extra proof,
however the public parameters of such a scheme grow linearly with the time
parameter T .

2 Verifiable Delay Functions

We denote by λ ∈ N the security parameter. We we say that a function negl is
negligible if it vanishes faster than any polynomial. Given a set S, we denote
by s←$S the uniform sampling from S. We say that and algorithm runs in
parallel time T with with P -many processors if it can be implemented by a
PRAM machine with P parallel processors running in time T . We say that an
algorithm is PPT if it can be implemented by a probabilistic machine running
in time polynomial in λ.

Here we recall the definition of verifiable delay functions (VDF) from [5].
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Definition 1 (Verifiable Delay Function). A VDF V = (Setup,Gen,Eval,Vf)
is defined as the following tuple of algorithms.

Setup(1λ) → pp : On input the security parameter 1λ, the setup algorithm re-
turns the public parameters pp. By convention, the public parameters encode
an input domain X and an output domain Y.

Gen(pp) → x : On input the public parameters pp, the instance generation
algorithm sample a random input x←$X .

Eval(pp, x, T ) → (y, π) : On input the public parameters pp, an input x ∈ X ,
and a time parameter T , the evaluation algorithm returns an output y ∈ Y
together with a proof π. The evaluation algorithm may use random coins to
compute π but not for computing y.

Vf(pp, x, y, π, T ) → {0, 1} : On input the public parameters pp, an input x ∈
X , an output y ∈ Y, a proof π, and a time parameter T , the verification
algorithm output a bit {0, 1}.

Efficiency. We require that the setup and the instance generation algorithms
run in time poly(λ), whereas the running time of the verification algorithm must
be bounded by poly(log(T ), λ). For the evaluation algorithm, we require it to run
in parallel time exactly T . We also consider less stringent notions of efficiency
where its (parallel) running time is bounded by cT , for some constant c.

Completeness. The completeness property requires that correctly generated
proofs always cause the verification algorithm to accept.

Definition 2 (Completeness). A VDF V = (Setup,Gen,Eval,Vf) is complete
if for all λ ∈ N and all T ∈ N it holds that

Pr

Vf(pp, x, y, π, T ) = 1

∣∣∣∣∣∣
pp← Setup(1λ)
x← Gen(pp)
(y, π)← Eval(pp, x, T )

 = 1.

Sequentiality. We require a VDF to be sequential in the sense that no machine
should be able to gain a noticeable speed-up in terms of parallel running time,
when compared with the honest evaluation algorithm.

Definition 3 (Sequentiality). A VDF V = (Setup,Gen,Eval,Vf) is sequential
if for all λ ∈ N and for all pairs of PPT machines (A1,A2), such that the parallel
running time of A2 (with any polynomial amount of processors in T ) less then
T , there exists a negligible function negl such that

Pr

(y, ·) = Eval(pp, x, T )

∣∣∣∣∣∣∣∣
pp← Setup(1λ)
(T, τ)← A1(pp)
x← Gen(pp)
y ← A2(pp, x, T, τ)

 = negl(λ).

Soundness. For soundness we require that it is computationally hard to find
two valid outputs for a single instance of the VDF. Note that here we do not
constrain the running time of the adversary, except for being polynomial in λ
and T .
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Definition 4 (Soundness). A VDF V = (Setup,Gen,Eval,Vf) is sound if for
all λ ∈ N and for all PPT machines A there exists a negligible function negl
such that

Pr

[
Vf(pp, x, y, π, T ) = 1 and (y, ·) 6= Eval(pp, x, T )

∣∣∣∣pp← Setup(1λ)
(T, x, y, π)← A1(pp)

]
= negl(λ).

3 A Bootstrapping Theorem for VDFs

In this section we propose a compiler that takes as input any weakly efficient
VDF (that satisfies some natural composability properties) and turns it into
a fully-fledged efficient scheme. We first characterize the exact requirements of
the underlying VDF, then we describe our construction and we show that it
preserves all of the properties of the underlying scheme.

3.1 Building Block

We require that the underlying VDF can be composed with itself (possibly using
different time parameters) arbitrarily many times, without altering the function
output, i.e., Eval(pp, ·, T1) ◦Eval(pp, ·, T2) = Eval(pp, ·, T1 +T2). More concretely,
we assume the existence of a VDF that satisfies the following.

Definition 5 (Self-Composability). A VDF V = (Setup,Gen,Eval,Vf) is
self-composable if, for all pp in the support of Setup(1λ), for all x ∈ X , all
(T1, T2) bounded by a sub-exponential function in λ, we have that Eval(pp, x, T1+
T2) = Eval(pp, y, T2), where (y, ·) = Eval(pp, x, T2).

Note that this also implies that the domain and the range of the function are
identical, i.e., X = Y. We stress that this is property is satisfied by all known
candidate VDF constructions [5, 17, 21]. To characterize the second requirement,
it is going to be useful to refine the syntax of our primitive. We assume that the
evaluation algorithm Eval(pp, x, T ) is split in the following subroutines:

Eval(pp, x, T ) : On input the public parameters pp, and input x ∈ X , and a
time parameter T , execute the subroutine (y, α) ← Comp(pp, x, T ). Then
compute π ← Prove(α) and return (y, π).

This captures the compute-and-prove approach, where the prover evaluates some
inherently sequential function and then computes a short proof of correctness,
potentially using some information from the intermediate steps of the computa-
tion (α). Note that this refinement is done without loss of generality since one
can recover the original syntax by encoding the proof π in the advice α and set
the prove algorithm to be the identity function. We are now in the position of
stating the efficiency requirements of the input VDF.

Definition 6 (Weak Efficiency). A VDF V = (Setup,Gen,Eval,Vf) is weakly
efficient if there exists a function Ψ : N→ N and a non-negative constant c such
that for all T ∈ N it holds that 0 ≤ Ψ(T ) ≤ cT and Prove runs in parallel time
Ψ(T ), where T is the parallel running time of Eval(·, ·, T ).
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Note that the total running time of the evaluation algorithm is bounded by
(c + 1)T , for some constant c. This condition is again met by all known VDF
instances [5, 17, 21], since they are all based on the compute-and-prove paradigm:
Given a long sequential computation, the corresponding proof π can be computed
in parallel time at most linear in T by using essentially any verifiable computation
scheme.

3.2 Scheme Description

Let V = (Setup,Gen,Eval,Vf) be a weakly efficient and self-composable VDF and
let Ψ be the corresponding function such that, on input T , the running time of the
subroutine Prove is bounded by Ψ(T ). Our construction V = (Setup,Gen,Eval,Vf)
is shown below.

Setup(1λ) : Return Setup(1λ).

Gen(pp) : Return Gen(pp).

Eval(pp, x, T ) : Set S to be the smallest non-negative integer such that
S + Ψ(S) ≥ T .
(1) If S ≤ 1:

(a) Compute (y, α)← Comp(pp, x, T ).

(b) Return (y, ∅).
(2) Else:

(a) Compute (y, α)← Comp(pp, x, S).

(b) Spawn a parallel thread to compute π ← Prove(α).

(c) Compute (ỹ, L)← Eval(pp, y, T − S) in the main thread.

(d) Return (ỹ, (y, π) ∪ L).

Vf(pp, x, y, π, T ) :
(1) Parse π as ((y1, π1), . . . , (yn, πn)).

(2) Set S0 = T and y0 = x.

(3) For all 1 ≤ i ≤ n:
(a) Define Si to be the smallest integer such that Si + Ψ(Si) ≥

S0 −
∑i−1
j=1 Sj .

(b) Compute in parallel bi = Vf(pp, yi−1, yi, Si).

(4) Return (b1 ∧ · · · ∧ bn ∧ (y, ·) = Eval(pp, yn, T −
∑n
j=1 Sj)).

The setup and the instance generation algorithms are unchanged. The new
evaluation algorithm is defined recursively: On input some time T , the algorithm
defines S to be the smallest non-negative integer such that S+Ψ(S) ≥ T . Recall
that the correctness of the evaluation of the Comp algorithm on time parameter
S can be proven in time Ψ(S), by the weak efficiency condition of the VDF. Thus,
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Fig. 1: Example of the execution trace of the evaluation algorithm for Ψ being
the identity function. Solid lines denote the computation of the iterated function
(Comp) and dashed lines denote the computation of the corresponding proof
(Prove).

S approximates from above the maximum amount of computation that can be
performed and proven within time T . The algorithm then branches, depending
on the value of S:

(1) S ≤ 1 : In this case the algorithm simply computes Comp(pp, x, T ) and
outputs the result of the computation, without computing a proof. Observe
that since S = 1 it holds that T ≤ (1 + c) , where c is the constant such that
Ψ(S) ≤ cS. Thus the algorithm runs for at most c+1 steps. This corresponds
to the last step of the recursion.

(2) S > 1 : In this case the algorithm computes the underlying VDF on time
parameter S and outputs the resulting (y, α)← Comp(pp, x, S). At this point
the algorithm branches in two parallel threads:

(a) The first thread computes the proof π ← Prove(α).

(b) The second thread calls the evaluation algorithm recursively on input
(pp, y, T − S), which returns an output ỹ and a list L.

The algorithm returns the function output ỹ and the list L augmented (from
the left) with the intermediate pair (y, π), i.e., (y, π) ∪ L.

The output of the computation consists of n pairs (y1, π1), . . . , (yn, πn), where n
is the depth of the recursion, and a function output ỹ. Each output-proof pair
can be verified independently and the correctness of the function output ỹ can
be checked by recomputing at most c steps of the VDF on input yn.

Note that the only parameter that affects the efficiency of the prover and
the verifier and the size of the proof is the depth of the recursion n. Intuitively,
each step of the recursion slices off a chunk of the computation without affecting
the total runtime of the algorithm, until only a constant number of steps is left.
If S and Ψ(S) are not too far apart, then n can be shown to be bounded by a
poly-logarithmic factor in T . We give a pictorial representation of the steps of
the computation in Figure 1.
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3.3 Analysis

The completeness of our scheme follows from the self-composability of the un-
derlying VDF. In the following we analyze the efficiency of our construction
and we show that the properties of the underlying VDF are preserved under
self-composition.

Efficiency. Recall that S is always a non-negative integers and therefore each
step of the recursion is executed on input some integer ≤ T . Thus we can bound
the size of each proof πi by the size of the proof of the underlying VDF on time
parameter T . It follows that the proof size of our scheme is at most a factor
n larger, where n is the depth of the recursion. In the following we bound the
depth of the recursion, thus establishing also a bound also on the proof size. We
begin by stating and proving the following instrumental lemma.

Lemma 1. Let Ψ : N→ N be a function such that there exists a constant c such
that for all S ∈ N it holds that Ψ(S) ≤ cS. Fix an S0 ∈ N and define Si to be the

smallest non-negative integer such that Si +Ψ(Si) ≥ S0−
∑i−1
j=1 Sj. Then for all

S0 ∈ N and for all i ≥ 0 it holds that S0 −
∑i
j=1 Sj ≤ S0

(
c
c+1

)i
.

Proof. We prove the claimed bound by induction over i. For the base case i = 0
we have S0 ≤ S0, which is trivial. For the induction step, recall that Si is defined
to be the smallest integer such that Si+Ψ(Si) ≥ S0−

∑i−1
j=1 Sj . Since Ψ(Si) ≤ cSi,

for some non-negative c, we have that

Si + cSi ≥ S0 −
i−1∑
j=1

Sj

Si(c+ 1) ≥ S0 −
i−1∑
j=1

Sj

Si ≥
S0 −

∑i−1
j=1 Sj

c+ 1
.

By induction hypothesis, it follows that

S0 −
i∑

j=1

Sj = S0 −
i−1∑
j=1

Sj − Si

≤ S0 −
i−1∑
j=1

Sj −
S0 −

∑i−1
j=1 Sj

c+ 1

=
(S0 −

∑i−1
j=1 Sj)c

c+ 1

≤ S0

(
c

c+ 1

)i−1(
c

c+ 1

)
= S0

(
c

c+ 1

)i
.
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The bound on the depth of the recursion is obtained by observing that the i-th
copy of the evaluation algorithm is called on time parameter exactly T−

∑i
j=1 Sj ,

where Sj is defined as above. Note that if T −
∑i
j=1 Sj ≤ 1, then the recursion

always stops, since the condition 1 +Ψ(1) ≥ 1 is satisfied for all non-negative Ψ .
If we set S0 = T and apply Lemma 1 we obtain the following relation

T −
i∑

j=1

Sj ≤ T
(

c

c+ 1

)i
≤ 1.

Solving for i, we have that log( c+1
c )(T ) iterations always suffice for the algorithm

to terminate. This also implies a bound on the number of processors needed to
evaluate the function. We now establish a bound on the parallel runtime of the
evaluation algorithm.

Lemma 2. Let V be a weakly efficient VDF. Then, for all pp in the support
of Setup(1λ), for all x ∈ X , and for all T ∈ N, the algorithm Eval(pp, x, T )
terminates in at most T + c steps.

Proof. We first consider the main thread of the execution. Set S0 = T and define
Si to be the smallest integer such that Si + Ψ(Si) ≥ S0 −

∑i−1
j=1 Sj . Observe

that the main thread consists of n applications of the algorithm Comp on time
parameter Si, where n is the depth of the recursion, and one application on input
S0 −

∑n
j=1 Sj . Thus, by the weak efficiency of V, the total running time of the

main thread is exactly

n∑
j=1

Sj + S0 −
n∑
j=1

Sj = S0 = T.

To bound the runtime of the parallel threads we bound the difference with respect
to the amount of steps needed for the main thread to terminate, starting from
the moment the execution forks. We show a bound assuming Ψ(S) = cS, which
implies a bound for the general case since the proving algorithm can only get
faster. Consider the i-th recursive instance of the algorithm: After computing
(αi, yi) ← Comp(pp, xi, Si), the main thread proceeds by calling Eval on input
T − Si and spawns a new thread to compute a proof on input αi. As discussed
above, we know that the main thread will terminate within T −Si steps, thus all
we need to do is bounding the amount of extra steps needed for the computation
of the proof. Note that we have

(Si − 1) + Ψ(Si − 1) < T

12



since we assumed that Si was the smallest integer that satisfies Si + Ψ(Si) ≥ T .
Substituting,

(Si − 1) + Ψ(Si − 1) < T

Ψ(Si − 1) < T − Si + 1

c(Si − 1) < T − Si + 1

cSi − c < T − Si + 1

Ψ(Si) < T − Si + c+ 1

where Ψ(Si) is exactly the number of steps needed to compute πi. This holds for
all recursive instances of the algorithms and concludes our proof.

We remark that the extra c steps needed for our algorithm to terminate are due
to the rounding that happens when S does not divide T . For the common case
where T is a power of 2 and Ψ is the identity function, then T = 2S in all of the
recursive calls of the algorithm and the process terminates in exactly T steps.
The verifier complexity is bounded by that of n parallel calls to the verifier of the
underlying VDF on input some time parameter ≤ T , where n is poly-logarithmic
in T (see discussion above), plus an extra parallel instance that recomputes at
most c+ 1 steps of the Comp algorithm.

Sequentiality. In the following we show that our transformation preserves the
sequentiality of the underlying VDF.

Theorem 3 (Sequentiality). Let V be a self-composable sequential VDF, then
V is sequential.

Proof. Let A be and adversary that, on input a random instance x, finds the
corresponding image y in time less than T . By definition of our evaluation algo-
rithm, y is computed as

(y, ·)← Comp

pp, yn, T − n∑
j=1

Sj

 ,

where (yi, ·) ← Comp(pp, yi−1, Si), for all 1 ≤ i ≤ n, setting y0 = x. Invoking
the self-composability of the underlying VDF, we have that

(y, ·) = Comp (pp, x, T ) = Eval (pp, x, T )

twhich implies that y is the correct image of the underlying VDF for the same
time paramter T . Thus the existence of A contradicts the sequentiality of V.

Soundness. The following theorem establishes the soundness of our scheme.
Note that the reduction is tight, which means that our construction is exactly
as secure as the input VDF.

Theorem 4. Let V be a self-composable and sound VDF, then V is sound.

13



Proof. Let A be an adversary that, on input the honestly generated public pa-
rameters pp, outputs some tuple (T, x, y, π) such that π is a valid proof, but
(y, ·) 6= Eval(pp, x, T ). Let π = ((y1, π1), . . . , (yn, πn)) and set y0 = x. Then we
claim that one of the following conditions must be satisfied:

(1) There exists some i ∈ {1, . . . , n} such that (yi, ·) 6= Comp(pp, yi−1, Si), where
Si is defined as in the verification algorithm, or

(2) (y, ·) 6= Comp(pp, yn, T −
∑n
j=1 Sj).

If none of the above conditions is met, then we have that

(y, ·) = Comp (pp, x, T ) = Eval (pp, x, T )

by the self-composability of V, which contradicts the initial hypothesis. It follows
that a successful attack implies at least one of the above conditions. However,
(1) implies that we can extract a tuple (yi−1, yi, πi, Si), such that πi is a valid
proof but (yi, ·) 6= Eval(pp, yi−1, Si), which contradicts the soundness of V. On
the other hand, if (2) happens then the verifier always rejects. It follows that
the existence of A implies that the underlying VDF is not sound.

4 Instantiations

In the following we survey the existing candidate VDF schemes and we discuss
the implications of our results.

4.1 Compute-and-Prove VDF

The original work of Boneh et al. [5] discusses an instantiation for VDF based on
any (conjectured) inherently sequential function and a succinct non-interactive
argument system (SNARG) [14, 16]. The prover simply evaluates the function
on a randomly chosen input and computes a short proof that the computation
is done correctly. However, such an approach is dismissed since the time to com-
pute a SNARG is typically much longer than that needed for the corresponding
relation. Therefore, to achieve meaningful sequentiality guarantees, the prover
needs to resort to massive parallelization which requires a number of processors
linear in the time parameter T .

For this reason they turned their attention to incremental verifiable compu-
tation schemes [20]. Such a primitive derives from the recursive composition of
SNARGs and allow one to compute the proof incrementally as the computa-
tion proceeds. However, this feature comes at a cost: The number of recursions
introduces an exponential factor in the running time of the extractor and there-
fore the schemes can be shown sound only for a constant amount of iterations.
Other constructions [3] circumvent this issue by constructing computation trees
of constant depth, however the overhead given by the recursive application of a
SNARG is typically the bottleneck of the computation.

Our approach can be seen as a lightweight composition theorem for VDFs
and rehabilitates the compute-and-prove paradigm using standard SNARGs in
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conjunction with iterated sequential functions: Most of the existing SNARG
schemes can be computed in time quasi-linear in T [2] and can be parallelized
to meet our weak efficiency requirements using a poly-logarithmic amount of
processors (in the time parameter T ). Our compiler shows that the combination
of SNARGs and iterated sequential functions already gives a tightly sequential
VDF, for any value of T .

4.2 Wesolowski’s VDF

A recent work by Wesolowski [21] builds an efficient VDF exploiting the con-
jectured sequentiality of repeated squaring in groups of unknown order, such as
RSA groups [18] or class groups of imaginary quadratic order [7]. Loosely speak-
ing, given a random instance x ∈ G and a time parameter T , the sequential

function is defined as f(x) = x2
T

. Wesolowski proposes a succinct argument for
the corresponding language

L =
{

(G, x, y, T ) : y = x2
T
}

where the verification is much faster than recomputing the function from scratch.
The argument goes as follows:

(1) The verifier samples a random prime p from the set of the first 2λ primes.
(2) The prover computes q, r ∈ Z such that 2T = pq + r and outputs π = xq as

the proof.
(3) The proof π can be verified by checking that πpxr = y, where r is computed

as 2T mod p.

The argument can be made non-interactive using the Fiat-Shamir transforma-
tion [13]. Note that the value of q cannot be computed by the prover explicitly
since the order of the group is unknown, however it can be computed in the
exponent of x in time close to T .

Wesolowski’s proof consists of a single group element and the verifier work-
load is essentially that of two exponentiations in G. The main shortcoming of
the scheme is that the time to compute a valid proof is proportional to the time
to compute the function. However, Wesolowski briefly explains how to reduce
this overhead to a constant factor using parallel processors. The modification
sketched in his paper is essentially an ad-hoc version of our compiler.

4.3 Pietrzak’s VDF

Recently, Pietrzak [17] also showed an efficient succinct argument for the same
language L, taking a slightly different route. In the following we briefly recall
the backbone of the argument:

(1) If T = 1, the verifier simply checks that x2 = y.

(2) Else the prover computes z = x2
T/2

and sends it to the verifier.
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(3) The verifier samples some r ∈ {1, . . . , 2λ}.
(4) The prover and the verifier recurse on input (G, xrz, zry, T/2).

The resulting argument is less efficient than Wesolowski’s approach in terms
of proof size and verifier complexity by a factor of log(T ). However Pietrzak’s
argument can be computed in time approximately

√
T using roughly

√
T memory

by storing some intermediate values of the function evaluation.
It is clear that such a VDF fulfills the conditions to apply our compiler and

allows us to truncate the additional
√
T factor from the proof computation.

Due to the increased proof size, it might appear that the resulting scheme is
strictly worse than that obtained by combining our compiler with Wesolowski’s
approach. However the significantly shorter proving time allows us to give a
sharper bound on the number of recursion of our algorithm: In each iteration the
new time parameter is computed as 1/2

√
4T + 1−1 and therefore approximately

loglog(T ) iterations suffice to hit the bottom of the recursion. As a consequence,
Pietrzak’s argument needs less parallelism to achieve optimal prover runtime.
We also point out that Pietrzak’s argument rests on a weaker assumption, as
discussed in [6].

5 Black-Box Impossibility

In this section, we show that it is not possible to have a (tight) VDF whose only
source of computational hardness is a random oracle. This implies that VDFs
cannot be constructed by making just black-box use of several cryptographic
primitives such as One-Way Functions and Collision-Resistant Hash Functions.

In this setting, we give all the algorithms in a VDF construction (that is,
Setup, Gen, Eval, and Vf), as well as any adversaries, access to a random oracle
that we denote by H. Our measure of the complexity of an algorithm will be the
number of queries that it makes to H, and sequentiality is also measured by the
number of rounds of queries made to H adaptively.

Theorem 5. There is no black-box construction of a VDF (Setup,Gen,Eval,Vf)
from a random oracle where Eval(·, ·, T ) makes at most T + O(T δ) rounds of
queries for some δ < 1, and is also T -sequential.

Noting that our transformation from Section 3 (of any self-composable weakly
efficient VDF into a VDF with constant proof overhead) is black-box, we can
extend this impossibility as follows.

Corollary 1. There is no black-box construction of a self-composable VDF (Setup,
Gen,Eval,Vf) from a random oracle where Eval(·, ·, T ) makes at most cT rounds
of queries (for some constant c) and is also T -sequential.

Our approach is as follows. Imagine replacing the answers to all but (T − 1)
rounds of queries that Eval makes to H with something completely random
(independent of H). Since we only replaced a small fraction of the queries made,
the output of Eval in this case should look the same to Vf, which makes very
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few queries to H. On the other hand, if this replacement did not change the
value of y output by Eval, then it means that we could have computed Eval by
answering these queries ourselves, and thus making only (T−1) rounds of queries
to H, contradicting sequentiality. Thus, if Eval is indeed T -sequential, then this
replacement allows us to break soundness.

Proof (Theorem 5). Fix any alleged VDF (Setup,Gen,Eval,Vf) with access to
a random oracle H. Suppose, for some δ < 1, there is a function p(λ, T ) that
is O(poly(λ) · T δ) such that, for any λ, T , and pp ← GenH(1λ), the evaluation
algorithm Eval(pp, ·, T ) makes at most T +p(λ, T ) rounds of queries to H. With-
out loss of generality (since the algorithms are not bounded in the memory they
use), we assume that an algorithm does not make the same query twice to H.

We construct an adversarial evaluator Eval that works as follows on input (pp, x, T ):

1. Pick a uniformly random set I ⊆ [T + p(λ, T )] of size (p(λ, T ) + 1).
2. Run Eval(pp, x, T ) as is whenever it is not making oracle queries.
3. When Eval makes the ith round of oracle queries (q1, . . . , qm),

– if i /∈ I, respond with (H(q1), . . . ,H(qm)).
– if i ∈ I, respond with (a1, . . . , am), where the ai’s are uniformly random

strings of the appropriate length.
4. Output the (y, π) that Eval produces at the end.

The following claim states that if Vf makes only a small number of queries
(which it has to for efficiency), it cannot distinguish between the outputs of Eval
and Eval.

Claim (Indistinguishability). Suppose pp and x are generated from SetupH(1λ)

and GenH(pp), respectively. Let (y, π)← EvalH(pp, x, T ), and (y, π)← Eval
H

(pp, x, T ).
If the algorithm VfH(pp, ·, ·, ·, T ) makes at most T/8p(λ, T ) queries to H, then,
for all λ ∈ N and all T ∈ N, it holds that:∣∣∣Pr

[
VfH(pp, x, y, π, T ) = 1

]
− Pr

[
VfH(pp, x, y, π, T ) = 1

]∣∣∣ ≤ 1

4

We defer the proof of the above to later in this section. The next claim states
that, if the given VDF is sequential, then the output y as computed by Eval has
to differ with high probability from that computed by Eval. This follows imme-
diately from the observation that Eval makes at most (T − 1) rounds of queries
to H, and so if outputs that same y as Eval with non-negligible probability, this
would immediately contradict T -sequentiality.

Claim (Sensitivity). Suppose the given VDF is T -sequential, and that pp and
x are generated from SetupH(1λ) and GenH(pp), respectively. Let (y, π) ←
EvalH(pp, x, T ), and (y, π) ← Eval

H
(pp, x, T ). Then, there exists a negligible

function negl such that for all λ ∈ N and all T ∈ N it holds that:

Pr [y = y] ≤ negl(λ)
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We now construct an adversary A that breaks the soundness of the supposed
VDF. A, on input the parameters pp, works as follows:

1. Generate x← GenH(pp), and set T = 2λ.

2. Compute (y, π)← Eval
H

(pp, x, T ).
3. Output (T, x, y, π).

Our argument now is based on the following three points:

– By the efficiency of the VDF, Vf makes much fewer than T/8p(λ, T ) (=
2Ω(λ)) queries.

– So, by the correctness of the VDF and Claim 5, the probability that Vf(pp, x,
y, π, T ) does not output 1 is at most 1/4.

– By Claim 5, the probability that y agrees with the output of Eval is at most
negl(λ).

Together, by the union bound, we have:

Pr [Vf(pp, x, y, π, T ) = 1 and (y, ·) 6= Eval(pp, x, T )] ≥ 1−
(

1

4
+ negl(λ)

)
Noting that A runs in nearly the same time as Eval, this contradicts the claim
that we started with a VDF that is both sequential and sound, proving the
theorem.

Proof (Indistinguishability Claim). Recall that Eval generates (y, π) just by al-
tering the oracle that Eval has access to. Denoting this altered oracle by H, note
that H is also a random oracle, and that if Vf also had access to H instead of
H, then the behavior of the whole system would not change. That is,

Pr
[
VfH(pp, x, y, π, T ) = 1

]
= Pr

[
VfH(pp, x, y, π, T ) = 1

]
(1)

Suppose, when given input (pp, x, y, π, T ), the algorithm VfH makesN queries
q1, . . . , qN to the oracle. Its behavior when given access to H instead of H is dif-
ferent only if the two oracles disagree on at least one of these queries. For any
query qi, the algorithm Eval alters the oracle at this query if it happens to be
made by Eval in a round contained in I. This happens with probability less than
(p(λ, T ) + 1)/(T + p(λ, T )). This implies that, for any i ∈ [N ],

Pr
[
H(qi) 6= H(qi)

]
≤ p(λ, T ) + 1

T + p(λ, T )
≤ 2p(λ, T )

T

Thus, by the union bound, the probability that VfH behaves differently from
VfH on any input is at most 2Np(λ, T )/T . If N ≤ T/8p(λ, T ), together with
(1), this implies that:∣∣∣Pr

[
VfH(pp, x, y, π, T ) = 1

]
− Pr

[
VfH(pp, x, y, π, T ) = 1

]∣∣∣
=
∣∣∣Pr
[
VfH(pp, x, y, π, T ) = 1

]
− Pr

[
VfH(pp, x, y, π, T ) = 1

]∣∣∣ ≤ 1

4
.
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