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Lattice Gaussian Sampling by Markov Chain Monte Carlo:
Bounded Distance Decoding and Trapdoor Sampling

Zheng Wang, Member, IEEE, and Cong Ling, Member, IEEE

Abstract—Sampling from the lattice Gaussian distribution
plays an important role in various research fields. In this
paper, the Markov chain Monte Carlo (MCMC)-based sampling
technique is advanced in several fronts. Firstly, the spectral gap
for the independent Metropolis-Hastings-Klein (MHK) algorithm
is derived, which is then extended to Peikert’s algorithm and
rejection sampling; we show that independent MHK exhibits
faster convergence. Then, the performance of bounded distance
decoding using MCMC is analyzed, revealing a flexible trade-off
between the decoding radius and complexity. MCMC is further
applied to trapdoor sampling, again offering a trade-off between
security and complexity. Finally, the independent multiple-try
Metropolis-Klein (MTMK) algorithm is proposed to enhance
the convergence rate. The proposed algorithms allow parallel
implementation, which is beneficial for practical applications.

Keywords: Lattice decoding, lattice Gaussian sampling,
Markov chain Monte Carlo, bounded distance decoding, large-
scale MIMO detection, trapdoor sampling.

I. INTRODUCTION

NOwadays, lattice Gaussian sampling has drawn a lot
of attention in various research fields. In mathematics,

Banaszczyk was the first to apply it to prove the transference
theorems for lattices [1]. In coding, lattice Gaussian distribu-
tion was employed to obtain the full shaping gain for lattice
coding [2], [3], and to achieve the capacity of the Gaussian
channel [4]. It was also used to achieve information-theoretic
security in the Gaussian wiretap channel [5], [6] and in the
bidirectional relay channel [7], respectively. In cryptography,
the lattice Gaussian distribution has become a central tool
in the construction of many primitives [8]–[10]. Specifically,
lattice Gaussian sampling lies at the core of signature schemes
in the Gentry, Peikert and Vaikuntanathan (GPV) paradigm
[11]. Furthermore, lattice Gaussian sampling with a suitable
variance allows to solve the closest vector problem (CVP) and
the shortest vector problem (SVP) [12], [13].

However, in sharp contrast to the continuous Gaussian
density, it is by no means trivial even to sample from a low-
dimensional discrete Gaussian distribution. For some special
lattices, there are rather efficient algorithms for Gaussian
sampling [4], [14]. As the default sampling algorithm for
general lattices, Klein’s algorithm [15] only works when the
standard deviation σ =

√
ω(log n) · max1≤i≤n‖b̂i‖ [11],
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where ω(log n) is a superlogarithmic function, n denotes
the lattice dimension and b̂i’s are the Gram-Schmidt vec-
tors of the lattice basis B. Peikert gave an efficient lattice
Gaussian sampler in [16] for parallel implementation, which
however requires larger values of σ. On the other hand, the
lattice Gaussian sampling algorithm proposed by Aggarwal
et al. in [12], [13] to solve CVP and SVP has a lower
bound 2n on both space and time complexity; it actually
obtains samples for small σ by combining original samples for
σ =

√
ω(log n) · max1≤i≤n‖b̂i‖. Although the algorithm in

[17] provides a trade-off between (exponential) time and space
complexity, its complexity is still too high to be practical.

In order to sample from a target lattice Gaussian distribution
with arbitrary σ > 0, Markov chain Monte Carlo (MCMC)
methods were introduced in [18]. In principle, it randomly
generates the next Markov state conditioned on the previous
one; after the burn-in time, which is normally measured by
the mixing time, the Markov chain will step into a stationary
distribution, when samples from the target distribution can be
obtained [19]. It has been demonstrated that Gibbs sampling,
which employs univariate conditional sampling to build the
chain, yields an ergodic Markov chain [20]. In [18], we
proposed an independent Metropolis-Hastings (MH) algorithm
incorporating Klein’s algorithm (namely, the independent
MHK algorithm) to generate a proposal distribution, which
is shown to be uniformly ergodic (converging exponentially
fast to the stationary distribution). Meanwhile, the associated
convergence rate of the Markov chain is derived, resulting in
a tractable estimation of the mixing time. Differently from the
algorithms of [12], [13], [17], the independent MHK sampling
algorithm only requires polynomial space. In this paper, we
advance the state of the art of MCMC-based lattice Gaussian
sampling in several fronts.

Firstly, we refine the analysis and extend the independent
MHK algorithm of [18]. We obtain the spectral gap of the tran-
sition matrix and demonstrate uniformly ergodicity. We extend
the independent MH algorithm to a version where Peikert’s
algorithm [16] is used to generate the proposal distribution.
We then compare these MCMC algorithms with rejection
sampling. By deriving their rates of convergence, we show
the advantage of the independent MHK. Rejection sampling
achieves the same convergence rate only if its normalizing
constant is carefully chosen, which is generally rather difficult.

Secondly, we apply the independent MHK algorithm to
bounded distance decoding (BDD). BDD is a variant of the
CVP where the input is within a certain distance to the lattice.
With a careful selection of the standard deviation σ during
the sampling process, we improve the result of Klein from
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η = O(1/n) to η = O(
√

log n/n) in terms of η−BDD1. Ref-
erences [21], [22] achieved a larger value η = O(

√
log n/n),

at the expense of a pre-processing stage where Gaussian
samples are taken from the dual lattice with standard deviation
σ equal to its smoothing parameter. However, sampling at the
smoothing parameter is in general a difficult problem with
no efficient solutions nowadays. For algorithms of general
SVP/CVP such as enumeration and sieving, we refer the
readers to the comprehensive survey [23].

Thirdly, we examine the impact of MCMC to trapdoor
sampling in the GPV paradigm. In cryptographic applications,
the standard deviation σ of the sampler is the main parameter
governing the security level. Namely, the smaller σ, the higher
security. This is because for a signature system to be secure, it
must be hard for an adversary to find lattice points of length
about σ

√
n. We show that, at moderate costs of increased

complexity, MCMC is able to sample with smaller σ, thereby
increasing the security level relative to Klein’s algorithm [11]
and Peikert’s algorithm [16].

Finally, to improve the convergence rate of the Markov
chain, the independent multiple-try Metropolis-Klein (MTMK)
algorithm is proposed, which fully exploits the trial samples
generated from the proposal distribution. Uniform ergodicity
is demonstrated and the enhanced convergence rate is also
given. Since independent MHK is only a special case of
independent MTMK, the decoding performance can also be
improved due to the usage of trial samples. The proposed
sampling algorithm allows a parallel implementation and is
easily adopted to MIMO detection to achieve near-optimal
performance. With the development of 5G, the demand for
large-scale MIMO systems will increase in the next decade,
which has triggered research activities towards low complexity
decoding algorithms for large-scale MIMO detection [24]–
[26]. Therefore, there has been considerable interest in MCMC
sampling for the efficient decoding of MIMO systems [27]–
[32].

The rest of this paper is organized as follows. Section II
introduces the lattice Gaussian distribution and briefly reviews
the basics of MCMC. In Section III, we derive the spectral
gaps of the Markov chains associated with independent MHK
and rejection sampling-based lattice Gaussian sampling, and
show their uniform ergodicity as well as convergence rates.
An extension to Peikert’s algorithm is also given. Then,
the decoding complexity of BDD using independent MHK
algorithm is derived in Section IV. Section V addresses trap-
door sampling using MCMC. In Section VI, the independent
MTMK algorithm is proposed to further strength the conver-
gence performance. Simulation results for MIMO detection
are presented in Section VII. Finally, Section VIII concludes
the paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respec-
tively. I denotes the identity matrix. We use bi for the ith
column of the matrix B, b̂i for the ith Gram-Schmidt vector

1In η-BDD (η < 1/2), we are given a lattice basis B and a query point c,
and we are asked to find a lattice point within distance η ·λ1 from the target,
where λ1 denotes the first minimum of the lattice.
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Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution.

of the matrix B, bi,j for the entry in the ith row and jth
column of the matrix B. A symmetric matrix B is written as
B � 0 if it is positive definite. Similarly, we say B1 � B2 if
(B1 − B2) � 0. dxc denotes rounding to the integer closest
to x. If x is a complex number, dxc rounds the real and
imaginary parts separately. In addition, we use the standard
small omega notation ω(·), i.e., |ω(g(n))| > k · |g(n)| for
every fixed positive number k > 0. Finally, in this paper,
the computational complexity is measured by the number of
Markov moves.

II. PRELIMINARIES

In this section, we introduce the background and mathemat-
ical tools needed to describe and analyze the proposed lattice
Gaussian sampling algorithms.

A. Lattice Gaussian Distribution

Let matrix B = [b1, . . . ,bn] ⊂ Rn consist of n linearly
independent column vectors. The n-dimensional lattice Λ
generated by B is defined by

Λ = {Bx : x ∈ Zn}, (1)

where B is called the lattice basis. We define the Gaussian
function centered at c ∈ Rn for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)

for all z ∈ Rn. When c or σ are not specified, we assume that
they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2∑
x∈Zn e

− 1
2σ2 ‖Bx−c‖2

(3)

for all x ∈ Zn, where ρσ,c(Λ) ,
∑

Bx∈Λ ρσ,c(Bx) is just a
scaling to obtain a probability distribution. We remark that this
definition differs slightly from the one in [8], where σ is scaled
by a constant factor

√
2π (i.e., s =

√
2πσ). In fact, the discrete

Gaussian resembles a continuous Gaussian distribution, but is
only defined over a lattice. It has been shown that discrete and
continuous Gaussian distributions share similar properties, if
the flatness factor is small [5].
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Algorithm 1 Klein’s Algorithm
Input: B, σ, c
Output: Bx ∈ Λ

1: let B = QR and c′ = Q†c
2: for i = n, . . . , 1 do
3: let σi = σ

|ri,i| and x̃i =
c′i−

∑n
j=i+1 ri,jxj

ri,i
4: sample xi from DZ,σi,x̃i
5: end for
6: return Bx

B. Decoding by Sampling

Consider the decoding of an n × n real-valued system.
The extension to the complex-valued system is straightfor-
ward [33]. Let x ∈ Zn denote the transmitted signal. The
corresponding received signal c is given by

c = Bx + w (4)

where w is the noise vector with zero mean and variance σ2
w,

B is an n×n full column-rank matrix of channel coefficients.
Typically, the conventional maximum likelihood (ML) reads

x̂ = arg min
x∈Zn

‖c−Bx‖2 (5)

where ‖·‖ denotes the Euclidean norm. Clearly, ML decoding
corresponds to the CVP. If the received signal c is the origin,
then ML decoding reduces to SVP.

Intuitively, the CVP given in (5) can be solved by the lattice
Gaussian sampling. Since the distribution is centered at the
query point c, the closest lattice point Bx to c is assigned the
largest sampling probability. Therefore, by multiple samplings,
the solution of CVP is the most likely to be returned. It has
been demonstrated that lattice Gaussian sampling is equivalent
to CVP via a polynomial-time dimension-preserving reduction
[34]. Meanwhile, by adjusting the sample size, the sampling
decoder enjoys a flexible trade-off between performance and
complexity.

In [15], Klein introduced an algorithm which performs
sampling from a Gaussian-like distribution (see Algorithm 1).
It is shown in [15], [33], [35] that Klein’s algorithm is able
to find the closest lattice point when it is close to the input
vector: this technique is known as BDD in coding literature,
which corresponds to a restricted variant of CVP.

C. Classical MH Algorithms

In [36], the original Metropolis algorithm was extended
to a more general scheme known as the Metropolis-Hastings
(MH) algorithm. In particular, let us consider a target invariant
distribution π together with a proposal distribution q(x,y).
Given the current state x for Markov chain Xt, a state
candidate y for the next Markov move Xt+1 is generated from
the proposal distribution q(x,y). Then the acceptance ratio α
is computed by

α = min
{

1,
π(y)q(y,x)

π(x)q(x,y)

}
, (6)

and y will be accepted as the new state with probability α.
Otherwise, x will be retained. In this way, a Markov chain

{X0,X1, . . .} is established with the transition probability
P (x,y) as follows:

P (x,y) =

{
q(x,y)α if y 6= x,

1−
∑

z 6=x q(x, z)α if y = x.
(7)

It is interesting that in MH algorithms, the proposal distribu-
tion q(x,y) can be any fixed distribution from which we can
conveniently draw samples. Therefore, there is large freedom
in the choice of q(x,y) but it is challenging to find a suitable
one with satisfactory convergence. In fact, Gibbs sampling
can be viewed as a special case of the MH algorithm, whose
proposal distribution is a univariate conditional distribution.

As an important parameter to measure the time required by
a Markov chain to get close to its stationary distribution, the
mixing time is defined as [19]

tmix(ε) = min{t : max‖P t(x, ·)− π(·)‖TV ≤ ε}, (8)

where P t(x, ·) denotes a row of the transition matrix P for
t Markov moves and ‖ · ‖TV represents the total variation
distance.

D. Independent MHK Algorithm

From the MCMC perspective, lattice Gaussian distribution
can be viewed as a complex target distribution lacking direct
sampling methods. In order to obtain samples from DΛ,σ,c(x),
the independent MHK sampling was proposed in [18]. Specif-
ically, a state candidate y for the next Markov move Xt+1 is
generated by Klein’s algorithm, via the following backward
one-dimensional conditional sampling (for i = n, n−1, . . . , 1):

P (yi|y[−i]) = P (yi|yi+1, . . . , yn)

=
e−

1
2σ2 ‖c

′−Ry‖2∑
yi∈Z e

− 1
2σ2 ‖c′−Ry‖2

=
e−

1
2σ2 ‖c

′
i−

∑n
j=i ri,jyj‖

2∑
yi∈Z e

− 1
2σ2 ‖c′i−

∑n
j=i ri,jyj‖2

=
e
− 1

2σ2
i

‖yi−ỹi‖2∑
yi∈Z e

− 1

2σ2
i

‖yi−ỹi‖2

= DZ,σi,ỹi(yi), (9)

where ỹi =
c′i−

∑n
j=i+1 ri,jyj

ri,i
, σi = σ

|ri,i| , c′ = Q†c and

B = QR by QR decomposition with ‖b̂i‖ = |ri,i|. Note that
y[−i] = [yi+1, . . . , yn], R, c′ and y are the (n−i+1) segments
of R, c′ and y respectively (i.e., R is a (n−i+1)×(n−i+1)
submatrix of R with ri,i to rn,n in the diagonal).

Given the current state x, the proposal distribution q(x,y)
in the independent MHK sampling is given by

q(x,y) =

n∏
i=1

P (yn+1−i|y[−(n+1−i)])

=
ρσ,c(By)∏n

i=1 ρσn+1−i,ỹn+1−i(Z)

= q(y), (10)
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Algorithm 2 Independent MHK Sampling Algorithm
Input: B, σ, c,x0, tmix(ε);
Output: x ∼ DΛ,σ,c;

1: let X0 = x0

2: for t =1,2, . . . , do
3: let x denote the state of Xt−1

4: sample y from the proposal distribution q(x,y) in (10)
5: calculate the acceptance ratio α(x,y) in (11)
6: generate a sample u from the uniform density U [0, 1]
7: if u ≤ α(x,y) then
8: let Xt = y
9: else

10: Xt = x
11: end if
12: if t ≥ tmix(ε) then
13: output x
14: end if
15: end for

where the proposal distribution q(x,y) is actually independent
of x. Therefore, the connection between two consecutive
Markov moves is only due to the decision stage.

With the state candidate y, the acceptance ratio α is
obtained by substituting (10) into (6)

α = min
{

1,

∏n
i=1 ρσn+1−i,ỹn+1−i(Z)∏n
i=1 ρσn+1−i,x̃n+1−i(Z)

}
, (11)

where x̃i =
c′i−

∑n
j=i+1 ri,jxj

ri,i
and we note that π = DΛ,σ,c in

(6) (these notations will be followed throughput the context).
The sampling procedure is summarized in Algorithm 2. Note
that the initial state x0 for X0 can be chosen from Zn
arbitrarily or from the output of a suboptimal algorithm.

Thanks to the celebrated coupling technique, the uniformly
ergodicity was demonstrated in [18]. Nevertheless, the spectral
gap of the transition matrix, which serves as an important
metric for the mixing time of the underlying Markov chain,
has not been determined yet.

III. CONVERGENCE ANALYSIS

In this section, the spectrum of the Markov chain induced
by independent MHK sampling is analyzed, followed by the
extensions to Peikert’s algorithm and rejection sampling. As
a common way to evaluate the mixing time, the spectral gap
γ = 1 − |τ1| > 0 of the transition matrix is preferred for
convergence analysis in MCMC [19]. Here, τ1 represents the
second largest eigenvalue in magnitude of the transition matrix
P [37].

A. Spectral Gap of Independent MHK Algorithm

Theorem 1. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the Markov chain induced by independent MHK
sampling exhibits a spectral gap

γ ≥ δ , ρσ,c(Λ)∏n
i=1 ρσi(Z)

. (12)

Proof: From (10) and (11), the transition probability
P (x,y) of each Markov move in the independent MHK
sampling is given by

P (x,y) =


min

{
q(y), π(y)q(x)

π(x)

}
if y 6= x,

1−
∑
z6=x

min
{
q(z), π(z)q(x)

π(x)

}
if y = x.

(13)

For notational simplicity, we define the importance weight
w(x) as

w(x) =
π(x)

q(x)
. (14)

Then the transition probability can be rewritten as

P (x,y)=


q(y) ·min

{
1, w(y)

w(x)

}
if y 6= x,

q(x)+
∑
z6=x

q(z) ·max
{

0,1− w(z)
w(x)

}
if y = x.

(15)

Without loss of generality, we label the countably infinite
state space Ω = Zn as Ω = {x1,x2, . . . ,x∞} and assume that
these states are sorted according to their importance weights,
namely,

w(x1) ≥ w(x2) ≥ · · · ≥ w(x∞). (16)

From (15) and (16), the transition matrix P of the Markov
chain can be exactly expressed as

P =


q(x1) + η1

π(x2)
w(x1)

π(x3)
w(x1) · · · π(x∞)

w(x1)

q(x1) q(x2) + η2
π(x3)
w(x2) · · · π(x∞)

w(x2)

q(x1) q(x2) q(x3) + η3 · · · π(x∞)
w(x3)

...
...

...
. . .

...
q(x1) q(x2) q(x3) · · · q(x∞)


where

ηj =

∞∑
i=j

(
q(xi)−

π(xi)

w(xj)

)
(17)

stands for the probability of being rejected in the decision
stage with the current state xj for Xt.

Let q = [q(x1), q(x2), . . .]T denote the vector of proposal
probabilities. Then by decomposition, it follows that

P = G + eqT , (18)

where e = [1, 1, . . .]T and G is an upper triangular matrix of
the form

G =


η1

π(x2)
w(x1) − q(x2) · · · π(x∞)

w(x1) − q(x∞)

0 η2 · · · π(x∞)
w(x2) − q(x∞)

...
...

. . .
...

0 0 · · · 0

 .
It is well-known that for a Markov chain, the largest

eigenvalue of the transition matrix P always equals 1. Here,
as e is a common right eigenvector for both P and P−G, it
naturally corresponds to the largest eigenvalue 1. Meanwhile,
since the rank of P−G is 1, the other eigenvalues of G are
exactly the same as those of P.

Thanks to the ascending order in (16), it is easy to verify
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that the spectral radius τ1 is exactly given by

τ1 = η1 (19)

and
1 > |η1| ≥ |η2| ≥ · · · > 0, (20)

thereby raising the interest of identifying the value of τ1.
Therefore, according to (17) and (19), we can easily get that

τ1 =

∞∑
i=1

(
q(xi)−

π(xi)

w(x1)

)
=

∞∑
i=1

q(xi)−
1

w(x1)
·
∞∑
i=1

π(xi)

= 1− 1

w(x1)

= 1− q(x1)

π(x1)
. (21)

In other words, the spectral gap 1− τ1 is exactly captured by
the ratio q(x1)/π(x1). Next, we invoke the following Lemma
to lower bound the ratio q(x)/π(x) for x ∈ Zn.

Lemma 1 ([18]). In the independent MHK algorithm

q(x)

π(x)
≥ δ (22)

for all x ∈ Zn, where δ is defined in (12).

The proof is completed by combining (21) and (22).

By using the coupling technique, it is shown in [18] that the
Markov chain converges exponentially fast to the stationary
distribution in total variational distance:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δ)t, (23)

The mixing time of the Markov chain is given by

tmix(ε) =
lnε

ln(1− δ)
< (−lnε) ·

(
1

δ

)
, ε < 1 (24)

which is proportional to 1/δ, and becomes O(1) if δ → 1.

B. Extension to Peikert’s Algorithm

Klein’s sampling algorithm is a randomized variant of
Babai’s nearest-plane algorithm for lattice decoding [38].
Babai also proposed a simpler decoding scheme by direct
rounding2, which was further randomized by Peikert in [16].
Although Peikert’s algorithm requires a higher value of σ,
it is parallelizable and can be more attractive in practical
implementation. In fact, Peikert’s algorithm can also be incor-
porated into the Metropolis-Hastings algorithm to overcome
the limitation of σ.

Specifically, given the standard deviation σ > 0 and a basis
B, one chooses a positive definite matrix Σ1 = r2 ·BBT ≺
Σ = σ2 · I for r > 0 (i.e., Σ2 = Σ− Σ1 is positive definite).
Then, the proposed sample z ∈ Λ is taken from the distribution

2In communications, Babai’s nearest-plane algorithm is known as succes-
sive interference cancelation (SIC) while the direct rounding algorithm is
referred to as zero-forcing (ZF).

c + z′ + DΛ−c−z′,
√

Σ1
, where z′ ∈ Rn is sampled from

the continuous distribution D√Σ2
. Note the lattice Gaussian

distribution DΛ−c−z′,
√

Σ1
is expressed as

DΛ−c−z′,
√

Σ1
(Bx) =

ρ√Σ1
(Bx− c− z′)

ρ√Σ1
(Λ− c− z′)

(25)

with
ρ√Σ1

(y) = e−
1
2 yTΣ−1

1 y, y ∈ Rn. (26)

The joint probability distribution of z ∈ Λ and z′ ∈ Rn is
given by

P (z, z′) = DΛ−c−z′,
√

Σ1
(z− c− z′) ·D√Σ2

(z′)

=
ρ√Σ1

(z− c− z′)

ρ√Σ1
(Λ− c− z′)

·
ρ√Σ2

(z′)√
det(2πΣ2)

(a)
=

ρ√Σ1
(z′ − z + c)

ρ√Σ1
(Λ− c− z′)

·
ρ√Σ2

(z′)√
det(2πΣ2)

(b)
=

ρ√Σ(z− c) · ρ√Σ3
(z′ − c′)

ρ√Σ1
(Λ− c− z′) ·

√
det(2πΣ2)

, (27)

where (a) is due to the symmetry of ρ√Σ1
, and (b) follows

from [16, Fact 2.1] with positive definite matrix Σ−1
3 = Σ−1

1 +
Σ−1

2 and c′ = Σ3Σ−1
1 (z − c). Consequently, the marginal

distribution of z is

P (z) =
ρ√Σ(z− c)√

det(2πΣ2)
·
∫

ρ√Σ3
(z′ − c′)

ρ√Σ1
(Λ− c− z′)

dz′. (28)

As z = Bx for x ∈ Zn, we have

P (x) =
ρσ,c(Bx)√
det(2πΣ2)

·
∫

ρ√Σ3
(z′ − c′)

ρ√Σ1
(Λ− c− z′)

dz′. (29)

Clearly, P (·) can be used as a proposal distribution q(·) in
the MH algorithm to obtain the state candidate y ∈ Zn. In
this case, the acceptance ratio α can be calculated by

α = min
{

1,
π(y)P (x)

π(x)P (y)

}
, (30)

followed by a decision to accept Xt+1 = y or not. To
summarize, its operation procedure is shown in Algorithm 3.

Lemma 2. In the independent MH algorithm using Peikert’s
algorithm, there exists a constant δ′ > 0 such that

q(x)

π(x)
≥ δ′ (31)

for all x ∈ Zn, where

δ′ =
ρσ,c(Λ)

ρr(Zn)
· r

n

σn
· | det(B)|. (32)
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Proof:

q(x)

π(x)
=

ρσ,c(Bx)√
det(2πΣ2)

·
∫

ρ√Σ3
(z′ − c′)

ρ√Σ1
(Λ− c− z′)

dz′ · ρσ,c(Λ)

ρσ,c(Bx)

(c)

≥ ρσ,c(Λ)√
det(2πΣ2)

· 1

ρ√Σ1
(Λ)
·
∫
ρ√Σ3

(z′ − c′)dz′

=
ρσ,c(Λ)

ρ√Σ1
(Λ)
·
√

det(Σ3)√
det(Σ2)

=
ρσ,c(Λ)

ρr(Zn)
·
√

det(Σ3)√
det(Σ2)

, (33)

where inequality (c) comes from the fact that ρ√Σ(Λ− c) ≤
ρ√Σ(Λ).

The Lemma is proven by showing that√
det(Σ3)√
det(Σ2)

(d)
=
√

det(Σ3) ·
√

det(Σ−1
2 )

(e)
=

√
det(Σ3Σ−1

2 )

=

√
det(ΣΣ−1

1 )

=

√
det

(
r2

σ2
·BBT

)
=
rn

σn
· | det(B)|. (34)

Here, (d) and (e) follow from the properties of determinant
that

1

det(A)
= det(A−1) (35)

and
det(A) det(B) = det(AB), (36)

respectively, for square matrices A and B of equal sizes.

To satisfy the condition that σ2I � r2 ·BBT , we require

σ > rs1(B), (37)

where s1(B) denotes the largest singular value of the basis B.
It is readily verified that

s1(B) ≥ max
1≤i≤n

‖bi‖ ≥ max
1≤i≤n

‖b̂i‖. (38)

Lemma 3. For independent MH samplings based on Peikert’s
algorithm and on Klein’s algorithm, the following relation
holds:

δ′ ≤ δ. (39)

Proof: According to (12) and (32), in order to show δ′ ≤
δ, we need to prove that

ρr(Zn) · σ
n

rn
· 1

|det(B)|
≥

n∏
i=1

ρσi(Z). (40)

Next, by recalling the Jacobi theta function ϑ3(τ) =∑+∞
n=−∞ e−πτn

2

with τ > 0, we have

ρr(Z) = ϑ3

(
1

2πr2

)
(41)

Algorithm 3 Independent MH Sampling Using Peikert’s Al-
gorithm
Input: B, σ, c,x0, tmix(ε),Σ > Σ1 = r2 ·B ·BT ;
Output: x ∼ DΛ,σ,c;

1: let X0 = x0

2: for t =1,2, . . . , do
3: let x denote the state of Xt−1

4: sample y from the proposal distribution q(y) in (29)
5: calculate the acceptance ratio αs(x,y) in (30)
6: generate a sample u from the uniform density U [0, 1]
7: if u ≤ α(x,y) then
8: let Xt = y
9: else

10: Xt = x
11: end if
12: if t ≥ tmix(ε) then
13: output x
14: end if
15: end for

and the left-hand side of (40)

=
1

(
√

2πr)n
ϑn3

(
1

2πr2

)
· (
√

2π)n · σn

|det(B)|
(f)
= ϑn3 (2πr2) · (

√
2π)n ·

n∏
i=1

σi, (42)

where (f) utilizes the symmetry property of Theta series for
isodual lattice Z

ϑ3

(
1

τ2

)
= τϑ3(τ2). (43)

Moreover, as ϑ3(τ) is monotone decreasing with τ , the fol-
lowing relation holds:

ϑ3(2πr2) ≥ ϑ3

(
2πr2 s

2
1(B)

‖b̂i‖2

)

≥ ϑ3

(
2π

σ2

‖b̂i‖2

)
= ϑ3(2πσ2

i ) (44)

due to (37) and (38).
Hence, we finally have that the left-hand side of (40)

≥
n∏
i=1

(
√

2πσi) · ϑ3(2πσ2
i )

=

n∏
i=1

ϑ3

(
1

2πσ2
i

)
=

n∏
i=1

ρσi(Z), (45)

thus completing the proof.

Similarly to independent MHK, it is easy to verify that the
proposed algorithm is also uniformly ergodic.
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Fig. 2. Comparison of 1/δ and 1/δ′ for independent MH samplings based
on Klein’s and Peikert’s algorithms for lattice D4 with σ2 = −8dB and
c = 0.

Theorem 2. Given DΛ,σ,c, the Markov chain induced by
independent MH sampling using Peikert’s algorithm converges
exponentially fast:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δ′)t. (46)

By Lemma 3, we can see that the independent MH sampling
based on Peikert’s algorithm converges slower than that based
on Klein’s algorithm. This is numerically confirmed in Fig.
2 for checkerboard lattice D4, where a comparison of the
coefficients 1/δ and 1/δ′ is given. Clearly, in the whole range
of r, the independent MH-Peikert sampling requires more
iterations than independent MHK.

C. Extension to Rejection Sampling

The classic rejection sampling is able to generate inde-
pendent samples from the target distribution, but requires a
normalizing constant for the application of a proposal distri-
bution [39]. Given the target distribution π(x) = DΛ,σ,c(x),
its operation consists of the following three steps:

1) Generate a candidate sample y from distribution q(y)
using Klein’s algorithm or Peikert’s algorithm.

2) Calculate a normalizing constant ω0 such that

ω0 · q(x) ≥ π(x) (47)

for all x ∈ Zn.
3) Output y with probability

α =
π(y)

ω0 · q(y)
=
ω(y)

ω0
(48)

and otherwise repeat.
Generally, rejection sampling is not directly comparable

with MCMC sampling as it requires the normalizing constant
ω0 for calibrating, which is not realistic in many cases of
interest. Nevertheless, with a certain choice of ω0, it is possible
to interpret it as a particular MCMC algorithm.

Definition 1. Given the target distribution π(x) = DΛ,σ,c(x),
the Markov chain arising from the above rejection sampler

with ω0 ≥ π(x)/q(x) for all x ∈ Zn is reversible, irreducible
and aperiodic, with transition probability

P (x,y) =

q(y) · w(y)
w0

if y 6= x,

1−
∑
z6=x

q(z) · w(z)
w0

if y = x. (49)

Clearly, the algorithm based on rejection sampling con-
verges when the first acceptance takes place. The samples
after the acceptance are naturally independently and identically
distributed (i.i.d.). Similarly to the setting in (16), the transition
matrix Pr of this Markov chain is exactly given by

Pr =


π1

ω0
+(1− 1

ω0
) π2

ω0

π3

ω0
· · · π∞

ω0
π1

ω0

π2

ω0
+(1− 1

ω0
) π3

ω0
· · · π∞

ω0
π1

ω0

π2

ω0

π3

ω0
+(1− 1

ω0
) · · · π∞

ω0

...
...

...
. . .

...
π1

ω0

π2

ω0

π3

ω0
· · · π∞

ω0
+(1− 1

ω0
)


which can be further decomposed into

Pr = Pr(·, ·|accept) · Paccept + Pr(·, ·|reject) · Preject (50)

where

Pr(·, ·|accept) =


π1 π2 π3 · · · π∞
π1 π2 π3 · · · π∞
π1 π2 π3 · · · π∞
...

...
...

. . .
...

π1 π2 π3 · · · π∞

 (51)

Pr(·, ·|reject) =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (52)

and {
Paccept = 1/ω0,

Preject = 1− 1/ω0.
(53)

Here, Paccept and Preject denote the acceptance and rejection
probabilities of a new candidate in the next move.

Similarly to the analysis of independent MHK, we have the
following Lemma, whose proof is omitted due to simplicity.

Lemma 4. The eigenvalues ηi’s of the transition matrix Pr

satisfy that

1 > |η1| = |η2| = · · · > 0 (54)

with
ηi = 1− 1

ω0
(55)

for i = 1, . . . ,∞.
Furthermore, we arrive at the following Theorem.

Theorem 3. Given the invariant lattice Gaussian distribution
π = DΛ,σ,c, the Markov chain induced by rejection sampling
converges exponentially fast as

‖P t(x, ·)−DΛ,σ,c(·)‖TV = (1− π(x)) · (τ1)t, (56)

where the spectral radius τ1 = η1 = 1− 1
ω0

.
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Proof: Let At denote the number of acceptances during
consecutive t moves. Then

‖P t(x, ·)−DΛ,σ,c(·)‖TV = ‖P t(x, ·|At = 0) · P (At = 0)+

P t(x, ·|At > 0) · P (At > 0)−DΛ,σ,c(·)‖TV

=

∥∥∥∥∥P t(x, ·|At = 0) ·
(

1− 1

ω0

)t
−DΛ,σ,c ·

(
1− 1

ω0

)t∥∥∥∥∥
TV

=

∥∥∥∥∥[P t(x, ·|At = 0)−DΛ,σ,c] ·
(

1− 1

ω0

)t∥∥∥∥∥
TV

= (1−DΛ,σ,c(x)) ·
(

1− 1

ω0

)t
= (1− π(x)) · τ t1, (57)

where P (At = 0) = (1 − 1/ω0)t, P (At > 0) = 1 − (1 −
1/ω0)t, and P (x, ·|At > 0) has converged to DΛ,σ,c after the
first acceptance.

According to Theorem 3, the convergence rate of rejection
sampling depends on the choice of the normalizing constant
ω0. Because ω0 ≥ π(x)/q(x) for all x ∈ Zn, the spectral
radius τ1 = η1 of rejection sampling achieves the minimum
when ω0 = ωmax(x) = ω(x1), namely,

τ1 = 1− 1

ω(x1)
≤ 1− δ, (58)

thus leading to

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− π(x)) · (1− δ)t. (59)

From (23) and (59), it is worth noting that only when ω0 =
ω(x1), rejection sampling and independent MH have the same
convergence rate. However, the former requires the knowledge
of ω0 while the latter does not.

Remark 1. Another algorithm for lattice Gaussian sampling
based on rejection sampling was proposed in [40]. However,
it was only concerned with values of σ required by Klein’s al-
gorithm. Its goal is to use rejection sampling to produce exact
Gaussian samples, since Klein’s algorithm only approximates
the target distribution. In contrast, our goal is to sample with
smaller values of σ. The algorithm of [40] is highly efficient,
since it computes a certain normalizing constant efficiently
and converges in just a few steps on average. But it does not
seem to be possible to extend their algorithm to smaller values
of σ.

IV. COMPLEXITY OF BDD

In this section, we apply the independent MHK sampling to
BDD and analyze its complexity. The analysis for independent
MH-Peikert and rejection sampling is similar, by changing the
value δ. As mentioned before, the decoding complexity of
MCMC is evaluated by the number of Markov moves.

In MCMC, samples from the stationary distribution tend to
be correlated with each other. Thus one leaves a gap, which
is the mixing time tmix, to pick up the desired independent
samples (alternatively, one can run multiple Markov chains in
parallel to guarantee i.i.d. samples). Therefore, we define the
complexity of solving BDD by MCMC as follows.

Algorithm 4 BDD using Independent MHK Sampling
Input: B, σ, c,x0, t;
Output: x̂;

1: let x̂ = x0 and X0 = x0

2: for i =1, . . . , t do
3: let x denote the state of Xt−1

4: sample y from the proposal distribution q(x,y) in (10)
5: calculate the acceptance ratio α(x,y) in (11)
6: generate a sample u from the uniform density U [0, 1]
7: if u ≤ α(x,y) then
8: let Xi = y and x′ = y
9: if ‖c−Bx′‖ < ‖c−Bx̂‖ then

10: update x̂ = x′

11: end if
12: else
13: Xi = x
14: end if
15: end for
16: output x̂ = x′

Definition 2. Let d(Λ, c) = minx∈Zn ‖Bx − c‖ denote the
Euclidean distance between the query point c and the lattice
Λ with basis B, and let x̂ be the lattice point achieving d(Λ, c).
The complexity (i.e., the number of Markov moves t) of solving
BDD by MCMC is

CBDD ,
tmix

DΛ,σ,c(x̂)
. (60)

Then, CBDD can be upper bounded by

CBDD < log

(
1

ε

)
· 1

δ
· ρσ,c(Λ)

ρσ,c(Bx̂)

≤ log

(
1

ε

)
·
∏n
i=1 ρσi(Z)

ρσ,c(Λ)
· ρσ,c(Λ)

ρσ,c(Bx̂)

= log

(
1

ε

)
·
∏n
i=1 ρσi(Z)

ρσ,c(Bx̂)

= log

(
1

ε

)
· C, (61)

where

C =

∏n
i=1 ρσi(Z)

ρσ,c(Bx̂)
. (62)

Theorem 4. The complexity of solving BDD by the indepen-
dent MHK algorithm is bounded above as

CBDD ≤ log

(
1

ε

)
· 1.0039n · e

2π·d2(Λ,c)

mini ‖b̂i‖2 . (63)

Proof: To start with, let us examine the numerator in (62)
n∏
i=1

ρσi(Z) =

n∏
i=1

∑
xi∈Z

e
− 1

2σ2
i

‖xi‖2

=

n∏
i=1

ϑ3(‖b̂i‖2/2πσ2) (64)

where we apply the Jacobi theta function ϑ3 [41].
By substituting (64) to (62), the complexity C is upper
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TABLE I
VALUES OF ϑ3 .

ϑ3(1)
∑+∞
n=−∞ e−1πn2 4

√
π

Γ( 3
4 )

1.087

ϑ3(2)
∑+∞
n=−∞ e−2πn2 4

√
6π+4

√
2π

2Γ( 3
4 )

1.0039

ϑ3(3)
∑+∞
n=−∞ e−3πn2 4

√
27π+18

√
3π

3Γ( 3
4 )

1.00037

ϑ3(4)
∑+∞
n=−∞ e−4πn2 4√8π+2 4

√
π

4Γ( 3
4 )

1.0002

ϑ3(5)
∑+∞
n=−∞ e−5πn2 4

√
225π+100

√
5π

5Γ( 3
4 )

1.0001

bounded as

C ≤
n∏
i=1

ϑ3(‖b̂i‖2/2πσ2) · e
1

2σ2 ‖Bx̂−c‖2 . (65)

Now, let us recall some facts about Jacobi theta function
ϑ3(τ). ϑ3(τ) is monotonically decreasing with τ , and partic-
ularly

lim
τ→∞

inf ϑ3(τ) = 1. (66)

By simple calculation, we can get that

ϑ3(2) =

+∞∑
n=−∞

e−2πn2

=
4
√

6π + 4
√

2π

2Γ( 3
4 )

= 1.0039, (67)

where Γ(·) stands for the Gamma function. Clearly, if

min1≤i≤n ‖b̂i‖2

2πσ2
≥ 2 (68)

it turns out that the following term
n∏
i=1

ϑ3(‖b̂i‖2/2πσ2) ≤ ϑn3 (2) = 1.0039n (69)

is rather small even for values of n up to hundreds (e.g.,
1.0039100 = 1.4467). The key point here is that the pre-
exponential factor is close to 1. For better accuracy, ϑ3(3) =
1.00037 (or ϑ3(4) etc.) can be applied so that 1.000371000 =
1.4476. More options about ϑ3 can be found in Table I.

Therefore, if σ satisfies the condition (68), namely

σ ≤ min
1≤i≤n

‖b̂i‖/(2
√
π), (70)

then we have

C ≤ 1.0039n · e
1

2σ2 ‖Bx̂−c‖2 . (71)

Setting σ = mini ‖b̂i‖/(2
√
π), we finally arrive at the

following result

CBDD ≤ log

(
1

ε

)
· 1.0039n · e

2π

mini ‖b̂i‖2
‖Bx̂−c‖2

, (72)

completing the proof.
Let us highlight the significance of lattice reduction. Lattice

reduction is able to significantly improve mini ‖b̂i‖ while
reducing maxi ‖b̂i‖ [42]. Therefore, increasing mini ‖b̂i‖ will
significantly decrease the complexity shown above.

Remark 2. In fact, such an analysis also holds for Klein’s

algorithm, where the probability of sampling x follows a
Gaussian-like distribution [15]

P (x) ≥ e−
1

2σ2 ‖Bx−c‖2∏n
i=1 ϑ3(‖b̂i‖2/2πσ2)

. (73)

Klein chose σ = mini ‖b̂i‖/
√

2 log n, which corresponds
to O(nd

2(Λ,c)/mini ‖b̂i‖2) complexity. Here, we have shown
that the decoding complexity can be further reduced to
O(ed

2(Λ,c)/min2
i ‖b̂i‖), by setting σ = mini ‖b̂i‖/(2

√
π). With

the help of HKZ reduction, mini ‖b̂i‖ ≥ 1
nλ1(Λ) [43]. Thus,

Klein’s algorithm allows to solve the η-BDD with η = O(1/n)
in polynomial time, while our result shown in (72) improves
it to η = O(

√
log n/n).

According to (63), we have

d(Λ, c) =

√
1

2π
· ln CBDD

a
· min

1≤i≤n
‖b̂i‖. (74)

where a = log
(

1
ε

)
· 1.0039n ≈ log

(
1
ε

)
. Clearly, the decoding

radius increases with CBDD, implying a flexible trade-off be-
tween the decoding performance and complexity. In addition,
the significance of lattice reduction can be seen due to an
increased value of mini ‖b̂i‖.

V. TRAPDOOR SAMPLING

The core technique underlying GPV’s signature scheme
is discrete Gaussian sampling over a trapdoor lattice [11].
Its security crucially relies on the property that the output
distribution of discrete Gaussian sampling is oblivious to
any particular basis used in the sampling process, therefore
preventing leakage of the private key. The original GPV
signature scheme was based on Klein’s algorithm, which was
subsequently extended to Peikert’s algorithm [16] (see also
[44, Chap. 6] for sampling over structured lattices). In fact,
any good Gaussian sampling algorithms can be applied to
GPV signatures. In this Section, we demonstrate the security
advantage of MCMC in GPV signatures, thanks to smaller
parameters it can reach.

Firstly, we provide a high-level introduction to the GPV
signature (see [11], [16] for details). In key generation, one
generates a hard public basis for a random lattice Λ, together
with a short private basis of Λ. The public basis serves as the
public key, while the private basis serves as the private key.
Given a message m (or rather a digest of m), one uses the
private basis to sample a point x from DΛ+m,σ with parameter
σ. The signature of m is x. The verifier checks that x is short
and that x−m ∈ Λ using the public basis.

It is shown in [11] that the security of GPV signing can be
reduced to the hardness of the inhomogeneous short integer
solution (ISIS) problem3 with approximation factor

√
nσ.

Therefore, the width σ is the most important property of a
discrete Gaussian sampler in this context.

Obviously, there is a tradeoff between security and running
time in trapdoor sampling with MCMC. A small parameter σ
gives higher security, but require longer running time. Next,

3In the language of coding theory, this is to find a short vector in a coset
of a linear code.
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we examine the impact of decreasing σ on the mixing time.
Again, we focus on the independent MHK algorithm. Recall
its the mixing time is proportional to

1

δ
=

∏n
i=1 ρσi(Z)

ρσ,c(Λ)
. (75)

Our intuition here is that if a good basis is available (as in
the case of trapdoor sampling), then 1

δ will not blow up as n
grows. To give an impression, Fig. 3 shows 1

δ as a function of
n for checkerboard lattice Dn with c = 0 and σ2 = −8 dB,
using its well-known basis [41, p.117, (86)]. It is seen that 1

δ
merely grows to 12 for n up to 1000.

What if c 6= 0? Then the denominator of (75) can be
unpredictable in general. Fortunately, it can be bounded if σ
is above the smoothing parameter. Recall that for a lattice Λ
and for ε > 0, the smoothing parameter4 ηε(Λ) is defined as
the smallest σ > 0 such that

∑
x∗∈Λ∗\{0} e

−2π2σ2‖x∗‖2 ≤ ε.

If ε < 1, we have ρσ,c(Λ)

(
√

2πσ)n
∈ 1

Vol(Λ) [1− ε, 1 + ε], ∀c.
Here, we are concerned with the parameter region σ ∈

[ηε(Λ),
√
ω(log n) ·max‖b̂i‖], below GPV’s parameter [11]

but above the smoothing parameter. This is because we an-
ticipate only moderate growth in mixing time but significant
increase of security for values of σ just below GPV’s param-
eter.

Let I denote the subset of indexes i with
√

2πσi > 1 (i.e.,√
2πσ > ‖b̂i‖), i ∈ {1, 2, . . . , n}, |I| = m. It is not difficult

to derive the following bound, similarly to [18, Proposition 4]:

1

δ
=

∏n
i=1 ϑ3( 1

2πσ2
i
)

ρσ,c(Λ)

∈
∏n
i=1

√
2πσiϑ3(2πσ2

i )

(
√

2πσ)n/Vol(Λ)
[1− 2ε, 1 + 2ε]

=

n∏
i=1

ϑ3(2πσ2
i )[1− 2ε, 1 + 2ε] (76)

≤ ϑ3(1)m ·
∏
i/∈I

2√
2πσi

· (1 + 2ε)

4Note again the difference from the definition in [8], where σ is scaled by
a constant factor

√
2π.

where we use the identity ϑ3

(
1
τ2

)
= τϑ3(τ2) and assume

ε < 1/2 in the second step, and ϑ3(τ) ≤ 1 +
√

1
τ in the last

step.
Particularly, if

√
2πσ ≥

√
αmax1≤i≤n ‖b̂i‖ for some α ≥

1, we derive
1

δ
≤ ϑ3(α)n(1 + 2ε). (77)

Again, our key observation is that the mixing time ϑ3(α)n

grows rather slowly for values of α that are not too small. For
example, when α = 2, we have ϑ3(2)n = 1.00391000 = 49
for n = 1000. This means that with roughly 49 iterations,
our MCMC sampler is able to reduce the parameter from√
ω(log n) max1≤i≤n ‖b̂i‖ to 1√

π
max1≤i≤n ‖b̂i‖. Therefore,

if one is willing to use a slower signature scheme in return
for higher security, MCMC offers such an option.

Example 1 (FALCON). FALCON [45] is a GPV signature
scheme instantiated by NTRU lattices. Let m be a power of
two, n = ϕ(m) where ϕ(·) is Euler’s totient function, q ∈ N.
The secret key consists of two polynomials f and g in ring
R = Z[x]/(xn + 1) where f is invertible. Find G and F such
that

fG− gF = q mod xn + 1.

The NTRU lattice of dimension 2n is generated by the private
basis

B =

 C(g) −C(f)

C(G) −C(F )


T

where C(·) denotes an n × n nega-cyclic matrix whose first
row consists of the coefficients of a polynomial. The public
basis is given by

A =

 −C(h) In

qIn On


T

where h = g/f mod q. Both bases B and A generate the
same lattice

Λ = {(u,v) ∈ R2|u + vh = 0 mod q}

We consider the parameters n = 512 and q = 12289
in FALCON. The coefficients of polynomials f and g are
randomly sampled from DZ,4.05. For a particular instance
randomly generated, we find max1≤i≤n ‖b̂i‖ = 127. In Fig.
4, we show as a function of σ the term

∏2n
i=1 θ3(2πσ2

i ) in (76),
which characterizes the complexity 1/δ above the smoothing
parameter. It is seen that MCMC is able to significantly reduce
the parameter σ, with quite moderate increase in complexity.
Specifically, the term

∏2n
i=1 θ3(2πσ2

i ) merely grows to about
20, even if σ is halved relative to max1≤i≤n ‖b̂i‖. Recall that
GPV sampling requires σ =

√
ω(log n) ·max1≤i≤n ‖b̂i‖.

Note that it is possible for MCMC to incorporate the fast
Fourier sampler [45], which would speed up the sampling
process for structured lattices. The security levels of various
samplers have been evaluated in [44, Chap. 6]. We leave
evaluation of the concrete security of MCMC samplers to
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Algorithm 5 Independent Multiple-try Metropolis-Klein Sam-
pling Decoder
Input: B, σ, c,x0, t;
Output: x ∼ DΛ,σ,c;

1: let x̂ = x0 and X0 = x0

2: for i =1, . . . , t do
3: let x denote the state of Xt−1

4: sample k trial samples y1 . . .yk from q(x,y) in (81)
5: select y = yc from y1 . . .yk based on ω(yi) in (82)
6: calculate the acceptance ratio α(x,y) in (83)
7: generate a sample u from the uniform density U [0, 1]
8: if u ≤ α(x,y) then
9: let Xi = y and x′ = y

10: if ‖c−Bx′‖ < ‖c−Bx̂‖ then
11: update x̂ = x′

12: end if
13: else
14: Xi = x
15: end if
16: end for
17: output x̂ = x′

future work.

VI. MULTIPLE-TRY METROPOLIS-KLEIN ALGORITHM

In this section, the independent multiple-try Metropolis-
Klein (MTMK) algorithm is proposed to enhance the mixing.
We firstly prove its validity and then show its uniform ergod-
icity with an improved convergence rate.

A. Multiple-Try Metropolis Method

Rather than directly generating the state candidate y from
the proposal distribution q(x,y), the multiple-try Metropolis
(MTM) method selects y among a set of i.i.d. trial samples
from q(x,y), which significantly expands the searching region
of proposals [46]. In particular, the MTM method consists of
the following steps:

1) Given the current state Xt = x, draw k i.i.d. state
candidates y1, . . . ,yk from the proposal distribution q(x,y).

2) Select y = yc among {y1, . . . ,yk} with probability
proportional to the weight

ω(yi,x) = π(yi)q(yi,x)λ(yi,x), i = 1, . . . , k, (78)

where λ(y,x) is a nonnegative symmetric function of y and
x defined initially.

3) Draw k−1 i.i.d. reference candidates x1, . . . ,xk−1 from
the proposal distribution q(y,x) and let xk = x.

4) Accept y = yc as the state of Xt+1, i.e., Xt+1 = y with
probability

αMTM = min
{

1,
ω(y1,x) + . . .+ ω(yk,x)

ω(x1,y) + . . .+ ω(xk,y)

}
, (79)

otherwise, with probability 1− αMTM, let Xt+1 = Xt = x.
By exploring the search region more thoroughly, an im-

provement of convergence can be achieved by MTM. Based
on a number of trial samples generated from the proposal
distribution, the Markov chain enjoys a large step-size jump
within every single move without lowering the acceptance rate.
It should be noticed that the k − 1 reference samples xi’s
are involved only for the validity of MTM by satisfying the
detailed balance condition [46]

π(x)P (x,y) = π(y)P (y,x). (80)

Clearly, the efficiency of MTM relies on the number of trial
samples k while the traditional MH sampling is a special case
with k = 1. Similar to MH sampling, there is considerable
flexibility in the choice of the proposal distribution q(x,y)
in MTM [47]. Actually, it is even possible to use different
proposal distributions to generate trial samples without altering
the ergodicity of the Markov chain [48]. Meanwhile, the non-
negative symmetric function λ(x,y) in (78) is also flexible,
where the only requirement is that λ(x,y) > 0 whenever
q(x,y) > 0.

B. The Proposed Algorithm

With the great flexibility offered by q(x,y) and λ(x,y), we
now propose the independent multiple-try Metropolis-Klein
(MTMK) algorithm, which is described by the following steps:

1) Given the current state Xt = x, use Klein’s algorithm to
draw k i.i.d. state candidates y1, . . . ,yk from the independent
proposal distribution in (10)

q(x,y) =

n∏
i=1

P (yn+1−i|y[−(n+1−i)]) = q(y). (81)

2) Let λ(x,y) = [q(x,y)q(y,x)]−1 = [q(y)q(x)]−1.
Then select y = yc among {y1, . . . ,yk} with probability
proportional to the importance weight

ω(yi,x) =
π(yi)

q(yi)
= ω(yi), i = 1, . . . , k. (82)

3) Accept y = yc as the state of Xt+1 with acceptance
rate

αMTM = min

{
1,
ω(yc) +

∑k
j=1,j 6=c ω(yj)

ω(x) +
∑k
j=1,j 6=c ω(yj)

}
, (83)

otherwise, with probability 1− αMTM, let Xt+1 = Xt = x.
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p(yc|x, c) =
∑

y1:c−1∈Zn

∑
yc+1:k∈Zn


 k∏
j=1

q(x,yj)

 · ω(yc)∑k
i=1 ω(yi)

·min

{
1,
ω(yc) +

∑k
j=1,j 6=c ω(yj)

ω(x) +
∑k
j=1,j 6=c ω(yj)

}
= q(yc) · ω(yc) ·

∑
y1:c−1∈Zn

∑
yc+1:k∈Zn


 k∏
j=1,j 6=c

q(yj)

 ·min

{
1

ω(yc) +
∑k
j=1,j 6=c ω(yj)

,
1

ω(x) +
∑k
j=1,j 6=c ω(yj)

}
= π(yc) ·min

 ∑
y1:c−1∈Zn

∑
yc+1:k∈Zn

{ ∏k
j=1,j 6=c q(yj)

ω(yc) +
∑k
j=1,j 6=c ω(yj)

}
,

∑
y1:c−1∈Zn

∑
yc+1:k∈Zn

{ ∏k
j=1,j 6=c q(yj)

ω(x) +
∑k
j=1,j 6=c ω(yj)

} (86)

In the proposed algorithm, the basic formulation of MTM is
modified in three aspects. First, Klein’s algorithm is applied to
generate trial state candidates from the independent proposal
distribution q(x,y) = q(y). Then, by setting λ(x,y) =
[q(x,y)q(y,x)]−1, ω(x,y) becomes the importance weight of
x that we have defined in (14). Finally and interestingly, thanks
to the independent proposals, the generation of reference
samples xi’s can be removed without changing the ergodicity
of the chain.

In the case of independent proposals, because both the trial
samples yi’s and the reference samples xi’s are generated in-
dependently from the identical distribution q(·), the generation
of reference samples can be greatly simplified by just setting
xi = yi for i = 1, . . . , c−1, c+1, . . . , k and xc = x. Actually,
with the same arguments, the trial samples generated in the
previous Markov moves can also be used by xi [49].

It is well known that a Markov chain which is irreducible
and aperiodic will be ergodic if the detailed balance condition
is satisfied [19]. Since irreducible and aperiodic are easy to
verify, we show the validity of the proposed algorithm by
demonstrating the detailed balance condition.

Theorem 5. Given the target lattice Gaussian distribution
DΛ,σ,c, the Markov chain induced by the independent MTMK
algorithm is ergodic.

Proof: To start with, let us specify the transition prob-
ability P (x,y) of the underlying Markov chain. For ease of
presentation, we only consider the case of x 6= y, since the
case x = y is trivial. The transition probability P (x,y) can
be expressed as

P (x,y = yc) =

k∑
i=1

p(yc|x, c = i). (84)

Here, p(yc|x, c = i) represents the probability of accepting
y = yc as the new state of Xt+1 given the previous one
Xt = x when the cth candidate among yi’s is selected.
Moreover, as yi is exchangeable and independent, it follows
that p(yi|x, i) = p(yj |x, j) by symmetry, namely,

P (x,y = yc) = k · p(yc|x, c). (85)

In contrast to MH algorithms, the generation of the state
candidate y = yc for Markov move Xt+1 in MTM actually
follows a distribution formed by q(x,y) and ω(y,x) together
[46]. More precisely, p(yc|x, c) can be further expressed as
(86), where the terms inside the sum correspond to q(x,y),

ω(y,x) and α respectively.
From (86), it is straightforward to verify the term

π(x)p(yc|x, c) is symmetric in x and yc, namely

π(x)p(yc|x, c) = π(yc)p(x|yc, c). (87)

Then, by simple substitution, the detailed balance condition is
satisfied as

π(x)P (x,y = yc) = π(y)p(y = yc,x), (88)

completing the proof.

C. Convergence Analysis
Theorem 6. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the Markov chain induced by the independent MTMK
sampling algorithm converges exponentially fast to the sta-
tionary distribution:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δMTM)
t (89)

with
δMTM =

k

k − 1 + 1
δ

. (90)

The proof of Theorem 6 is provided in Appendix A.
From (90), it can be observed that with the increase of

the trial sample size k, the exponential decay coefficient
δMTM = k

k−1+ 1
δ

will approach 1. In other words, with a
sufficiently large k, sampling from the target distribution can
be realized efficiently. More importantly, the generation of k
trial samples at each Markov move not only allows a fully
parallel implementation, but also can be carried out in a
preprocessing stage, which is beneficial in practice.

Now, given δMTM = k
k−1+ 1

δ

, the mixing time of the under-
lying Markov chain can be estimated. Specifically, according
to (8) and (89), we obtain

tMTM
mix (ε) =

lnε
ln(1− δMTM)

(g)
< log

(
1

ε

)
·
(

1

δMTM

)
= log

(
1

ε

)
·
(
k − 1 + 1

δ

k

)
≈ log

(
1

ε

)
·
(

1

kδ

)
, ε < 1,

1

δ
� k (91)

where we again use the bound ln(1−α) < −α for 0 < α < 1
in (g). Clearly, the mixing time is proportional to 1

kδ , and
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Fig. 5. Bit error rate versus average SNR per bit for the uncoded 8× 8 MIMO system using 16-QAM under 50 Markov moves.

becomes O(1) if kδ → 1. Overall, compared with the mixing
time given in (24), the mixing time of the independent MTMK
is significantly reduced by a factor of k. Since the independent
MTMK inherits all the formulations of the independent MHK,
we have

CMTM
BDD =

tMTM
mix (ε)

DΛ,σ,c(x)

.
1

k
·

log
(

1
ε

)
·
(

1
δ

)
DΛ,σ,c(x̂)

=
1

k
· log

(
1

ε

)
· C

=
1

k
· log

(
1

ε

)
· 1.0039n · e

2π·d2(Λ,c)

mini ‖b̂i‖2 (92)

for σ = mini ‖b̂i‖/(2
√
π).

Following the afore-mentioned derivation, the decoding
radius of the independent MTMK algorithm can be easily
obtained as

RMTM =

√
1

2π
· ln

kCMTM
BDD

a
· min

1≤i≤n
‖b̂i‖. (93)

Remark 3. Although the independent MTMK algorithm is
able to reduce the mixing time, its complexity in each move
increases due to multiple calls of trial samples. Therefore,
parallel implementation or preprocessing is highly desired to
ease the complexity burden.

Moreover, it is possible to have a varying k at each Markov
move, thereby resulting in an adaptive independent MTMK
algorithm as

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤
t∏
i=1

(1− δiMTM), (94)

where δiMTM = ki
ki−1+ 1

δ

and ki denotes the size of trial samples

at each Markov move [50].

VII. EXPERIMENTS OF MIMO DETECTION

In this section, performance of the MCMC decoding al-
gorithms is evaluated in MIMO detection. Specifically, we
present simulation results for an n × n MIMO system with
a square channel matrix. Here, the ith entry of the transmit-
ted signal x, denoted as xi, is a modulation symbol taken
independently from an M -QAM constellation X with Gray
mapping. Meanwhile, we assume a flat fading environment,
where the channel matrix H contains uncorrelated complex
Gaussian fading gains with unit variance and remains constant
over each frame duration. Let Eb represents the average power
per bit at the receiver, then the signal-to-noise ratio (SNR)
Eb/N0 = n/(log2(M)σ2

w) where M is the modulation level
and σ2

w is the noise power. Then, we can express the system
model as

c = Hx + w. (95)

Typically, in the case of Gaussian noise w with zero mean
and variance σ2

w, it follows from (72) that

C ≈ O(e2πnσ2
w/mini ‖b̂i‖2) (96)

as ‖Bx−c‖2 ≈ nσ2
w by the law of large numbers. Therefore,

the decoding complexity C decrease with the SNR. Note that
the noise variance σ2

w is different from the standard deviation
σ of the lattice Gaussian distribution5.

On the other hand, soft-output decoding for MIMO bit inter-
leaver coded modulation (BICM) system is also possible using
the samples generated by MCMC. Specifically, the sample
candidates can be used to approximate the log-likelihood ratio
(LLR), as in [52]. For bit bi ∈ {0, 1}, the approximated LLR

5In [27], the noise variance σ2
w is used as the sampling variance, but this

would lead to a stalling problem at high SNRs [51].
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is computed as

L(bi|c) = log

∑
x:bi=1 exp (− 1

2σ2 ‖ c−Hx ‖2)∑
x:bi=0 exp (− 1

2σ2 ‖ c−Hx ‖2)
, (97)

where bi is the ith information bit associated with sample x.
The notation x : bi = µ means the set of all vectors x for
which x : bi = µ.

Fig. 5 shows the bit error rate (BER) of MCMC decoding
in a 8 × 8 uncoded MIMO system with 16-QAM, where all
the samples generated by MCMC algorithms are taken into
account for decoding. This corresponds to a lattice decod-
ing scenario with dimension n = 16. The performance of
zero-forcing (ZF) and maximum-likelihood (ML) decoding
are shown as benchmarks. For a fair comparison, sequential
Gibbs sampling is applied here, which performs 1-dimensional
conditional sampling of xi in a backward order6, completing
a full iteration [27]. This corresponds to one Markov move
in the independent MHK and MTMK algorithms, which also
update n components of x in one iteration.

As expected, with t = 50 Markov moves (i.e., iterations),
independent MHK outperforms Gibbs sampling. As σ has
a vital impact on the sampling algorithms, Gibbs sampling
is illustrated by tuning σ with different values. Note that
the detection performance may be affected due to the finite
constellation. Furthermore, as shown in (74), under the help
of LLL reduction, the decoding radius of the independent
MHK sampling is significantly strengthened by a larger size
of mini ‖b̂i‖, thereby leading to a much better decoding
performance. As a comparison, LLL reduction is applied
in Gibbs sampling as a preprocessing stage to yield the
high quality initial starting point. Additionally, compared to
independent MHK, further decoding gain can be obtained by
the independent MTMK algorithm, where cases with k = 5

6A forward update of xi in sequential Gibbs sampling is also possible.

and k = 10 trial samples are illustrated respectively.
On the other hand, in Fig. 6, the BERs of MCMC sampling

detectors are evaluated against the number of Markov moves
(i.e., iterations) in a 8 × 8 uncoded MIMO system with
16-QAM. The SNR is fixed as Eb/N0 = 15 dB. Clearly,
the performances of all the MCMC detectors improve with
the number of Markov moves. Meanwhile, with the same
number of Markov moves, a substantial performance gain is
obtained by LLL reduction. By increasing number of trial
samples, better decoding performance can be obtained by the
independent MTMK algorithm due to a larger decoding radius
shown in (93).

VIII. CONCLUSIONS

In this paper, the MCMC-based lattice Gaussian sampling
was studied in full details. The spectral gap of the transition
matrix of the independent MHK algorithm was derived and
analyzed, which leads to a tractable exponential convergence
rate of the Markov chain. A comparison with the extensions
to Peikert’s algorithm and rejection sampling illustrated the
advantages of independent MHK. With the tractable mixing
time, the decoding complexity of BDD using MCMC was
derived and a trade-off between the decoding radius and
complexity was established. The potential of MCMC was
further demonstrated in trapdoor sampling. After that, by
exploiting the potential of trial samples, the independent
MTMK algorithm was proposed to enhance the convergence.
It supports parallel implementation due to the independent pro-
posal distribution, thus making independent MTMK algorithm
promising in practice.
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APPENDIX A
PROOF OF THEOREM 6

Proof: To begin with, let us take a careful look at the
term min{·, ·} from (86). Here, for ease of presentation, we
define

A =
∑

y1:c−1∈Zn

∑
yc+1:k∈Zn

{ ∏k
j=1,j 6=c q(yj)

ω(yc) +
∑k
j=1,j 6=c ω(yj)

}
(98)

and

B =
∑

y1:c−1∈Zn

∑
yc+1:k∈Zn

{ ∏k
j=1,j 6=c q(yj)

ω(x) +
∑k
j=1,j 6=c ω(yj)

}
. (99)

Meanwhile, because the k trial samples from the proposal
distribution q(·) are independent of each other, a set Ξ is
defined which contains the k − 1 trial samples yj , j 6= c.

Then we can express A and B as

A =
∑

Ξ

Q(Ξ) · 1

ω(yc) +$(Ξ)
=
∑

Ξ

Q(Ξ) · FA(Ξ) (100)

and

B =
∑

Ξ

Q(Ξ) · 1

ω(x) +$(Ξ)
=
∑

Ξ

Q(Ξ) · FB(Ξ). (101)

Here, Q(Ξ) =
∏k
j=1,j 6=c q(yj) represents a probability distri-

bution that takes all q(yj), j 6= c into account as a whole.
On the other hand, FA(Ξ) and FB(Ξ) stand for the functions
about Ξ, namely,

FA(Ξ) =
1

ω(yc) +$(Ξ)
(102)

and
FB(Ξ) =

1

ω(x) +$(Ξ)
, (103)

where

$(Ξ) =

k∑
j=1,j 6=c

ω(yj). (104)

Now, let us focus on the term A, and we arrive at

A =
∑

Ξ

Q(Ξ) · FA(Ξ)

= EQ(Ξ)[FA(Ξ)]

(h)

≥ 1

EQ(Ξ)[ω(yc) +$(Ξ)]

=
1

ω(yc) + EQ(Ξ)[$(Ξ)]

(i)
=

1

k − 1 + ω(yc)
. (105)

Here, Eu(x)[v(x)] represents the expectation of function v(x)
while x is sampled from the distribution u(x), (h) comes from
the Jensen’s inequality in the multi-variable case. Moreover,
thanks to the k−1 independent samples from q(·), (i) follows
the derivations shown below,

EQ(Ξ)[$(Ξ)] = (k − 1) · Eq(yj)[ω(yj)]

= (k − 1) ·
∑

yj∈Zn
q(yj) · ω(yj)

= (k − 1) ·
∑

yj∈Zn
π(yj)

= k − 1. (106)

Similar to A, we can rewrite B as

B ≥ 1

k − 1 + ω(x)
. (107)

Therefore, from (105) and (107), we get

P (x,y = yc) = k · p(yc|x, c)
= k · π(yc) ·min{A,B}

≥ π(yc) ·min
{

k

k − 1 + ω(yc)
,

k

k − 1 + ω(x)

}
≥ π(yc) ·

k

k − 1 + ωmax(x)

≥ π(yc) ·
k

k − 1 + 1
δ

= δMTM · π(yc), (108)

where δMTM = k/(k − 1 + 1
δ ) and

ωmax(x) , sup ω(x) = sup
π(x)

q(x)

≤ 1

δ
(109)

for x ∈ Zn from (22) in Lemma 1. From (108), it is
straightforward to see that all the Markov transitions have a
component of size δMTM in common. Then, uniform ergodicity
can be easily demonstrated through spectral gap or coupling
technique, which is omitted here for simplicity.
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