
A Note on the (Im)possibility of
Verifiable Delay Functions in the Random Oracle Model

Mohammad Mahmoody∗ † Caleb Smith∗ David J. Wu∗

Abstract

Boneh, Bonneau, Bünz, and Fisch (CRYPTO 2018) recently introduced the notion of a verifiable
delay function (VDF). VDFs are functions that take a long sequential time T to compute, but whose
outputs y := Eval(x) can be efficiently verified (possibly given a proof π) in time t � T (e.g., t =
poly(λ, log T) where λ is the security parameter). The first security requirement on a VDF is that no
polynomial-time algorithm can find a convincing proof π′ that verifies for an input x and a different
output y′ 6= y. The second security requirement is that that no polynomial-time algorithm running in
sequential time T ′ < T (e.g., T ′ = T 1/10) can compute y. Starting from the work of Boneh et al., there
are now multiple constructions of VDFs from various algebraic assumptions.

In this work, we study whether VDFs can be constructed from ideal hash functions as modeled in the
random oracle model (ROM). In the ROM, we measure the running time by the number of oracle queries
and the sequentiality by the number of rounds of oracle queries. We show that VDFs satisfying perfect
uniqueness (i.e., VDFs where no algorithm can find a convincing different solution y′ 6= y) cannot be
constructed in the ROM. More formally, we give an attacker that finds the solution y in ≈ t rounds
of queries and asking only poly(T) queries in total. In addition, we show that a simple adaptation of
our techniques can be used to rule out tight proofs of sequential work (proofs of sequential work are
essentially VDFs without the uniqueness property).

1 Introduction

A verifiable delay function (VDF) [BBBF18] with domain X and range Y is a function that takes long
sequential time T to compute, but whose output can be efficiently verified in time t � T (e.g., t =
poly(λ, log T) where λ is a security parameter). More precisely, there exists an evaluation algorithm Eval
that on input x ∈ X computes a value y ∈ Y and a proof π in time T . In addition, there is a verification
algorithm Verify that takes as input a domain element x ∈ X , a value y ∈ Y , and a proof π and either accepts
or rejects in time t. In some cases, a VDF might also have a setup algorithm Setup which generates a set of
public parameters pp that is provided as input to Eval and Verify.1 Typically, we require that the setup is also
fast: namely, Setup runs in time poly(λ, t). The two main security requirements for a VDF are (1) unique-
ness which says that for all inputs x ∈ X , no adversary running in time poly(λ, T) can find y′ 6= Eval(x)
and a proof π′ such that Verify(x, y′, π′) = 1; and (2) sequentiality which says that no adversary running in
sequential time T ′ < T can compute y = Eval(x).

∗University of Virginia. Emails: {mohammad,caleb,dwu4}@virginia.edu
†Supported by NSF CAREER CCF-1350939 and University of Virginia’s SEAS Research Innovation Awards.

1Ideally, the public parameters can be sampled by a public-coin process [BBBF18, Wes19, Pie19]. Otherwise, we require a trusted
setup to generate the public parameters [FMPS19, Sha19].

1

Verifiable delay functions have received extensive study in the last year, and have found numerous appli-
cations to building randomness beacons [BBBF18,EFKP19] or cryptographic timestamping schemes [LSS19].
Driven by these exciting applications, a sequence of recent works have developed constructions of verifi-
able delay functions from various algebraic assumptions [Wes19, Pie19, FMPS19, Sha19]. However, ex-
isting constructions still leave much to be desired in terms of concrete efficiency, and today, there are
significant community-driven initiatives to construct, implement, and optimize more concretely-efficient
VDFs [Chi19]. One of the bottlenecks in existing constructions of VDFs is their reliance on structured
algebraic assumptions (e.g., groups of unknown order [RSA78, BBHM02]).

A natural question to ask is whether we can construct VDFs generically from unstructured primitives,
such as collision-resistant hash functions or one-way functions. In this work, we study whether black-box
constructions of VDFs are possible starting from hash functions or other symmetric primitives. Specifically,
we consider black-box constructions of VDFs from ideal hash functions (modeled as a random oracle).
Similarly to previous work (e.g., see [MMV11,AS15]) in the random oracle model (ROM), we measure the
running time of the adversary by the number of oracle queries the adversary makes and the sequentiality of
the adversary by the number of rounds of oracle queries it makes.

Our Results. In this work, we rule out the existence of VDFs with perfect uniqueness (i.e., VDFs where
for any x ∈ X , no algorithm can find (y′, π) such that Verify(x, y′, π) = 1 and y′ 6= f(x)) in the random
oracle model. Specifically, we construct an adversary that asks O(t) rounds of queries and a total number of
poly(T) queries and breaks the uniqueness of VDFs with respect to some oracle. We also observe that in the
tight regime of sequentiality (e.g., requiring an adversary to need sequential time T ′ � T · (1− 1/t)), even
proofs of sequential work (PoSW) [MMV13] cannot be based on random oracles. A proof of sequential
work is a relaxation of a VDF without the uniqueness property. Thus, our lower bound for ruling out tight
PoSW also rules out tight VDFs in the ROM. We note, however, that since (even publicly-verifiable) PoSW
satisfying weaker notions of sequentiality (e.g., T ′ = T/2) are known [MMV13], it is not clear whether
this lower bound for PoSW can be extended to rule out (non-tight) VDFs, and we leave this as an intriguing
open question.

At a technical level, the proof of our first lower bound relies on the the techniques of Mahmoody,
Moran, and Vadhan [MMV11] for ruling out time-lock puzzles in the random oracle model. In fact, for a
special case of perfectly-unique VDFs where the VDF is a permutation on its domain, which we refer to as
permutation-VDF (c.f., [KJG+16,AKK+19]), we can directly use the proof of [MMV11] as a black-box by
reducing the task of constructing time-lock puzzles in the ROM to constructing permutation-VDFs in the
ROM. For the more general case of perfectly-unique VDFs (that are not necessarily permutations) we still
use ideas from [MMV11] that are reminiscent of similar techniques also used in [Rud88,BKSY11,MM11].
Namely, our attacker will sample full executions of the evaluation function Eval in its head, while respecting
answers to queries that it has already learned from the real oracle. At the end of each simulated execution,
it will ask all previously-unasked queries in one round to the oracle (and use those values in subsequent
simulated executions). We show that using just O(t) rounds of this form, we can argue that in most of
these rounds, the adversary does not hit any “new query” in the verification process. Consequently, in most
of the executions it is consistent with the verification procedure with respect to some oracle O′, and thus
by the perfect uniqueness property, the answer in those executions should be the correct one. Finally, by
taking a majority vote over the executions, we obtain the correct answer with high probability. Observe that
this argument critically relies on perfect uniqueness. An interesting direction is to study whether there is a
similar lower bound for computational uniqueness in the ROM. In this setting, the security requirement is
that no efficient adversary can find a different value y′ 6= Eval(x) with a proof π′ that passes verification.

2

1.1 Related Work

Verifiable delay functions are closely related to the notion of (publicly-verifiable) proofs of sequential work
(PoSW) [MMV13, CP18, AKK+19, DLM19]. The main difference between VDFs and PoSWs is unique-
ness. More specifically, a VDF ensures that for every input x, an adversary running in time poly(λ, T)
can only find at most one output y and proof π that the verifier would accept (and if it does, the verifier is
also convinced that the prover performed T sequential work). In contrast, a PoSW does not provide any
guarantees on uniqueness. In particular, every input x, there are many possible pairs (y, π) that the verifier
would accept, and indeed, in this setting, there is no need to distinguish between the output y and the proof
π. Even more generally, proofs of work need not be necessarily publicly-verifiable [DN93]. In this setting,
the verification key is secret, and we only require sequentiality against adversaries who do not know the se-
cret verification key. We emphasize that the uniqueness property in VDFs is important both for applications
as well as constructions. Indeed, publicly-verifiable proofs of sequential work can be constructed in the
random oracle model [CP18, DLM19], while our work rules out a broad class of VDFs in the same model.

Another closely-related primitive is the notion of a time-lock puzzle [RSW96]. In a time-lock puzzle,
a puzzle generator can generate a puzzle x together with a solution y in time t � T , but computing y
from x still requires sequential time T . The main difference between VDFs and time-lock puzzles is that
time-lock puzzles require knowledge of a secret key for efficient verification (in time t). In contrast, VDFs
are publicly-verifiable (in time t). However, similar to VDFs, the output of a time-lock puzzle is unique.
Mahmoody et al. [MMV11] leverage this very uniqueness property and the fact that the solution is known
ahead of the time to the verifier (because it is sampled during the puzzle generation) to show an impossibility
result for time-lock puzzles in the random oracle model. While VDFs also require unique solutions, these
solutions might not be known when we directly sample an input.

Concurrent Work. Our second result about the limits of proofs of sequential work in ROM were in-
dependently discovered in a concurrent work by Döttling et al. [DGMV19], where the authors study tight
verifiable delay functions. Indeed, this lower bound is more natural for the tight range of security parameters
in which the sequentiality guarantee T ′ for the adversary is very close to T ′ ≈ (1− o(1)) · T . However, as
we mentioned above, this lower bound also applies to (even privately-verifiable) proofs of sequential work,
while (even publicly-verifiable) proofs of sequential work do exist in the non-tight regime (e.g., T ′ = T/2)
in ROM [MMV13]. Thus, whether or not this lower bound in ROM can be extended to arbitrary VDFs or
not still remains as an intriguing open question.

2 Preliminaries

Throughout this work, we use λ to denote the security parameter. For an integer n ∈ N, we write, [n] to
denote the set {1, 2, . . . , n}. We write poly(λ) to denote a quantity that is bounded by a fixed polynomial
in λ and negl(λ) to denote a function that is o(1/λc) for all c ∈ N. For a distribution D, we write x ← D
to denote that x is a uniform draw from D. For a finite set S, we write x $← S to denote that x is sampled
uniformly at random from S. We say that an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. We now review the definition of a verifiable delay function (VDF):

Definition 2.1 (Verifiable Delay Function [BBBF18]). A verifiable delay function with domain X and range
Y is a tuple of algorithms ΠVDF = (Setup,Eval,Verify) with the following properties:

3

• Setup(1λ, T)→ pp: On input the the security parameter λ, and the time bound T , the setup algorithm
outputs the public parameters pp. This public parameter determines a (uniformly) samplable input
space X and an output space Y .

• Eval(pp, x) → (y, π): On input the public parameters pp and an element x ∈ X , the evaluation
algorithm outputs a value y ∈ Y and a (possibly empty) proof π. We will typically refer to y as the
“output” of the VDF on x. When the context is clear, we simply write y = Eval(pp, x) to denote the
output of the VDF on x.

• Verify(pp, x, y, π) → {0, 1}: On input the public parameters pp, an element x ∈ X , a value y ∈ Y ,
and a proof string π ∈ {0, 1}∗, the verification algorithm outputs a bit.

Moreover, the algorithms must satisfy the following efficiency requirements:

• The setup algorithm Setup runs in time poly(λ). (For simplicity, in the following sections, we some-
times write s to denote the running time of Setup.)

• The evaluation algorithm Eval runs in time T .

• The verification algorithm Verify runs in time t = poly(λ, log T).

Correctness. Next, we define the correctness requirement on a VDF:

Definition 2.2 (Completeness). A VDF ΠVDF = (Setup,Eval,Verify) with domain X and range Y is com-
plete if for all λ ∈ N, T ∈ N, x ∈ X and sampling pp← Setup(1λ, T), we have that

Pr[Verify(pp, x,Eval(pp, x), π)] = 1.

Security. There are two main security requirements we require on a VDF: uniqueness and sequentiality.
We define these below:

Definition 2.3 (Uniqueness). A VDF ΠVDF = (Setup,Eval,Verify) with domain X and range Y satisfies
perfect uniqueness if for all adversaries A, and sampling pp← Setup(1λ, T), (x, y, π)← A(1λ, 1T , pp),

Pr[y 6= Eval(pp, x) ∧ Verify(pp, x, y, π) = 1] = 0.

We say that ΠVDF satisfies statistical uniqueness if

Pr[y 6= Eval(pp, x) ∧ Verify(pp, x, y, π) = 1] = negl(λ), (1)

and we say that ΠVDF is computationally unique if Eq. (1) holds only for poly(λ, T)-time adversaries.

Definition 2.4 (Sequentiality). A VDF ΠVDF = (Setup,Eval,Verify) with domain X and range Y is σ-
sequential (where σ may be a function of λ, T and t) if for all adversaries A = (A0,A1), where A0 runs
in time poly(λ, t) and A2 runs in time σ, and sampling pp← Setup(1λ, T), stA ← A0(1

λ, T, pp), x $←X ,
y ← A1(stA, x),

Pr[y = Eval(pp, x)] = negl(λ).

We can view A0 as a “preprocessing” algorithm that precomputes some initial state stA based on the public
parameters and A1 as the “online” adversarial evaluation algorithm.

4

Definition 2.5 (Decodable VDF [BBBF18]). Let t be a function of λ, T . A VDF ΠVDF = (Setup,Eval,Verify)
with domain X and range Y is t-decodable if there is no extra proof (i.e., π = ⊥) and there is a decoder
Dec with the following properties:

• Dec runs in time t.

• For all x ∈ X , if y = Eval(pp, x), then Dec(pp, y) = x.

Moreover, for decodable VDFs, the verification algorithm Verify(pp, x, y) works as follows: on input
(pp, x, y), compute x′ ← Dec(pp, y) and output 1 only if x = x′. We call a VDF efficiently decodable,
if it is t-decodable for t = poly(λ, log T).

Remark 2.6 (Decodable VDFs and Perfect Uniqueness). By construction, the combination of (perfect)
completeness (Definition 2.2) and decodability (Definition 2.5 implies perfect uniqueness (Definition 2.3).

Definition 2.7 (Random Oracle Model (ROM)). A random oracle O implements a truly random function
from {0, 1}∗ to rangeR.2 Equivalently, one can use “lazy evaluation” for any such random oracle as follows:

• If the oracle has not been queried on x ∈ {0, 1}∗, uniformly randomly select y ∈ R, remember the
mapping (x, y), and return y.

• If the oracle was previously queried on x ∈ {0, 1}∗, return the previously-chosen value of y (associ-
ated with x).

Remark 2.8 (VDFs in the ROM). We define uniqueness and sequentiality of a VDF in the ROM by ex-
tending the corresponding definitions (Definition 2.3 and 2.4). For uniqueness, we note that the probability
of the adversary succeeding is taken over the random coins of Setup and of the adversary, but not over the
choice of oracle. For sequentiality, we measure the running time of the adversary by the number of rounds
of oracle queries the adversary makes (this is to model the capabilities of a parallel adversary).

3 Lower Bounds for VDFs in the Random Oracle Model

In this section, we show that perfectly unique VDFs (Definition 2.3) are impossible in the random oracle
model. In particular, if a VDF in ROM is perfectly unique, it means that for every sampled random oracle
O ← O, perfect uniqueness holds.

Theorem 3.1 (Ruling out Perfectly Unique VDFs in ROM). Suppose ΠVDF = (Setup,Eval,Verify) be
a VDF in the ROM with perfect uniqueness in which (for a concrete choice of λ), Setup runs in time s,
Eval runs in time T , and Verify runs in time t. Then, there is an adversary A that breaks sequentiality
(Definition 2.4) by asking a total of O(T · (t+ s)) queries in 2(s+ t) rounds of queries.

Before proving Theorem 3.1, we observe that this result already rules out the possibility of constructing
decodable VDFs (which are perfectly unique; see Remark 2.6) in the ROM. In fact, a special case of this
theorem for the class of “permutation VDFs” is implied by the impossibility result of [MMV11] for time-
lock puzzles [RSW96].3 We define this class of special VDFs below:
2In the literature, there are multiple ways to model the range set: sometimes range R is {0, 1}λ for security parameter λ, sometimes
it is simply {0, 1}, and sometimes it is a “length preserving” by mapping any x to a string of the same length.

3In a time-lock puzzle, there is a puzzle-generation algorithm that runs in time t and samples a puzzle x together with a solution y,
and an evaluation algorithm that runs in sequential time T that takes an input x and outputs the solution y.

5

Permutation-VDFs. As a special case of decodable VDFs, one can further restrict the mapping from
X to Y to be a permutation (instead of just being an injective function). Indeed, the recent construction
of [AKK+19] has this property.

Proposition 3.2. Let ΠVDF be a permutation-VDF in the ROM with a decoder Dec that runs in time t,
and a setup algorithm Setup that runs in time s. Then, there is an adversary that breaks sequentiality
(Definition 2.4) in O(s+ t) rounds of queries and a total of O(T · (s+ t)) queries.

Proof of Proposition 3.2. Previously, Mahmoody et al. [MMV11] showed an impossibility result for time-
lock puzzles in the ROM. To prove the claim, we show how to construct a time-lock puzzle from a permutation-
VDF. The result then follows from the lower bound of [MMV11]. The construction is as follows. The
puzzle-generator would first run the setup algorithm Setup of the VDF to get pp. Then, it samples y $←X =
Y (note that we need X to be efficiently samplable) and sets x ← Dec(pp, y). It outputs x as the puzzle
(and keeps y as the solution). Since Setup and Dec for a VDF are both efficient (i.e., run in time poly(λ, t)),
the puzzle-generator is also efficient. However, computing the solution is T -sequential in the ROM by
sequentiality of the VDF.

We can now use the result of [MMV11] which shows that any time-lock puzzle in the ROM where
the puzzle-generation algorithm makes k queries and the puzzle-solving algorithm makes T queries can be
broken by an adversary making O(k) rounds of queries and a total of O(k · T) queries. For the time-lock
puzzle based on the permutation-VDF, k = s + t, where s is the number of queries made by the Setup
algorithm and t is the number of queries made by Dec.

We now give the proof of Theorem 3.1. It still follows the ideas from [MMV11] for ruling out time-lock
puzzles in the ROM, but this time, we cannot simply reduce the problem to the setting of time-lock puzzles,
and we need to go into the proof and extend it to our setting.

Proof of Theorem 3.1. Without loss of generality, assume that Eval asks no repeated queries in a single
execution. We construct an attacker A as follows:

1. Let QA = ∅ (as a set of queries) and PA = ∅ (as a set of query-answer pairs).

2. Let d = 2(s+ t) + 1.

3. For i ∈ [d], do the following:

(a) Let P (i)
A = Q

(i)
A = ∅.

(b) Execute (yi, πi) ← Eval(pp, x) where the random oracle queries (made by Eval) are answered
using the following procedure. On every oracle query q:

• If q ∈ QA, then reply with the value r where (q, r) ∈ PA.

• Otherwise, choose a uniformly random value r $←R (where R is the range of the random
oracle O) and add (q, r) to P (i)

A and add q to Q(i)
A .

(c) If i < d, then in one round, for all (q, r) ∈ P (i)
A , query the real oracle O and get r ← O(q) as

the answer. Then for all such queries, add (q, r) to PA and add q to QA.

4. Output majority(y1, ..., yd) where majority denotes the majority operation (that outputs ⊥ if no
majority exists).

6

We now show that A satisfies the properties needed in Theorem 3.1. Let QS be the queries asked by the
setup algorithm and QV the queries asked by the verifier for the specific challenge x and its true solution y.

For i ∈ [d], we define Hi to be the event where there is a query q ∈ Q(i)
A ∩ (QS ∪ QV) during the ith

round of emulation that was not previously asked by the adversary: q 6∈ QP at that moment. Equivalently,
when q is asked, it holds that q ∈ (Q

(i)
A ∩ (QS ∪QV)) \QP .

The following claim shows that Hi cannot happen for too many i’s.

Claim 3.3. If I = {i : Hi holds}, then |I| ≤ s+ t.

Proof. The reason is that every time that Hi happens for a query q, at the end of round i, A asks q from
the oracle O, A asks a new query that was asked previously by either of Setup or Verify algorithms. Since
Setup and Verify together ask a total of s+ t queries, this cannot happen more than s+ t times.

Claim 3.4. If Hi does not happen, then yi = y.

Proof. Let yi 6= y for a round i in which Hi has not happened. This means that the set of oracle query-
answer pairs used during Setup, and the ith emulation of Eval byA are consistent. Namely, there is an oracle
O′, relative to which, we have pp ← SetupO

′
, (y′, π′) ← EvalO

′
(pp, x), and VerifyO

′
(pp, x, y, π) = 1.

However, this shows that the perfect uniqueness property is violated relative to O′, because for input x,
there is a “wrong” solution y (i.e., y 6= y′ = EvalO

′
(pp, x)) together with some proof π for y such that the

verification passes VerifyO
′
(pp, x, y, π) = 1.

By the above two claims, it holds that yi = y for at least s+ t+ 1 values of i ∈ [2(s+ t) + 1], and thus
the majority gives the right answer y for A.

Lower Bound for Tight Proofs of Sequential Work. We can apply similar techniques to rule out tight
proofs of sequential work [MMV13] in the random oracle model. At a high level, a (publicly-verifiable)
proof of sequential work is a VDF without uniqueness. Namely, for an input x, there can be many pairs
(y, π) that passes verification. In this setting, there is no need to distinguish y and π. While we have
constructions of (publicly-verifiable) proofs of sequential work in the ROM, our results show that tight
proofs of sequential work (see [DGMV19] for more discussion on this tightness notion) are impossible in
this setting. In particular, the following barrier applies to settings where the sequentiality parameter σ is
very close to T (e.g., this does not apply to σ = T/2). The following definition derives publicly-verifiable
proofs of sequential work [MMV13, CLSY93, DN93, RSW96] as a relaxation of VDFs.4

Definition 3.5 (Publicly Verifiable Proofs of Sequential Work). A publicly verifiable proof of sequential
work is a relaxation of VDFs in which the uniqueness property is not needed. As a result, there is no need
to distinguish between y and π, and y = π can be the only (not-necessarily-unique) output of Eval that is
still sequentially hard to compute.

Remark 2.8 explains the notion of a VDF in the ROM, and the same remark applies to (publicly ver-
ifiable) proofs of sequential work in the ROM as well. We now show that our techniques for ruling our
perfectly-unique VDFs in the ROM also suffice for ruling out tight proofs of sequential work.
4Definition 3.5 is even more general as it allows a setup phase.

7

Theorem 3.6 (Ruling out Tight Proofs of Sequential Work in ROM). Suppose ΠPSW = (Setup,Eval,Verify)
is a publicly verifiable proof of sequential work in the ROM in which (for a concrete choice of λ), Setup runs
in time s, Eval runs in time T , and Verify runs in time t. Then, for any 1 < G < T there is an adversary A
that asks a total of at most T −G queries and breaks sequentiality (Definition 2.4) with probability at least

1− (s+ t) · G
T
.

The above theorem implies that for G · (s + t) � T (i.e., a tightly sequential scheme), the probability of
success by the attacker approaches ≈ 1.

Remark 3.7 (Secretly Verifiable Tight Proofs of Sequential Work). Before proving Theorem 3.6, we remark
that the theorem also holds for general (not necessarily publicly-verifiable) proofs of sequential work as well.
For simplicity of notation we write the proof for the publicly verifiable version (Definition 2.4) which uses
pp as both evaluation and verification key.

Proof of Theorem 3.6. Again, without loss of generality, we assume that Eval asks no repeated queries in a
single execution. The attacker’s algorithm A is as follows:

1. Pick a random set S ⊆ [T] of size T −G.

2. Execute (y, π)← Eval(pp, x) while any oracle query q is answered as follows.

• If q ∈ S, ask q from the true oracle O,

• Otherwise choose a uniformly random value, r ← R for q.

3. Output (y, π).

To analyze the above attack, we compare the attacker’s experiment with an “ideal” experiment. Before doing
so, we first define the following experiment.

• pp← Setup(1λ, T)

• x $←X

• Run the adversary A (described above).

• Let b← Verify(pp, x, y, π).

• The output of the experiment is 1 if b = 1 (and 0 otherwise).

Real vs. ideal experiments. Let the above experiment be the “real” experiment Real, and define the
“ideal” experiment Ideal to be a similar game where the true oracle O is used in all of the queries. We let
Prreal[·] (resp., Prideal[·]) denote a probability of an event E in the Real (resp., Ideal) experiment.

8

Events. Let W be the event that Verify(pp, x, y, π) = 1 when (y, π) is the output of the adversary (i.e.,
W is the event that the adversary wins and the experiment outputs 1). Also, let QV be the oracle queries
made by Verify, QS be the oracle queries made by Setup, and QA be the adversary’s queries qi during
the emulation of the evaluation algorithm Eval where qi 6∈ S (i.e., the adversary chooses the answer to
qi at random). Define the “bad” event B to be the event that (QV ∪ QS) ∩ QA 6= ∅; namely, the event
that adversary makes up an answer to a query that is asked either by the setup algorithm or the verification
algorithm. With these definitions, the following claim trivially holds in the ideal experiment (and the perfect
completeness), as there is no attack involved.

Claim 3.8. Prideal[W] = 1.

Next, the following lemma states that until event B happens, the two experiments are identical.

Lemma 3.9. Prreal[B] = Prideal[B], and conditioned on the event B not happening, the two experiments
are identically distributed. In particular, for any event like W , it hold that Prreal[W ∨B] = Prideal[W ∨B].

Proof. Here, we make a crucial use of the fact that oracle O is random. To prove the lemma, we run the
two games in parallel using the same randomness for any query that is asked by any party, step by step.
Namely, we start by executing the setup algorithm identically as much as possible until event B happens.
More formally, we run both experiments by using fresh randomness to answer any new query asked during
the execution, and we will stop the execution as soon as event B happens. Since until the event B happens
both games proceed identically (in a perfect sense) and consistently according to their own distribution, it
means that until event B happens, the two games have the same perfect distribution.

We now observe that the probability of B is small in the ideal game.

Claim 3.10. Prideal[B] ≤ (s+ t) ·G/T .

Proof. In this game, the set S is chosen independently of other components of the experiment. So, we can
choose S at the end. By doing so, any query in in QV ∪QS that is also asked by QA will be chosen by the
adversary with probability at most G/T . Thus, the claim follows by a union bound.

The above claims finish the proof of Theorem 3.6, as we now can conclude that the probability of W in both
experiments is “close”: ∣∣ Pr

real
[W]− Pr

ideal
[W]

∣∣ ≤ Pr
ideal

[B].

We already know that Prideal[W] = 1, therefore, we conclude that

Pr
real

[W] ≥ Pr
ideal

[W]− Pr
ideal

[B] ≥ 1− (s+ t) · G
T
.

9

References

[AKK+19] Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter.
Reversible proofs of sequential work. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part II, volume 11477 of LNCS, pages 277–291. Springer, Heidelberg, May
2019.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-
tions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 595–603.
ACM Press, June 2015.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 757–788. Springer, Heidelberg, August 2018.

[BBHM02] Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas Meyer. A signature scheme
based on the intractability of computing roots. Des. Codes Cryptography, 25(3):223–236,
2002.

[BKSY11] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on the power
of zero-knowledge proofs in cryptographic constructions. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 559–578. Springer, Heidelberg, March 2011.

[Chi19] Chia. Chia network announces 2nd VDF competition with $100,000
in total prize money. https://www.chia.net/2019/04/04/
chia-network-announces-second-vdf-competition-with-in-total-prize-money.
en.html, 2019.

[CLSY93] J-Y Cai, Richard J Lipton, Robert Sedgewick, and AC-C Yao. Towards uncheatable bench-
marks. In [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference,
pages 2–11. IEEE, 1993.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 451–
467. Springer, Heidelberg, April / May 2018.

[DGMV19] Nico Dttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan. Tight verifiable
delay functions. Cryptology ePrint Archive, Report 2019/659, 2019. https://eprint.
iacr.org/2019/659.

[DLM19] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs of sequential work.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 292–323. Springer, Heidelberg, May 2019.

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 139–147. Springer, Heidelberg,
August 1993.

[EFKP19] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable
delay functions. IACR Cryptology ePrint Archive, 2019:619, 2019.

10

https://www.chia.net/2019/04/04/chia-network-announces-second-vdf-competition-with-in-total-prize-money.en.html
https://www.chia.net/2019/04/04/chia-network-announces-second-vdf-competition-with-in-total-prize-money.en.html
https://www.chia.net/2019/04/04/chia-network-announces-second-vdf-competition-with-in-total-prize-money.en.html
https://eprint.iacr.org/2019/659
https://eprint.iacr.org/2019/659

[FMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. IACR Cryptology ePrint Archive, 2019:166, 2019.

[KJG+16] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via
collective signing. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages
279–296. USENIX Association, August 2016.

[LSS19] Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-interactive cryptographic
timestamping based on verifiable delay functions. IACR Cryptology ePrint Archive, 2019:197,
2019.

[MM11] Takahiro Matsuda and Kanta Matsuura. On black-box separations among injective one-way
functions. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 597–614. Springer,
Heidelberg, March 2011.

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the random
oracle model. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 39–50.
Springer, Heidelberg, August 2011.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of sequen-
tial work. In Robert D. Kleinberg, editor, ITCS 2013, pages 373–388. ACM, January 2013.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019,
volume 124, pages 60:1–60:15. LIPIcs, January 2019.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.
Technical report, 1996.

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-way Functions. PhD thesis,
EECS Department, University of California, Berkeley, Dec 1988.

[Sha19] Barak Shani. A note on isogeny-based hybrid verifiable delay functions. IACR Cryptology
ePrint Archive, 2019:205, 2019.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rij-
men, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer,
Heidelberg, May 2019.

11

	Introduction
	Related Work

	Preliminaries
	Lower Bounds for VDFs in the Random Oracle Model

