New Semi-Free-Start Collision Attack Framework for Reduced RIPEMD-160

Fukang Liu ${ }^{1,5}$, Christoph Dobraunig ${ }^{2}$, Florian Mendel ${ }^{3}$, Takanori Isobe ${ }^{4,5}$, Gaoli Wang ${ }^{1}$ and Zhenfu Cao ${ }^{1}$
${ }^{1}$ Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
liufukangs@163.com, \{glwang, zfcao\}@sei.ecnu.edu.cn
${ }^{2}$ Radboud University, Nijmegen, The Netherlands
cdobraunig@cs.ru.nl
${ }^{3}$ Infineon Technologies AG, Germany
florian.mendel@gmail.com
${ }^{4}$ National Institute of Information and Communications Technology, Japan
${ }^{5}$ University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract

RIPEMD-160 is a hash function published in 1996, which shares similarities with other hash functions designed in this time-period like MD4, MD5 and SHA-1. However, for RIPEMD-160, no (semi-free-start) collision attacks on the full number of steps are known. Hence, it is still used, e.g., to generate Bitcoin addresses together with SHA-256, and is an ISO/IEC standard. Due to its dual-stream structure, even semi-free-start collision attacks starting from the first step only reach 36 steps, which were firstly shown by Mendel et al. at Asiacrypt 2013 and later improved by Liu, Mendel and Wang at Asiacrypt 2017. Both of the attacks are based on a similar freedom degree utilization technique as proposed by Landelle and Peyrin at Eurocrypt 2013. However, the best known semi-free-start collision attack on 36 steps of RIPEMD-160 presented at Asiacrypt 2017 still requires $2^{55.1}$ time and 2^{32} memory. Consequently, a practical semi-free-start collision attack for the first 36 steps of RIPEMD-160 still requires a significant amount of resources. Considering the structure of these previous semi-free-start collision attacks for 36 steps of RIPEMD-160, it seems hard to extend it to more steps. Thus, we develop a different semi-free-start collision attack framework for reduced RIPEMD-160 by carefully investigating the message expansion of RIPEMD-160. Our new framework has several advantages. First of all, it allows to extend the attacks to more steps. Second, the memory complexity of the attacks is negligible. Hence, we were able to give a practical semi-free-start collision attack on 36 steps of RIPEMD-160 with time complexity 2^{41}. Additionally, we describe semi-free-start collision attacks on 37,38 and 40 (out of 80) steps of RIPEMD-160 with time complexity $2^{49}, 2^{53}$ and $2^{74.6}$, respectively. To the best of our knowledge, these are the best semi-free-start collision attacks for RIPEMD-160 starting from the first step with respect to the number of steps, including the first practical colliding message pairs for 36 steps of RIPEMD-160.

Keywords: hash function • RIPEMD-160 \cdot freedom degree utilization \cdot semi-free-start collision attack

1 Introduction

In the 1990s, most popular hash functions, like MD4, MD5, RIPEMD-160 [DBP96], and SHA-1 followed a similar design strategy based on round functions involving modular additions, wordwise rotations, and XORs (ARX). For 3 out of the aforementioned hash functions, MD4 [Dob96, $\mathrm{WLF}^{+} 05$], MD5 [WY05], and SHA-1 [WYY05, SBK ${ }^{+}$17] practical collision attacks were shown
and thus have been phased out in most applications. However, if we look at RIPEMD-160, no collision attack on the full number of rounds is known. Moreover, RIPEMD-160 is still used in several applications, e.g., to generate Bitcoin addresses together with SHA-256, and is still an ISO/IEC standard. Hence, getting more insight into the security of RIPEMD-160 is of practical interest and importance.

In contrast to MD4, MD5, and SHA-1, the compression function of RIPEMD-160 is of a more complex nature, since the chaining value is duplicated and processed in two branches. Both branches, hereby employ a slightly different round function and also the message expansion follows a different pattern. At the end of the compression function, both branches are merged again to form the 160 -bit internal state or final hash value. This increased complexity seems to complicate the analysis, and in contrast to MD4 [Dob96, WLF ${ }^{+}$05], MD5 [WY05], and SHA1 [WYY05, SBK ${ }^{+}$17], collision attacks on RIPEMD-160 do not reach the full number of rounds.

The first results regarding collision attacks on reduced RIPEMD-160 are by Liu, Mendel and Wang at Asiacrypt 2017 [LMW17]. Their attack follows the idea of using a differential characteristic that is sparse on the left branch and dense on the right branch, where message modification is used to fulfill as many conditions as possible on the dense right stream. This strategy allows for collision attacks [LMW17] reaching 30 steps with a time complexity of 2^{70}. Recently, at Crypto 2019 [LDM^{+}18], a different strategy to find collisions was proposed, where the dense part is placed on the left branch the sparse part is placed on the right branch. As a result, they provided the first colliding message pairs for 30 and 31 steps of RIPEMD-160 and a theoretical collision attack up to 34 steps. When considering semi-free-start collisions, attacks on step-reduced versions of RIPEMD-160 reach up to 48 steps [WSL17] if an attacker has the freedom to choose the step where the attack starts and 36 steps [MPS ${ }^{+}$13, LMW17] if they start from the first step. A summary of collision attacks for RIPEMD-160 is given in Table 1.

It should be noted that for the two semi-free-start collision attacks for reduced RIPEMD-160 starting from the first step, both share the same differential characteristic [MPS ${ }^{+}$13, LMW17]. Moreover, the underlying idea of the two semi-free-start collision attacks is almost the same. Specifically, the dense parts with many differential conditions on both branches are firstly fixed. Then, the remaining free message words are utilized to achieve efficient merging at the initial value, which is following the idea from [LP13].

Up until now, no practical semi-free-start collision attack on the first 36 steps of RIPEMD-160 is achieved. Moreover, a semi-free-start collision attack on more steps of RIPEMD-160 starting from the first step was out of reach as well. Thus, we are motivated to further investigate the semi-free-start collision resistance of reduced RIPEMD-160. To do so, we place the dense differential characteristic on the left branch and the sparse differential characteristic on the right branch in order to make the new semi-free-start collision attack framework work efficiently, which follows a similar spirit as in $\left[\mathrm{LDM}^{+} 18\right]$. The contribution of this paper is summarized below.

1.1 Our Contributions

With a new freedom degree utilization strategy, we develop a semi-free-start collision attack framework for reduced RIPEMD-160. Different from previous semi-free-start collision attack frameworks [MPS ${ }^{+}$13, LMW17] for RIPEMD-160 which require a costly freedom degrees consumption to achieve efficient merging at the initial value, no merging phase is needed under the new attack framework. With such a new framework, we were able to extend the semi-freestart collision attacks on reduced RIEPMD-160 to more steps. In addition, there are negligible memory requirements. Most importantly, combined with the use of automated techniques [MNS11, MNS13, EMS14] to solve the nonlinear differential characteristic for RIPEMD-160, improved semi-free-start collision attacks for reduced RIPEMD-160 are obtained, as specified below.

- The first practical semi-free-start collision attack on 36 steps of RIPEMD-160 is achieved with time complexity 2^{41}.
- Semi-free-start collision attack on 37 steps is achived with time complexity 2^{49}.
－Semi－free－start collision attack on 38 steps is achieved with time complexity 2^{53} ．
－Semi－free－start collision attack on 40 steps is achieved with time complexity $2^{74.6}$ ．

1．2 Organization

This paper is organized as follows．The notation，and description of RIPEMD－160 is given in Section 2．Then，we describe our semi－free－start collision attack framework for reduced RIPEMD－ 160 in Section 3．Next，we discuss how to get a desirable differential characteristic in Section 4. Section 5 presents the application of our semi－free－start collision attack to the discovered differential characteristics．Finally，the paper is concluded in Section 6.

Table 1：Summary of preimage and collision attack on RIPEMD－160

Target	Attack Type	Steps	Time	Memory	Ref．
comp．function	preimage	31	2^{148}	2^{17}	［OSS12］
hash function	preimage	31	2^{155}	2^{17}	［OSS12］
comp．function	semi－free－start collision	$36^{\text {a }}$	low	negligible	［MNSS12］
		$42^{\text {a }}$	$2^{75.5}$	2^{64}	［MPS $\left.{ }^{+13}\right]$
		$48^{\text {a }}$	$2^{76.4}$	2^{64}	［WSL17］
		36	$2^{70.4}$	2^{64}	［MPS $\left.{ }^{+13}\right]$
		36	$2^{55.1}$	2^{32}	［LMW17］
		36	2^{41}	negligible	Section 5.1
		37	$2{ }^{49}$	negligible	Section 5.2
		38	2^{53}	negligible	Section 5.2
		40	$2^{74.6}$	negligible	Section 5.2
hash function	collision	30	$2^{35.9}$	2^{32}	［ LDM^{+}18］
		31	$2^{41.5}$	$2{ }^{32}$	［ LDM^{+}18］
		33	$2^{67.1}$	23	［ LDM^{+}18］
		34	$2^{74.3}$	2^{32}	$\left[\mathrm{LDM}^{+} 18\right]$

${ }^{\text {a }}$ An attack starting at an intermediate step．

2 Preliminaries

In this section，we will introduce the notations used in this paper and the specification of RIPEMD－ 160.

2．1 Notation

1．$\gg \lll<, \gg, \oplus, \vee, \wedge$ and \neg represent the logic operations shift right，rotate left，rotate right， exclusive or，or，and，negate，respectively．

2．田 and 日 represent addition and subtraction modulo 2^{32} 。
3．$M=\left(m_{0}, m_{1}, \ldots, m_{15}\right)$ and $M^{\prime}=\left(m_{0}^{\prime}, m_{1}^{\prime}, \ldots, m_{15}^{\prime}\right)$ represent two 512 －bit message blocks split into 32－bit words m_{i} and m_{i}^{\prime} ．

4．K_{j}^{l} and K_{j}^{r} represent the constant used for left (l) and right (r) branch at round j ．
5．Φ_{j}^{l} and Φ_{j}^{r} represent the 32－bit Boolean function for the left (l) and right (r) branch at round j ．
6. s_{i}^{l} and s_{i}^{r} represent the rotation constant used at the left (l) and right (r) branch during step i.
7. $\pi_{1}(i)$ and $\pi_{2}(i)$ represent the index of the message word used at the left (l) and right (r) branch during step i.
8. X_{i}, Y_{i} represent the 32-bit internal state of the left (l) and right (r) branch updated during step i.
9. $X_{i, k}$ and $Y_{i, k}$ represent the $(k+1)$-th bit of X_{i} and Y_{i}, where the least significant bit is the $1^{\text {st }}$ bit and the most significant bit is the $32^{\text {nd }}$ bit. For example, $X_{i, 0}$ represents the least significant bit of X_{i}.
10. $\operatorname{MIN}(a, b)$ represents the minimal value of a and $b . \operatorname{MIN}(a, b)=a$ if $a \leq b$ and $\operatorname{MIN}(a, b)=$ b if $a>b$.

We also adopt the concept of generalized conditions of De Cannière and Rechberger [DR06] presented in Table 2.

Table 2: Generalized conditions [DR06]

$\left(x, x^{*}\right)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$	$\left(x, x^{*}\right)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$?$	\checkmark	\checkmark	\checkmark	\checkmark	3	\checkmark	\checkmark	-	-
-	\checkmark	-	-	\checkmark	5	\checkmark	-	\checkmark	-
x	-	\checkmark	\checkmark	-	7	\checkmark	\checkmark	\checkmark	-
0	\checkmark	-	-	-	A	-	\checkmark	-	\checkmark
u	-	\checkmark	-	-	B	\checkmark	\checkmark	-	\checkmark
n	-	-	\checkmark	-	C	-	-	\checkmark	\checkmark
1	-	-	-	\checkmark	D	\checkmark	-	\checkmark	\checkmark
$\#$	-	-	-	-	E	-	\checkmark	\checkmark	\checkmark

[^0]
2.2 Description of RIPEMD-160

RIPEMD-160 is a 160 -bit hash function based on the Merkle-Damgård construction. So it is iterating a compression function H that takes as input a 512-bit message block M_{i} and a 160-bit chaining variable $C V_{i}$. We refer to [DBP96] for a detailed description of the RIPEMD-160 hash function and focus on the compression function next. The RIPEMD-160 compression function consists of two different parallel branches, which we call left and right branch, indicated by the use of X_{i} and Y_{i}, respectively. The compression function is segregated into 5 rounds of 16 steps each in both branches, leading to a total of 80 steps per branch.

2.2.1 Initialization

The compression function starts with an initialization, where the 160-bit chaining variable $C V_{i}$ at the input is divided into five 32-bit words $h_{j}(j=0,1,2,3,4)$. Those five words h_{j} are used to initialize the state of the two branches:
$X_{-4}=h_{0}^{\gg 10}, \quad X_{-3}=h_{4} \gg 10, \quad X_{-2}=h_{3}>10, \quad X_{-1}=h_{2}, \quad X_{0}=h_{1}$.
$Y_{-4}=h_{0}^{\gg 10}, \quad Y_{-3}=h_{4}^{\gg 10}, \quad Y_{-2}=h_{3}^{\gg 10}, \quad Y_{-1}=h_{2}, \quad Y_{0}=h_{1}$.
The initial value $\left(C V_{0}\right)$ corresponds to:
$X_{-4}=Y_{-4}=0 \mathrm{xc} 059 \mathrm{~d} 148, X_{-3}=Y_{-3}=0 \times 7 \mathrm{c} 30 \mathrm{f} 4 \mathrm{~b} 8, X_{-2}=Y_{-2}=0 \times 1 \mathrm{~d} 840 \mathrm{c} 95$,
$X_{-1}=Y_{-1}=0 \times 98 \mathrm{badcfe}, X_{0}=Y_{0}=0 x \operatorname{fcdab} 89$.

2.2.2 Message Expansion

Each 512-bit input message block is divided into 1632 -bit message words m_{i}. The words m_{i} will be used for a single step in a permuted order π_{1} and π_{2} for left branch and right branch, respectively.

2.2.3 Step Function

At step i of round j, the internal state is updated in the following way.

$$
\begin{aligned}
L Q_{i}= & X_{i-5}^{\ll 10} \boxplus \Phi_{j}^{l}\left(X_{i-1}, X_{i-2}, X_{i-3}^{\lll 10}\right) \boxplus m_{\pi_{1}(i)} \boxplus K_{j}^{l}, \\
X_{i}= & X_{i-4}^{\ll 10} \boxplus\left(L Q_{i}\right)^{\lll s_{i}^{l}}, \\
R Q_{i}= & Y_{i-5}^{\ll 10} \boxplus \Phi_{j}^{r}\left(Y_{i-1}, Y_{i-2}, Y_{i-3}^{\ll 10}\right) \boxplus m_{\pi_{2}(i)} \boxplus K_{j}^{r}, \\
Y_{i}= & Y_{i-4}^{\ll 10} \boxplus\left(R Q_{i}\right)^{\lll s_{i}^{r}},
\end{aligned}
$$

where $i=(1,2,3, \ldots, 80)$ and $j=(0,1,2,3,4)$. The details of the Boolean functions and round constants for RIPEMD-160 are given in Table 3.

Table 3: Boolean Functions and Round Constants in RIPEMD-160

Round j	ϕ_{j}^{l}	ϕ_{j}^{r}	K_{j}^{l}	K_{j}^{r}	Function	Expression
0	$X O R$	ONX	0x000000000	0x50a28be6	XOR (x, y, z)	$x \oplus y \oplus z$
1	IFX	IFZ	0x5a827999	0x5c4dd124	IFX (x, y, z)	$(x \wedge y) \oplus(\neg x \wedge z)$
2	ONZ	ONZ	0x6ed9eba1	0x6d703ef3	IFZ (x, y, z)	$(x \wedge z) \oplus(y \wedge \neg z)$
3	$I F Z$	IFX	0x8f1bbcdc	0x7a6d76e9	$O N X(x, y, z)$	$x \oplus(y \vee \neg z)$
4	ONX	XOR	0xa953fd4e	0x000000000	ONZ (x, y, z)	$(x \vee \neg y) \oplus z$

2.2.4 Finalization

The finalization is performed after all 80 steps have been executed in both branches. The five 32 -bit words $h_{j}^{\prime}(j=0,1,2,3,4)$ composing the output chaining variable are computed in the following way involving also the chaining value at the input of the compression function $h_{j}(j=0,1,2,3,4)$:

$$
\begin{aligned}
& h_{0}^{\prime}=h_{1} \boxplus X_{79} \boxplus Y_{78}^{\ll 10}, \\
& h_{1}^{\prime}=h_{2} \boxplus X_{78}^{\ll 10} \boxplus Y_{77}^{\ll 10}, \\
& h_{2}^{\prime}=h_{3} \boxplus X_{77}^{\ll 10} \boxplus Y_{76}^{\ll 10}, \\
& h_{3}^{\prime}=h_{4} \boxplus X_{76}^{\ll 10} \boxplus Y_{80}, \\
& h_{4}^{\prime}=h_{0} \boxplus X_{80} \boxplus Y_{79} .
\end{aligned}
$$

3 Semi-Free-Start Collision Attack Framework

In this section, we will present the details of the new semi-free-start collision attack framework. For this framework, the message difference is inserted only at m_{12}, which is used to update X_{13} and Y_{16}. Then, we carefully build the differential characteristic on the right branch to make it hold with a probability as high as possible. The dense part of the differential characteristic on the left branch will be solved by using automated techniques detailed in [MNS11, MNS13, EMS14]. The pattern of the constructed t-step differential characteristic can be depicted in Figure 1. Following such a strategy to construct the differential characteristic, we can obtain Observation 1.

Figure 1: Attack on t steps of RIPEMD-160 by inserting difference at m_{12}

X_{13}	X_{14}	X_{15}	X_{16}	X_{17}
m_{12}	m_{13}	m_{14}	m_{15}	m_{7}

\boldsymbol{X}_{18}	\boldsymbol{X}_{19}	\boldsymbol{X}_{20}	\boldsymbol{X}_{21}	\boldsymbol{X}_{22}	\boldsymbol{X}_{23}	\boldsymbol{X}_{24}	\boldsymbol{X}_{25}	\boldsymbol{X}_{26}	\boldsymbol{X}_{27}	\boldsymbol{X}_{28}	\boldsymbol{X}_{29}	\boldsymbol{X}_{30}	\boldsymbol{X}_{31}	\boldsymbol{X}_{32}
\boldsymbol{m}_{4}	\boldsymbol{m}_{13}	m_{1}	\boldsymbol{m}_{10}	\boldsymbol{m}_{6}	\boldsymbol{m}_{15}	m_{3}	\boldsymbol{m}_{12}	\boldsymbol{m}_{0}	\boldsymbol{m}_{9}	\boldsymbol{m}_{5}	\boldsymbol{m}_{2}	\boldsymbol{m}_{14}	\boldsymbol{m}_{11}	\boldsymbol{m}_{8}

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \boldsymbol{X}_{33} & \boldsymbol{X}_{34} & \boldsymbol{X}_{35} & \boldsymbol{X}_{36} & \boldsymbol{X}_{37} & \boldsymbol{X}_{38} & \boldsymbol{X}_{39} & \boldsymbol{X}_{40} \\
\hline \boldsymbol{m}_{3} & m_{10} & \boldsymbol{m}_{14} & \boldsymbol{m}_{4} & \boldsymbol{m}_{9} & \boldsymbol{m}_{15} & \boldsymbol{m}_{8} & \boldsymbol{m}_{1} \\
\hline
\end{array}
$$

Figure 2: Partial information of the message expansion of RIPEMD-160

Observation 1. Since X_{13} is the first internal state with difference on the left branch, there will be bit conditions on $X_{12} \oplus X_{11}^{\ll 10}, X_{13} \oplus X_{12}^{\ll 10}, X_{14} \oplus X_{12}^{\ll 10}$. To make the total number of these bit conditions small, the total number of active bits in X_{13} and X_{14} should be as small as possible.

Moreover, considering the specifics of the message expansion of RIPEMD-160, one more important observation can be obtained, which will play an important role in our semi-free-start attack framework. The Observation 2 is specified below.

Observation 2. For the left branch, X_{17} is updated with m_{7} in the second round. Besides, m_{7} is used to update X_{42} in the third round.

For a better understanding of this paper, we also present partial information of the message expansion, as illustrated in Figure 2.

3.1 Specification of the semi-free-start collision attack framework

Based on the above strategy to construct the differential characteristic as well as the the observation of the message expansion of RIPEMD-160, an efficient semi-free-start collision attack framework can be discovered, as illustrated in Figure 3. Suppose our aim is to mount semi-free-start collision attack on t steps of RIPEMD-160. On the whole, the attack procedure can be divided into 3 steps as follows.

Step 1: Finding a starting point. Find a solution (starting point) for $X_{i}(13 \leq i \leq t)$. With singlestep message modification, randomly choose values for $X_{i}(13 \leq i \leq 32)$ while keeping the conditions on them hold. Based on Observation 2, all message words except m_{7} will be fixed. The remaining work is to ensure the conditions on $X_{i}(33 \leq i \leq t)$ hold. Generally, the conditions on this part can be partially satisfied with dedicated multi-step message modification. However, it will require some manual work. As will be shown, finding a starting point is not the bottleneck of our attack framework. Therefore, we remove the dedicated hand-tuned multi-step message modification and use a non-optimized method to satisfy the conditions on $X_{i}(33 \leq i \leq t)$ for simplicity.

Figure 3: Semi-free-start collision attack framework for RIPEMD-160

Step 2: Filtering invalid X_{12}. Suppose there are n bit conditions on X_{12}. Then, for a fixed starting point, n bits of X_{12} will be fixed, thus leaving 2^{32-n} possible values for X_{12} in total. For each possible value of X_{12}, we can compute m_{7} as follows:

$$
m_{7}=\left(X_{17} \boxminus X_{13}^{\ll 10}\right)^{\gg 7} \boxminus X O R\left(X_{16}, X_{15}, X_{14}^{\ll 10}\right) \boxminus X_{12}^{\ll 10} \boxminus K_{0}^{l} .
$$

Consequently, for each possible value of X_{12}, all message words will become fixed. Then, we compute backward until X_{9} and check the bit conditions on $X_{12} \oplus X_{11}^{\ll 10}$ as well as the conditions on

$$
L Q_{i}=\left(X_{i} \boxminus X_{i-4}^{\ll 10}\right)^{\gg s_{i}^{l}}(13 \leq i \leq 16),
$$

which are used to ensure the correct propagation of the modular difference of $X_{i}(13 \leq i \leq$ 16). If these conditions hold, move to Step 3. Otherwise, choose another possible value for X_{12} and repeat. If all 2^{32-n} possible values are used up, start generating a new starting point and repeat Step 2.

Step 3: Verifying the right branch. Until this phase, all message words are fixed. Then, for the left branch, we can compute backward to obtain the initial value. At last, we compute forward to compute the internal states on the right branch. If the conditions on the right branch do not hold, return Step 2. Otherwise, a semi-free-start collision is found.

3.2 Generating a starting point

Note that when all possible values for X_{12} are used up, we have to generate another starting point, i.e. another solution for $X_{i}(13 \leq i \leq t)$. Actually, after one starting point is obtained, a new starting point can be derived from it in negligible time, thus explaining why Step 1 is not the bottleneck of our attack framework.

In the following, we will expand on how to derive a new starting point from an existing one. For a better understanding of the next parts, we strongly suggest the readers can refer to the message expansion of RIPEMD-160 in Figure 2 since the next parts are highly related with it.

There are two strategies to derive a new starting point for two different cases. Suppose the conditions on X_{13} hold with probability $2^{-p_{3}}$ and the conditions on $X_{i}(36 \leq i \leq t)$ hold with probability $2^{-p_{4}}$. The two strategies are as follows.

3.2.1 Strategy 1

This strategy is suitable for the case when $p_{4} \leq p_{3}$. The procedure to generate a new starting point can be described below.

Strategy 1．Randomly choose a value for $X_{i}(13 \leq i \leq 15)$ while keeping the conditions on them hold．Then，modify m_{4}, m_{13} and m_{1} as follows to keep X_{18}, X_{19} and X_{20} stay the same．

$$
\begin{aligned}
& m_{4}=\left(X_{18} \boxminus X_{14}^{\ll 10}\right) \gg s_{18}^{l} \boxminus I F X\left(X_{17}, X_{16}, X_{15}^{\ll 10}\right) \text { घ } X_{13}^{\ll 10} \text { 曰 } K_{1}^{l} \text {, } \\
& m_{13}=\left(X_{19} \text { 日 } X_{15}^{\ll 10}\right)^{\ggg s_{19}^{l}} \text { 日 } I F X\left(X_{18}, X_{17}, X_{16}^{\ll 10}\right) \text { 日 } X_{14}^{\ll 10} \text { 日 } K_{1}^{l} \text {, } \\
& m_{1}=\left(X_{20} \boxminus X_{16}^{\ll 10}\right)^{\ggg s_{20}^{l}} \text { घ } \operatorname{IFX}\left(X_{19}, X_{18}, X_{17}^{\ll 10}\right) \text { 曰 } X_{15}^{\lll 10} \text { 曰 } K_{1}^{l} \text {. }
\end{aligned}
$$

In this way，$X_{i}(16 \leq i \leq 35)$ will stay the same．However，since X_{36} is updated with m_{4} ，we have to recompute new values for $X_{i}(36 \leq i \leq t)$ and verify whether the conditions on them can still hold．If they do not hold，start choosing another value for $X_{i}(13 \leq i \leq 15)$ while keeping the conditions on them hold and repeat the above precedure until the conditions on $X_{i}(36 \leq i \leq t)$ hold．Consequently，the time to generate a new starting point is about $2^{p_{4}}$ computations．

3．2．2 Strategy 2

This strategy is suitable for the case when $p_{3}<p_{4}$ ．The procedure to generate a new starting point can be described below．

Strategy 2．Randomly choose a value for $X_{i}(14 \leq i \leq 15)$ while keeping the conditions on them hold．Then，we compute X_{13} by using $X_{i}(14 \leq i \leq 18)$ and m_{4} as follows．

$$
X_{13} \quad=\left(\left(X_{18} \boxminus X_{14}^{\ll 10}\right) \ggg s_{18}^{l} \boxminus I F X\left(X_{17}, X_{16}, X_{15}^{\lll 10}\right) \text { घ } m_{4} \text { घ } K_{1}^{l}\right) \ggg 10 .
$$

Next，we verify the conditions on X_{13} and $L Q_{17}=\left(X_{17} \boxminus X_{13}^{\ll 10}\right)^{\ggg s_{17}^{l}}$ ．If they do not hold，start randomly choosing another valid value for $X_{i}(14 \leq i \leq 15)$ and repeat until the conditions on X_{13} and $L Q_{17}=\left(X_{17} \text { 曰 } X_{13}^{\ll 10}\right)^{\ggg s_{17}^{l}}$ hold．If they hold，modify m_{13} and m_{1} as follows to keep X_{19} and X_{20} stay the same．

$$
\begin{aligned}
& m_{13}=\left(X_{19} \boxminus X_{15}^{\ll 10}\right) \gg s_{19}^{l} \boxminus I F X\left(X_{18}, X_{17}, X_{16}^{\ll 10}\right) \text { घ } X_{14}^{\ll 10} \text { घ } K_{1}^{l} \text {, } \\
& m_{1}=\left(X_{20} \boxminus X_{16}^{\ll 10}\right) \gg S_{20}^{l} \text { 曰 } \operatorname{IFX}\left(X_{19}, X_{18}, X_{17}^{\ll 10}\right) \text { 曰 } X_{15}^{\ll 10} \text { 日 } K_{1}^{l} \text {. }
\end{aligned}
$$

In this way，$X_{i}(16 \leq i \leq 39)$ will stay the same．Thus，for the attack on fewer than 40 steps，the time to generate a new starting point is about $2^{p_{3}}$ computations．

For the attack on 40 steps of RIPEMD－160，since X_{40} is updated with m_{1} ，we have to recompute a new value for X_{40} and check its conditions．If they do not hold，start choosing another new valid value for $X_{i}(14 \leq i \leq 15)$ and repeat until a valid starting point is found．For the attack on 40 steps of RIPEMD－160，we only need to check whether $L Q_{40}$ can satisfy its corresponding equation．As will be shown in the 40 －step differential characteristic，such a probability is close to 1 and therefore the time to generate a starting point is also about $2^{p_{3}}$ computations．

Indeed，the above two strategies to generate a new starting point imply that only one solution $X_{i}(16 \leq i \leq 35)$ is needed．For such a solution，m_{7}, m_{4}, m_{13} and m_{1} are not fixed．When the case is $p_{4} \leq p_{3}$ ，we directly use Strategy 1 to generate a starting point．When the case is $p_{3}<p_{4}$ ，we first exhaust all valid values for X_{36} and compute the corresponding m_{4}（ m_{4} is used to update X_{36} ）as well as $X_{i}(37 \leq i \leq t \leq 39)$ ．Record m_{4} which can make the conditions on $X_{i}(37 \leq i \leq t \leq 39)$ hold．Then，Strategy 2 can be applied to find a starting point．

Obviously，finding a solution for $X_{i}(16 \leq i \leq 35)$ cannot be the bottleneck since only three internal states X_{33}, X_{34} and X_{35} cannot hold trivially．In our implementation，when the number of conditions on X_{33}, X_{34} and X_{35} are small，we simply make them hold probabilistically．In other words，we repeat finding a solution for $X_{i}(16 \leq i \leq 32)$ with single－step message modification until the conditions on $X_{i}(33 \leq i \leq 35)$ hold．

As shown in Strategy 2, we fix the value for m_{4} to keep the internal states $X_{i}(36 \leq i \leq t \leq 39)$ stay the same. In this case, the freedom degree to generate a new starting point is provided by the free bits of X_{14} and X_{15}. When the right branch holds with a relatively low probability, i.e. like the 40 -step differential characteristic, sufficient number of starting points are needed. Therefore, we can also use the freedom degrees of m_{4}. Specifically, we can first store all valid values for m_{4} which can make the conditions on $X_{i}(36 \leq i \leq t \leq 39)$ hold in an array. This can be achieved by exhausting all valid values for X_{36} and compute $X_{i}(37 \leq i \leq t \leq 39)$ as well as check the conditions on them for a fixed solution for $X_{i}(16 \leq i \leq 35)$. Then, instead of only randomly choosing a valid value for X_{14} and X_{15}, we can also randomly choose a valid value for m_{4} from this array. In a word, to generate a new starting point, the freedom degrees can be provided by X_{14}, X_{15} and m_{4}. Such a slightly modified Strategy 2 will require some memory to store all valid m_{4}.

3.3 Complexity Evaluation

Although no differential characteristic is presented now, we can give a rough estimation of the time complexity of the semi-free-start collision attack on $t(36 \leq t \leq 40)$ steps of RIPEMD-160 before considering a specific differential characteristic. This is owing to the efficiency of our semi-free-start collision attack framework.

Specifically, when a starting point is found, we can exhaust all valid values for X_{12} and initially filter them by checking the conditions on X_{11} and $L Q_{i}(13 \leq i \leq 16)$. When all possible value for X_{12} are used up for a starting point, we can efficiently generate a new starting point with time $\operatorname{MIN}\left(2^{p_{3}}, 2^{p_{4}}\right)$, where p_{3} and p_{4} are defined in Section 3.2.

As shown in Figure 3, suppose the conditions on $X_{12} \oplus X_{11}^{\ll 10}$ and $L Q_{i}(13 \leq i \leq 16)$ hold with probability $2^{-p_{1}}$, and the fully probabilistic right branch holds with probability $2^{-p_{2}}$. Moreover, we also suppose there are n bit conditions on X_{12}. Then, for each starting point, we will verify the right branch with different m_{7} for about $2^{32-n-p_{1}}$ times. The time complexity of this phase can be estimated as:

$$
T_{0}=\frac{4}{80} \cdot 2^{32-n}+\frac{13+t}{80} \cdot 2^{32-n-p_{1}}
$$

As will be shown, p_{1} will be very small in our discovered differential characteristic, i.e. $p_{1} \approx 2$. Therefore, we roughly estimate the time complexity of this phase as

$$
T_{0}=\frac{4}{80} \cdot 2^{32-n}+\frac{13+t}{80} \cdot 2^{32-n-p_{1}} \approx 2^{32-n-p_{1}}
$$

However, the right branch holds with probability $2^{-p_{2}}$. Thus, it is expected to verify the right branch for about $2^{p_{2}}$ times under our semi-free-start collision attack framework in order to find a semi-free-start collision. Since each starting point can only provide about $2^{32-n-p_{1}}$ times of checking, we need to have about $2^{p_{2}-\left(32-n-p_{1}\right)}=2^{p_{1}+p_{2}+n-32}$ starting points. Suppose only one solution for $X_{i}(16 \leq i \leq 35)$ is enough, which means m_{4}, X_{14} and X_{15} can provide sufficient freedom degrees to generate $2^{p_{1}+p_{2}+n-32}$ starting points. Then, apart from the initial starting point, each starting point can be generated with time $\operatorname{MIN}\left(2^{p_{3}}, 2^{p_{4}}\right)$. Thus, the total time complexity of our semi-free-start collision attack on t steps of RIPEMD-160 is

$$
\begin{aligned}
T \quad & =\operatorname{MIN}\left(2^{p_{3}}, 2^{p_{4}}\right) \times 2^{p_{1}+p_{2}+n-32}+2^{p_{1}+p_{2}+n-32} \times 2^{32-n-p_{1}} \\
& =\operatorname{MIN}\left(2^{p_{3}}, 2^{p_{4}}\right) \times 2^{p_{1}+p_{2}+n-32}+2^{p_{2}} .
\end{aligned}
$$

As will be shown in the differential characteristics, $p_{1} \approx 2, \operatorname{MIN}\left(2^{p_{3}}, 2^{p_{4}}\right) \leq 2^{5}$ and $n \leq 3$. Thus, we have

$$
\begin{equation*}
T=\operatorname{MIN}\left(2^{p_{3}}, 2^{p_{4}}\right) \times 2^{p_{1}+p_{2}+n-32}+2^{p_{2}} \leq 2^{5+2+p_{2}+3-32}+2^{p_{2}} \approx 2^{p_{2}} . \tag{1}
\end{equation*}
$$

In other words, under our semi-free-start collision attack framework, the time complexity to find a semi-free-start collision for t steps of RIPEMD-160 is fully dominated by the probabilistic right branch.

Figure 4: Comparison between our framework and previous frameworks [LMW17, MPS ${ }^{+}$13]

3.4 Advantage

As can be observed, our new semi-free-start collision attack framework is completely different from previous ones presented at Asiacrypt 2013 [MPS ${ }^{+}$13] and Asiacrypt 2017 [LMW17], as depicted in Figure 4. Compared with the semi-free-start collision attack frameworks for 36 steps of RIPEMD-160 [LMW17, MPS ${ }^{+}$13], our new semi-free-start collision attack framework can bring the following three advantages.

- The memory complexity is negligible for our new framework, while it is 2^{32} in previous work [LMW17, MPS ${ }^{+}$13] after an optimization based on [LMW17].
- Our new framework is extendable and allows us to mount semi-free-start collision attack on several reduced versions of RIPEMD-160 when inserting message difference at message word m_{12}. However, it seems impossible to attack more steps when adopting the framework [LMW17, MPS ${ }^{+} 13$] by inserting difference at m_{7}. As will be shown, the new framework can be used to mount semi-free-start collision attack on 36/37/38/40 steps of RIPEMD-160.
- The framework can provide significantly improved results for the semi-free-start collision attack on reduced RIPEMD-160.

3.4.1 Remark

With the start-from-the-middle structure, while it is hard to turn a semi-free-start collision attack into a collision attack due to the match with the predefined initial value, it is easy to turn a collision attack into a semi-free-start collision attack. For the dense-left-and-sparse-right (DLSR) collision attack framework in [$\left.\mathrm{LDM}^{+} 18\right]$, an intuitive idea to convert it into a semi-free-start collision attack framework is to remove the connecting phase. Specifically, the starting point is a solution for X_{i} ($11 \leq i \leq 23$) in the DLSR framework. Then, the attacker can always keep the conditions on $X_{i}(24 \leq i \leq 32)$ hold with single-step message modification. Finally, for each valid value for $X_{i}(24 \leq i \leq 32)$, all message words become fixed and therefore the attacker can compute the remaining internal states on both branches and verify their conditions. For the 34 -step differential characteristic, the probability that the conditions on the remaining internal states hold is not too low, i.e. greater than 2^{-40}, one can repeat choosing valid values for $X_{i}(24 \leq i \leq 32)$ with singlestep message modification and verify these conditions. Once they are satisfied, a semi-free-start collision is found. Obviously, the time complexity to find a semi-free-start collision for 34 steps of RIPEMD-160 will not exceed 2^{40} and is practical. However, if it is directly applied to a longer differential characteristic, one has to deal with the conditions in the third round on the left branch.

Compared with the above naive semi-free-start collision attack framework derived from the DLSR collision attack framework [$\mathrm{LDM}^{+} 18$], our new framework adopts an optimal freedom degree utilization strategy, thus performing better for a longer differential characteristic. In our new framework, the starting point is a solution for $X_{i}(13 \leq i \leq t)$ while it is a solution for X_{i}
$(11 \leq i \leq 23)$ in $\left[\mathrm{LDM}^{+} 18\right]$. Especially, we also prove that the total time complexity is fully dominated by right branch under our new semi-free-start collision attack framework if obtaining a suitable differential characteristic. Determining such an optimal freedom degree utilization strategy is obviously non-trivial.

4 Differential Characteristics

Our semi-free-start collision attack procedure to find a semi-free-collision for reduced RIPEMD160 has been explained in details in Section 3. Thus, the next task is to find a suitable differential characteristic to make the framework work efficiently. Thanks to the use of automated techniques [MNS11, MNS13, EMS14], this task can be finished efficiently. Thus, the remaining work is to add some constraints on the differential characteristic before the search in order to find a desirable one.

As explained in Section 3, once a solution for the starting point is found, we can immediately utilize the freedom degrees provided by X_{12}. Besides, there will be a filtering phase to filter invalid X_{12}. We hope there are sufficient valid X_{12} left after filtering. Thus, the desirable differential characteristic have the following properties.

- There should be only one active bit in X_{12} so that there is only one bit condition on X_{11}.
- The probability that $L Q_{i}=\left(X_{i} \boxminus X_{i-4}^{\ll 10}\right) \gg s_{i}^{l}(13 \leq i \leq 16)$ satisfy their corresponding equations should be as high as possible.
- The total number of active bits in X_{13} and X_{14} should be as small as possible so that there are a few bit conditions on X_{12}. This is to ensure X_{12} can take as many possible values as possible before filtering.

When taking the generation of new starting points into account, we can expect that the cost is as small as possible. Besides, there should be sufficient freedom degrees provided by X_{14} and X_{15} and m_{4}. Thus, the desirable differential characteristic should have the following extra properties.

- The total number of active bits in X_{15}, X_{16}, X_{17} should be as small as possible. Besides, the probability that $L Q_{i}=\left(X_{i}\right.$ 日 $\left.X_{i-4}^{«<10}\right) \gg s_{i}^{l}(17 \leq i \leq 19)$ satisfy their corresponding equations should be as high as possible. In this way, it is expected that X_{14} and X_{15} can provide sufficient freedom degrees.
- The probability that the conditions on $X_{i}(36 \leq i \leq t \leq 39)$ hold should not be too small. Then, we can also utilized the freedom degrees provided by m_{4}.

In a word, the differential characteristic located at $X_{i}(13 \leq i \leq 17)$ and $X_{i}(36 \leq i \leq t)$ should be as sparse as possible. Then, we can solve the nonlinear differential characteristic located at X_{i} $(18 \leq i \leq 35)$ with the use of automated techniques [MNS11, MNS13, EMS14]. The desirable discovered differential characteristics are displayed at Table 11, Table 12, Table 13 and Table 14 in Appendix A respectively. In addition, we also provide the solution for $X_{i}(16 \leq i \leq 35)$ in Table 4.

As will be shown, the semi-free-start collision attack on 36 steps of RIPEMD-160 will become practical. For the attack on 37 and 38 steps of RIPEMD-160, the time complexity is below 2^{54}, which may become practical with more powerful computing resources. However, such powerful computing resources are out of our reach. For the attack on 39 steps under our framework, the right branch will hold with probability about 2^{-59}, suggesting the time complexity will be about 2^{59} if a suitable differential characteristic can be found. Thus, for the attack with relatively high time complexity, we focus on more steps. In other words, we will concentrate on the theoretical semi-free-start collision attack on 40 steps of RIPEMD-160.

Table 4: Solution for $X_{i}(16 \leq i \leq 35)$

	36 steps	37 steps	
	$\begin{aligned} & =0 \times 6 \mathrm{c} 2 \mathrm{c} 8526, m_{2}=0 \times 16188 \mathrm{~d} 15, \\ & =0 \times \mathrm{c} 6 \mathrm{c} 5 \mathrm{da} 57, m_{5}=0 \times f 7 \mathrm{a} 7 \mathrm{a} 97 \mathrm{a}, \\ & =0 \times \mathrm{a} 7 \mathrm{cbb} 538, m_{8}=0 \times \mathrm{b} 6477677, \\ & =0 \times 47 \mathrm{f} 24 \mathrm{a} 3 \mathrm{e}, m_{10}=0 \times b 1 \mathrm{bdf} 3 \mathrm{~b} 5, \\ & =0 \times 78 \mathrm{a}, \\ & 4=0 \times b \mathrm{~b} 877480, m_{12}=0 \times 69 \mathrm{a} 579 \mathrm{f} 0, \\ & 4 \end{aligned}$		$\begin{aligned} & =0 \times 2 \mathrm{a} 3 \mathrm{e} 3 \mathrm{e} 5 \mathrm{~d}, m_{2}=0 \times \mathrm{c} 5 \mathrm{ab} 4 \mathrm{a} 9 \mathrm{c}, \\ & =0 \times \mathrm{dc} 1 \mathrm{f} 16 \mathrm{ce}, m_{5}=0 \times 848 \mathrm{cc} 0 \mathrm{fe}, \\ & =0 \times \mathrm{f} 11 \mathrm{aa} 5 \mathrm{a} 3, m_{8}=0 \times 9 \mathrm{e} 6914 \mathrm{~b} 7, \\ & =0 \times f e 96 \mathrm{a} 9 \mathrm{cf}, m_{10}=0 \times \mathrm{da} 48 \mathrm{~b} 5 \mathrm{c} 6, \\ & =0 \times 59 \mathrm{~b} 4296 \mathrm{f}, m_{12}=0 \times 14 \mathrm{a} 47 \mathrm{a} 10, \\ & =0 \times 3 \mathrm{~b} 3 \mathrm{e} 4837, m_{15}=0 \times 7 \mathrm{f} 4 \mathrm{~d} 5 \mathrm{~b} 3 \mathrm{f} . \end{aligned}$
	101001111011110011 l 10011110 n 1100		01010000010001101n1000101uu0110
	n0010101101100111100110111101111		u1000100111000111001111001000100
	010001011110111001111101 nu 001001		$00000000010011111 u 0001001 u 111000$
	1100110111011111 u 010100 n 00100001		n1111110100011000110111u10000001
	$11010000110001101 n 10001011010000$		$0010 n 100 n 0110111 u 1 u u 110010100110$
	nnnn1nn10101111101011nu110100u10		$001110 u 000101101000100 u 100011011$
	1001001 nu1101u0n1001n1nuununn		1101100u10u000un0100001uuuuu1000
	nn110u11n10nu100n001nnn10u11nnu1		1un11nuu11100u0u11u1uaun1001010u
	1101 nu0010uun01nu1n0000nn1101u10		$110 n 11 n n 1001 u 4110 u 0 n 10 u 1 u 0 n u 001 u$
	11uu1nn10n011001n0u01uuu1n101uuu		00n0010n0nn0un0000nnn01u11u10100
	$1101011 u 1 u n 0 u 100 u 014 u u u u 40010010$		Onnnnn001101011110nnnnnn011u0u10
	Ou11u0010011n111uuun001111000111		$01000011 n n 0110 u 1100 n 01 u u 00 n 101 u 1$
X_{28}	$11000100 \mathrm{n} 11 \mathrm{nnn0n11100n010n0n0nn1}$	X_{28}	1 nu11111uu1un0u01n0n1nnnn1100n00
	01n00nu000u01nnu101uuu0ununun11n		u001uuuu00u0101un010011u0001n0uu
	n1u01n10u010011n000110100000un1u		$1110000101110 u 10 u 100 u u u 0010 u u u 01$
	$01 \mathrm{n} 1000 \mathrm{nnn01101010110111nnn0110u}$		$11011110010101 \mathrm{nnn0110nnn10110111}$
	10 n 0101000000011111001001000010 u		0000110110111 u 01 n 00101110111101
	$01 \mathrm{n} 0001101101000100100001000110 u$		10110110000011110111111011011001
X_{34}	01010101010010111110101000111111	X	01011101011010100010101100001110
X_{35}	10110000101111011111110111101101	X_{35}	00001111000001010111110011000100
	38 steps		40 steps
	$\begin{aligned} & 0 \times \mathrm{c} 32 \mathrm{cb} 8 \mathrm{~b} 2, m_{2}=0 \mathrm{xdcebf} 941, \\ & 0 \times 473889 \mathrm{~d} 3, m_{5}=0 \times 38875789, \\ & 0 \times \mathrm{cc} 53 \mathrm{e} 680, m_{8}=0 \times \mathrm{b} 8 \mathrm{dce} 09 \mathrm{a}, \\ & 0 \times \mathrm{cb} 87 \mathrm{a} 927, m_{10}=0 \times 67 \mathrm{c} 766 \mathrm{e} 5, \\ & =0 \times 9 \mathrm{c} 0866 \mathrm{a} 4, m_{12}=0 \times 6 \mathrm{dcd} 4 \mathrm{ef} 1, \\ & =0 \times 74 \mathrm{e} 28 \mathrm{f} 11, m_{15}=0 \times 898 \mathrm{~b} 12 \mathrm{aa} . \end{aligned}$		$\begin{aligned} & =0 \times 31973617, m_{2}=0 \times 3 \mathrm{f} 5 \mathrm{a} 3668, \\ & =0 \times f \mathrm{c} 3 \mathrm{ffea} 2, m_{5}=0 \times 97 \mathrm{ccd} 10 \mathrm{f}, \\ & =0 \times 41688 \mathrm{e} 61, m_{8}=0 \times 69 \mathrm{a} 1 \mathrm{~d} 2 \mathrm{a} 2, \\ & =0 \times 5 \mathrm{~b} 2331 \mathrm{f} 3, m_{10}=0 \times 1 \mathrm{c} 7 \mathrm{c} 9435, \\ & =0 \times 9 \mathrm{~d} 41 \mathrm{f} 6 \mathrm{eb}, m_{12}=0 \times 1 \mathrm{f} 5 \mathrm{f} 0 \mathrm{~b} 1 \mathrm{~b}, \\ & =0 \times 19 \mathrm{ec} 64 \mathrm{c} 9, m_{15}=0 \times 86 \mathrm{c} 9080 . \end{aligned}$
X_{16}	000100010101111111u1000101uu1100	X_{16}	$001110010011001110 u 111101 n 0 u 1001$
X_{17}	u1111101010000011100001110001110	X_{17}	u1110110001101101100001110100001
X_{18}	$0101011111001000111100001 u 101000$	X_{18}	$0000001010101101011111000 u 011010$
X_{19}	$010101100110100 n u 111101 n 10101010$	X_{19}	$1000011100010110 u 001111 u 10000001$
X_{20}	$00000001 u 1101101 u u 11110011010011$	X_{20}	11110011u111011n0u10010001001011
X_{21}	$1101110101100000110001 u 100011000$	X_{21}	$0101111100000100001001 u 001000000$
X_{22}	$1100 n 0 u n u 10 u n 1$ nn01unnnnnnnnnnn10	X_{22}	$101001010101100 u 1100010110011110$
X_{23}	n0uuu1100010nuuu0uuuu1 nun101nu11	X_{23}	$100010 u 011001 u 100011100001010111$
X_{24}	$1011111101 u n 01 u 10011000001101000$	X_{24}	10011 n 0 u 01011011110 unnnn1001un11
X_{25}	uu1110n001000100010nuu01u11101n0	X_{25}	$111100010 n 0 u 0 n n n 010011 u n 10011100$
X_{26}	01nu101u11u00010100u000011u10111	X_{26}	unu001uu001u01001u101101111u11u1
X_{27}	01000uu0010u1n0100nnn11011n11101	X_{27}	011un011nnuuuuuuuu10000u00u100u0
X_{28}	Ou10u000110000011100001000000101	X_{28}	00111 nun0111u1nn0nnnnnn10n00nnn1
X_{29}	10101010111 n 01000001 n 0 n 1001 n 100	X_{29}	nn111010n0101010100010u1un10101n
X_{30}	n100010u01101100u010100110n10101	X_{30}	0111u11010000n01101100uuu11101u0
X_{31}	00uuuuuu0110nu111100010101111110	X_{31}	n001u110n10u1110nn11u0100111110n
X_{32}	u11111n100110110n01u0101nuu10000	X_{32}	1000 unn010n1n011u011110100n0nu01
X_{33}	$00011111110 u n 0100010101100001100$	X_{33}	Ou1110101100u01u1111n01u000111n0
X_{34}	u11n1001101110101101000100000111	X_{34}	$011 n 11 n 0010 u 10 n 01000000100001011$
X_{35}	10010010010011110110101110101110	X_{35}	Ou0000001001101101111111110001n1

5 Application

In this section, we present the results of the new semi-free-start collision attack on 36/37/38/40 steps of RIPEMD-160. As our attack framework requires, we have to focus on the conditions on the following part:

1. The conditions on the right branch, which will influence the whole time complexity.
2. The conditions on X_{12}, which will influence the total number of possible values for X_{12} before filtering.
3. The conditions on X_{11} and $L Q_{i}(13 \leq i \leq 16)$, which will influence the filtering phase.
4. The conditions on X_{13} and $L Q_{17}$, which will influence the time to generate a new starting point.
5. The conditions on $X_{i}(14 \leq i \leq 15)$, which will influence the freedom degrees to generate a new starting point. We stress here that we have added extra conditions on X_{14} and X_{15} to make $L Q_{i}(18 \leq i \leq 19)$ satisfy their equations. Therefore, even if X_{14} and X_{15} are changed, $L Q_{i}$ ($18 \leq i \leq 19$) will always satisfy their equations.
6. The conditions on $X_{i}(36 \leq i \leq t)$, which will influence the total number of valid m_{4}. In other words, it will also influence the freedom degrees to generate a starting point.

Therefore, when describing the semi-free-start collision attack in next sections, we will firstly list the above conditions.

5.1 Practical Semi-Free-Start Collision on 36 Steps of RIPEMD-160

As discussed above, we first list in Table 6 some conditions influencing the performance of the semi-free-start collision attack, which are not presented in Table 11. As Table 6 shows, the probability that $L Q_{36}$ satisfies its corresponding equations is close to 1 (there is no need to consider the bit conditions on X_{36} when we attack 36 steps of RIPEMD-160), while the conditions on X_{13} holds with probability 2^{-5}. Therefore, we use Strategy 1 to generate a new starting point, whose cost can be neglected.

Moreover, based on Table 6 and Table 11, there will be $2^{32-3}=2^{29}$ possible values for X_{12} for a given starting point. After filtering, about $2^{29-1.7}=2^{27.3}$ valid values for X_{12} are left. Since the right branch holds with probability 2^{-41}, we need to generate about $2^{41-27.3}=2^{13.7}$ starting points. It should be noticed in Table 6 that there are sufficient free bits in $X_{i}(13 \leq i \leq 15)$. Therefore, we can only use one solution for $X_{i}(16 \leq i \leq 35)$. Thus, the time complexity to mount semi-free-start collision attack on 36 steps of RIPEMD-160 can be evaluated with the formula 1 in Section 3.3, where

$$
\left(p_{1}, p_{2}, p_{3}, p_{4}, n\right)=(1.7,41,5,0,3)
$$

Therefore, the time complexity to find a semi-free-start collision for 36 steps is 2^{41}. Due to the low time complexity, we can give the first practical semi-free-start collision for 36 steps of RIPEMD-160, as shown in Table 5. Such an instance is found in about 5.5 hours with 25 CPUs on a Linux Server.

Table 5: Semi-free-start collision for 36 steps of RIPEMD-160

$h_{0} \sim h_{4}$	809825 f7 d2a55861 6bd86be7 fc58a6cb 11f6a005

M 6c2c8526 dc3084cc 16188d15 c6c5da57 73f15b99 f7a7a97a a7cbbf38 53a4b30

| hash value | 88 f 79 fa 4 c9973719 dcf0ff7f | 15 cef 816 a9d702a5 |
| :--- | :--- | :--- | :--- |

Table 6：Other conditions influencing the attack for the 36－step differential characteristic

	Conditions	Probability
Y_{18}	$Y_{18,31}=Y_{17,31}$	2^{-1}
Y_{22}	$Y_{22,9}=Y_{21,9}$	2^{-1}
Y_{26}	$Y_{26,20}=Y_{25,20}, Y_{26,19}=Y_{25,19}$	2^{-2}
Y_{30}	$Y_{30,0}=Y_{29,0}, Y_{30,29}=Y_{29,29}, Y_{30,30}=Y_{29,30}$	2^{-3}
Y_{34}	$Y_{34,7} \vee \neg Y_{33,7}=1, Y_{34,10} \vee \neg Y_{33,10}=1$	2^{-1}
$R Q_{16}$	$\left(R Q_{16} \text { 田 } 0 \times 8000\right)^{\ll 6}=R Q_{16}^{\ll 6}$ 团 0×200000	Negligible
$R Q_{28}$	$\left(R Q_{28} \text { 田 } 0 \times 8000\right)^{\lll 7}=R Q_{28}^{\lll 7} ⿴ 囗 十 0 \times 400000$	Negligible
$R Q_{35}$	$\left(R Q_{35} \text { 田0xfffffic } 0\right)^{\lll 15}=R Q_{35}^{\ll 15}$ ⿴囗十xfe 400000	Negligible
	Right Branch	$2^{-33-8}=2^{-41}$
X_{12}	$X_{12,19} \neq X_{13,29}, X_{12,18} \neq X_{13,28}, X_{12,11}=X_{14,21}$	2^{-3}
X_{11}	$X_{11,11}=X_{12,21}$	2^{-1}
$L Q_{13}$	$\left(L Q_{13} \text { 田 } 0 \times 8000\right)^{\ll 6}=L Q_{13}^{\ll 6}$ 团 0×200000	Negligible
$L Q_{14}$	$\left(L Q_{14} \boxplus 0 \times 200000\right)^{\ll 7}=L Q_{14}^{\ll 7} ⿴ 囗 十 0 \times 10000000$	$2^{-0.1}$
$L Q_{15}$	$\left(L Q_{15} ⿴ 囗 十\right.$ 0xf0200000）${ }^{\lll 9}=L Q_{15}^{\ll 9}$ 田0x3fffffe0	$2^{-0.6}$
$L Q_{16}$	$\left(L Q_{16}\right.$ 田0xfffffe0）${ }^{\ll 8}=L Q_{16}^{\ll 8} ⿴ 囗 十$ 0xffffe010	Negligible
	Filtering	$2^{-1.7}$
X_{13}	$X_{13,27}=X_{14,5}, X_{13,20} \neq X_{14,30}, X_{13,19} \neq X_{15,29}, X_{13,18}=X_{15,28}$	2^{-4}
X_{15}	$X_{15,13}=X_{14,3}, X_{15,4}=X_{14,26}, X_{15,21} \neq X_{16,31}$	2^{-3}
The number of free bits in X_{14} and $X_{15}: 64-3-4=57$		
$L Q_{36}$	$\left(L Q_{36} \text { 田 } 0 \times 38007\right)^{\ll 7}=L Q_{36}^{\ll 1} ⿴ 囗 十$ 0x1c00380	Negligible
The expected number of valid $m_{4}: 2^{32-0}=2^{32}$		
The expected number of starting points for a fixed $X_{i}(16 \leq i \leq 35): 2^{57+32-5}=2^{84}$		

5．2 Semi－Free－Start Collision for 37／38／40 Steps of RIPEMD－160

Similarly，for the semi－free－start collision attack on 37／38／40 steps of RIPEMD－160 under our attack framework，we first list some conditions influencing the performance of the semi－free－start collision attack in Table 7，Table 8，Table 9，which are not presented in Table 12，Table 13，Table 14.

5．2．1 Attack on 37 steps of RIPEMD－160

Based on Table 7 and Table 12，we can know that there will be $2^{32-2}=2^{30}$ possible values for X_{12} for a given starting point．After filtering，about $2^{30-2}=2^{28}$ are left．Since the conditions on X_{i} （ $36 \leq i \leq 37$ ）holds with probability $2^{-2.3}$ and the condition on X_{13} holds with probability 2^{-4} ，we use Strategy 1 to generate a new starting point，whose cost is about $2^{2.3}$ computations．Since the right branch holds with probability 2^{-49} ，it is expected to generate $2^{49-28}=2^{21}$ starting points．As Table 7 shows，$X_{i}(13 \leq i \leq 15)$ can provide sufficient freedom degree to generate so many starting points for a fixed solution for $X_{i}(16 \leq i \leq 35)$ ．Thus，the time complexity to mount semi－free－start collision attack on 37 steps of RIPEMD－160 can be evaluated with the formula 1，where

$$
\left(p_{1}, p_{2}, p_{3}, p_{4}, n\right)=(2,49,4,2.3,2)
$$

Therefore，the time complexity to find a semi－free－start collision for 37 steps of RIPEMD－160 is 2^{49} ．

5．2．2 Attack on $\mathbf{3 8}$ steps of RIPEMD－160

Based on Table 8 and Table 13，we can know that there will be $2^{32-2}=2^{30}$ possible values for X_{12} for a given starting point．After filtering，about $2^{30-2}=2^{28}$ are left．Since the conditions on X_{i} （ $36 \leq i \leq 38$ ）holds with probability $2^{-13.3}$ and the condition on X_{13} holds with probability 2^{-4} ，we use Strategy 2 to generate a new starting point，whose cost is about 2^{4} computations．Since the right branch holds with probability 2^{-53} ，it is expected to generate $2^{53-28}=2^{25}$ starting points．As Table 7 shows，$X_{i}(14 \leq i \leq 15)$ can provide sufficient freedom degree to generate so many starting points for a fixed solution for $X_{i}(16 \leq i \leq 35)$ ．Specifically，for a valid m_{4} ，there are 57 free bits in X_{14} and X_{15} ，while the conditions on X_{13} hold with probability 2^{-4} ．Therefore，for a fixed solution for $X_{i}(16 \leq i \leq 35)$ and a valid m_{4} ，we can expect to generate $2^{57-4}=2^{53}$ starting points in total．

Table 7：Other conditions influencing the attack for the 37－step differential characteristic

	Conditions	Probability
Y_{18}	$Y_{18,31}=Y_{17,31}$	2^{-1}
Y_{22}	$Y_{22,9}=Y_{21,9}$	2^{-1}
Y_{26}	$Y_{26,20}=Y_{25,20}, Y_{26,19}=Y_{25,19}$	2^{-2}
Y_{30}	$Y_{30,0}=Y_{29,0}, Y_{30,29}=Y_{29,29}, Y_{30,30}=Y_{29,30}$	2^{-3}
Y_{34}	$Y_{34,7} \vee \neg Y_{33,7}=1, Y_{34,10} \vee \neg Y_{33,10}=1$	2^{-1}
$R Q_{16}$		Negligible
$R Q_{28}$	$\left(R Q_{28} \text { 田 } 0 \times 8000\right)^{\lll 7}=R Q_{28}^{\lll 7} ⿴ 囗 十 0 \times 400000$	Negligible
$R Q_{35}$	$\left(R Q_{35} \text { 田 } 0 \mathrm{xfffffec} 0\right)^{\ll 15}=R Q_{35}^{\ll 15}$ ⿴囗十⿱⿰㇒一大口	Negligible
	Right Branch	$2^{-41-8}=2^{-4}$
X_{12}	$X_{12,18} \neq X_{13,28}, X_{12,11} \neq X_{14,21}$	2^{-2}
X_{11}	$X_{11,11} \neq X_{12,21}$	2^{-1}
$L Q_{13}$		Negligible
$L Q_{14}$	$\left(L Q_{14} ⿴ 囗 十\right.$ xffe00000）${ }^{\ll 7}=L Q_{14}^{\ll 7} ⿴ 囗 十 0 \times f 0000000$	$2^{-0.1}$
$L Q_{15}$	$\left(L Q_{15} \text { 田 } \mathrm{xfe}^{\text {a }} 0000\right)^{\ll 9}=L Q_{15}^{\ll 9}$ ⿴囗 $0 \times \mathrm{xc} 0000020$	$2^{-0.6}$
$L Q_{16}$	$\left(L Q_{16} \boxplus 0 \times \mathrm{xd} 0000020\right)^{\ll 8}=L Q_{16}^{\lll 8}$ 团1fd0	$2^{-0.3}$
	Filtering	2^{-2}
X_{13}	$X_{13,20} \neq X_{14,30}, X_{13,18} \neq X_{15,28}$	2^{-2}
X_{15}	$X_{15,13}=X_{14,3}, X_{15,4}=X_{14,26}$	2^{-2}
The n	umber of free bits in X_{14} and $X_{15}: 64-2-7=55$	
$L Q_{36}$		$2^{-0.2}$
$L Q_{37}$	$\left(L Q_{37} \text { 田 } 0 \mathrm{xf} 2000000\right)^{\ll 14}=L Q_{37}^{\ll 14}$ 田0xfffffc 80	$2^{-0.1}$
The exp	xpected number of valid $m_{4}: 2^{32-0.2-0.1-2}=2^{29.7}$	
The expected number of starting points for a fixed $X_{i}(16$		35）： $2^{55+29.7-4}$

Thus，the time complexity to mount semi－free－start collision attack on 38 steps of RIPEMD－160 can be evaluated with the formula 1 ，where

$$
\left(p_{1}, p_{2}, p_{3}, p_{4}, n\right)=(2,54,4,13.3,2)
$$

Therefore，the time complexity to find a semi－free－start collision for 38 steps of RIPEMD－160 is 2^{53} ．

Table 8：Other conditions influencing the attack for the 38－step differential characteristic

	Conditions	Probability
Y_{18}	$Y_{18,31}=Y_{17,31}$	2^{-1}
Y_{22}	$Y_{22,9}=Y_{21,9}$	2^{-1}
Y_{26}	$Y_{26,20}=Y_{25,20}, Y_{26,19}=Y_{25,19}$	2^{-2}
Y_{30}	$Y_{30,0}=Y_{29,0}, Y_{30,29}=Y_{29,29}, Y_{30,30}=Y_{29,30}$	2^{-3}
Y_{34}	$Y_{34,7} \vee \neg Y_{33,7}=1, Y_{34,10} \vee \neg Y_{33,10}=1$	2^{-1}
$R Q_{16}$	$\left(R Q_{16} \text { 田 } 0 \times 8000\right)^{\ll 6}=R Q_{16}^{\ll 6}$ 团 0×200000	Negligible
$R Q_{28}$	$\left(R Q_{28} \text { 田 } 0 \times 8000\right)^{\ll 7}=R Q_{28}^{\ll 7} ⿴ 囗 十 0 \times 400000$	Negligible
$R Q_{35}$	$\left(R Q_{35} \text { 田0xfffffc } 00\right)^{\ll 15}=R Q_{35}^{\ll 15}$ 田0xfe 400000	Negligible
$R Q_{38}$	$\left(R Q_{38} \text { 田 } 0 \times 7\right)^{\ll 6}=R Q_{38}^{\ll 6}$ ⿴囗十0 1 c 0	Negligible
	Right Branch	$2^{-45-8}=2^{-53}$
X_{12}	$X_{12,18} \neq X_{13,28}, X_{12,11}=X_{14,21}$	2^{-2}
X_{11}	$X_{11,11} \neq X_{12,21}$	2^{-1}
$L Q_{13}$	$\left(L Q_{13} \text { 田 } 0 \times 8000\right)^{\ll 6}=L Q_{13}^{\ll 6} ⿴ 囗 十 \times 200000$	Negligible
$L Q_{14}$	$\left(L Q_{14} \boxplus 0 \mathrm{xffe} 00000\right)^{\ll 7}=L Q_{14}^{\ll 7} ⿴ 囗 十 \mathrm{xf} 0000000$	$2^{-0.1}$
$L Q_{15}$		$2^{-0.6}$
$L Q_{16}$	$\left(L Q_{16} \boxplus 0 \mathrm{xd} 0000020\right)^{\ll 8}=L Q_{16}^{\ll 8} ⿴ 囗 十 \mathrm{x} 1 \mathrm{fd} 0$	$2^{-0.3}$
	Filtering	2^{-2}
X_{13}	$X_{13,20}=X_{14,30}, X_{13,18} \neq X_{15,28}, X_{13,27} \neq X_{14,5}$	2^{-3}
X_{15}	$X_{15,13}=X_{14,3}, X_{15,4}=X_{14,26}, X_{15,21} \neq X_{16,31}$	2^{-3}
The nu	umber of free bits in X_{14} and $X_{15}: 64-3-4=57$	
$L Q_{36}$	$\left(L Q_{36} ⿴ 囗 十 \text { 0xefffff0 }\right)^{\lll 7}=L Q_{36}^{\ll 7}$ 田0xffff81f8	$2^{-0.1}$
$L Q_{37}$		$2^{-0.2}$
$L Q_{38}$	$\left(L Q_{38} \boxplus 0 \mathrm{xe} 0000000\right)^{\ll 9}=L Q_{38}^{\ll 9}$ 团 $\mathrm{xlc}^{\text {c }}$	2^{-3}
The exp	xpected number of valid $m_{4}: 2^{32-0.1-0.2-3-10}=2^{18.7}$	
The expected number of starting points for a fixed $X_{i}(16 \leq i \leq 35): 2^{37+18.1-4}=2^{\text {\％}}$ ．		

5．2．3 Attack on $\mathbf{4 0}$ steps of RIPEMD－160

Based on Table 9 and Table 14，we can know that there will be $2^{32-2}=2^{30}$ possible values for X_{12} for a given starting point．After filtering，about $2^{30-2}=2^{28}$ are left．Since the conditions on
$X_{i}(36 \leq i \leq 39)$ holds with probability $2^{-21.8}$ ，the conditions on X_{13} hold with probability 2^{-4} ， and $L Q_{40}$ satisfies its equation with a probability close to 1 ，we use Strategy 2 to generate a new starting point，whose cost is about 2^{4} computations．Since the right branch holds with probability $2^{-74.6}$ ，it is expected to generate $2^{74.6-28}=2^{47.6}$ starting points．As Table 7 shows，$X_{i}(14 \leq i \leq 15)$ can provide sufficient freedom degree to generate so many starting points for a fixed solution for $X_{i}(16 \leq i \leq 35)$ ．Specifically，for a valid m_{4} ，there are 57 free bits in X_{14} and X_{15} ，while the conditions on X_{13} hold with probability 2^{-4} ．Therefore，for a fixed solution for $X_{i}(16 \leq i \leq 35)$ and a valid m_{4} ，we can expect to generate $2^{57-4}=2^{53}$ starting points in total．Indeed，we can also store some solutions for m_{4} in an array，whose memory requirement can be neglected．Then，as stated previously，we not only can choose valid values for X_{14} and X_{15} ，but also can randomly choose valid values for m_{4} from this array．In this way，the freedom degree of m_{4} can be utilized as well． Thus，the time complexity to mount semi－free－start collision attack on 40 steps of RIPEMD－160 can be evaluated with the formula 1 ，where

$$
\left(p_{1}, p_{2}, p_{3}, p_{4}, n\right)=(2,74.6,4,21.8,2)
$$

Therefore，the time complexity to find a semi－free－start collision for 40 steps of RIPEMD－160 is $2^{74.6}$ ．

Table 9：Other conditions influencing the attack for the 40－step differential characteristic

	Conditions	Probability
Y_{18}	$Y_{18,31}=Y_{17,31}$	2^{-1}
Y_{22}	$Y_{22,9}=Y_{21,9}$	2^{-1}
Y_{26}	$Y_{26,20}=Y_{25,20}, Y_{26,19}=Y_{25,19}$	2^{-2}
Y_{30}	$Y_{30,0}=Y_{29,0}, Y_{30,29}=Y_{29,29}, Y_{30,30}=Y_{29,30}$	2^{-3}
Y_{37}	$Y_{37,3} \vee \neg Y_{36,3}=1$	$2^{-0.5}$
Y_{38}	$Y_{38,17} \vee \neg Y_{37,17}=1, Y_{38,20} \vee \neg Y_{37,20}=1$	2^{-1}
$R Q_{16}$	$\left(R Q_{16} ⿴ 囗 十 0 \times 8000\right)^{\ll 6}=R Q_{16}^{\ll 6} ⿴ 囗 十 0 \times 200000$	Negligible
$R Q_{28}$	$\left(R Q_{28} \text { 田 } 0 \times 8000\right)^{\lll 7}=R Q_{28}^{\ll 7}$ 田 0×400000	Negligible
$R Q_{35}$	$\left(R Q_{35} \text { 田 } 0 \times 380\right)^{\ll 15}=R Q_{35}^{\ll 15}$ 田 $0 \times 1 \mathrm{c} 00000$	Negligible
$R Q_{38}$	$\left.\left(R Q_{38} ⿴ 囗 十 \text { 0xffffffff }\right)^{\lll 6}\right)^{<6}=R Q_{38}^{\ll 6} ⿴ 囗 十$ 0xfffffedc 0	Negligible
$R Q_{39}$		$2^{-0.1}$
$R Q_{40}$	$\left(R Q_{40} \text { 田 } 0 \mathrm{xfffffffc} 8\right)^{\ll 14}=R Q_{40}^{\ll 14}$ 田0xfff20000	Negligible
	Right Branch	$2^{-66-8.6}=2^{-74.6}$
X_{12}	$X_{12,18}=X_{13,28}, X_{12,11} \neq X_{14,21}$	2^{-2}
X_{11}	$X_{11,11} \neq X_{12,21}$	2^{-1}
$L Q_{13}$	$\left(L Q_{13} \text { 田 } 0 \times 8000\right)^{\ll 6}=L Q_{13}^{\ll 6} ⿴ 囗 \times 200000$	Negligible
$L Q_{14}$	$\left(L Q_{14} ⿴ 囗 十 \mathrm{xffe} 00000\right)^{\ll 7}=L Q_{14}^{\ll 7} ⿴ 囗 十 \mathrm{xf} 0000000$	$2^{-0.1}$
$L Q_{15}$	$\left(L Q_{15} ⿴ 囗 十\right.$ 0xefe00000）${ }^{\lll 9}=L Q_{15}^{\lll} ⿴ 囗 十$ 0xbfffffe0	$2^{-0.6}$
$L Q_{16}$	$\left(L Q_{16} \text { 田 } 0 x 2 \mathrm{fffffe}\right)^{\lll 8}=L Q_{16}^{\lll}$ 田0xffffe030	$2^{-0.3}$
	Filtering	2^{-2}
X_{13}	$X_{13,20}=X_{14,30}, X_{13,18}=X_{15,28}, X_{13,27}=X_{14,5}$	2^{-3}
X_{15}	$X_{15,13}=X_{14,3}, X_{15,4}=X_{14,26}, X_{15,21} \neq X_{16,31}$	2^{-3}
The n	umber of free bits in X_{14} and $X_{15}: 64-3-4=57$	
X_{36}	$X_{36,6} \vee \neg X_{35,6}=1$	$2^{-0.5}$
$L Q_{36}$	$\left(L Q_{36} \text { 田 } 0 \times 50 \mathrm{c} 3 \mathrm{fee} 0\right)^{\ll 7}=L Q_{36}^{\ll 7}$ 田 $0 \times 61 \mathrm{ff} 7028$	$2^{-1.3}$
$L Q_{37}$	$\left(L Q_{37} \text { 田 } 0 \mathrm{xd6008f90}\right)^{\ll 14}=L Q_{37}^{\ll 14}$ 田0x23e3f580	$2^{-0.5}$
$L Q_{38}$	$\left(L Q_{38} \boxplus 0 \mathrm{xdc} 1 \mathrm{c} 0000\right)^{\ll 9}=L Q_{38}^{\ll 9}$ 田0x37ffffb 8	$2^{-0.6}$
$L Q_{39}$	$\left(L Q_{39} \text { 田 } 0 \times 8800048\right)^{\ll 13}=L Q_{39}^{\ll 13}$ 田 $0 \times 8 \mathrm{f} 900$	$2^{-0.4}$
$L Q_{38}$		Negligible
The ex	xpected number of valid $m_{4}: 2^{32-1.3-0.5-0.6-0.4-19}=2^{10.2}$	
The expected number of starting points for a fixed $X_{i}(16 \leq i \leq 35): 2^{5 /+10.2-4}=2^{63.2}$		

5．2．4 Experiments

To make the above theoretical analysis more convincing，we carried out the following experiments． For the t－step $(t \geq 37)$ differential characteristic and its corresponding solution for $X_{i}(16 \leq i \leq 35)$ ， we exhaust all possible values for X_{36} to verify the conditions on $X_{i}(37 \leq i \leq t \leq 39)$ and record how many valid m_{4} exists．Moreover，for a fixed valid m_{4} ，we also randomly choose 2^{32} valid values for（ X_{14}, X_{15} ）and compute X_{13} ．Then，we count the success times when the conditions on X_{13} hold（we will also check the conditions on X_{40} if analyzing 40 steps of RIPEMD－160）．We list the experimental results in Table 10．Obviously，our theoretical analysis is reasonable．

Table 10: Experimental results

Steps	The number of valid m_{4}	Success times	Success probability
37	$0 \times 36 \mathrm{~d} 40000$	0×10001110	2^{-4}
38	$0 \times e 0000$	$0 x f f f f 6 \mathrm{f} 3$	2^{-4}
40	$0 \times 2 \mathrm{~d} 80$	$0 x f 1 \mathrm{bd} 6 \mathrm{ed}$	2^{-4}

6 Conclusion

Relying on the specifics of RIPEMD-160's message expansion, a semi-free-start collision attack framework for reduced RIPEMD-160 is developed. Compared with previous semi-free-start collision attack framework, this new framework is extendable and allows us to attack as many steps of RIPEMD-160 as possible. One more advantage of this new framework is negligible requirement of memory. As a direct result, we present the first practical semi-free-start collision for 36 steps of RIPEMD-160 with time complexity 2^{41}. Moreover, benefiting from this framework, we can mount semi-free-start collision attack on 37/38/40 steps of RIPEMD-160 with time complexity $2^{49} / 2^{53} / 2^{74.6}$ respectively, thus extending the previously best known semi-free-start collision attack on RIPEMD-160 by four steps.

References

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strengthened version of RIPEMD. In Dieter Gollmann, editor, Fast Software Encryption - FSE 1996, volume 1039 of LNCS, pages 71-82. Springer, 1996.
[Dob96] Hans Dobbertin. Cryptanalysis of MD4. In Dieter Gollmann, editor, Fast Software Encryption- FSE 1996, volume 1039 of LNCS, pages 53-69. Springer, 1996.
[DR06] Christophe De Cannière and Christian Rechberger. Finding SHA-1 characteristics: General results and applications. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology - ASIACRYPT 2006, volume 4284 of LNCS, pages 1-20. Springer, 2006.
[EMS14] Maria Eichlseder, Florian Mendel, and Martin Schläffer. Branching heuristics in differential collision search with applications to SHA-512. In Carlos Cid and Christian Rechberger, editors, Fast Software Encryption - FSE 2014, volume 8540 of LNCS, pages 473-488. Springer, 2014.
[LDM ${ }^{+}$18] Fukang Liu, Christoph Dobraunig, Florian Mendel, Takanori Isobe, Gaoli Wang, and Zhenfu Cao. Efficient collision attack frameworks for ripemd-160. Cryptology ePrint Archive, Report 2018/652, 2018. Accepted by CRYPTO 2019. https: / /eprint. iacr.org/2018/652.
[LMW17] Fukang Liu, Florian Mendel, and Gaoli Wang. Collisions and semi-free-start collisions for round-reduced RIPEMD-160. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017, volume 10624 of LNCS, pages 158-186. Springer, 2017.
[LP13] Franck Landelle and Thomas Peyrin. Cryptanalysis of full RIPEMD-128. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, volume 7881 of $L N C S$, pages 228-244. Springer, 2013.
[MNS11] Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 characteristics: Searching through a minefield of contradictions. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011, volume 7073 of LNCS, pages 288-307. Springer, 2011.
[MNS13] Florian Mendel, Tomislav Nad, and Martin Schläffer. Improving local collisions: New attacks on reduced SHA-256. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, volume 7881 of LNCS, pages 262-278. Springer, 2013.
[MNSS12] Florian Mendel, Tomislav Nad, Stefan Scherz, and Martin Schläffer. Differential attacks on reduced RIPEMD-160. In Dieter Gollmann and Felix C. Freiling, editors, Information Security - ISC 2012, volume 7483 of LNCS, pages 23-38. Springer, 2012.
[MPS $\left.{ }^{+} 13\right]$ Florian Mendel, Thomas Peyrin, Martin Schläffer, Lei Wang, and Shuang Wu. Improved cryptanalysis of reduced RIPEMD-160. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013, volume 8270 of LNCS, pages 484-503. Springer, 2013.
[OSS12] Chiaki Ohtahara, Yu Sasaki, and Takeshi Shimoyama. Preimage attacks on the stepreduced RIPEMD-128 and RIPEMD-160. IEICE Transactions, 95-A(10):1729-1739, 2012.
[SBK ${ }^{+}$17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The first collision for full SHA-1. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017, volume 10401 of LNCS, pages 570-596. Springer, 2017.
[WLF ${ }^{+}$05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of LNCS, pages 1-18. Springer, 2005.
[WSL17] Gaoli Wang, Yanzhao Shen, and Fukang Liu. Cryptanalysis of 48-step RIPEMD-160. IACR Transactions of Symmetric Cryptology, 2017(2):177-202, 2017.
[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of LNCS, pages 19-35. Springer, 2005.
[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3621 of LNCS, pages 17-36. Springer, 2005.

A Differential Characteristics

The 36 -step, 37 -step, 38 -step and 40 -step differential characteristic are displayed in Table 11, Table 12, Table 13 and Table 14 respectively.

Table 11: 36-step differential characteristic

Table 12: 37-step differential characteristic

$\Delta m_{12}=2^{15}$				
i X	$\pi_{1}(i)$	Y		$\pi_{2}(i)$
1-	0	----------------	---------------	5
2	1			14
3	2			7
4	3			0
5	4			9
6	5			2
7	6			11
8	7			4
9	8			13
10	9			6
11	10			15
12	11			8
13--- 0	12			1
14-- - u 0	13		- 0	10
$15-\mathrm{u}-\mathrm{-}$ - - - - 00	14		- 1	3
1610-0	15	--------n		12
17 u 1------1---1100---0-100	7			6
	4	-1		11
19 n 1----100----01---1u-0-00--	13	1		3
$200010 n 100 \mathrm{n} 0110-11 \mathrm{u} 1 \mathrm{uu} 1-0010-\mathrm{o}$	1			7
21001110u00-10110100010-u100011011	10			0
	6			13
	15			5
$24110 n 11 n n 1001 u u^{110 u 0 n 10 u 1 u 0 n u 001 u ~}$	3			10
2500n0010n 0nn0un0000nnn01u11u101-0	12			14
260nnnnn-01101011-10nnnnnn011u0u10	0		-0-01-	15
27010-0011nn0110u1100n01uu 00n 101 u 1	9		-1-11-	8
	5	- u		12
29u00-uuuu 00u0101un0-0011u0001n0uu	2			4
30111--001-1110u10u--0uuu00--uuu--	14	--------1--1		9
311--1-11---01-1nnn011-nnn--1---11	11	--1--------	-1	1
32--0011011011-u01n-01-111-1111101	8	--		2
33---011--- 0-1--0	3	--1	-1	15
34---- - 0-- 1	10	--1---0--0	-	5
$35-$ - 0-0	14	--u--n	- 1--	1
$36-$ - - - - - - - - - - - - - - - - - - - n - u	4	-----1--1	-n--	3
	9			7

Table 13: 38 -step differential characteristic

$\Delta m_{12}=2^{15}$				
i X	$\pi_{1}(i)$	Y		$\pi_{2}(i)$
1 -	0		-----	5
2	1			14
3	2			7
4	3			0
5	4			9
6	5			2
7	6			11
8	7			4
9	8			13
10	9	----		6
11	10	---------		15
12	11			8
13	12			1
14-- u 0	13		0	10
15 -	14		- 1	3
16-0-1-------- - - - - - - - - 1 uu	15	-n		12
$17 \mathrm{u}-\mathrm{-}$-----------1-0---1-000	7			6
$180-$---- - 1 -----0111----- - u	4			11
1901-101100--0--nu----n-01--10	13	--1-		3
20-----01u1---01uu1--10011	1			7
$21110111010110000011-$ - - u-00--1000	10			0
$221-00 n-u n u-u^{\text {a }}$ - nn 0-unnnnnnnnnnn $1-$	6		-0	13
23 n0uuu-100-10nuuu 0uuuu1nun 101 nu 11	15			5
$241011111101 u n 01 u 1001100000-1-1000$	3			10
25 uu1110n0010-01000-0nuu01u11101n0	12			14
26-1nu101u--u0-01--00u00--11u-011-	0		-0-01	15
27-1000uu0-10u1n0--0nnn 110--n-1--1	9		1-11	8
280u10u00--100-001110000-0000-01--	5	-n - un		12
291--01-0111n-01-00---n0n--01n	2			4
$30 \mathrm{n}-\mathrm{-0}-0 \mathrm{c}-11011-\mathrm{u}-\mathrm{-}-001-\mathrm{n} 10-\mathrm{-}$	14			9
3100 uuuuuu--10nu--1-00-10-- 1111--	11	--		1
	8	-		2
$330-01-$ - 1--1-un-- 0--0--1-00001---	3	--1	- 1	15
34 u11n--0--0-11---1--1--0----0---	10	--1---0		5
	14	-----u--n		1
	4	-----1--1-		3
37---- - 1- - 1 - u- -	9		-1--1---1--1	7
38	15			14

Table 14: 40-step differential characteristic

$\Delta m_{12}=2^{15}$					
i	i X	$\pi_{1}(i)$	Y		$\pi_{2}(i)$
	1	0			5
2	2	1			14
3	3	2			7
4	4	3			0
5	5	4			9
6		5			2
7		6			11
8		7			4
9		8			13
10		9			6
11		10			15
12		11			8
13		12			1
14		13		0	10
15	- u	14		-1	3
16	-0-1----------- - - - - - - n0u	15	---------		12
17	17 l ------------1-0----1-010	7			6
18		4	--1-----		11
19	19 --- - - 0----- - u----1u-0	13	- -1----		3
20	------ - u---- - n - u--- 00	1			7
21	$1----1-0---1-0-0$	10			0
22	-0--01-10-----u-1000-0------1-1	6		- 0	13
23	$100010 u 0---1 u-0---10-001--1-{ }^{-}$	15		-1	5
24	4-- 1-n0u 0--1-011110unnnn--01un--	3			10
25	-1-100010n0u0nnn 010011un 1001-10-	12			14
	unu001uu 001u01001u10--01111u11u1	0		-0-0	15
27	O11un011 nnuuuuuuuu 10000u 00u100u0	9		1-11	8
	00111 nun $0111 \mathrm{u} 1 \mathrm{nn} 0 \mathrm{nnnnnn10n00nnn1}$	5	- u		12
	nn 111010n0101010100--0u1un $10101 n$	2			4
	011-u11010000n-1101100uu u11101u0	14	-1--1		9
	n001u11-n-0u1110nn--u0100111110n	11	--1	--1	1
32	1000uun01-n1n011u01111010-n0nu01	8	--		2
33	Ou1110101-00u01u1-11n0-u--0111n0	3	--1	-1--1------1	15
34	4-11n-1n00-0u1-n---000001--00101-	10	--1---0--0	-0--0------1	5
35	0u000000--01--1----11111-000-n-	14	----- $\mathrm{n}-\mathrm{-}$ -		1
36	-1--------------- - - - - 0---- - 1 -	4	------1--1--	- 1	3
37	7------------ - - - - 1 u - 1	9	---1---- -	-- - 10-10--1--0	7
38	-------- - - 10-10--- - 1 -	15	$-0--0--1--1$	$-----u--u--0--1$	14
39	-------- - 0n-0n	8		--1--0--n--u	6
40		1			9

[^0]: - x represents one bit of the first message and x^{*} represents the same bit of the second message.

