New Semi-Free-Start Collision Attack Framework for Reduced RIPEMD-160

Fukang Liu^{1,5}, Christoph Dobraunig², Florian Mendel³, Takanori Isobe^{4,5}, Gaoli Wang¹ and Zhenfu Cao^{1,6}

¹ Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China liufukangs@163.com, {glwang, zfcao}@sei.ecnu.edu.cn ² Radboud University, Nijmegen, The Netherlands cdobraunig@cs.ru.nl ³ Infineon Technologies AG, Germany florian.mendel@gmail.com ⁴ National Institute of Information and Communications Technology, Tokyo, Japan ⁵ University of Hyogo, Hyogo, Japan takanori.isob@ai.u-hyogo.ac.jp ⁶ Coherene Sheerkin Center Dave Chere Laboratory Sheerking China

⁶ Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China

Abstract. RIPEMD-160 is a hash function published in 1996, which shares similarities with other hash functions designed in this time-period like MD4, MD5 and SHA-1. However, for RIPEMD-160, no (semi-free-start) collision attacks on the full number of steps are known. Hence, it is still used, e.g., to generate Bitcoin addresses together with SHA-256, and is an ISO/IEC standard. Due to its dual-stream structure, even semi-free-start collision attacks starting from the first step only reach 36 steps, which were firstly shown by Mendel et al. at Asiacrypt 2013 and later improved by Liu, Mendel and Wang at Asiacrypt 2017. Both of the attacks are based on a similar freedom degree utilization technique as proposed by Landelle and Peyrin at Eurocrypt 2013. However, the best known semi-free-start collision attack on 36 steps of RIPEMD-160 presented at Asiacrypt 2017 still requires 255.1 time and 232 memory. Consequently, a practical semi-free-start collision attack for the first 36 steps of RIPEMD-160 still requires a significant amount of resources. Considering the structure of these previous semi-free-start collision attacks for 36 steps of RIPEMD-160, it seems hard to extend it to more steps. Thus, we develop a different semi-free-start collision attack framework for reduced RIPEMD-160 by carefully investigating the message expansion of RIPEMD-160. Our new framework has several advantages. First of all, it allows to extend the attacks to more steps. Second, the memory complexity of the attacks is negligible. Hence, we were able to mount semifree-start collision attacks on 36 and 37 steps of RIPEMD-160 with practical time complexity 241 and 249 respectively. Additionally, we describe semi-free-start collision attacks on 38 and 40 (out of 80) steps of RIPEMD-160 with time complexity 253 and 2746, respectively. To the best of our knowledge, these are the best semi-free-start collision attacks for RIPEMD-160 starting from the first step with respect to the number of steps, including the first practical colliding message pairs for 36 and 37 steps of RIPEMD-160.

Keywords: hash function \cdot RIPEMD-160 \cdot freedom degree utilization \cdot semi-free-start collision attack

1 Introduction

In the 1990s, most popular hash functions, like MD4, MD5, SHA-0, RIPEMD-160 [DBP96] and SHA-1 followed a similar design strategy based on round functions involving modular additions, word-wise rotations, and XORs (ARX). For 4 out of the aforementioned hash functions,

MD4 [Dob96, WLF⁺05], MD5 [WY05], SHA-0 [WYY05b] and SHA-1 [WYY05a, SBK⁺17] practical collision attacks were shown and thus have been phased out in most applications. However, if we look at RIPEMD-160, no collision attack on the full number of rounds is known. Moreover, RIPEMD-160 is still used in several applications, e.g., to generate Bitcoin addresses together with SHA-256, and is still an ISO/IEC standard. Hence, getting more insight into the security of RIPEMD-160 is of practical interest and importance.

In contrast to MD4, MD5, SHA-0 and SHA-1, the compression function of RIPEMD-160 is of a more complex nature, since the chaining value is duplicated and processed in two branches. Both branches, hereby employ a slightly different round function and also the message expansion follows a different pattern. At the end of the compression function, both branches are merged again to form the 160-bit internal state or final hash value. This increased complexity seems to complicate the analysis, and in contrast to MD4 [Dob96, WLF⁺05], MD5 [WY05], SHA-0 [WYY05b] and SHA-1 [WYY05a, SBK⁺17], collision attacks on RIPEMD-160 do not reach the full number of rounds.

Sometimes, due to the difficulty to devise a collision attack on the hash function itself, cryptanalysts may turn to analyzing its underlying compression function. Therefore, the semi-free-start collision resistance and free-start collision resistance of the underlying compression function will be investigated. A semi-free-start collision is generated with two distinct messages and the same initial value, while a free-start collision is generated with two distinct messages and two distinct initial values. In the rest of this paper, we denote semi-free-start collision and free-start collision by SFS collision and FS collision respectively. The generic time complexity of the SFS collision attack and FS collision attack are both $2^{l/2}$ if the hash value is a *l*-bit value.

At Eurocrypt 2013, Landelle and Peyrin made a breakthrough [LP13] in the cryptanalysis of RIPEMD-128, whose structure is the same as that of RIPEMD-160. Specifically, they proposed a state-of-the-art technique to allow them to mount an SFS collision attack on full RIPEMD-128. Such a technique was quickly applied to analyze the compression function of RIPEMD-160 at Asiacrypt 2013. Consequently, significantly improved results for reduced RIPEMD-160 were obtained then, which were an SFS collision attack on 42 steps of RIPEMD-160 starting from an intermediate step and an SFS collision attack on 36 steps of RIPEMD-160 starting from the first step [MPS⁺13]. As follow-up works, an SFS collision attack on 48 steps of RIPEMD-160 starting from the first step intermediate step was achieved at ToSC 2017 [WSL17] and an improved SFS collision attack on 36 steps of RIPEMD-160 starting from the first step was achieved at Asiacrypt 2017 [LMW17].

As for the collision (not SFS collision) attack on reduced RIPEMD-160, the first attempt was made at Asiacrypt 2017 with rather high time complexity 2⁷⁰ [LMW17]. This attack follows the idea of using a differential characteristic that is sparse on the left branch and dense on the right branch, where message modification is used to fulfill as many conditions as possible on the dense right branch. Recently, at Crypto 2019 [LDM⁺19], a different strategy to find collisions was proposed, where the dense part is placed on the left branch while the sparse part is placed on the right branch. As a result, they provided the first colliding message pairs for 30 and 31 steps of RIPEMD-160 and a theoretical collision attack for up to 34 steps. A summary of the cryptanalytic results¹ for RIPEMD-160 is given in Table 1.

It should be noted that the two SFS collision attacks for reduced RIPEMD-160 starting from the first step share the same differential characteristic [MPS⁺13, LMW17]. Moreover, the underlying idea of the two SFS collision attacks is almost the same. Specifically, the dense parts with many differential conditions on both branches are firstly fixed. Then, the remaining free message words are utilized to achieve efficient merging at the initial value, which is following the idea from [LP13].

Up until now, there has not been a practical SFS collision example for the first 36 steps of RIPEMD-160. Moreover, the SFS collision attack on more steps of RIPEMD-160 starting from the first step was out of reach as well. Thus, we are motivated to further investigate the SFS collision

¹The sample code to verify the SFS collisions for 36 and 37 steps of RIPEMD-160 is available at https://github.com/Crypt-CNS/SFSCollision_SampleCode.git

resistance of reduced RIPEMD-160. To do so, we place the dense differential characteristic on the left branch and the sparse differential characteristic on the right branch in order to make the new SFS collision attack framework work efficiently, which follows a similar spirit as in [LDM⁺19]. The contribution of this paper is summarized below.

1.1 Our Contributions

With a new freedom degree utilization strategy, we develop an SFS collision attack framework for reduced RIPEMD-160. Different from previous SFS collision attack frameworks [MPS⁺13, LMW17] for RIPEMD-160 which require a costly degrees of freedom consumption to achieve efficient merging at the initial value, no merging phase is needed under the new attack framework. With such a new framework, we were able to extend the SFS collision attacks on reduced RIEPMD-160 to more steps. In addition, there are negligible memory requirements. Most importantly, combined with the use of automated techniques [MNS11, MNS13, EMS14] to solve the nonlinear differential characteristic for RIPEMD-160, improved SFS collision attacks for reduced RIPEMD-160 are obtained, as specified below.

- The SFS collision attack on 36 and 37 steps of RIPEMD-160 are achieved with time complexity 2⁴¹ and 2⁴⁹ respectively. In addition, we also provide the corresponding colliding message pairs.
- The SFS collision attack on 38 steps is achieved with time complexity 2^{53} .
- The SFS collision attack on 40 steps is achieved with time complexity $2^{74.6}$.

1.2 Organization

This paper is organized as follows. The notation, and description of RIPEMD-160 is given in Section 2. Then, we describe our SFS collision attack framework for reduced RIPEMD-160 in Section 3. Next, we discuss how to get a desirable differential characteristic in Section 4. Section 5 presents the application of our SFS collision attack framework to the discovered differential characteristics. Finally, the paper is concluded in Section 6.

2 Preliminaries

In this section, we will introduce the notations used in this paper and the specification of RIPEMD-160.

2.1 Notation

- 1. ≫, ≪, ≫, ⊕, ∨, ∧ and ¬ represent the logic operations *shift right, rotate left, rotate right, exclusive or, or, and, negate*, respectively.
- 2. \blacksquare and \blacksquare represent addition and subtraction modulo 2^{32} .
- 3. $M = (m_0, m_1, ..., m_{15})$ and $M' = (m'_0, m'_1, ..., m'_{15})$ represent two 512-bit message blocks split into 32-bit words m_i and m'_i .
- 4. K_{i}^{l} and K_{i}^{r} represent the constant used for left (l) and right (r) branch at round j.
- 5. Φ_j^l and Φ_j^r represent the 32-bit Boolean function for the left (*l*) and right (*r*) branch at round *j*.
- 6. s_i^l and s_i^r represent the rotation constant used at the left (l) and right (r) branch during step i.

Target	Attack Type	Steps	Time	Memory	Ref.
comp. function	preimage	31	2^{148}	2 ¹⁷	[OSS12]
hash function	preimage	31	2 ¹⁵⁵	2 ¹⁷	[OSS12]
		36/80 ^a	low	negligible	[MNSS12]
		42/80 ^a	$2^{75.5}$	2^{64}	[MPS+13]
		48/80 ^a	$2^{76.4}$	2^{64}	[WSL17]
		36/80	$2^{70.4}$	2^{64}	[MPS ⁺ 13]
comp. function	SFS collision	36/80	$2^{55.1}$	2^{32}	[LMW17]
-		36/80	2^{41}	negligible	Section 5.1
		37/80	2^{49}	negligible	Section 5.2
		38/80	2^{53}	negligible	Section 5.2
		40/80	$2^{74.6}$	negligible	Section 5.2
		30/80	2^{70}	negligible	[LMW17]
		30/80	$2^{35.9}$	2^{32}	[LDM ⁺ 19]
hash function	collision	31/80	$2^{41.5}$	2^{32}	[LDM ⁺ 19]
		33/80	$2^{67.1}$	2^{32}	[LDM ⁺ 19]
		34/80	274.3	2 ³²	[LDM ⁺ 19]

Table 1: Summary of preimage and collision attacks on reduced RIPEMD-160

^a An attack starting at an intermediate step.

- 7. $\pi_1(i)$ and $\pi_2(i)$ represent the index of the message word used at the left (*l*) and right (*r*) branch during step *i*.
- 8. X_i , Y_i represent the 32-bit internal state of the left (*l*) and right (*r*) branch updated during step *i*.
- 9. $X_{i,k}$ and $Y_{i,k}$ represent the (k + 1)-th bit of X_i and Y_i , where the least significant bit is the 1st bit and the most significant bit is the 32nd bit. For example, $X_{i,0}$ represents the least significant bit of X_i .
- 10. MIN(a, b) represents the minimal value of a and b. MIN(a, b) = a if $a \le b$ and MIN(a, b) = b if a > b.

We also adopt the concept of generalized conditions of De Cannière and Rechberger [DR06] presented in Table 2.

							e [Dittoo	1		
(x, x^{*})	(0,0)	(1,0)	(0,1)	(1,1)	((x, x^*)	(0,0)	(1,0)	(0,1)	(1,1)
?	\checkmark	\checkmark	\checkmark	\checkmark		3	\checkmark	\checkmark	-	_
-	\checkmark	_	-	\checkmark		5	\checkmark	-	\checkmark	-
х	_	\checkmark	\checkmark	-		7	\checkmark	\checkmark	\checkmark	_
0	\checkmark	—	_	-		А	_	\checkmark	_	\checkmark
u	_	\checkmark	-	-		В	\checkmark	\checkmark	-	\checkmark
n	_	-	\checkmark	-		С	_	-	\checkmark	\checkmark
1	_	-	-	\checkmark		D	\checkmark	-	\checkmark	\checkmark
#	-	-	-	-		E	-	\checkmark	\checkmark	\checkmark

 Table 2: Generalized conditions [DR06]

• *x* represents one bit of the first message and *x*^{*} represents the same bit of the second message.

2.2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function based on the Merkle-Damgård construction. So it is iterating a compression function H that takes as input a 512-bit message block M_i and a 160-bit chaining variable CV_i . We refer to [DBP96] for a detailed description of the RIPEMD-160 hash function and focus on the compression function next. The RIPEMD-160 compression function consists of two different parallel branches, which we call left and right branch, indicated by the use of X_i and Y_i , respectively. The compression function is segregated into 5 rounds of 16 steps each in both branches, leading to a total of 80 steps per branch.

2.2.1 Initialization

The compression function starts with an initialization, where the 160-bit chaining variable CV_i at the input is divided into five 32-bit words h_j (j = 0, 1, 2, 3, 4). Those five words h_j are used to initialize the state of the two branches:

$$\begin{array}{lll} X_{-4} = h_0^{\gg 10}, & X_{-3} = h_4^{\gg 10}, & X_{-2} = h_3^{\gg 10}, & X_{-1} = h_2, & X_0 = h_1. \\ Y_{-4} = h_0^{\gg 10}, & Y_{-3} = h_4^{\gg 10}, & Y_{-2} = h_3^{\gg 10}, & Y_{-1} = h_2, & Y_0 = h_1. \end{array}$$

The initial value (CV_0) corresponds to:

$$\begin{split} X_{-4} &= Y_{-4} = 0 \\ \text{xc059d148}, X_{-3} &= Y_{-3} = 0 \\ \text{x7c30f4b8}, X_{-2} &= Y_{-2} = 0 \\ \text{x1d840c95}, \\ X_{-1} &= Y_{-1} = 0 \\ \text{x98badcfe}, X_0 &= Y_0 = 0 \\ \text{xefcdab89}. \end{split}$$

2.2.2 Message Expansion

Each 512-bit input message block is divided into 16 32-bit message words m_i . The words m_i will be used for a single step in a permuted order π_1 and π_2 for left branch and right branch, respectively.

2.2.3 Step Function

At step *i* of round *j*, the internal state is updated in the following way.

$$\begin{split} LQ_i &= X_{i-5}^{\ll 10} \boxplus \Phi_j^l(X_{i-1}, X_{i-2}, X_{i-3}^{\ll 10}) \boxplus m_{\pi_1(i)} \boxplus K_j^l, \\ X_i &= X_{i-4}^{\ll 10} \boxplus (LQ_i)^{\ll s_i^l}, \\ RQ_i &= Y_{i-5}^{\ll 10} \boxplus \Phi_j^r(Y_{i-1}, Y_{i-2}, Y_{i-3}^{\ll 10}) \boxplus m_{\pi_2(i)} \boxplus K_j^r, \\ Y_i &= Y_{i-4}^{\ll 10} \boxplus (RQ_i)^{\ll s_i^r}, \end{split}$$

where i = (1, 2, 3, ..., 80) and j = (0, 1, 2, 3, 4). The details of the Boolean functions and round constants for RIPEMD-160 are given in Table 3.

Table 3: Boolean Functions and Round Constants in RIPEMD-160

Round j	ϕ^l_j	ϕ_j^r	K_j^l	K_j^r	Function	Expression
0	XOR	ONX	0x00000000	0x50a28be6	XOR(x, y, z)	$x \oplus y \oplus z$
1	IFX	IFZ	0x5a827999	0x5c4dd124	IFX(x, y, z)	$(x \land y) \oplus (\neg x \land z)$
2	ONZ	ONZ	0x6ed9eba1	0x6d703ef3	IFZ(x, y, z)	$(x \land z) \oplus (y \land \neg z)$
3	IFZ	IFX	0x8f1bbcdc	0x7a6d76e9	ONX(x, y, z)	$x \oplus (y \lor \neg z)$
4	ONX	XOR	0xa953fd4e	0x00000000	ONZ(x, y, z)	$(x \lor \neg y) \oplus z$

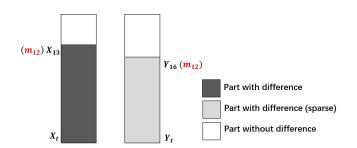


Figure 1: Attack on t steps of RIPEMD-160 by inserting difference at m_{12}

2.2.4 Finalization

The finalization is performed after all 80 steps have been executed in both branches. The five 32-bit words h'_j (j = 0, 1, 2, 3, 4) composing the output chaining variable are computed in the following way involving also the chaining value at the input of the compression function h_j (j = 0, 1, 2, 3, 4):

$$\begin{split} \dot{h_0} &= h_1 \boxplus X_{79} \boxplus Y_{78}^{\ll 10}, \\ \dot{h_1} &= h_2 \boxplus X_{78}^{\ll 10} \boxplus Y_{77}^{\ll 10}, \\ \dot{h_2} &= h_3 \boxplus X_{77}^{\ll 10} \boxplus Y_{76}^{\ll 10}, \\ \dot{h_3} &= h_4 \boxplus X_{76}^{\ll 10} \boxplus Y_{80}, \\ \dot{h_4} &= h_0 \boxplus X_{80} \boxplus Y_{79}. \end{split}$$

3 SFS Collision Attack Framework

In this section, we will present the details of the new SFS collision attack framework. For this framework, the message difference is inserted only at m_{12} , which is first used to update X_{13} and Y_{16} . For such a way to choose the message difference, the corresponding high-level presentation of the differential characteristic is depicted in Figure 1.

Since X_{13} is the first internal state with difference on the left branch and the boolean function in the first round on this branch is exclusive or (XOR), we can first confirm Observation 1 when constructing a differential characteristic.

Observation 1. There will be bit conditions on $X_{12} \oplus X_{11}^{\ll 10}$, $X_{13} \oplus X_{12}^{\ll 10}$ and $X_{14} \oplus X_{12}^{\ll 10}$. In other words, if X_{13} and X_{14} are fixed, some bits of X_{12} have to take fixed values in order to keep the conditions hold. To make the total number of the bit conditions on X_{12} small, the total number of active bits in X_{13} and X_{14} should be as small as possible.

Moreover, considering the specifics of the message expansion of RIPEMD-160, one more observation can be obtained, which will play an important role in our SFS attack framework. Observation 2 is specified below.

Observation 2. For the left branch, X_{17} is updated with m_7 in the second round. Besides, m_7 is used to update X_{42} in the third round.

For a better understanding of this paper, we also present partial information of the message expansion, as illustrated in Figure 2. To make our SFS work efficiently, similar to the collision attack presented at Crypto 2019 [LDM⁺19], we place the dense differential characteristic on the left branch and the sparse differential characteristic on the right branch.

3.1 Specification of the SFS collision attack framework

Based on the above strategy to construct a differential characteristic as well as the the observation of the message expansion of RIPEMD-160, an efficient SFS collision attack framework can be

<i>X</i> ₁₃	X ₁₄	X ₁₅	X ₁₆	X ₁₇										
<i>m</i> ₁₂	m ₁₃	<i>m</i> ₁₄	m ₁₅	m_7										
X ₁₈	X ₁₉	X_{20}	X ₂₁	X_{22}	X ₂₃	X_{24}	X 25	X ₂₆	X ₂₇	X ₂₈	X 29	X ₃₀	X_{31}	X ₃₂
m_4	m ₁₃	\boldsymbol{m}_1	m ₁₀	m_6	m_{15}	m_3	<i>m</i> ₁₂	\boldsymbol{m}_0	m_9	m_5	m_2	m ₁₄	m_{11}	m_8
X ₃₃	X ₃₄	X_{35}	X ₃₆	X_{37}	X_{38}	X 39	X_{40}							
m_3	m ₁₀	m ₁₄	m_4	m_9	m_{15}	m_8	\boldsymbol{m}_1							

Figure 2: Partial information of the message expansion of RIPEMD-160

discovered, as illustrated in Figure 3. Suppose our aim is to mount an SFS collision attack on t steps of RIPEMD-160. On the whole, the attack procedure can be divided into 3 steps as follows.

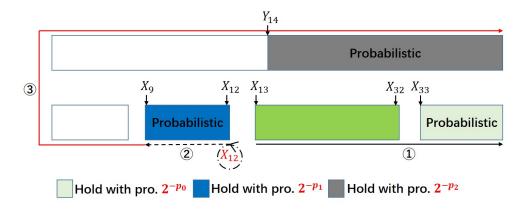


Figure 3: SFS collision attack framework for RIPEMD-160

- Step 1: Finding a starting point. Find a solution (starting point) for X_i ($13 \le i \le t$). With singlestep message modification, randomly choose values for X_i ($13 \le i \le 32$) while keeping the conditions on them satisfied. Based on Observation 2, all message words except m_7 will be fixed. The remaining work is to ensure that the conditions on X_i ($33 \le i \le t$) hold. Generally, the conditions on this part can be partially satisfied with dedicated multi-step message modification. However, it will require some manual work. As will be shown, finding a starting point is not the bottleneck of our attack framework. Therefore, we remove the dedicated hand-tuned multi-step message modification and use a non-optimized method to satisfy the conditions on X_i ($33 \le i \le t$) for simplicity.
- Step 2: **Filtering invalid** X_{12} . Suppose there are *n* bit conditions on X_{12} . Then, for a fixed starting point, *n* bits of X_{12} will be fixed, thus leaving 2^{32-n} possible values for X_{12} in total. For each possible value of X_{12} , we can compute m_7 as follows:

$$m_7 = (X_{17} \boxminus X_{13}^{\ll 10})^{\gg 7} \boxminus XOR(X_{16}, X_{15}, X_{14}^{\ll 10}) \boxminus X_{12}^{\ll 10} \boxminus K_0^l$$

Consequently, for each possible value of X_{12} , all message words will become fixed. Then, we compute backward until X_9 and check the bit conditions on $X_{12} \oplus X_{11}^{\ll 10}$ as well as the conditions on

$$LQ_i = (X_i \boxminus X_{i-4}^{\ll 10})^{\gg s_i^i} \ (13 \le i \le 16),$$

which are used to ensure the correct propagation of the modular difference of X_i (13 $\leq i \leq$ 16). If these conditions hold, move to Step 3. Otherwise, choose another possible value

for X_{12} and repeat. If all 2^{32-n} possible values are used up, start generating a new starting point and repeat Step 2.

Step 3: Verifying the right branch. Until this phase, all message words are fixed. Then, for the left branch, we can compute backward to obtain the initial value. At last, we compute forward to compute the internal states on the right branch. If the conditions on the right branch do not hold, return to Step 2. Otherwise, an SFS collision is found.

3.2 Generating a starting point

Note that when all possible values for X_{12} are used up, we have to generate another starting point, i.e. another solution for X_i (13 $\leq i \leq t$). Actually, after one starting point is obtained, a new starting point can be derived from it in negligible time, thus explaining why Step 1 is not the bottleneck of our attack framework.

In the following, we will expand on how to derive a new starting point from an existing one. For a better understanding of the next parts, we strongly suggest the readers can refer to the message expansion of RIPEMD-160 in Figure 2 since the next parts strongly rely on it.

There are two strategies to derive a new starting point for two different cases. Suppose the conditions on X_{13} hold with probability 2^{-p_3} and the conditions on X_i ($36 \le i \le t$) hold with probability 2^{-p_4} . The two strategies are as follows.

3.2.1 Strategy 1

This strategy is suitable for the case when $p_4 \le p_3$. The procedure to generate a new starting point can be described below.

Strategy 1. Randomly choose a value for X_i ($13 \le i \le 15$) while keeping the conditions on them satisfied. Then, modify m_4 , m_{13} and m_1 as follows to keep X_{18} , X_{19} and X_{20} the same.

$$\begin{split} m_4 &= (X_{18} \boxminus X_{14}^{\ll 10})^{\gg s_{18}^l} \boxminus IFX(X_{17}, X_{16}, X_{15}^{\ll 10}) \boxminus X_{13}^{\ll 10} \boxminus K_1^l, \\ m_{13} &= (X_{19} \boxminus X_{15}^{\ll 10})^{\gg s_{19}^l} \boxminus IFX(X_{18}, X_{17}, X_{16}^{\ll 10}) \boxminus X_{14}^{\ll 10} \boxminus K_1^l, \\ m_1 &= (X_{20} \boxminus X_{16}^{\ll 10})^{\gg s_{20}^l} \boxminus IFX(X_{19}, X_{18}, X_{17}^{\ll 10}) \vDash X_{15}^{\ll 10} \boxminus K_1^l. \end{split}$$

In this way, X_i (16 $\le i \le$ 35) will stay the same. However, since X_{36} is updated with m_4 , we have to recompute new values for X_i (36 $\le i \le t$) and verify whether the conditions on them can still hold. If they do not hold, start choosing another value for X_i (13 $\le i \le$ 15) while keeping the conditions on them satisfied and repeat the above procedure until the conditions on X_i (36 $\le i \le t$) hold. Consequently, the time to generate a new starting point is about 2^{p_4} computations.

3.2.2 Strategy 2

This strategy is suitable for the case when $p_3 < p_4$. The procedure to generate a new starting point can be described below.

Strategy 2. Randomly choose a value for X_i ($14 \le i \le 15$) while keeping the conditions on them satisfied. Then, we compute X_{13} by using X_i ($14 \le i \le 18$) and m_4 as follows.

$$X_{13} = ((X_{18} \boxminus X_{14}^{\ll 10})^{\gg s_{18}^{l}} \boxminus IFX(X_{17}, X_{16}, X_{15}^{\ll 10}) \boxminus m_4 \boxminus K_1^l)^{\gg 10}$$

Next, we verify the conditions on X_{13} and $LQ_{17} = (X_{17} \boxminus X_{13}^{\ll 10})^{\gg s_{17}^i}$. If they do not hold, start randomly choosing another valid value for X_i ($14 \le i \le 15$) and repeat until

$$\begin{array}{ll} m_{13} & = (X_{19} \boxminus X_{15}^{\ll 10})^{\gg s_{19}^l} \boxminus IFX(X_{18}, X_{17}, X_{16}^{\ll 10}) \boxminus X_{14}^{\ll 10} \boxminus K_1^l, \\ m_1 & = (X_{20} \boxminus X_{16}^{\ll 10})^{\gg s_{20}^l} \boxminus IFX(X_{19}, X_{18}, X_{17}^{\ll 10}) \boxminus X_{15}^{\ll 10} \boxminus K_1^l. \end{array}$$

In this way, X_i ($16 \le i \le 39$) will stay the same. Thus, for the attack on fewer than 40 steps, the time to generate a new starting point is about 2^{p_3} computations.

For the attack on 40 steps of RIPEMD-160, since X_{40} is updated with m_1 , we have to recompute a new value for X_{40} and check its conditions. If they do not hold, start choosing another new valid value for X_i ($14 \le i \le 15$) and repeat until a valid starting point is found. For the attack on 40 steps of RIPEMD-160, we only need to check whether LQ_{40} can satisfy its corresponding equation. As will be shown in the 40-step differential characteristic, such a probability is close to 1 and therefore the time to generate a starting point is also about 2^{p_3} computations.

As shown in **Strategy 2**, we fix the value for m_4 to keep the internal states X_i ($36 \le i \le t \le 39$) the same. In this case, the degrees of freedom to generate a new starting point are provided by the free bits of X_{14} and X_{15} . When the right branch holds with a relatively low probability, i.e. like the 40-step differential characteristic, a sufficient number of starting points are needed. Therefore, we can also use the degrees of freedom of m_4 . Specifically, we can first store all valid values for m_4 which can make the conditions on X_i ($36 \le i \le t \le 39$) hold in an array. This can be achieved by exhausting all valid values for X_{36} and compute X_i ($37 \le i \le t \le 39$) as well as check the conditions on them for a fixed solution for X_i ($16 \le i \le 35$). Then, instead of only randomly choosing a valid value for X_{14} and X_{15} , we can also randomly choose a valid value for m_4 from this array. In a word, to generate a new starting point, the degrees of freedom can be provided by X_{14} , X_{15} and m_4 . Such a slightly modified **Strategy 2** will require some memory to store all valid m_4 .

3.2.3 Generating the initial starting point

Indeed, the above two strategies to generate a new starting point imply that only one solution X_i ($16 \le i \le 35$) is needed. For such a solution, m_7 , m_4 , m_{13} and m_1 are not fixed. If $p_4 \le p_3$, we directly use **Strategy 1** to generate a starting point. If $p_3 < p_4$, we first exhaust all valid values for X_{36} and compute the corresponding m_4 (m_4 is used to update X_{36}) as well as X_i ($37 \le i \le t \le 39$). Record the values for m_4 which can make the conditions on X_i ($37 \le i \le t \le 39$) hold. Then, **Strategy 2** can be applied to find a starting point.

Obviously, finding a solution for X_i ($16 \le i \le 35$) cannot be the bottleneck since only three internal states X_{33} , X_{34} and X_{35} cannot hold trivially. In our implementation, when the number of conditions on X_{33} , X_{34} and X_{35} is small, we simply make them hold probabilistically, i.e. we repeat finding a solution for X_i ($16 \le i \le 32$) with single-step message modification until the conditions on X_i ($33 \le i \le 35$) hold. When the total number of conditions are not too small, we will again use a simple start-from-the-middle method to find a solution for X_i ($16 \le i \le 35$).

3.3 Complexity Evaluation

Although no differential characteristic is presented now, we can give a rough estimation of the time complexity of the SFS collision attack on t ($36 \le t \le 40$) steps of RIPEMD-160 before considering a specific differential characteristic. This is owing to the efficiency of our SFS collision attack framework.

Specifically, when a starting point is found, we can exhaust all valid values for X_{12} and initially filter them by checking the conditions on X_{11} and LQ_i ($13 \le i \le 16$). When all possible values for X_{12} are used up for a starting point, we can efficiently generate a new starting point in time MIN($2^{p_3}, 2^{p_4}$), where p_3 and p_4 are defined in Section 3.2.

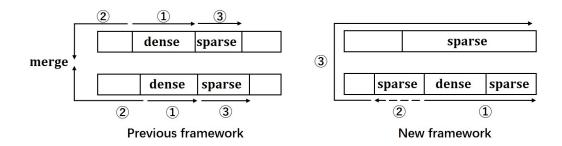


Figure 4: Comparison between our framework and previous frameworks [LMW17, MPS⁺13]

As shown in Figure 3, suppose the conditions on $X_{12} \oplus X_{11}^{\ll 10}$ and LQ_i ($13 \le i \le 16$) hold with probability 2^{-p_1} , and the fully probabilistic right branch holds with probability 2^{-p_2} . Moreover, we also suppose there are *n* bit conditions on X_{12} . Then, for each starting point, we will verify the right branch with different m_7 for about 2^{32-n-p_1} times. The time complexity of this phase (exhausting all possible values of X_{12} and checking the right branch) can be estimated as:

$$T_0 = \frac{4}{80} \cdot 2^{32-n} + \frac{13+t}{80} \cdot 2^{32-n-p_1}.$$

As will be shown, p_1 will be very small in our discovered differential characteristic, i.e. $p_1 \approx 2$. Therefore, we roughly estimate the time complexity of this phase as

$$T_0 = \frac{4}{80} \cdot 2^{32-n} + \frac{13+t}{80} \cdot 2^{32-n-p_1} \approx 2^{32-n-p_1}.$$

However, the right branch holds with probability 2^{-p_2} . Thus, it is expected to verify the right branch for about 2^{p_2} times under our SFS collision attack framework in order to find an SFS collision. Since each starting point can only provide about 2^{32-n-p_1} attempts, we need to have about $2^{p_2-(32-n-p_1)} = 2^{p_1+p_2+n-32}$ starting points. Suppose only one solution for X_i ($16 \le i \le 35$) is enough, which means m_4 , X_{14} and X_{15} can provide sufficient degrees of freedom to generate $2^{p_1+p_2+n-32}$ starting points. Then, apart from the initial starting point, each starting point can be generated with time MIN(2^{p_3} , 2^{p_4}). Thus, the total time complexity of our SFS collision attack on *t* steps of RIPEMD-160 is

$$T = MIN(2^{p_3}, 2^{p_4}) \times 2^{p_1 + p_2 + n - 32} + 2^{p_1 + p_2 + n - 32} \times 2^{32 - n - p_1}$$

= MIN(2^{p_3}, 2^{p_4}) \times 2^{p_1 + p_2 + n - 32} + 2^{p_2}.

As will be shown in the differential characteristics, $p_1 \approx 2$, MIN $(2^{p_3}, 2^{p_4}) \leq 2^5$ and $n \leq 3$. Thus, we have

$$T = \operatorname{MIN}(2^{p_3}, 2^{p_4}) \times 2^{p_1 + p_2 + n - 32} + 2^{p_2} \le 2^{5 + 2 + p_2 + 3 - 32} + 2^{p_2} \approx 2^{p_2}.$$
 (1)

In other words, under our SFS collision attack framework, the time complexity to find an SFS collision for *t* steps of RIPEMD-160 is fully dominated by the probabilistic right branch.

3.4 Advantage

As can be observed, our new SFS collision attack framework is different from previous ones presented at Asiacrypt 2013 [MPS⁺13] and Asiacrypt 2017 [LMW17], as depicted in Figure 4. Compared with the SFS collision attack frameworks for 36 steps of RIPEMD-160 [LMW17, MPS⁺13], our new SFS collision attack framework can bring the following three advantages.

- The memory complexity is negligible for our new framework, while it is 2³² in previous work [LMW17, MPS⁺13] after an optimization based on [LMW17]. It should be noted that 2³² memory is practical in a way. However, it will be still somewhat expensive for a parallel search.
- Our new framework allows us to mount SFS collision attack on more steps of RIPEMD-160 when inserting a message difference at the message word m_{12} . However, it seems difficult to attack more steps when adopting the framework [LMW17, MPS⁺13] by inserting difference at m_7 . As will be shown, the new framework can be used to mount SFS collision attack on 36/37/38/40 steps of RIPEMD-160.
- The framework can provide significantly improved results for the SFS collision attack on reduced RIPEMD-160.

3.4.1 Remark

With the start-from-the-middle structure, while it is hard to turn an SFS collision attack into a collision attack due to the match with the predefined initial value, it is easy to turn a collision attack into an SFS collision attack.

For the dense-left-and-sparse-right (DLSR) collision attack framework in [LDM⁺19], an intuitive idea to convert it into an SFS collision attack framework is to remove the connecting phase. Specifically, the starting point is a solution for X_i ($11 \le i \le 23$) in the DLSR framework [LDM⁺19]. Then, the attacker can always first keep the conditions on X_i ($24 \le i \le 32$) satisfied with single-step message modification since their corresponding message words are used for the first time. Finally, for each valid value for X_i ($24 \le i \le 32$), all message words become fixed and therefore the attacker can compute the remaining internal states on both branches and verify their conditions.

For the 34-step differential characteristic in [LDM⁺19], the probability that the conditions on the remaining internal states hold is not too low, i.e. greater than 2^{-40} , one can repeat choosing valid values for X_i ($24 \le i \le 32$) with single-step message modification and verify these conditions. Once they are satisfied, an SFS collision is found. Obviously, the time complexity to find an SFS collision for 34 steps of RIPEMD-160 will not exceed 2^{40} and is practical. However, if it is directly applied to a longer differential characteristic, one has to deal with the conditions in the third round on the left branch.

Compared with the above naive SFS collision attack framework derived from the DLSR collision attack framework in [LDM⁺19], our new framework adopts a better freedom degree utilization strategy, thus performing better for a longer differential characteristic. In our new framework, the starting point is a solution for X_i (13 $\leq i \leq t$) while it is a solution for X_i (11 $\leq i \leq 23$) in [LDM⁺19]. Especially, we also show that the total time complexity is fully dominated by the right branch under our new SFS collision attack framework if a suitable differential characteristic is obtained. Determining such an almost optimal freedom degree utilization strategy is obviously non-trivial.

4 Differential Characteristics

Our SFS collision attack procedure to find a semi-free-collision for reduced RIPEMD-160 has been explained in detail in Section 3. Thus, the next task is to find a suitable differential characteristic to make the framework work efficiently. Thanks to the use of automated techniques [MNS11, MNS13, EMS14], this task can be finished efficiently. Thus, the remaining work is to add some constraints on the differential characteristic before the search in order to find a desirable one.

As explained in Section 3, once a solution for the starting point is found, we can immediately utilize the degrees of freedom provided by X_{12} . Besides, there will be a filtering phase to filter invalid X_{12} . We expect there are sufficient valid X_{12} left after filtering. Thus, the desirable differential characteristic have the following properties.

- There should be only one active bit in X_{12} so that there is only one bit condition on X_{11} .
- The probability that $LQ_i = (X_i \boxminus X_{i-4}^{\ll 10})^{\gg s_i^l}$ (13 $\leq i \leq 16$) satisfy their corresponding equations should be as high as possible.
- The total number of active bits in X_{13} and X_{14} should be as small as possible so that there are a few bit conditions on X_{12} . This is to ensure X_{12} can take as many possible values as possible before filtering.

When taking the generation of new starting points into account, we can expect that the cost is as small as possible. Besides, there should be sufficient degrees of freedom provided by X_{14} and X_{15} and m_4 . Thus, the desirable differential characteristic should have the following extra properties.

- The total number of active bits in X_{15} , X_{16} , X_{17} should be as small as possible. Besides, the probability that $LQ_i = (X_i \boxminus X_{i-4}^{\ll 10})^{\gg s_i^l} (17 \le i \le 19)$ satisfy their corresponding equations should be as high as possible. In this way, it is expected that X_{14} and X_{15} can provide sufficient degrees of freedom.
- The probability that the conditions on X_i (36 $\le i \le t \le$ 39) hold should not be too small. Then, we can also utilize the degrees of freedom provided by m_4 .

In a word, the differential characteristic located at X_i ($13 \le i \le 17$) and X_i ($36 \le i \le t$) should be as sparse as possible. Then, we can solve the nonlinear differential characteristic located at X_i ($18 \le i \le 35$) with the use of automated techniques [MNS11, MNS13, EMS14]. The desirable discovered differential characteristics are displayed in Table 12, Table 13, Table 14 and Table 15 in Appendix A respectively. In addition, we also provide the solution for X_i ($16 \le i \le 35$) in Table 4.

As will be shown, the colliding message pairs for 36 and 37 steps of RIPEMD-160 have been found. For 38 steps of RIPEMD-160, the time complexity is 2^{53} , which may become practical with more powerful computing resources. However, such powerful computing resources are out of our reach. For the attack on 39 steps under our framework, the right branch will hold with probability about 2^{-59} , suggesting that the time complexity will be about 2^{59} if a suitable differential characteristic can be found. Thus, for the attack with relatively high time complexity, we focus on more steps. In other words, we will concentrate on the theoretical SFS collision attack on 40 steps of RIPEMD-160.

5 Application

In this section, we present the results of the new SFS collision attack on 36/37/38/40 steps of RIPEMD-160. As our attack framework requires, we have to focus on the conditions on the following part:

- 1. The conditions on the right branch, which will influence the whole time complexity.
- 2. The conditions on X_{12} , which will influence the total number of possible values for X_{12} before filtering.
- 3. The conditions on X_{11} and LQ_i (13 $\leq i \leq 16$), which will influence the filtering phase.
- 4. The conditions on X_{13} and LQ_{17} , which will influence the time to generate a new starting point.
- 5. The conditions on X_i (14 $\leq i \leq$ 15), which will influence the degrees of freedom to generate a new starting point. We stress here that we have added extra conditions on X_{14} and X_{15} to make LQ_i (18 $\leq i \leq$ 19) satisfy their equations. Therefore, even if X_{14} and X_{15} are changed, LQ_i (18 $\leq i \leq$ 19) will always satisfy their equations.
- 6. The conditions on X_i ($36 \le i \le t$), which will influence the total number of valid m_4 . In other words, it will also influence the degrees of freedom to generate a starting point.

Table 4: Solution for X_i (16 $\leq i \leq$ 35)

		for X_i (16 $\le i \le 35$)				
	36 steps	37 steps				
m_0	= 0x6c2c8526,m ₂ = 0x16188d15,	$m_0 = 0 \times 2 = 3 = 5 d, m_2 = 0 \times c = 5 = 0 \times c = 0 \times$				
m_3	$= 0 \times c 6 c 5 d a 57, m_5 = 0 \times f 7 a 7 a 97 a,$	$m_3 = 0 \times dc1f16ce, m_5 = 0 \times 848cc0fe,$				
m_6	$= 0 \times a7 \text{cbbf38}, m_8 = 0 \times b6477677,$	$m_6 = 0 \times f11 a a 5 a 3, m_8 = 0 \times 9 e 6 9 1 4 b 7,$				
m_9	$= 0 \times 47 f 24 a 3 e, m_{10} = 0 \times b 1 b d f 3 b 5,$	$m_9 = 0 \times \text{fe}96a9cf, m_{10} = 0 \times \text{da}48b5c6,$				
m_{11}	$= 0 \times 78aaa252, m_{12} = 0 \times 69a579f0,$	$m_{11} = 0 \times 59 b4296 f, m_{12} = 0 \times 14 a47 a10,$				
m_{14}	$= 0 \times b \times 877480, m_{15} = 0 \times 5 \times 5 \times 647e.$	$m_{14} = 0 \times 3 b 3 e 4 8 37, m_{15} = 0 \times 7 f 4 d 5 b 3 f.$				
X_{16}	101001111011110011u100111110n1100	X ₁₆ 101010000010001101n1000101uu0110				
X_{17}	n0010101101100111100110111101111	X ₁₇ u1000100111000111001111001000100				
X_{18}	010001011110111001111101nu001001	X ₁₈ 00000000010011111u0001001u111000				
X_{19}	1100110111011111u010100n00100001	X ₁₉ n1111110100011000110111u10000001				
X_{20}	11010000110001101n10001011010000	X ₂₀ 0010n100n0110111u1uu110010100110				
X_{21}	nnnn1nn10101111101011nu110100u10	X ₂₁ 001110u000101101000100u100011011				
X_{22}	1001001nu1101u0n1001n1nuununnu11	X ₂₂ 1101100u10u000un0100001uuuuu1000				
X_{23}	nn110u11n10nu100n001nnn10u11nnu1	X ₂₃ lun11nuu11100u0u11u1uuun1001010u				
X_{24}	1101nu0010uun01nu1n0000nn1101u10	X ₂₄ 110n11nn1001uu110u0n10u1u0nu001u				
X_{25}	11uu1nn10n011001n0u01uuu1n101uuu	X ₂₅ 00n0010n0nn0un0000nnn01u11u10100				
X_{26}	1101011u1un0u100u01uuuuuu0010010	X ₂₆ 0nnnnn001101011110nnnnnn011u0u10				
X_{27}	0u11u0010011n111uuun001111000111	X ₂₇ 01000011nn0110u1100n01uu00n101u1				
X_{28}	11000100n11nnn0n11100n010n0n0nn1	X ₂₈ 1nu11111uu1un0u01n0n1nnnn1100n00				
X_{29}	01n00nu000u01nnu101uuu0ununun11n	X ₂₉ u001uuuu00u0101un010011u0001n0uu				
X_{30}	n1u01n10u010011n000110100000un1u	X ₃₀ 1110000101110u10u100uuu0010uuu01				
X_{31}	01n1000nnn01101010110111nnn0110u	X ₃₁ 11011110010101nnn0110nnn10110111				
X_{32}	10n0101000000011111001001000010u	X ₃₂ 0000110110111u01n001011101111101				
X_{33}	01n0001101101000100100001000110u	X ₃₃ 10110110000011110111111011011001				
X_{34}	01010101010010111110101000111111	X ₃₄ 01011101011010100010101100001110				
X_{35}	101100001011110111111101111011101					
2135	10110000101111011111110111101101	X ₃₅ 00001111000001010111110011000100				
35	38 steps	X ₃₅ 00001111000001010111110011000100 40 steps				
<i>m</i> ₀	38 steps	40 steps				
m_0 m_3	<u>38 steps</u> = 0xc32cb8b2, <i>m</i> ₂ = 0xdcebf941,	$\frac{40 \text{ steps}}{m_0 = 0 \times 31973617, m_2 = 0 \times 31533668,}$				
m_0 m_3 m_6	<u>38 steps</u> = 0xc32cb8b2,m ₂ = 0xdcebf941, = 0x473889d3, m ₅ = 0x38875789,	$\frac{40 \text{ steps}}{m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, m_2 = 0 \times 97ccd10f, m_3 = 0 $				
m ₀ m ₃ m ₆ m ₉	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0x473889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a,	$\begin{array}{c} 40 \text{ steps} \\ m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times 1631612, m_5 = 0 \times 97000000000000000000000000000000000$				
$m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11}$	38 steps = 0xc32cb8b2,m ₂ = 0xdcebf941, = 0x473889d3,m ₅ = 0x38875789, = 0xcc53e680,m ₈ = 0xb8dce09a, = 0xcb87a927,m ₁₀ = 0x67c766e5,	$\begin{array}{r} 40 \text{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times 1631612, m_5 = 0 \times 97700000000000000000000000000000000$				
$m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14}$	38 steps = 0xc32cb8b2,m ₂ = 0xdcebf941, = 0x473889d3,m ₅ = 0x38875789, = 0xcc53e680,m ₈ = 0xb8dce09a, = 0xcb87a927,m ₁₀ = 0x67c766e5, = 0x9c0866a4,m ₁₂ = 0x6dcd4ef1,	$\begin{array}{r} 40 \text{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times 6131642, m_5 = 0 \times 97 \times 100164, \\ m_6 = 0 \times 41688661, m_8 = 0 \times 69314232, \\ m_9 = 0 \times 55233113, m_{10} = 0 \times 10709435, \\ m_{11} = 0 \times 94411666, m_{12} = 0 \times 11550016, \\ \end{array}$				
$m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \overline{X_{16}}$	$\begin{array}{c} 38 \ steps \\ = 0 \ xc32 \ cb \ 8b2, m_2 = 0 \ xd \ cb \ 5941, \\ = 0 \ x473 \ 889 \ d3, m_5 = 0 \ x38875789, \\ = 0 \ xc53 \ e680, m_8 = 0 \ xb \ 8d \ cc09a, \\ = 0 \ xcb87a \ 927, m_{10} = 0 \ x67c766e5, \\ = 0 \ x9c0 \ 866a4, m_{12} = 0 \ xd \ cd \ 4ef1, \\ = 0 \ x74e \ 28f11, m_{15} = 0 \ x898b12aa. \\ 0001000101011111110000011100011100 \\ u11110101000001110001110001110 \\ \end{array}$	$\begin{array}{r} 40 \text{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 19ec64c9, m_{15} = 0 \times 86c9080. \end{array}$				
$m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \overline{X_{16}}$	$\begin{array}{c} 38 \ steps \\ = 0 \ xc32 \ cb \ 8b2, m_2 = 0 \ xd \ cb \ 5941, \\ = 0 \ x473 \ 889 \ d3, m_5 = 0 \ x38875789, \\ = 0 \ xcc53 \ cb \ 8b3, m_8 = 0 \ xb \ 8d \ cc \ 9a, \\ = 0 \ xcb87a \ 927, m_{10} = 0 \ x67c76665, \\ = 0 \ x9c0 \ 866 \ 4a, m_{12} = 0 \ x6d \ cd \ 4ef1, \\ = 0 \ x74c28f11, m_{15} = 0 \ x898b12aa. \\ 000100010111111110000011100011100 \\ u11110101000001110001110001110 \\ \end{array}$	$\begin{array}{r} 40 \text{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 315533668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 19ec64c2, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \end{tabular}$				
$ \begin{array}{c} m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ X_{16} \\ X_{17} \end{array} $	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0x473889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a, = 0xcb87a927,m10 = 0x67c766e5, = 0x9c0866a4,m12 = 0x6dcd4ef1, = 0x74e28f11,m15 = 0x898b12aa. 0001000101111111110000101u1100 u11110100000111000011100001110 010101111001000111100101000 010101100101000011100110100101000	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688661, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0hlb, \\ m_{14} = 0 \times 19ec64c9, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \ 001110010011011100111101n001001 \\ X_{17} \ u111011000110110110000111000001 \\ X_{18} \ 000001010101101011110000011 \\ X_{19} \ 1000011100010110000011 \\ \end{array}$				
$\begin{array}{c} m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ X_{16} \\ X_{17} \\ X_{18} \end{array}$	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0x473889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a, = 0xcb87a927,m10 = 0x67c766e5, = 0x9c0866a4,m12 = 0x6dcd4ef1, = 0x74e28f11,m15 = 0x898b12aa. 000100010101111111000011100011100 010101101000011100001110001110 0101011101010101101001010001010000100000					
$\begin{array}{c} m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \end{array}$	$\frac{38 \text{ steps}}{2}$ = 0xc32cb8b2,m ₂ = 0xdcebf941, = 0x473889d3,m ₅ = 0x38875789, = 0xcc53e680,m ₈ = 0xb8dce09a, = 0xcb87a927,m ₁₀ = 0x67c766e5, = 0x9c0866a4,m ₁₂ = 0x6dcd4ef1, = 0x74e28f11,m ₁₅ = 0x898b12aa. 000100010101111111000011100011100 ull1110010000111000011100011100 010101111100100	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 3155a3668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 19ec64c2, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \ 00111001001101110001111010000011 \\ X_{17} \ ull10100010101101011010000011 \\ X_{19} \ 0000010100110100011110000001 \\ X_{20} \ 1110011u11001n0010000000000000000000000$				
$\begin{array}{c} m_{0} \\ m_{3} \\ m_{6} \\ m_{9} \\ m_{11} \\ m_{14} \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \end{array}$	$\frac{38 steps}{} \\ = 0 \times c32 cb 8b2, m_2 = 0 \times dc eb f941, \\ = 0 \times 473889d3, m_5 = 0 \times 38875789, \\ = 0 \times cc53 e680, m_8 = 0 \times b8 dc e09a, \\ = 0 \times cb 87a927, m_{10} = 0 \times 67c76665, \\ = 0 \times 9c0866a4, m_{12} = 0 \times 6dc d4 ef1, \\ = 0 \times 74e28f11, m_{15} = 0 \times 898b12aa. \\ 00010001011111110000011100011100011100 \\ 011011110010000111000011100011100 \\ 01010111100100001110001110010100 \\ 010000011101101001110101010$	$\begin{array}{c} 40 \ {\rm steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 315533668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 19ec64c9, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \ 00111001001101110101110100001110100001 \\ X_{17} \ u111011000101101011111000001110100001 \\ X_{18} \ 000001010101101001111100000011 \\ X_{19} \ 100001110001011000010111100000011 \\ X_{20} \ 1111001000100100010010000000 \\ X_{21} \ 100101111000001000010010001000 \\ X_{22} \ 1010010101010100010001001000101100 \\ \end{array}$				
$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \hline \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ \end{array}$	$\frac{38 steps}{} = 0 \times c32 cb8 b2, m_2 = 0 \times dce bf941, \\ = 0 \times d73889 d3, m_5 = 0 \times 38875789, \\ = 0 \times c53 e680, m_8 = 0 \times b8 dce09a, \\ = 0 \times cb87 a927, m_{10} = 0 \times 67 c76 6e5, \\ = 0 \times 9 \times c0866 a4, m_{12} = 0 \times 6d cd4e f1, \\ = 0 \times 74 e28 f11, m_{15} = 0 \times 898 b12 aa. \\ 0001000101011111111000011100011100 \\ u111110100000111000011100011100 \\ u1111101010000111000011100011000$	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times f c 3f f ea 2, m_5 = 0 \times 97 c c d 10 f, \\ m_6 = 0 \times 41688661, m_8 = 0 \times 69 a 1 d 2a 2, \\ m_9 = 0 \times 5b 2 33163, m_{10} = 0 \times 1c7 c 9 435, \\ m_{11} = 0 \times 9441 f 6e b, m_{12} = 0 \times 1f 5f 0 b 1b, \\ m_{14} = 0 \times 19 e c 64 c 9, m_{15} = 0 \times 86 c 90 80. \\ \hline X_{16} \ 001110010011011101000111101000011 \\ X_{17} \ u1110110001101101101000111000001 \\ X_{18} \ 000001010101101000111110000001 \\ X_{19} \ 1000011100010110000111110000001 \\ X_{20} \ 11110011u11011n001001001001001 \\ X_{21} \ 1000101010100100100100100000 \\ X_{22} \ 100010101010100111000111000101101 \\ X_{23} \ 1000100100100100100101001111 \\ \end{array}$				
$\begin{array}{c} \hline \\ \hline \\ \hline \\ m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \hline \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ \end{array}$	$\frac{38 steps}{} \\ = 0 \times c 32 c b 8b 2, m_2 = 0 \times d c c b 941, \\ = 0 \times 47 388 9d3, m_5 = 0 \times 388 7578 9, \\ = 0 \times c c 5 368 0, m_8 = 0 \times b 8 d c 09a, \\ = 0 \times c b 87 a 927, m_{10} = 0 \times 67 c 76 6e5, \\ = 0 \times g c 866 a 4, m_{12} = 0 \times 6 d c d ef1, \\ = 0 \times 74 e 28 f 11, m_{15} = 0 \times 89 8b 12 a a. \\ 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0$	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 3155a3668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 19ec64c9, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \ 001110010011011100001110000110001 \\ \chi_{17} \ u111011000101101101000011000011 \\ \chi_{18} \ 00000101010101011110000010010010 \\ \chi_{19} \ 10000111001010000100100100010011 \\ \chi_{21} \ 1010110110000000000000000 \\ \chi_{22} \ 10100110010100011000010010001000000 \\ \chi_{22} \ 10001010101001100001000100010000000 \\ \chi_{23} \ 100010001000110000110000100000000 \\ \chi_{24} \ 100011000101001110000010000000000000$				
$\begin{array}{c} \hline \\ \hline \\ \hline \\ m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ X_{25} \end{array}$	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0x473889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a, = 0xcb87a927,m10 = 0x67c766e5, = 0x9c0866a4,m12 = 0x6dcd4ef1, = 0x74e28f11,m15 = 0x898b12aa. 00010001010111111100001110001110 010101101000011100001110001100 010101101010001110001110001110 0101011010100011100011100011100 0000000111011011010101010101 01010110100001100011000110001 0000001110110100011000110001 0100010101010001100011000110001 000000111011010001100011000110001 000000111011010001100011000110001 000000111011010001100011000110001 000000111011010001100011000110001 0000001110110100011000110001100001 0000001110011000010001000100010001 0000001110110100010001000100010001	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 315533668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10 f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9461f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 19ec64c9, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \end{tabular} 00111001001100111101000011 \\ X_{17} \end{tabular} 1000011001101011110000001 \\ X_{10} \end{tabular} 0000010101010101111000001010 \\ X_{20} \end{tabular} 110010010000000000000000000 \\ X_{21} \end{tabular} 10001010000000000000000000000 \\ X_{22} \end{tabular} 10001010101000101000100000000 \\ X_{22} \end{tabular} 1000100101000100000000000000000000000$				
$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \hline \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ X_{25} \\ X_{26} \end{array}$	$\frac{38 steps}{} \\ = 0 \times c32 cb8b2, m_2 = 0 \times dcebf941, \\ = 0 \times 473889d3, m_5 = 0 \times 38875789, \\ = 0 \times cc53e680, m_8 = 0 \times b8dce09a, \\ = 0 \times cb87a927, m_{10} = 0 \times 67c766e5, \\ = 0 \times 9c0866a4, m_{12} = 0 \times 6dcd4ef1, \\ = 0 \times 74e28f11, m_{15} = 0 \times 898b12aa. \\ 00010001010111111000011100011100 \\ 01010111100100011100001110001100 \\ 01010110101001011100001110010100 \\ 010000101101010000111000110000110000 \\ 11001100$	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 315533668, \\ m_3 = 0 \times fc 3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9d41f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 9d41f6eb, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \ 00111001001101110001111010000011 \\ X_{17} \ u1110110001011010110101010000011 \\ X_{19} \ 00000101001101001011000000001 \\ X_{20} \ 1110011010101010000000000000 \\ X_{21} \ 01011110000010000100000000000 \\ X_{22} \ 101001101010100001000000000 \\ X_{22} \ 1010011010101000010000000000 \\ X_{22} \ 100010000101000010000000000000 \\ X_{24} \ 100010001010101100001000000000000000$				
$ \begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \hline \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ X_{25} \\ X_{26} \\ X_{27} \\ \end{array} $	$\frac{38 steps}{} \\ = 0 \times c 32 c b 8b 2, m_2 = 0 \times d c c b 941, \\ = 0 \times d 73 88 9d 3, m_5 = 0 \times 38 87 57 89, \\ = 0 \times c c 53 c 680, m_8 = 0 \times b 8d c c 09a, \\ = 0 \times c b 87 a 927, m_{10} = 0 \times 67 c 76 6e 5, \\ = 0 \times 9 \times c 08 66 4, m_{12} = 0 \times 6d c d 4e f1, \\ = 0 \times 74 e 28 f11, m_{15} = 0 \times 89 8b 12 aa. \\ 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0$	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688e61, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0b1b, \\ m_{14} = 0 \times 19ec64c9, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \ 0011100100110110100011110000011 \\ X_{17} \ u1101100010110110100011110000011 \\ X_{18} \ 00000010101101010111100000010 \\ X_{19} \ 100001110001010000101001000000 \\ X_{21} \ 1010011000100000000100100100100100000 \\ X_{22} \ 10101010101010001100010100101011 \\ X_{23} \ 1000100010010101110000100101011 \\ X_{24} \ 10011000010010111000110001010111 \\ X_{25} \ u110011u00101010110011100 \\ X_{26} \ u1001u001u0010010000000 \\ \hline \end{array}$				
$\begin{array}{c} \hline m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \overline{X}_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ X_{25} \\ X_{26} \\ X_{27} \\ X_{28} \end{array}$	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0x473889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a, = 0xcb87a927,m10 = 0x6dcd4ef1, = 0x9c0866a4,m12 = 0x6dcd4ef1, = 0x74e28f11,m15 = 0x898b12aa. 000100101011111111000011100011100011100 01010110101000111000011100011000 01010110101000111000110000 000000011101000111000110000 0010010101010000111000110000 000000111010000111000110000110000 000000111010000110000110000110000 10000100100100000110000110000 101111101010001000001010000 001101100001000001101000 101111101010001000001101000 1001011000010000001101000 1001010010010000001101000 011011100010010000001101000 0100101010000000001100000000000000000	$\begin{array}{c} 40 \mbox{ steps} \\ \hline m_0 = 0 \times 31973617, m_2 = 0 \times 31533668, \\ m_3 = 0 \times fc3ffea2, m_5 = 0 \times 97ccd10f, \\ m_6 = 0 \times 41688661, m_8 = 0 \times 69a1d2a2, \\ m_9 = 0 \times 5b2331f3, m_{10} = 0 \times 1c7c9435, \\ m_{11} = 0 \times 9441f6eb, m_{12} = 0 \times 1f5f0hlb, \\ m_{14} = 0 \times 19ec64c9, m_{15} = 0 \times 86c9080. \\ \hline X_{16} \ 00111001001101110010011110000011 \\ X_{17} \ u111011000110110110000111000001 \\ X_{18} \ 0000010101010101011110000001 \\ X_{19} \ 010001110010010000100010001 \\ X_{20} \ 11110011011000001000100010001 \\ X_{21} \ 01011110000001000110010001001001 \\ X_{21} \ 0101101100100001000100010010111 \\ X_{24} \ 10011001011011110000101010111 \\ X_{24} \ 100110000010010101111000100101110 \\ X_{25} \ 111100010000000100101110011110 \\ X_{26} \ unu001u001000101010111111111 \\ X_{27} \ 0111nnuuuuuuu1000000000 \\ X_{28} \ 00111nnu0111u1nn0nnnn1000nn1 \\ \end{array}$				
$\begin{array}{c} \hline m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{11} \\ m_{14} \\ \overline{X}_{16} \\ X_{17} \\ X_{18} \\ X_{19} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ X_{25} \\ X_{26} \\ X_{27} \\ X_{28} \\ X_{29} \end{array}$	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0x473889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a, = 0xcb87a927,m10 = 0x67c766e5, = 0x9c866a4,m12 = 0x6dcd4ef1, = 0x74e28f11,m15 = 0x898b12aa. 0001000101011111110000111000011000110					
$\begin{array}{c} \hline m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{111} \\ m_{144} \\ X_{16} \\ X_{17} \\ X_{18} \\ X_{20} \\ X_{21} \\ X_{22} \\ X_{23} \\ X_{24} \\ X_{25} \\ X_{26} \\ X_{27} \\ X_{28} \\ X_{29} \\ X_{30} \\ \end{array}$	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0xc32cb8b2,m2 = 0xdcebf941, = 0xc473889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a, = 0xcb87a927,m10 = 0x67c766e5, = 0x9c866a4,m12 = 0x6dcd4ef1, = 0x74e28f11,m15 = 0x898b12aa. 000100010101111111000011100001110001100 0101011010000111000011000101001001001010					
$\begin{array}{c} \hline m_0 \\ m_3 \\ m_6 \\ m_9 \\ m_{111} \\ m_{144} \\ \overline{X}_{16} \\ \overline{X}_{17} \\ \overline{X}_{18} \\ \overline{X}_{19} \\ \overline{X}_{20} \\ \overline{X}_{21} \\ \overline{X}_{22} \\ \overline{X}_{23} \\ \overline{X}_{24} \\ \overline{X}_{25} \\ \overline{X}_{26} \\ \overline{X}_{27} \\ \overline{X}_{28} \\ \overline{X}_{29} \\ \overline{X}_{30} \\ \overline{X}_{31} \\ \end{array}$	$\frac{38 steps}{} \\ = 0xc32cb8b2, m_2 = 0xdcebf941, \\ = 0x473889d3, m_5 = 0x38875789, \\ = 0xcc53e680, m_8 = 0xb8dce09a, \\ = 0xcb87a927, m_{10} = 0x67c766e5, \\ = 0x9c0866a4, m_{12} = 0x6dcd4ef1, \\ = 0x74e28f11, m_{15} = 0x898b12aa. \\ \hline 000100010101111111000011100011100 \\ 0101011110010001110000111001010 \\ 010101101000011100001100011000 \\ 010001010101$	$\begin{array}{c} 40 \mbox{ steps} \\ \hline $m_0 = 0 \times 31973617, $m_2 = 0 \times 315533668, $m_3 = 0 \times fc3ffea2, $m_5 = 0 \times 97ccd10f, $m_6 = 0 \times 41688e61, $m_8 = 0 \times 69a1d2a2, $m_9 = 0 \times 5b2331f3, $m_{10} = 0 \times 167c9435, $m_{11} = 0 \times 9d41f6eb, $m_{12} = 0 \times 155f0b1b, $m_{14} = 0 \times 9d41f6eb, $m_{15} = 0 \times 86c9080. X_{16} 001110010011011100001110000001 X_{17} 000001010101101011010000001 X_{19} 0000010101010101011100000001 X_{20} 10110100010101000000000000000 X_{22} 10100110100101000010100000000 X_{22} 10001000101001100001010011100 X_{23} 1000100010101110000101010111 X_{25} 11100010010101011100000000000000 X_{22} 001110001001010111011100100000000 X_{22} 0011100010010101110000000000000000000$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{38 steps}{} \\ = 0 \times c 32 c b 82 2, m_2 = 0 \times d c c b 941, \\ = 0 \times 47 38 89 d 3, m_5 = 0 \times 38 87 57 89, \\ = 0 \times c c 53 c 63 0, m_8 = 0 \times b 8 d c 09 9a, \\ = 0 \times c b 87 a 92 7, m_{10} = 0 \times 6 7 c 76 6 65, \\ = 0 \times 9 c 08 66 a d, m_{12} = 0 \times 6 d c d e f 1, \\ = 0 \times 7 4 28 f 11, m_{15} = 0 \times 8 98 b 12 a a 000100010101111111100001110001110001110000$	$\begin{array}{c} 40 \mbox{ steps} \\ \hline $m_0 = 0 \times 31973617, $m_2 = 0 \times 315533668, $m_3 = 0 \times 5C3156a2, $m_5 = 0 \times 97ccd10f, $m_6 = 0 \times 41688661, $m_8 = 0 \times 69a1d2a2, $m_9 = 0 \times 5b233163, $m_{10} = 0 \times 1c7c9435, $m_{11} = 0 \times 944156cb, $m_{12} = 0 \times 15550bb, $m_{14} = 0 \times 944156cb, $m_{15} = 0 \times 86c9080. X_{16} 000110011011011001001110000011 X_{17} ulti101000110110110000111000001 X_{18} 000000101011010101011000001001001 X_{19} 01000111001001001001001001000000 X_{22} 101001101001000001001001001001001001001$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	38 steps = 0xc32cb8b2,m2 = 0xdcebf941, = 0xc32cb8b2,m2 = 0xdcebf941, = 0xc73889d3,m5 = 0x38875789, = 0xcc53e680,m8 = 0xb8dce09a, = 0xcb87a927,m10 = 0x67c766e5, = 0x9c0866a4,m12 = 0x6dcd4ef1, = 0x74e28f11,m15 = 0x898b12aa. 000100101011111111000011100011100011000 010101101010001110000111000110000 01010110101000111000011000010000000000	$\begin{array}{c} 40 \mbox{ steps} \\ \hline $m_0 = 0 \times 31973617, $m_2 = 0 \times 3155a3668, $m_3 = 0 \times fc3ffea2, $m_5 = 0 \times 97ccd10f, $m_6 = 0 \times 41688e61, $m_8 = 0 \times 69a1d2a2, $m_9 = 0 \times 5b2331f3, $m_{10} = 0 \times 1c7c9435, $m_{11} = 0 \times 9441f6eb, $m_{12} = 0 \times 1f5f0b1b, $m_{14} = 0 \times 19ec64c9, $m_{15} = 0 \times 86c9080. X_{16} 001110010011011100001110000011 X_{17} u1110110001011011110000011 X_{10} 00000101010101011110000010101 X_{10} 0000010100101010111100000001 X_{20} 101001100010010010010010010111 X_{21} 1000110001000100110001001010111 X_{21} 100010000000000000000000000000000000$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{38 steps}{} \\ = 0 \times c 32 c b 82 2, m_2 = 0 \times d c c b 941, \\ = 0 \times 47 38 89 d 3, m_5 = 0 \times 38 87 57 89, \\ = 0 \times c c 53 c 63 0, m_8 = 0 \times b 8 d c 09 9a, \\ = 0 \times c b 87 a 92 7, m_{10} = 0 \times 6 7 c 76 66 5, \\ = 0 \times 9 c 08 66 a d, m_{12} = 0 \times 6 d c d e f 1, \\ = 0 \times 7 4 28 f 11, m_{15} = 0 \times 8 98 b 12 a a 0001000101011111111000011100111$	40 steps $m_0 = 0x31973617, m_2 = 0x3155a3668,$ $m_3 = 0x56316a2, m_5 = 0x97ccd10f,$ $m_6 = 0x41688661, m_8 = 0x69a1d2a2,$ $m_9 = 0x5b2331f3, m_{10} = 0x1c7c9435,$ $m_{11} = 0x941f66b, m_{12} = 0x1f5f0b1b,$ $m_{14} = 0x19ec64c9, m_{15} = 0x86c9080.$ X_{16} $m_{12} = 0x1f5f0b1b,$ $m_{14} = 0x19ec64c9, m_{15} = 0x86c9080.$ X_{16} $m_{14} = 0x19ec64c9, m_{15} = 0x86c9080.$ X_{10} $m_{14} = 0x19ec64c9, m_{15} = 0x86c9080.$ X_{10} $m_{14} = 0x19ec64c9, m_{15} = 0x86c9080.$ X_{11} $m_{11} = 0x19c64c9, m_{15} = 0x86c9080.$ $M_{11} = 0x19c64c9, m_{15} = 0x86c9080.$ X_{11} $m_{11} = 0x19c64c9, m_{15} = 0x86c9080.$ M_{12} $M_{11} = 0x19ec64c9, m_{15} = 0x86c9080.$ X_{11} $M_{11} = 0x19ec64c9, m_{15} = 0x86c9080.$ $M_{11} = 0x19ec64c9, m_{15} = 0x86c9080.$ <th co<="" th=""></th>				

Therefore, when describing the SFS collision attack in next sections, we will firstly list the above conditions.

5.1 Practical SFS Collision on 36 Steps of RIPEMD-160

As discussed above, we first list in Table 6 some conditions influencing the performance of the SFS collision attack, which are not presented in Table 12. As Table 6 shows, the probability that LQ_{36} satisfies its corresponding equations is close to 1 (there is no need to consider the bit conditions on X_{36} when we attack 36 steps of RIPEMD-160), while the conditions on X_{13} hold with probability 2^{-5} . Therefore, we use **Strategy 1** to generate a new starting point, whose cost can be neglected.

Moreover, based on Table 6 and Table 12, there will be $2^{32-3} = 2^{29}$ possible values for X_{12} for a given starting point. After filtering, about $2^{29-1.7} = 2^{27.3}$ valid values for X_{12} are left. Since the right branch holds with probability 2^{-41} , we need to generate about $2^{41-27.3} = 2^{13.7}$ starting points. It should be noticed in Table 6 that there is a sufficient number of free bits in X_i ($13 \le i \le 15$). Therefore, we can only use one solution for X_i ($16 \le i \le 35$). Thus, the time complexity to mount an SFS collision attack on 36 steps of RIPEMD-160 can be evaluated with the Eqn. 1 in Section 3.3, where

$$(p_1, p_2, p_3, p_4, n) = (1.7, 41, 5, 0, 3).$$

Therefore, the time complexity to find an SFS collision for 36 steps is 2^{41} .

We have implemented the attack. Specifically, we ran 25 different SFS collision search instances on 25 CPUs with different seeds simultaneously. Moreover, the solution for X_i (16 $\le i \le$ 35) for the 25 search instances is also different from each other. We obtained 4 colliding message pairs in about one day. The colliding message pair in Table 5 was obtained in less than 20 minutes.

Table 5: SFS collision for 36 steps of RIPEMD-160

					1			
h_0	$\sim h_4$	809825f7	d2a55861	6bd86be7	fc58a6cb	11f6a005		
M	6c2c8526	dc3084cc	16188d15	c6c5da57	73f15b99	f7a7a97a	a7cbbf38	53a4b30
11/1	6c2c8526 b6477677	47f24a3e	b1bdf3b5	78aaa252	69a579f0	72b32f35	bb877480	5caa647e
14	, 6c2c8526	dc3084cc	16188d15	c6c5da57	73f15b99	f7a7a97a	a7cbbf38	53a4b30
<i>IVI</i>	, 6c2c8526 b6477677	47f24a3e	b1bdf3b5	78aaa252	69a5f9f0	72b32f35	bb877480	5caa647e
ha	sh value	88f79fa4	c9973719	dcf0ff7f	15cef816	a9d702a5		

Table 6: Other conditions influencing the attack for the 36-step differential characteristic

	Conditions	Probability
Y ₁₈	$Y_{18,31} = Y_{17,31}$	2 ⁻¹
Y ₂₂	$Y_{22,9} = Y_{21,9}$	2^{-1}
Y ₂₆	$Y_{26,20} = Y_{25,20}, Y_{26,19} = Y_{25,19}$	2^{-2}
Y ₃₀	$Y_{30,0} = Y_{29,0}, Y_{30,29} = Y_{29,29}, Y_{30,30} = Y_{29,30}$	2-3
Y ₃₄	$Y_{34,7} \lor \neg Y_{33,7} = 1, Y_{34,10} \lor \neg Y_{33,10} = 1$	2 ⁻¹
RQ_{16}	$(RQ_{16} \boxplus 0 \times 8000)^{\ll 6} = RQ_{16}^{\ll 6} \boxplus 0 \times 200000$	Negligible
RQ_{28}	$(RQ_{28} \boxplus 0 \times 8000)^{\ll 7} = RQ_{28}^{\approx 7} \boxplus 0 \times 400000$	Negligible
RQ_{35}	$ \begin{array}{l} (R Q_{28} \boxplus 0 \times 8000)^{\ast \times 7} = R Q_{28}^{\ast \times 7} \boxplus 0 \times 400000 \\ (R Q_{35} \boxplus 0 \times \text{ffffc80})^{\ast \times 15} = R Q_{35}^{\ast \times 15} \boxplus 0 \times \text{fe400000} \end{array} $	Negligible
	Right Branch	$2^{-33-8} = 2^{-41}$
X ₁₂	$X_{12,19} \neq X_{13,29}, X_{12,18} \neq X_{13,28}, X_{12,11} = X_{14,21}$	2-3
<i>X</i> ₁₁	$X_{11,11} = X_{12,21}$	2-1
LQ_{13}	$(LQ_{13} \boxplus 0 \times 8000)^{\infty 6} = LQ_{13}^{\infty 6} \boxplus 0 \times 200000$	Negligible
LQ_{14}	$(LQ_{14} \equiv 0 \times 200000)^{\text{ss}7} = LQ_{14}^{\text{ss}7} \equiv 0 \times 10000000$	$2^{-0.1}$
LQ_{15}	$(LQ_{15} \equiv 0 \times f020000)^{\ll 9} = LQ_{15}^{\ll 9} \equiv 0 \times 3 \text{ffffe}$	$2^{-0.6}$
LQ_{16}	$(LQ_{16} \boxplus 0 \times ffffe0)^{\ll 8} = LQ_{16}^{\ll 8} \boxplus 0 \times fffe010$	Negligible
	Filtering	2-1.7
<i>X</i> ₁₃	$X_{13,27} = X_{14,5}, X_{13,20} \neq X_{14,30}, X_{13,19} \neq X_{15,29}, X_{13,18} = X_{15,28}$	2-4
	$X_{15,13} = X_{14,3}, X_{15,4} = X_{14,26}, X_{15,21} \neq X_{16,31}$	2 ⁻³
The n	umber of free bits in X_{14} and X_{15} : $64 - 3 - 4 = 57$	
LQ_{36}	(<i>LQ</i> ₃₆ ⊞ 0x38007) ^{≪7} = <i>LQ</i> ^{≪7} ₃₆ ⊞ 0x1c00380	Negligible
The e	xpected number of valid m_4 : $2^{32-0} = 2^{32}$	
The e	xpected number of starting points for a fixed X_i ($16 \le i \le 35$):	$2^{57+32-5} = 2^{84}$

5.2 SFS Collision for 37/38/40 Steps of RIPEMD-160

Similarly, for the SFS collision attack on 37/38/40 steps of RIPEMD-160 under our attack framework, we first list some conditions influencing the performance of the SFS collision attack in Table 7, Table 9, Table 10, which are not presented in Table 13, Table 14, Table 15.

5.2.1 Attack on 37 steps of RIPEMD-160

Based on Table 7 and Table 13, we conclude that there will be $2^{32-2} = 2^{30}$ possible values for X_{12} for a given starting point. After filtering, about $2^{30-2} = 2^{28}$ are left. Since the conditions on X_i ($36 \le i \le 37$) hold with probability $2^{-2.3}$ and the conditions on X_{13} hold with probability 2^{-4} , we use **Strategy 1** to generate a new starting point, whose cost is about $2^{2.3}$ computations. Since the right branch holds with probability 2^{-49} , we expect that it will be required to generate $2^{49-28} = 2^{21}$ starting points. As Table 7 shows, X_i ($13 \le i \le 15$) can provide sufficient degrees of freedom to generate so many starting points for a fixed solution for X_i ($16 \le i \le 35$). Thus, the time complexity to mount an SFS collision attack on 37 steps of RIPEMD-160 can be evaluated with the Eqn. 1, where

$$(p_1, p_2, p_3, p_4, n) = (2, 49, 4, 2.3, 2).$$

Therefore, the time complexity to find an SFS collision for 37 steps of RIPEMD-160 is 2^{49} . We tried our best and have found a colliding message pair for 37 steps of RIPEMD-160, as shown in Table 8. Specifically, we started a search on 31 CPUs simultaneously and this colliding message pair was obtained on one of the 31 CPUs with the right branch checked for about 2^{44} times.

Table 7: Other c	onditions influer	icing the attac	k for the 37-step	o differential characteristic
ruore /. Other e	onditions minute	ioning the attac	it for the 57 step	s annerentiar entaracteristic

	6	1
	Conditions	Probability
Y_{18}	$Y_{18,31} = Y_{17,31}$	2 ⁻¹
Y_{22}	$Y_{22,9} = Y_{21,9}$	2 ⁻¹
Y_{26}	$Y_{26,20} = Y_{25,20}, Y_{26,19} = Y_{25,19}$	2^{-2}
Y_{30}	$Y_{30,0} = Y_{29,0}, Y_{30,29} = Y_{29,29}, Y_{30,30} = Y_{29,30}$	2 ⁻³
	$Y_{34,7} \lor \neg Y_{33,7} = 1, Y_{34,10} \lor \neg Y_{33,10} = 1$	2^{-1}
RQ_{16}	$(RQ_{16} \boxplus 0 \times 8000)^{\ll 6} = RQ_{16}^{\ll 6} \boxplus 0 \times 200000$	Negligible
RQ_{28}	$(RQ_{28} \equiv 0 \times 8000)^{\ll 7} = RQ_{28}^{\sim 7} \equiv 0 \times 400000$	Negligible
RQ_{35}	$ \begin{array}{l} (RQ_{28} \boxplus 0 \times 8000)^{\ll 7} = RQ_{28}^{\otimes 7} \boxplus 0 \times 400000 \\ (RQ_{35} \boxplus 0 \times \text{ffffc} 80)^{\ll 15} = RQ_{35}^{\ll 15} \boxplus 0 \times \text{fe}400000 \end{array} $	Negligible
	Right Branch	$2^{-41-8} = 2^{-49}$
<i>X</i> ₁₂	$X_{12,18} \neq X_{13,28}, X_{12,11} \neq X_{14,21}$	2-2
X11	$X_{11,11} \neq X_{12,21}$	2-1
LQ_{13}	$(LQ_{13} \boxplus 0 \times 8000)^{\leqslant 6} = LQ_{13}^{\leqslant 6} \boxplus 0 \times 200000$	Negligible
LO_{14}	(LQ ₁₄ ⊞ 0xffe00000) ^{≪7} = LQ ^{≪7} ⊞ 0xf000000	$2^{-0.1}$
LQ_{15}	$(LQ_{15} \boxplus 0 \times fe00000)^{\ll 9} = LQ_{15}^{\ll 9} \boxplus 0 \times c0000020$	$2^{-0.6}$
LQ_{16}	$(LQ_{16} \boxplus 0 \times d0000020)^{\ll 8} = LQ_{16}^{\ll 8} \boxplus 0 \times 1 \text{fd}0$	$2^{-0.3}$
	Filtering	2 ⁻²
X ₁₃	$X_{13,20} \neq X_{14,30}, X_{13,18} \neq X_{15,28}$	2-2
	$X_{15,13} = X_{14,3}, X_{15,4} = X_{14,26}$	2-2
The n	umber of free bits in X_{14} and X_{15} : $64 - 2 - 7 = 55$	
LQ_{36}	$(LQ_{36} \boxplus 0 \times e1c0000)^{\ll 7} = LQ_{36}^{\ll 7} \boxplus 0 \times e000007$	2 ^{-0.2}
LO_{37}	$(LO_{37} \boxplus 0 \times f_{2}^{2} 0 0 0 0 0)^{\ll 14} = LO_{27}^{\ll 14} \boxplus 0 \times f_{1}^{2} f_{1}^{2} c_{2}^{2}$	$2^{-0.1}$
The e	xpected number of valid m_4 : $2^{32-0.2-0.1-2} = 2^{29.7}$	
The e	xpected number of starting points for a fixed X_i (16 $\leq i \leq$	$35): 2^{55+29.7-4} = 2^{80.7}$

Table 8: SFS collision for 37 steps of RIPEMD-160

	$\sim h_4$	51c683bc	e9cd8258	75924d6d	b31d5b2b	9f1418b8		
M	2a3e3e5d	2f3acda8	c5ab4a9c	dc1f16ce	695a6d71	848cc0fe	f11aa5a3	65da8473
	2a3e3e5d 9e6914b7							
M	2a3e3e5d 9e6914b7	2f3acda8	c5ab4a9c	dc1f16ce	695a6d71	848cc0fe	f11aa5a3	65da8473
11/1	9e6914b7	fe96a9cf	da48b5c6	59b4296f	14a4fa10	c0870c31	3b3e4837	7f4d5b3f
has	sh value	4ba88e59	fe3d1b6d	92324a6e	124af3ea	e0206481		

5.2.2 Attack on 38 steps of RIPEMD-160

.. .

Based on Table 9 and Table 14, we conclude that there will be $2^{32-2} = 2^{30}$ possible values for X_{12} for a given starting point. After filtering, about $2^{30-2} = 2^{28}$ are left. Since the conditions on X_i ($36 \le i \le 38$) hold with probability $2^{-13.3}$ and the conditions on X_{13} hold with probability 2^{-4} , we use **Strategy 2** to generate a new starting point, whose cost is about 2^4 computations. Since the right branch holds with probability 2^{-53} , we expect that it will be required to generate $2^{53-28} = 2^{25}$ starting points. As Table 7 shows, X_i ($14 \le i \le 15$) can provide sufficient degrees of freedom to generate so many starting points for a fixed solution for X_i ($16 \le i \le 35$). Specifically, for a valid m_4 , there are 57 free bits in X_{14} and X_{15} , while the conditions on X_{13} hold with probability 2^{-4} . Therefore, for a fixed solution for X_i ($16 \le i \le 35$) and a valid m_4 , we can expect to generate $2^{57-4} = 2^{53}$ starting points in total. Thus, the time complexity to mount an SFS collision attack on 38 steps of RIPEMD-160 can be evaluated with the Eqn. 1, where

$$(p_1, p_2, p_3, p_4, n) = (2, 54, 4, 13.3, 2).$$

Therefore, the time complexity to find an SFS collision for 38 steps of RIPEMD-160 is 2^{53} .

Table 9: Other conditions influence	ing the attack for the 38-st	ep differential characteristic
-------------------------------------	------------------------------	--------------------------------

	Conditions	Probability
Y ₁₈	$Y_{18,31} = Y_{17,31}$	2-1
Y ₂₂	$Y_{22,9} = Y_{21,9}$	2^{-1} 2^{-2}
Y ₂₆	$Y_{26,20} = Y_{25,20}, Y_{26,19} = Y_{25,19}$	
Y ₃₀	$Y_{30,0} = Y_{29,0}, Y_{30,29} = Y_{29,29}, Y_{30,30} = Y_{29,30}$	2-3
Y ₃₄	$Y_{34,7} \lor \neg Y_{33,7} = 1, Y_{34,10} \lor \neg Y_{33,10} = 1$	2-1
RQ_{16}	$(RQ_{16} \boxplus 0 \times 8000)^{\ll 6} = RQ_{16}^{\ll 6} \boxplus 0 \times 200000$ (RQ_{28} \boxplus 0 \times 8000)^{\ll 7} = RQ_{28}^{\ll 7} \boxplus 0 \times 400000	Negligible
RQ_{28}	$(RQ_{28} \boxplus 0 \times 8000)^{\ll 7} = RQ_{28}^{\approx 7} \boxplus 0 \times 400000$	Negligible
RQ_{35}	$(RQ_{35} \boxplus 0 \times ffffc \otimes 0)^{\ll 15} = RQ_{35}^{\ll 15} \boxplus 0 \times fe 400000$	Negligible
RQ_{38}	$(RQ_{38} \equiv 0 \times 7)^{\ll 6} = RQ_{38}^{\ll 6} \equiv 0 \times 1 \times 10^{10}$	Negligible
1	Right Branch	$2^{-45-8} = 2^{-53}$
X ₁₂	$X_{12,18} \neq X_{13,28}, X_{12,11} = X_{14,21}$	2-2
X ₁₁	$X_{11,11} \neq X_{12,21}$	2-1
LQ_{13}	$(LQ_{13} \boxplus 0 \times 8000)^{\ll 6} = LQ_{13}^{\ll 6} \boxplus 0 \times 200000$	Negligible
LO_{14}	$(LO_{14} \boxplus 0xffe00000)^{\ll 7} = LO_{14}^{\ll 7} \boxplus 0xf0000000$	$2^{-0.1}$
LQ_{15}	$(LQ_{15} \equiv 0 \times fe00000)^{\ll 9} = LQ_{15}^{\sim 19} \equiv 0 \times c0000020$	$2^{-0.6}$
LQ_{16}	$(LQ_{16} \equiv 0 \times d0000020)^{48} = LQ_{16}^{48} \equiv 0 \times 1 \text{fd}0$	$2^{-0.3}$
	Filtering	2-2
X13	$X_{13,20} = X_{14,30}, X_{13,18} \neq X_{15,28}, X_{13,27} \neq X_{14,5}$	2-3
	$X_{15,13} = X_{14,3}, X_{15,4} = X_{14,26}, X_{15,21} \neq X_{16,31}$	2 ⁻³
	The imber of free bits in X_{14} and X_{15} : $64 - 3 - 4 = 57$	
LO_{36}	$(LQ_{36} \boxplus 0 \times effff04)^{\ll 7} = LQ_{36}^{\ll 7} \boxplus 0 \times fff81f8$	2-0.1
LO_{37}	$(LQ_{37} \boxplus 0 \times 7 \text{ fc8})^{\ll 14} = LQ_{37}^{\ll 14} \boxplus 0 \times 1 \text{ ff20000}$	$2^{-0.2}$
LO_{38}	$(LO_{38} \boxplus 0 \times e0000000)^{\ll 9} = LO_{28}^{\ll 9} \boxplus 0 \times 1 c0$	2-3
The ex	spected number of valid m_4 : $2^{32-0.1-0.2-3-10} = 2^{18.7}$	1

5.2.3 Attack on 40 steps of RIPEMD-160

Based on Table 10 and Table 15, we conclude that there will be $2^{32-2} = 2^{30}$ possible values for X_{12} for a given starting point. After filtering, about $2^{30-2} = 2^{28}$ are left. Since the conditions on X_i ($36 \le i \le 39$) hold with probability $2^{-21.8}$, the conditions on X_{13} hold with probability 2^{-4} , and LQ_{40} satisfies its equation with a probability close to 1, we use **Strategy 2** to generate a new starting point, whose cost is about 2^4 computations. Since the right branch holds with probability $2^{-74.6}$, we expect that it will be required to generate $2^{74.6-28} = 2^{47.6}$ starting points. As Table 7 shows, X_i ($14 \le i \le 15$) can provide sufficient degrees of freedom to generate so many starting points for a fixed solution for X_i ($16 \le i \le 35$). Specifically, for a valid m_4 , there are 57 free bits in X_{14} and X_{15} , while the conditions on X_{13} hold with probability $2^{-74.6} = 2^{57-4} = 2^{53}$ starting points in total. Indeed, we can also store some solutions for m_4 in an array with negligible memory. Then, as stated previously, we not only can choose valid values for X_{14} and X_{15} , but also can randomly choose

valid values for m_4 from this array. In this way, the degrees of freedom of m_4 can be utilized as well. Thus, the time complexity to mount an SFS collision attack on 40 steps of RIPEMD-160 can be evaluated with the Eqn. 1, where

$$(p_1, p_2, p_3, p_4, n) = (2, 74.6, 4, 21.8, 2).$$

Therefore, the time complexity to find an SFS collision for 40 steps of RIPEMD-160 is $2^{74.6}$.

Table 10: Other conditions influencing the attack for the 40-step differential characteristic

Conditions	Probability					
Y_{18} $Y_{18,31} = Y_{17,31}$	2-1					
Y_{22} $Y_{22,9} = Y_{21,9}$	2-1					
$Y_{26} = Y_{26,20} = Y_{25,20}, Y_{26,19} = Y_{25,19}$	2^{-2}					
Y_{30} $Y_{30,0} = Y_{29,0}, Y_{30,29} = Y_{29,29}, Y_{30,30} = Y_{29,30}$	2-3					
$Y_{37} \mid Y_{37,3} \lor \neg Y_{36,3} = 1$	2-0.5					
$Y_{38} Y_{38,17} \lor \neg Y_{37,17} = 1, Y_{38,20} \lor \neg Y_{37,20} = 1$	2-1					
$RQ_{16}^{0} (RQ_{16} \equiv 0 \times 8000)^{\ll 6} = RQ_{16}^{\ll 6} \equiv 0 \times 200000$ $RQ_{28} (RQ_{28} \equiv 0 \times 8000)^{\ll 7} = RQ_{28}^{\ll 7} \equiv 0 \times 400000$ $RQ_{35} (RQ_{35} \equiv 0 \times 380)^{\ll 15} = RQ_{35}^{\ll 15} \equiv 0 \times 1 c00000$	Negligible					
$RQ_{28} (RQ_{28} \boxplus 0 \times 8000)^{\ll 7} = RQ_{28}^{\ll 7} \boxplus 0 \times 400000$	Negligible					
$RQ_{35} = (RQ_{35} \equiv 0 \times 380)^{\ll 15} = RQ_{35}^{\ll 15} \equiv 0 \times 1 \text{ coloro}$	Negligible					
$RO_{38} (RO_{38} \boxplus 0 \times fffffff)^{\infty 0} = RO_{\infty 0}^{\infty 0} \boxplus 0 \times fffffdc0$	Negligible					
$RQ_{39} (RQ_{39} \boxplus 0 \times \text{ff} 20000)^{\ll 6} = RQ_{39}^{\sim 6} \boxplus 0 \times \text{fc} 800000$	$2^{-0.1}$					
$ \begin{array}{c} \mathcal{L}_{30} \\ RQ_{39} & (RQ_{39} \boxplus 0 \times \text{fff} 20000)^{\text{ss6}} = RQ_{39}^{\text{ss6}} \boxplus 0 \times \text{fc} 800000 \\ RQ_{40} & (RQ_{40} \boxplus 0 \times \text{fff} \text{fff} 8)^{\text{ss14}} = RQ_{40}^{\text{ss6}} \boxplus 0 \times \text{fff} 20000 \\ \end{array} $	Negligible					
Right Branch	$2^{-66-8.6} = 2^{-74.6}$					
$X_{12} X_{12,18} = X_{13,28}, X_{12,11} \neq X_{14,21}$	2-2					
$X_{11} X_{11,11} \neq X_{12,21}$	2-1					
$LQ_{13} = (LQ_{13} \equiv 0 \times 8000)^{\ll 6} = LQ_{13}^{\ll 6} \equiv 0 \times 200000$	Negligible					
$\begin{array}{l} LQ_{14} & (LQ_{14} \boxplus 0 \times \text{ff} = 00000)^{\ll 7} = LQ_{14}^{\ll 7} \boxplus 0 \times \text{ff} = 0000000000000000000000000000000000$	$2^{-0.1}$					
$LQ_{15} (LQ_{15} \boxplus 0 \times efe00000)^{\ll 9} = LQ_{15}^{\approx 9} \boxplus 0 \times bffffe0$	$2^{-0.6}$					
$LQ_{16} = LQ_{16} = 0 \times 2 \text{ffffe0} = LQ_{16} = 0 \times 10^{-13} \text{ m} \text{ 0} \times 10^{-13} \text{ m} \text{ m} \text{ 0} \times 10^{-13} \text{ m} \text{m} $	2-0.3					
Filtering	2-2					
X_{13} $X_{13,20} = X_{14,30}, X_{13,18} = X_{15,28}, X_{13,27} = X_{14,5}$	2-3					
X_{15} $X_{15,13} = X_{14,3}, X_{15,4} = X_{14,26}, X_{15,21} \neq X_{16,31}$	2-3					
The number of free bits in X_{14} and X_{15} : $64 - 3 - 4 = 57$						
$X_{36} \mid X_{36.6} \lor \neg X_{35.6} = 1$	2-0.5					
$LQ_{36} = (LQ_{36} \equiv 0 \times 50 \text{ c} 3 \text{ fee} 0)^{\ll 7} = LQ_{36}^{\ll 7} \equiv 0 \times 61 \text{ ff} 7028$	2-1.3					
$LQ_{37} = LQ_{37} \equiv 0 \times d6008 \pm 90)^{\ll 14} = LQ_{37}^{30} \equiv 0 \times 23 \pm 3500$	$2^{-0.5}$					
$LQ_{38} (LQ_{38} \boxplus 0 \times dc1 c0000)^{\ll 9} = LQ_{38}^{\ll 9} \boxplus 0 \times 37 \text{fffb8}$	$2^{-0.6}$					
$LQ_{39} = (LQ_{39} \boxplus 0xc8000048)^{\ll 13} = LQ_{39}^{3} \boxplus 0x8f900$	$2^{-0.4}$					
$\begin{array}{l} & L_{236} (I \mathcal{L}_{236} \boxplus 0 \times 50 \text{ c}^{3} \text{fee} 0)^{\text{\tiny \ef{e}}7} = L Q_{36}^{\text{\tiny \ef{e}}7} \boxplus 0 \times 61 \text{f}^{7} \text{f}^{2} \text{g} \\ L Q_{27} (I \mathcal{Q}_{37} \boxplus 0 \times d6008 \text{f} 90)^{\text{\tiny \ef{e}}14} = L Q_{37}^{\text{\tiny \ef{e}}14} \boxplus 0 \times 23 \text{e}^{3} \text{f}^{5} \text{g} \\ L Q_{38} (L Q_{38} \boxplus 0 \times dc1 \text{c} 0000)^{\text{\tiny \ef{e}}9} = L Q_{38}^{\text{\tiny \ef{e}}18} \boxplus 0 \times 37 \text{f} \text{f} \text{f} \text{f} \text{b} \\ L Q_{39} (L Q_{39} \boxplus 0 \times c8000048)^{\text{\tiny \ef{e}}13} \equiv L Q_{38}^{\text{\tiny \ef{e}}13} \boxplus 0 \times 8 \text{f} 900 \\ L Q_{38} (L Q_{40} \boxplus 0 \times \text{f} \text{f} \text{f} 2700)^{\text{\tiny \ef{e}}15} = L Q_{48}^{\text{\tiny \ef{e}}15} \boxplus 0 \times 37 \text{f} \text{f} \text{f} \text{f} \text{f} \\ \end{array}$	Negligible					
The expected number of valid m_4 : $2^{32-1.3-0.5-0.6-0.4-19} = 2^{10.2}$						
The expected number of starting points for a fixed X_i ($16 \le i \le 35$): $2^{57+10.2-4} = 2^{63.2}$						

5.2.4 Experiments

To make the above theoretical analysis more convincing, we carried out the following experiments. For the *t*-step ($t \ge 37$) differential characteristic and its corresponding solution for X_i ($16 \le i \le 35$), we exhaust all possible values for X_{36} to verify the conditions on X_i ($37 \le i \le t \le 39$) and record how many valid m_4 exists. Moreover, for a fixed valid m_4 , we also randomly choose 2^{32} valid values for (X_{14}, X_{15}) and compute X_{13} . Then, we count the success times when the conditions on X_{13} hold (we will also check the conditions on X_{40} if analyzing 40 steps of RIPEMD-160). We list the experimental results in Table 11. Obviously, our theoretical analysis is reasonable.

	Table 11. Experimental results						
Steps	The number of valid m_4	Success times	Success probability				
37	0x36d40000	0x10001110	2 ⁻⁴				
38	0xe0000	0xffff6f3	2 ⁻⁴				
40	0x2d80	0xf1bd6ed	2 ⁻⁴				

Table 11: Experimental results

6 Conclusion

Relying on the specifics of RIPEMD-160's message expansion, an SFS collision attack framework for reduced RIPEMD-160 is developed. Compared with previous SFS collision attack framework, this new framework allows us to attack as many steps of RIPEMD-160 as possible. One more advantage of this new framework is negligible requirement of memory. As a direct result, we present the first colliding message pairs for 36 and 37 steps of RIPEMD-160 with time complexity 2^{41} and 2^{49} repectively. Moreover, benefiting from this framework, we can mount SFS collision attack on 38/40 steps of RIPEMD-160 with time complexity $2^{53}/2^{74.6}$ respectively, thus extending the previously best known SFS collision attack on RIPEMD-160 by four steps.

Acknowledgements. We thank the anonymous reviewers of ToSC Issue 3 for their many helpful and insightful comments. Fukang Liu and Zhenfu Cao are supported by National Natural Science Foundation of China (Grant No.61632012, 61672239). In addition, Fukang Liu is also supported by Invitation Programs for Foreigner-based Researchers of the National Institute of Information and Communications Technology (NICT). Takanori Isobe is supported by Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141) for Japan Society for the Promotion of Science. Gaoli Wang is supported by the National Natural Science Foundation of China (No. 61572125) and National Cryptography Development Fund (No. MMJJ20180201).

References

- [DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strengthened version of RIPEMD. In Dieter Gollmann, editor, *Fast Software Encryption - FSE* 1996, volume 1039 of *LNCS*, pages 71–82. Springer, 1996.
- [Dob96] Hans Dobbertin. Cryptanalysis of MD4. In Dieter Gollmann, editor, *Fast Software Encryption- FSE 1996*, volume 1039 of *LNCS*, pages 53–69. Springer, 1996.
- [DR06] Christophe De Cannière and Christian Rechberger. Finding SHA-1 characteristics: General results and applications. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology - ASIACRYPT 2006, volume 4284 of LNCS, pages 1–20. Springer, 2006.
- [EMS14] Maria Eichlseder, Florian Mendel, and Martin Schläffer. Branching heuristics in differential collision search with applications to SHA-512. In Carlos Cid and Christian Rechberger, editors, *Fast Software Encryption - FSE 2014*, volume 8540 of *LNCS*, pages 473–488. Springer, 2014.
- [LDM⁺19] Fukang Liu, Christoph Dobraunig, Florian Mendel, Takanori Isobe, Gaoli Wang, and Zhenfu Cao. Efficient collision attack frameworks for RIPEMD-160. In Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, pages 117–149, 2019.
- [LMW17] Fukang Liu, Florian Mendel, and Gaoli Wang. Collisions and semi-free-start collisions for round-reduced RIPEMD-160. In Tsuyoshi Takagi and Thomas Peyrin, editors, *Advances in Cryptology - ASIACRYPT 2017*, volume 10624 of *LNCS*, pages 158–186. Springer, 2017.
- [LP13] Franck Landelle and Thomas Peyrin. Cryptanalysis of full RIPEMD-128. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, volume 7881 of LNCS, pages 228–244. Springer, 2013.
- [MNS11] Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 characteristics: Searching through a minefield of contradictions. In Dong Hoon Lee and Xiaoyun

Wang, editors, *Advances in Cryptology - ASIACRYPT 2011*, volume 7073 of *LNCS*, pages 288–307. Springer, 2011.

- [MNS13] Florian Mendel, Tomislav Nad, and Martin Schläffer. Improving local collisions: New attacks on reduced SHA-256. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, volume 7881 of LNCS, pages 262–278. Springer, 2013.
- [MNSS12] Florian Mendel, Tomislav Nad, Stefan Scherz, and Martin Schläffer. Differential attacks on reduced RIPEMD-160. In Dieter Gollmann and Felix C. Freiling, editors, *Information Security - ISC 2012*, volume 7483 of *LNCS*, pages 23–38. Springer, 2012.
- [MPS⁺13] Florian Mendel, Thomas Peyrin, Martin Schläffer, Lei Wang, and Shuang Wu. Improved cryptanalysis of reduced RIPEMD-160. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology ASIACRYPT 2013, volume 8270 of LNCS, pages 484–503. Springer, 2013.
- [OSS12] Chiaki Ohtahara, Yu Sasaki, and Takeshi Shimoyama. Preimage attacks on the stepreduced RIPEMD-128 and RIPEMD-160. *IEICE Transactions*, 95-A(10):1729–1739, 2012.
- [SBK⁺17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The first collision for full SHA-1. In Jonathan Katz and Hovav Shacham, editors, *Advances in Cryptology - CRYPTO 2017*, volume 10401 of *LNCS*, pages 570–596. Springer, 2017.
- [WLF⁺05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of LNCS, pages 1–18. Springer, 2005.
- [WSL17] Gaoli Wang, Yanzhao Shen, and Fukang Liu. Cryptanalysis of 48-step RIPEMD-160. IACR Transactions of Symmetric Cryptology, 2017(2):177–202, 2017.
- [WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer, 2005.
- [WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3621 of LNCS, pages 17–36. Springer, 2005.
- [WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks on SHA-0. In Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, pages 1–16, 2005.

A Differential Characteristics

The 36-step, 37-step, 38-step and 40-step differential characteristic are displayed in Table 12, Table 13, Table 14 and Table 15 respectively.

Table 12: 36-step differential characteristic

$\Delta m_{12} = 2^{15}$				
i		$\pi_1(i)$		$\pi_2(i)$
1		0		5
2		1		14
3		2		- 7
4		3		0
5		4		9
6		5		2
7		6		11
8		7		4
9		8		13
10		9		6
11		10		15
12		11		8
13		12		• 1
14		13	00	10
15		14	11	. 3
16		15	n	12
	n 0 1 - 1 - 0 1 - 1	7		6
	0 1 0 1 1 nu - 0 0 -	4	l	11
	011011 - 0111111 u0 0n 001 0 - 1	13		. 3
	11010000 101n1-00-011010000	1	u	7
	nnnn1nn1010111111 - 1011nu110100u10	10		0
	1001 - 01n u1 - 01u0n 1 1n1nu ununnu1 -	6	1() 13
	nn110u11n10nu100n001nnn10u11nnu1	15	11	5
	1101nu0 - 10uun01n u1n0000n n1101u10	3	unun	10
	- 1uu1nn1 - n011001 n0u01uuu 1n101uuu	12		14
	1101011u 1un0u10 - u01uuuuu u001 - 010	0	0-01	
	0u11u0010011n1-1uuun0011111000111	9	1-11	8
	11000100n11nnn0n11100n-10n0n0nn1	5	n-un	12
	01n00nu000u01nnu - 01uuu - u nunun11n	2		4
	n1u01n10u010011n000110-00000un1u	14		9
31		11	11	1
1.	10n010-0000-111110010-10010u	8	ur	1 2
33		3	11	15
34		10	00	5
35		14	un	1
36	nu	4	n u	3

Table 13: 37-step differential characteristic

$\Delta m_{12} = 2^{15}$			
i X	$\pi_1(i)$	Y	$\pi_2(i)$
1	0		5
2	1		14
3	2		7
4	3		0
5	4		9
6	5		2
/	6		11
8	8		13
-	9		6
10	10		15
	11		8
12 13 0 n	12		1
14 u 0 0	13	0	10
15 - u 00	14	1	3
1610-01uu	15	n	12
17 u 1 1 1 100 0 - 100	7		6
1800-u1	4	1	11
19 n 1 100 01 1u - 0 00	13	1	3
20 00 10 n 100 n 0 1 10 - 1 1 u 1 u u 1 - 00 10 0	1	u	7
21 001110u00-10110100010-u100011011	10		0
22 110 - 100u 10u 0un 010 - 001u uuuu - 00 -	6	10	13
23 1 un 1 1 nuu 1 - 100 u 0 u 1 1 u 1 u u un 100 10 10 u		1 1	5
24 1 1 0 n 1 1 n n 1 0 0 1 u u 1 1 0 u 0 n 1 0 u 1 u 0 n u 0 0 1 u		un	
25 00n0010n 0nn0un00 00nnn01u 11u101 - 0	1		14
260nnnnn - 01101011 - 10nnnnnn 011u0u10		0-01	15
27010-0011 nn0110u1 100n01uu 00n101u1		1-11	8
28 1 nu 1 1 1 1 1 uu 1 un 0 u0 1 n 0 n 1 n n n n 1 1 0 0 n 0 0		n-un	12
29 u00 - uuuu 00u0101u n0 - 0011u 0001n0uu	1		4
30 1 1 1 001 - 1 1 1 0 u 1 0 u 0 u u u 0 0 u u u	14		-
31 1 1 - 1 1 01 - 1 nn n011 - nnn 1 11	11	11	1
32 0011011011 - u01 n - 01 - 111 - 1111101	8	um 11	
$\begin{vmatrix} 33 \\ 24 \end{vmatrix}$ 0 1 1 0 - 1 0		1 0 0	
$\begin{vmatrix} 34 \\ 35 \end{vmatrix}$ 0 - 1	10	100111	-
36nu	4	1 1	-
	9	u	
37 u n	9		1 /

Table 14: 38-step differential characteristic

$\Delta m_{12} = 2^{15}$				
i	X	$\pi_1(i)$	Y	$\pi_2(i)$
1		0		5
2		1		14
3		2		. 7
4		3		. 0
5		4		. 9
6)	5		2
0		6		4
g	,	8		13
10		9		6
11	1	10		15
12		11		8
13		12		1
-		13	00	10
15		14	· · · · · · · · · · · · · · · · · · ·	3
16	- 0 - 1	15	n	12
17	u 1 - 0 1 - 000	7		6
18	0 1 0 1 1 1	4	1	11
19	01 - 101 10 0 0 n u n - 01 10	13	1	3
20	01 u101 uu1100 11	1	u	7
21	110111010110000011u-001000	10		0
	1 - 00n - un u un - nn 0 - unnnnn nnnnn 1 -	6	1() 13
	n0uuu - 100 - 10nuuu 0uuuu 1nu n101nu 11	15	11	5
	10111111101un01u1001100000-1-1000	-	unun	· 10
	uu1110n0010-01000-0nuu01u11101n0			- 14
	- 1nu101u u0 - 01 00u00 11u - 011 -	0	0-01	15
27		9	1-11	8
	0u10u00100-001110000-0000-01	5	n-un	12
	1 - 01 - 01 - 0111n - 01 - 00 n0n 01n	2	1 1	4
	n - 0 - 0u - 11011 - u 001 - n10 001 - 1111	14		. 9
	00uuuuuu 10nu 1 - 00 - 10 1 1 1 1 u - 1 1 1 1 n 1 101 n u 0 - nuu 1 - 0	11 8	1	1 1 1 2
	0-0111-un001-00001	8	ur 1	1 2
	u11n00-11100	10	- 1 0 0	5
	100111	14		-
	1	4	11	-
37		9		-
38		15	n-u	

Table 15: 40-step differential characteristic

	Δm_1	$_{2} = 2$	15	
i	X	$\pi_1(i)$	Y	$\pi_2(i)$
1		0		5
2		1		14
3		2		7
4		3		0
5		4		9
6		5		2
7		6		11
8		7		4
9		8		13
10		9		6
11		10		15
12		11		8
13	n	12		1
14	u	13	000	10
15		14	I	3
1	-0-1n0u	15	n	12
	u 1 1 - 0	74	1	6 11
18	1 0 u 1 u - 0	13	1	3
20		15		7
20		10	u	0
	-0-01-10u-1000-01-	6	10	13
	100010u0 1u - 0 10 - 001 1	15	11	5
1.1	1 - n0u 0 1 - 011 110unnnn 01un	3	1	10
	- 1 - 10001 0n0u0nnn 010011un 1001 - 10 -	12	un	14
	unu001uu001u01001u10 01 111u11u1	0	0-01	15
	011un011 nnuuuuu uu10000u 00u100u0		1.11.	8
	00111nun 0111u1nn 0nnnnnn1 0n00nnn1	5		12
	nn111010n01010101000u1un1010101	-		4
1.1	011 - u110 10000n - 1 101100uu u11101u0	1		9
	n001u11 - n - 0u1110 nn u0100111110n		11	1
	1000uun01-n1n011u01111010-n0nu01	8	un	2
	0u1110101-00u01u1-11n0-u0111n0		11111	
34		10	100	5
35	0u000000 01 1 11111 1 - 000 - n -	14	n u 1 1	1
36		4	11 n u 1	3
37	1u-1n	9	1010-10-10	7
38	10 - 10 1 1	15	u	14
39		8	1 0 n u	6
40	u	1		9