
A New Approach to Constructing Digital
Signature Schemes (Extended Paper)

Ahto Buldas1, Denis Firsov1,2, Risto Laanoja1,2,
Henri Lakk2, and Ahto Truu1,2,B ?

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A. H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. A new hash-based, server-supported digital signature scheme
was proposed recently in [13]. We decompose the concept into forward-
resistant tags and a generic cryptographic time-stamping service. Based
on the decomposition, we propose more tag constructions which allow
efficient digital signature schemes with interesting properties to be built.
In particular, the new schemes are more suitable for use in personal sign-
ing devices, such as smart cards, which are used infrequently. We define
the forward-resistant tags formally and prove that (1) the discussed con-
structs are indeed tags and (2) combining such tags with time-stamping
services gives us signature schemes.

1 Introduction

Recently, Buldas, Laanoja, and Truu [13] proposed a new type of digital signature
scheme (which we will refer to as the BLT scheme in the following) based on
the idea of combining one-time time-bound keys with a time-stamping service.
The scheme is post-quantum secure against known attacks and the integrity
of the signed messages does not depend on the long-term secrecy of any keys.
Existential unforgeability against adaptive chosen-message attack (EUF-ACM)
was proven in the random oracle (RO) model.

A limitation of the BLT scheme is the fact that keys are pre-generated and
have to be used at their designated time-slots only. On practical parameters the
number of keys is rather large, which would make key generation on resource-
constrained platforms prohibitively slow.

BLT scheme prevents other parties from misusing keys by making each key
expire immediately after a legitimate use. First, each key is explicitly bound to a
time slot at the key-generation time, and keys would automatically expire when
their designated time-slots passed. Second, the legitimate use of a key is proven
by time-stamping the message-key pair. Back-dating a new pair (a new message
with an already used key) would allow a signature to be forged. Therefore, the

? This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS and by the research measure
of the Estonian IT Academy programme.



hash-then-publish time-stamping [28, 18] and the so-called keyless signatures [11]
are particularly suitable for the scheme. The aim of keyless time-stamping is to
avoid key-based cryptography and trusted third parties so that time-stamps
become irrefutable proofs of time.

Based on this observation, we generalize and decompose the scheme into two
functional components: forward-resistant tags and a cryptographic time-stamping
service. As the forward-resistant tag is a novel construct, we define it formally
(Sec. 3.1) and prove that the BLT scheme is indeed an instance of forward-
resistant tag-based schemes (Sec. 3.4).

Thanks to the formal definition, it is possible to propose other forward-
resistant tag systems and prove their security. Getting rid of pre-assigned time-
slot allows to achieve greater efficiency: keys could be spent in sequence. A tag
system inspired by the Lamport hash-based signature scheme [22] is presented in
Sec. 3.5 and another one inspired by the Winternitz optimization [34] in Sec. 3.6.
As discussed in Sec. 5, the resulting new signature schemes are efficient and have
some interesting properties.

Because the server-assisted signature schemes have not enjoyed their deserved
interest, we will start with an overview of related work in Sec. 2 and give some
justification why we believe in their usefulness.

2 Related Work and Background

2.1 Hash-Based Signatures

The earliest signature scheme constructed from hash functions is due to Lam-
port [22]. His scheme, as well as the refinements proposed in [33, 25, 23, 7, 29],
are one-time: they require generation of a new key pair and distribution of a
new public key for each message to be signed.

Merkle [33] introduced the concept of hash tree which aggregates a large
number of inputs into a single root hash value so that any of the N inputs
can be linked to it with a proof consisting of log2N hash values. This allowed
combining N instances of a one-time signature scheme into an N -time scheme.
This approach has been further studied in [18, 20, 39, 21]. A common drawback
of these constructs is that the whole tree has to be built at once.

Merkle [34] proposed a method to grow the tree gradually as needed. How-
ever, to authenticate the lower nodes of the tree, a chain of one-time signatures
(rather than a sequence of sibling hash values) is needed, unless the scheme
is used in an interactive environment and the recipient keeps the public keys
already delivered as part of earlier signatures. This multi-level approach has
subsequently been refined in [32, 6, 9, 8, 30, 31].

A complication with the N -time schemes is that they are stateful : as each of
the one-time keys may be used only once, the signer has to keep track of them.
If this information is lost (for example, when a previous state is restored from
a backup or when multiple concurrent processes use the same key), key re-use
may result in a catastrophic security loss. Perrig [35] proposed a few-time scheme

2



where a private key can be used to sign several messages, and the security level
decreases gradually with each additional use.

Bernstein et al. [4] combined the optimized few-time scheme of [38] with the
multi-level tree of [8] to create SPHINCS, a stateless scheme that uses keys based
on a pseudo-random schedule, making the risk of re-use negligible even without
tracking the state.

2.2 Server-Assisted Signatures

In server-assisted schemes the signer has to co-operate with a server to produce
a signature. The two main motivations for such schemes are: (a) performance:
costly computations can be offloaded from an underpowered signing device (such
as a smart card) to a more capable server; and (b) security: risks of key misuse
can be reduced by either keeping the keys in a server environment (which can
presumably be managed better than an end-user’s personal computer) or by
having the server perform additional checks as part of the signature generation
protocol.

An obvious solution is to let the server handle all asymmetric-key operations
based on requests from the signers [37]. In this case the server has to be com-
pletely trusted, but it’s not clear whether that is in fact less secure than letting
end-users manage their own keys [17].

To reduce the need to trust the server, Asokan et al. [2] proposed and others
in [5, 27] improved methods where asymmetric-key operations are performed by
a server, but a user can prove the server’s misbehavior when presented with
a signature that the server created without the user’s request. However, such
signatures appear to be valid to a verifier until challenged by the user. Thus,
these protocols are usable in contexts where a dispute resolution process exists,
but unsuitable for applications with immediate and irrevocable effects, such as
authentication for access control purposes or committing transactions to append-
only ledgers.

Several methods have been proposed for outsourcing the more expensive
computation steps of specific signature algorithms, notably RSA, but most early
schemes have subsequently been shown to be insecure. In recent years, probably
due to increasing computational power of handheld devices and wider availability
of hardware-accelerated implementations, attention has shifted to splitting keys
between end-user devices and back-end servers to improve the security of the
private keys [19, 10].

2.3 Interactive Signature Protocols

Interactive signature protocols, either by interaction between parties or with an
external time-stamping service, were considered by Anderson et al. [1]. They
proposed the “Guy Fawkes Protocol”, where, once bootstrapped, a message is
preceded by publishing the hash of the message and each message is authenti-
cated by accompanying it with a secret whose hash was published together with
an earlier message. Although the verification is limited to a single party, the

3



protocol is shown to be a signature scheme according to several definitions. The
broadcast commitment step is critical for providing non-repudiation of origin.
Similar concept was used in the TESLA protocol [36], designed to authenticate
parties who are constantly communicating with each other. Due to this, it has
the same inflexibility of not supporting multiple independent verifiers.

Buldas et al. [13] presented a generic hash-based signature scheme which
depends on interaction with a time-stamping service. The principal idea of the
scheme is to have the signer commit to a sequence of secret keys so that each key
is assigned a time slot when it can be used to sign messages and will transition
from signing key to verification key at the end of the time slot. In order to prove
timely usage of the keys, a digital time-stamping service is used. Signing then
comprises of time-stamping the message-key commitment in order to prove that
the signing operation was performed at the correct time.

2.4 Non-Repudiation

An important property of digital signatures (as an alternative to hand-written
ones) [24] is non-repudiation, i.e. the possibility to use the signature as evidence
against the signer. Solutions where trusted third parties are (technically) able
to sign on behalf of their clients are not desirable for non-repudiation, because
clients may use that argument to fraudulently call their signatures into question.
Therefore, solutions where clients have personal signature devices are preferable
to those relying entirely on trusted parties.

Another real-world complexity is key revocation. Without such capability
clients may (fraudulently) claim that their private keys were stolen and someone
else may have created signatures in their name. With revocation tracking, sig-
natures created before a key revocation event can be treated as valid, whereas
signatures created afterwards can be considered invalid. Usually this is imple-
mented using cryptographic time-stamping and certificate status distribution
services. No matter the implementation details, this can not be done without
online services, which means that most practical deployments of digital signa-
tures are actually server-supported.

2.5 Cryptographic Time-Stamping

Cryptographic time-stamps prove that data existed before a particular time.
The proof can be a statement that the data hash existed at a given time, cryp-
tographically signed by a trusted third party. Such statements are useful for data
archiving, supporting non-repudiable digital signatures, etc.

Haber and Stornetta [28] made the first steps towards trustless time-stamping
by proposing a scheme where each time-stamp would include some information
from the immediately preceding one and a reference to the immediately suc-
ceeding one. Benaloh and de Mare [3] proposed to increase the efficiency of
hash-linked time-stamping by operating in rounds, where messages to be time-
stamped within one round would be combined into a hierarchical structure from
which a compact proof of participation could be extracted for each message. The

4



aggregation structures would then be linked into a linear chain. Buldas et al. [15,
14, 16] proposed a series of time-stamping schemes based on binary linking that
allowed any two tokens to be ordered in time, even if they were issued within
the same aggregation round.

The security of linking-based hash-then-publish schemes has been proven in
a very strong model where even the time-stamping service provider does not
have to be trusted [18, 12], making them particularly suitable for our use-case.
It is possible to provide such service efficiently and in global scale [11].

3 Forward-Resistant Tags

3.1 Definitions

Definition 1 (Tag system). By a tag system we mean a triple (Gen,Tag,Ver)
of algorithms, where:

– Gen is a probabilistic key-generation algorithm that, given as input the tag
range T , produces a secret key sk and a public key pk.

– Tag is a tag-generation algorithm that, given as input the secret key sk and
an integer t ∈ {1, . . . , T}, produces a tag τ ← Tag(sk, t).

– Ver is a verification algorithm that, given as input a tag τ , an integer t, and
the public key pk, returns either 0 or 1, such that

Ver(Tag(sk, t), t, pk) = 1 ,

whenever (sk, pk)← Gen(T ) and 1 ≤ t ≤ T .

The above definition of a tag system is somewhat similar to that of a signature
scheme consisting of procedures for key generation, signature generation, and
signature verification [26]. The fundamental difference is that a signature binds
the use of the secret key to a message, while a tag binds the use of the secret
key to a time.

Definition 2 (Forward-resistant tag system). A tag system (Gen,Tag,Ver)
is S-forward-resistant if every tag-forging adversary A using computational re-
sources ρ has success probability

Pr
[
(pk, sk)← Gen(T ), (τ, t)← ATag(sk,·)(pk) : Ver(τ, t, pk) = 1

]
<
ρ

S
,

where A makes one oracle call Tag(sk, t′) with 1 ≤ t′ < t.

The restriction for A to make just one oracle call stems from the fact that the
very purpose of a tag system is to bind the use of the secret key to a specific
time.

Informally, in order to implement a forward resistant tag system, we have to
bind each tag to a time t so that the tag can’t be re-bound to a later time. This
notion could be seen as dual to time-stamping that prevents back-dating.

5



In the BLT scheme, the binding is very simple: the time is the sequence num-
ber of the key, given as the value of the sibling leaf in the hash tree. Alternatively,
the time could be encoded as the shape of the authentication hash chain.

The resources represented by ρ are computation time and memory. The total
resource budget of the adversary is ρ = α · time + β · memory, where α and β
are the costs of a unit of computation time and a unit of memory, respectively.

Security proofs of the proposed tag systems will be based on the following
definitions of basic cryptographic properties of functions:

Definition 3 (One-way function). A function f : D → R is S-secure one-
way (S-OW in short) if every f -inverting adversary A using computational re-
sources ρ has success probability

Pr
[
x← D,x′ ← Af(·)(f(x)) : f(x′) = f(x)

]
<
ρ

S
.

Definition 4 (Collision resistant function). A function f : D → R is S-
secure collision resistant (S-CR) if for every collision-finding adversary A using
computational resources ρ:

Pr
[
x1, x2 ← Af(·) : x1 6= x2, f(x1) = f(x2)

]
<
ρ

S
.

Definition 5 (Undetectable function). A function f : D → D is S-secure
undetectable (S-UD) if for every detecting adversary A using computational re-
sources ρ: ∣∣∣Pr[x← U : A(x) = 1

]
− Pr

[
x← U : A(f(x)) = 1

]∣∣∣ < ρ

S
,

where U generates random values uniformly from D.

Lemma 1. If f : D → D is S-UD, then fn is S
n -UD.

Proof. We prove the claim by reduction. We assume there is an fn-detecting
adversary A and construct an f -detecting adversary B based on oracle access
to A. We construct B to process the input y by uniformly randomly picking
i← {0, . . . , n− 1} and returning A(f i(y)). Then B’s success probability is

δ′ =
∣∣∣Pr[x← U : B(x) = 1

]
− Pr

[
x← U : B(f(x)) = 1

]∣∣∣
=

∣∣∣∣∣∣ 1n
∑

0≤i<n

Pr
[
x← U : A(f i(x)) = 1

]
− 1

n

∑
0≤i<n

Pr
[
x← U : A(f i+1(x)) = 1

]∣∣∣∣∣∣
=

1

n

∣∣∣Pr[x← U : A(x) = 1
]
− Pr

[
x← U : A(fn(x)) = 1

]∣∣∣ =
1

n
· δ ,

where δ is A’s success probability.
If f is S-UD, then the success probability of any f -detecting ρ-adversary

must be less than ρ
S . Therefore, we have 1

n · δ = δ′ < ρ
S , which gives δ < ρ

S/n ,

and thus fn is indeed S
n -UD. ut

6



In the following, we will consider general hash functions f : {0, 1}? → {0, 1}k
mapping arbitrary-length inputs to fixed-length outputs. We will write f(x1, x2)
or f(x1, x2, . . . , xn) to mean the result of applying f to a bit-string encoding the
pair (x1, x2) or the tuple (x1, x2, . . . , xn), respectively.

3.2 Cryptographic Time-Stamping

We model the ideal time-stamping service as a trusted repository R that works
as follows:

– The time t is initialized to 1, and all the cells Ri to ⊥.
– The query R.time is answered with the current value of t.
– The query R.get(t) is answered with Rt.
– On the request R.put(x), first Rt ← x is assigned and then the value of t is

incremented by 1.

This is done for the sake of simplicity. It turns out that refining the model of
the time-stamping service would make the proofs really complex. For example,
even for a seemingly trivial change, where R publishes a hash h(m, τ) instead of
just (m, τ), one needs non-standard security assumptions about h such as non-
malleability. In this paper, we try to avoid these technical difficulties and focus
on the basic logic of the security argument of the tag-based signature scheme.

3.3 One-Time Signature Scheme

Definition 6 (Induced signature scheme). A tag system (Gen,Tag,Ver)
and a time-stamping repository R induce a one-time signature scheme as follows:

The signer SR(m) queries t ← R.time, then creates τ ← Tag(sk, t), stores
R.put((m, τ)), and returns σ = (τ, t).

The verifier V R(m, (τ, t), pk) queries x ← R.get(t), and checks that x =
(m, τ) and Ver(pk, t, τ) = 1.

Definition 7 (Existential unforgeability). A one-time signature scheme is
S-secure existentially unforgeable (S-EUF), if every forging adversary A using
computational resources ρ has success probability

Pr
[
(pk, sk)← Gen(T ), (m,σ)← AS

R,R(pk) : V R(m,σ, pk) = 1
]
<
ρ

S
,

where A makes only one S-query and not with m.

Theorem 1. If the tag system is S-secure forward-resistant then the induced
one-time signature scheme is (almost) S-secure existentially unforgeable.

Proof. Having a ρ-adversary AS
R,R for the signature scheme, we construct an

adversary BTag(sk,·) for the tag scheme as follows.
The adversary B simulates the adversary A by creating a simulated R of

its own. A signing query S(m) is simulated by making an oracle query τ ←

7



Tag(sk, t), where t is the time value in the simulated R, and then assigning
Rt ← (m, τ).

Every time the simulated A makes (a direct) query R.put(x), B checks
whether x is in the form (m, τ) and Ver(pk, τ, t) = 1, where t is the current
time in the simulated R, and then returns (τ, t) if either:

– A has never made any S-calls, or
– A has made an S-call with m′ 6= m.

It is easy to see that one of these events must occur whenever A is successful.
In the first case, B is also successful, because it outputs a correct tag without
making any Tag(sk, ·)-calls. In the second case, the S(m′)-query was made at
t′ < t (as every S-query makes one R.put(·)-query which advances t) and then
also the Tag(sk, t′)-query was made at t′ < t and hence B is successful again.

If the overhead of B in simulating the environment for A is small, the reduc-
tion is tight and thus the signature scheme must indeed be almost as secure as
the underlying tag scheme. ut

3.4 The BLT Scheme as a Tag System (BLT-TB)

Ignoring the aggregation of individual time-bound keys into a hash tree, the
essence of the BLT signature scheme proposed in [13] can be modeled as a tag
system as follows:

– The secret key sk is a list (z1, z2, . . . , zT ) of T unpredictable values.
– The public key pk is the list (f(z1), f(z2), . . . , f(zT )), where f is a one-way

function.
– The tagging algorithm Tag(z1, z2, . . . , zT ; t) outputs zt.
– The verification algorithm Ver, given as input a tag τ , an integer t, and the

public key (x1, x2, . . . , xT ), checks that 1 ≤ t ≤ T and f(τ) = xt.

We will refer to this model as the BLT-TB tag system.

Theorem 2. If f is S-OW, then BLT-TB is an S
T -forward-resistant tag system.

Proof. We assume there’s a tag-forging adversary A and construct an f -inverting
adversary B based on oracle access to A. Since f is S-OW, irrespective of B’s
construction, its success probability

δ′ = Pr
[
z ← {0, 1}k, z′ ← B(f(z)) : f(z′) = f(z)

]
<
ρ

S
.

We construct B to process the input x = f(z) as follows:

– generate the secret key components zi ← {0, 1}k and compute the corre-
sponding public key components xi = f(zi) for 1 ≤ i ≤ T ;

– uniformly randomly pick an index j ← {1, . . . , T};
– call A on a modified public key to produce a forged tag and its index

(τ, t)← ATag(sk,·)(x1, . . . , xj−1, x, xj+1, . . . , xT ) ;

8



– if A succeeded and t = j then return τ , else return ⊥.

By construction, B’s success probability δj = Pr
[
A succeeded ∧ t = j

]
. Since the

distribution of x is identical to the distribution of xi, the events “A succeeded”
and “t = j” are independent and thus we have δj = Pr

[
A succeeded

]
·Pr
[
t = j

]
.

Since j was drawn uniformly from {1, . . . , T}, we further have δj = δ · 1
T , where

δ = Pr
[
(pk, sk)← Gen(T ), (τ, t)← ATag(sk,t′)(pk) : t′ < t,Ver(τ, t, pk) = 1

]
is A’s success probability.

From f being S-OW, we have δ
T = δj ≤ δ′ < ρ

S . Thus, δ < ρ
S/T , and BLT-TB

is indeed an S
T -forward-resistant tag system. ut

3.5 The BLT-OT Tag System

We now define the BLT-OT tag system (inspired by Lamport’s one-time signa-
tures [22]) as follows:

– The secret key sk is a list (z0, z1, . . . , z`−1) of ` = dlog2(T+1)e unpredictable
values.

– The public key pk is the list (f(z0), f(z1), . . . , f(z`−1)), where f is a one-way
function.

– The tagging algorithm Tag(z0, . . . , z`−1; t) outputs an ordered subset (zj1 ,
zj2 , . . . , zjm) of components of the secret key such that 0 ≤ j1 < j2 < . . . <
jm ≤ `− 1 and 2j1 + 2j2 + . . .+ 2jm = t.

– The verification algorithm Ver, given as input a sequence (zj1 , zj2 , . . . , zjm),
an integer t, and the public key (x0, x1, . . . , x`−1) checks that:
1. f(zj1) = xj1 , . . . , f(zjm) = xjm ; and
2. 0 ≤ j1 < j2 < . . . < jm ≤ `− 1; and
3. 2j1 + 2j2 + . . .+ 2jm = t; and
4. 1 ≤ t ≤ T .

Theorem 3. If f is S-OW, then BLT-OT is an S
` -forward-resistant tag system.

Proof. The proof is again by assuming there’s a tag-forging adversary A and
constructing an f -inverting adversary B based on oracle access to A. As before,
f being S-OW implies B’s success probability

δ′ = Pr
[
z ← {0, 1}k, z′ ← B(f(z)) : f(z′) = f(z)

]
<
ρ

S
.

Again, let δ be A’s success probability

δ = Pr
[
(pk, sk)← Gen(T ), (τ, t)← ATag(sk,t′)(pk) : t′ < t,Ver(τ, t, pk) = 1

]
.

We construct B to process the input x = f(z) as follows:

– generate the secret key components zi ← {0, 1}k and compute the corre-
sponding public key components xi = f(zi) for 0 ≤ i ≤ `− 1;

9



– uniformly randomly pick an index j ← {0, . . . , `− 1};
– call A on a modified public key to produce a forged tag and its index

(τ, t)← ATag(sk,·)(x0, . . . , xj−1, x, xj+1, . . . , x`−1) ;

– in case of A’s success let j′ be the leftmost bit position that is 0 in t′, but 1
in t (with t′ < t, at least one such bit position must exist);

– if A succeeded and j′ = j then return the component of τ corresponding to
bit position j in t, else return ⊥.

By construction, B’s success probability δj = Pr
[
A succeeded ∧ j′ = j

]
. Since

the distribution of x is identical to the distribution of xi, the events “A suc-
ceeded” and “j′ = j” are independent and thus we have δj = Pr

[
A succeeded

]
·

Pr
[
j′ = j

]
. Since j was drawn uniformly from {0, . . . , ` − 1}, we further have

δj = δ · 1` .

From f being S-OW, we have δ
` = δj ≤ δ′ < ρ

S . Thus, δ < ρ
S/` , and BLT-OT

is indeed an S
` -forward-resistant tag system. ut

3.6 The BLT-W Tag System

We now define the BLT-W tag system (inspired by Winternitz’s idea [34] for
optimizing the size of Lamport’s one-time signatures) as follows:

– The secret key sk is an unpredictable value z.
– The public key pk is fT (z), where f is a one-way function.
– The tagging algorithm Tag(z; t) outputs the value fT−t(z).
– The verification algorithm Ver, given as input a tag τ , an integer t, and the

public key x, checks that 1 ≤ t ≤ T and f t(τ) = x.

Theorem 4. If f is S1-OW and S2-CR and S3-UD function, then BLT-W is a
min(S1,S2,S3)

2·T -forward-resistant tag system.

Proof. The proof is again by assuming there’s a tag-forging adversary A and
constructing an f -breaking adversary B based on oracle access to A. As before,
f being S1-OW implies B’s success probability at finding a preimage of f

δ1 = Pr
[
z ← {0, 1}k, z′ ← B(f(z)) : f(z′) = f(z)

]
<

ρ

S1

and f being S2-CR implies B’s success probability at finding a collision of f

δ2 = Pr
[
z1, z2 ← B(f(·)) : f(z1) = f(z2)

]
<

ρ

S2
.

Once again, let δ be A’s success probability

δ = Pr
[
(pk, sk)← Gen(T ), (τ, t)← ATag(sk,t′)(pk) : t′ < t,Ver(τ, t, pk) = 1

]
.

We construct B to process the input x = f(z) as follows:

10



– uniformly randomly pick an index j ← {1, . . . , T};
– compute y = f j(x) and construct a modified tagging oracle Tag′(x; t) that

returns f j−t(x) for t ≤ j and ⊥ for t > j;
– call A on y with the modified oracle Tag′ to produce a forged tag and its

index
(τ, t)← ATag′(x,·)(y) ;

– if A succeeded with t′ = j then
• if f t−t

′
(τ) = x then return f t−t

′−1(τ) as the preimage of x under f ;
• otherwise find the smallest i such that f t−t

′+i(τ) = f i(x) and return
(f t−t

′+i−1(τ), f i−1(x)) as a collision of f .

By construction, B’s success probability δj = Pr
[
A succeeded ∧ t′ = j

]
. With

f being S3-UD, the probability of A detecting the difference between f i(x) for
i = 0 and i > 0 is at most ρ

S3/T
= ρ·T

S3
. Then, with probability at least 1− ρ·T

S3
,

we have δj = Pr
[
A succeeded

]
· Pr
[
t′ = j

]
= δ · 1

T .
On the other hand, from f being S1-OW and S2-CR, we have

δj ≤ max(δ1, δ2) < max(
ρ

S1
,
ρ

S2
) =

ρ

min(S1, S2)
.

Thus, with probability at least 1− ρ·T
S3

, we have δ
T < ρ

min(S1,S2)
and with prob-

ability at most ρ·T
S3

we don’t have a non-trivial upper bound on δ. Therefore,

δ <

(
1− ρ·T

S3

)
· ρ·T

min(S1, S2)
+
ρ·T
S3

=
ρ·T

min(S1, S2)
+
ρ·T
S3
·
(

1− ρ·T
min(S1, S2)

)
<

ρ·T
min(S1, S2)

+
ρ·T
S3

= ρ · T · min(S1, S2) + S3

min(S1, S2) · S3
≤ ρ · T · 2

min(S1, S2, S3)

and BLT-W is indeed at least min(S1,S2,S3)
2·T -forward-resistant tag system. ut

4 New Signature Scheme

4.1 BLT-OT One-Time Signature Scheme

The signature scheme induced by the BLT-OT tag system according to Defini-
tion 6 would come with the requirement that the signer must know in advance
the time at which its request reaches the time-stamping service. This is hard to
achieve in practice, in particular for personal signing devices such as smart cards
that lack built-in clocks. To overcome this limitation, we construct the BLT-OT
one-time signature scheme as follows.

Key Generation. Let ` be the number of bits that can represent any time
value t when the signature may be created (e.g. ` = 32 for POSIX time up
to year 2106). The private key is generated as sk = (z0, z1, . . . , z`−1), where
zi are unpredictable values, and the public key as pk = f(X), where X =
(x0, x1, . . . , x`−1), xi = f(zi), and f is a one-way function.

11



Public Key Certificate. The certificate should contain the following data:

– the public key pk;
– the identity IDc of the client;
– the identity IDs of the designated time-stamping service.

Recording the identity of the designated time-stamping service in certificate en-
ables instant key revocation. Upon receiving a revocation notice, the designated
service stops serving the affected client, and thus it is not possible to generate
signatures using revoked keys.

Signing. To sign a message m, the client:

– gets a time-stamp St on the record (m,X, IDc) from the time-stamping
service designated by IDs;

– extracts the `-bit time value t from St and creates the list W = (w0, w1, . . . ,
w`−1), where
• wi = zi if the i-th bit of t is 1, or
• wi = xi = f(zi) otherwise;

– disposes of the private key (z0, z1, . . . , z`−1) to prevent its re-use;
– emits (W,St) as the signature.

Verification. To verify the signature (W,St) on the message m against the
certificate (pk, IDc, IDs), the verifier:

– extracts time t from the time-stamp St;
– recovers the list X = (x1, x2, . . . , x`−1) by computing
• xi = f(wi) if the i-th bit of t is 1, or
• xi = wi otherwise;

– checks that the computed X matches the public key: f(X) = pk;
– checks that St is a valid time-stamp issued at time t by service IDs on the

record (m,X, IDc).

5 Discussion

The BLT-TB scheme proposed in [13] works well for powerful devices that are
constantly running and have reliable clocks. These are not reasonable assump-
tions for personal signing devices such as smart cards, which have very limited
capabilities and are not used very often. Generating keys could take hours or
even days of non-stop computing on such devices. This is clearly impractical,
and also wasteful as most of the keys would go unused.

The BLT-OT scheme proposed in Sec. 4 solves the problems described above
at the cost of introducing state on the client side. As the scheme is targeted
towards personal signing devices, the statefulness is not a big risk, because these
devices are not backed up and also do not support parallel processing. The
benefit in addition to improved efficiency is that the device no longer needs to
know the current time while preparing a signing request. Instead, it can just use
the time from the time-stamp when composing the signature.

12



5.1 Efficiency as One-Time Scheme

When implemented as described in Sec. 4, the cost of generating a BLT-OT
key pair is ` random key generations and ` + 1 hashing operations, the cost of
signing `+1 hashing operations and one time-stamping service call, and the cost
of signature verification at most ` + 1 hashing operations and one time-stamp
verification. In this case the private key would consist of ` one-time keys and the
public key of one hash value, and the signature would contain ` hash values and
one time-stamp token. The private storage size can be optimized by generating
the one-time keys from one true random seed using a pseudo-random generator.
Then the cost of signing increases by ` operations, as the one-time keys would
have to be re-generated from the seed before signing. This version is listed as
BLT-OT in Table 1.

Winternitz’s idea [34] for optimizing the size of Lamport’s one-time sig-
natures [22] can also be applied to BLT-OT. Instead of using one-step hash
chains zi → h(zi) = xi to encode single bits of t, we can use longer chains
zi → h(zi)→ . . .→ hn(zi) = xi and publish the value hn−j(zi) in the signature
to encode the value j of a group of bits of t. When encoding groups of w bits of
t in this manner, the chains have to be n = 2w steps long. This reduces the size
of the signature by w times, but increases the costs of key generation and sign-

ing by a bit less than 2w−1

w times and the cost of verification by a bit less than
2w−1
w times. Note that for w = 2, only the verification cost increases by about

50%! Also note that in contrast to applying this idea to Lamport’s signatures,
in BLT-W no additional countermeasures are needed to prevent an adversary
from stepping the hash chains forward: the time in the time-stamp takes that
role. This version is listed as BLT-W in Table 1.

To compare BLT-OT signature sizes and verification times to other schemes,
we also need to estimate the size of hash-trees built by the time-stamping service.
Even assuming the whole world (8 billion people) will use the time-stamping
service in every aggregation round, an aggregation tree of 33 layers will suffice.
We also assume that in all schemes one-time private keys will be generated on-
demand from a single random seed and public keys will be aggregated into a
single hash value. Therefore, the key sizes will be the same for all schemes and
are not listed in Table 1.

Table 1. Efficiency of hash-based one-time signature schemes. We assume 256-bit hash
functions, 32-bit time values, and time-stamping hash-tree with 33 levels. Times are in
hashing operations and signature sizes in hash values. TS in BLT schemes stands for
the time-stamping service call.

Scheme Key generation Signing time Verification time Signature size

Lamport 1 025 1 024 513 256
Winternitz (w = 4) 1 089 1 088 1 021 68
BLT-OT 65 64 + TS 33 + 33 32 + 33
BLT-W (w = 2) 65 64 + TS 49 + 33 16 + 33

13



5.2 Efficiency as Many-Time Scheme

A one-time signature scheme is not practical by itself. Merkle [33] proposed ag-
gregating multiple public keys of a one-time scheme using a hash tree to produce
so-called N -time schemes. Assuming 10 signing operations per day, a set of 3 650
BLT-OT keys would be sufficient for a year. The key generation costs would ob-
viously grow correspondingly. The change in signing time would depend on how
the hash tree would be handled. If sufficient memory is available to keep the
tree (which does not contain private key material and thus may be stored in
regular memory), the authenticating hash chains for individual one-time public
keys could be extracted with no extra hash computations. Signature size and
verification time would increase by the 12 additional hashing steps linking the
one-time public keys to the root of the aggregation tree. This scheme is listed as
BLT-OT-N in Table 2, where we compare it with the following schemes:

– XMSS is a stateful scheme, like the N -time scheme built from BLT-OT; the
values in Table 2 are computed by taking N = 212 = 4 096 and leaving other
parameters as in [8];

– SPHINCS is a stateless scheme and can produce an indefinite number of
signatures; the values in Table 2 are inferred from [4] counting invocations
of the ChaCha12 cipher on 64-byte inputs as hash function evaluations;

– the values for BLT-TB in Table 2 are from [13].

As can be seen from the table, the performance of BLT-OT as a component in N -
time scheme is very competitive when signing and verification time and signature
size are concerned. Only SPHINCS has significantly faster key generation, but
much slower signing and verification and much larger signatures.

6 Conclusions and Outlook

We have presented a new approach to constructing digital signature schemes
from forward-resistant tags and time-stamping services. We observe that this

Table 2. Efficiency of hash-based many-time signature schemes. We assume key supply
for at least 3 650 signatures, 256-bit hash functions, 32-bit time values, and time-
stamping hash-tree with 33 levels. Times are in hashing operations and signature sizes
in hash values. TS in BLT schemes stands for the time-stamping service call.

Scheme Key generation Signing time Verification time Signature size

XMSS 897 024 8 574 1 151 79
SPHINCS ca 16 000 ca 250 000 ca 7 000 ca 1 200
BLT-TB ca 96 000 000 50 + TS 25 + 33 25 + 33
BLT-OT-N 240 900 64 + TS 45 + 33 44 + 33
BLT-W-N (w = 2) 240 900 64 + TS 61 + 33 28 + 33

14



new framework can be used to model an existing signature scheme, and also to
construct new ones.

The newly derived signature schemes are practical and it would be interesting
to further study their security properties, e.g. present security proofs in the
standard model.

The novel concept of forward-resistant tags has already proven useful, and
thus certainly merits further research.

References

1. R. J. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. M.
Needham. A new family of authentication protocols. Operating Systems Review,
32(4):9–20, 1998.

2. Asokan, G. Tsudik, and M. Waidner. Server-supported signatures. Journal of
Computer Security, 5(1):91–108, 1997.

3. J. Benaloh and M. de Mare. Efficient broadcast time-stamping. Technical report,
Clarkson University, 1991.

4. D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS:
Practical stateless hash-based signatures. In EUROCRYPT 2015, Proceedings,
Part I, volume 9056 of LNCS, pages 368–397. Springer, 2015.

5. K. Bicakci and N. Baykal. Server assisted signatures revisited. In CT-RSA 2004,
Proceedings, volume 2964 of LNCS, pages 143–156. Springer, 2004.

6. J. A. Buchmann, L. C. Coronado Garćıa, E. Dahmen, M. Döring, and E. Klint-
sevich. CMSS—An improved Merkle signature scheme. In INDOCRYPT 2006,
Proceedings, volume 4329 of LNCS, pages 349–363. Springer, 2006.

7. J. A. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert. On the
security of the Winternitz one-time signature scheme. IJACT, 3(1):84–96, 2013.

8. J. A. Buchmann, E. Dahmen, and A. Hülsing. XMSS—A practical forward secure
signature scheme based on minimal security assumptions. In PQCrypto 2011,
Proceedings, volume 7071 of LNCS, pages 117–129. Springer, 2011.

9. J. A. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle
signatures with virtually unlimited signature capacity. In ACNS 2007, Proceedings,
volume 4521 of LNCS, pages 31–45. Springer, 2007.

10. A. Buldas, A. Kalu, P. Laud, and M. Oruaas. Server-supported RSA signatures for
mobile devices. In ESORICS 2017, Proceedings, Part I, volume 10492 of LNCS,
pages 315–333. Springer, 2017.

11. A. Buldas, A. Kroonmaa, and R. Laanoja. Keyless signatures’ infrastructure: How
to build global distributed hash-trees. In NordSec 2013, Proceedings, volume 8208
of LNCS, pages 313–320. Springer, 2013.

12. A. Buldas, R. Laanoja, P. Laud, and A. Truu. Bounded pre-image awareness and
the security of hash-tree keyless signatures. In ProvSec 2014, Proceedings, volume
8782 of LNCS, pages 130–145. Springer, 2014.

13. A. Buldas, R. Laanoja, and A. Truu. A server-assisted hash-based signature
scheme. In NordSec 2017, Proceedings, volume 10674 of LNCS, pages 3–17.
Springer, 2017.

14. A. Buldas and P. Laud. New linking schemes for digital time-stamping. In
ICISC’98, Proceedings, pages 3–14. KIISC, 1998.

15



15. A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Time-stamping with binary
linking schemes. In CRYPTO’98, Proceedings, volume 1462 of LNCS, pages 486–
501. Springer, 1998.

16. A. Buldas, H. Lipmaa, and B. Schoenmakers. Optimally efficient accountable
time-stamping. In PKC 2000, Proceedings, volume 1751 of LNCS, pages 293–305.
Springer, 2000.

17. A. Buldas and M. Saarepera. Electronic signature system with small number of
private keys. In 2nd Annual PKI Research Workshop, Proceedings, pages 96–108.
NIST, 2003.

18. A. Buldas and M. Saarepera. On provably secure time-stamping schemes. In
ASIACRYPT 2004, Proceedings, volume 3329 of LNCS, pages 500–514. Springer,
2004.

19. J. Camenisch, A. Lehmann, G. Neven, and K. Samelin. Virtual smart cards: How
to sign with a password and a server. In SCN 2016, Proceedings, volume 9841 of
LNCS, pages 353–371. Springer, 2016.

20. L. C. Coronado Garćıa. Provably Secure and Practical Signature Schemes. PhD
thesis, Darmstadt University of Technology, Germany, 2005.

21. E. Dahmen, K. Okeya, T. Takagi, and C. Vuillaume. Digital signatures out of
second-preimage resistant hash functions. In PQCrypto 2008, Proceedings, volume
5299 of LNCS, pages 109–123. Springer, 2008.

22. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976.

23. C. Dods, N. P. Smart, and M. Stam. Hash based digital signature schemes. In Cryp-
tography and Coding, Proceedings, volume 3796 of LNCS, pages 96–115. Springer,
2005.

24. European Commission. Regulation no 910/2014 of the European Parliament and
of the Council of 23 July 2014 on electronic identification and trust services for
electronic transactions in the internal market and repealing directive 1999/93/EC
(eIDAS regulation). Official Journal of the European Union, L 257:73–114, 2014.

25. S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. Journal
of Cryptology, 9(1):35–67, 1996.

26. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

27. V. Goyal. More efficient server assisted one time signatures. Cryptology ePrint
Archive, Report 2004/135, 2004. https://eprint.iacr.org/2004/135.

28. S. Haber and W. S. Stornetta. How to time-stamp a digital document. Journal of
Cryptology, 3(2):99–111, 1991.

29. A. Hülsing. W-OTS+—Shorter signatures for hash-based signature schemes.
In AFRICACRYPT 2013, Proceedings, volume 7918 of LNCS, pages 173–188.
Springer, 2013.

30. A. Hülsing, L. Rausch, and J. A. Buchmann. Optimal parameters for XMSS MT.
In CD-ARES 2013, Proceedings, volume 8128 of LNCS, pages 194–208. Springer,
2013.

31. A. Hülsing, J. Rijneveld, and F. Song. Mitigating multi-target attacks in hash-
based signatures. In PKC 2016, Proceedings, Part I, volume 9614 of LNCS, pages
387–416. Springer, 2016.

32. T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure sig-
natures with an unbounded number of time periods. In EUROCRYPT 2002, Pro-
ceedings, volume 2332 of LNCS, pages 400–417. Springer, 2002.

33. R. C. Merkle. Secrecy, Authentication and Public Key Systems. PhD thesis, Stan-
ford University, 1979.

16



34. R. C. Merkle. A digital signature based on a conventional encryption function. In
CRYPTO’87, Proceedings, volume 293 of LNCS, pages 369–378. Springer, 1987.

35. A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In
ACM CCS 2001, Proceedings, pages 28–37. ACM, 2001.

36. A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The TESLA broadcast authen-
tication protocol. CryptoBytes, 5(2):2–13, 2002.

37. T. Perrin, L. Bruns, J. Moreh, and T. Olkin. Delegated cryptography, online
trusted third parties, and PKI. In 1st Annual PKI Research Workshop, Proceed-
ings, pages 97–116. NIST, 2002.

38. L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In ACISP 2002, Proceedings, volume 2384 of LNCS, pages
144–153. Springer, 2002.

39. P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet
authentication. In ACM CCS’99, Proceedings, pages 93–100. ACM, 1999.

17


