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Abstract. Cryptographic constructions based on hard lattice problems
have emerged as a front runner for the standardization of post quantum
public key cryptography. As the standardization process takes place, op-
timizing specific parts of proposed schemes becomes a worthwhile en-
deavor. Gaussian sampling over the integers is one of the fundamental
building blocks of latticed-based cryptography. In this work, we pro-
pose a new integer Gaussian sampler based on polar codes, dubbed
“polar sampler”. The polar sampler is asymptotically information the-
oretically optimum in the sense that the number of uniformly random
bits it uses approaches the entropy bound. It also features quasi-linear
complexity and constant-time implementation. Our algorithm becomes
effective when sufficiently many samples are required at each query to
the sampler. Security analysis is given based on the statistical distance,
Kullback-Leibler divergence and Rényi divergence. A comparison bet-
ween the polar sampler and the Knuth-Yao sampler verifies its time ef-
ficiency and the memory cost can be further optimized if space-efficient
successive-cancellation decoding is adopted.

Keywords: Discrete Gaussian sampling · Polar codes · Integer lattice ·
Kullback-Leibler divergence · Constant-time implementation.

1 Introduction

Lattice-based cryptography is one of the most promising candidates of cryptosys-
tems in the future post-quantum age. The security of lattice-based primitives is
guaranteed by the hardness of worst-case lattice problems, e.g. the Learning
With Errors (LWE) problem [26, 15] and Short Integer Solution (SIS) problem
[18, 17]. The discrete Gaussian distribution lies at the core of security proofs of
these primitives, and it is also one of the fundamental building blocks of practi-
cal lattice-based cryptographic applications, e.g. signature schemes, encryption
and key exchanges. In general, the security level of these cryptographic appli-
cations is closely related to the statistical performance of the discrete Gaussian
sampling (DGS) algorithm. From an implementation standpoint, cryptographers
also take other qualities of a DGS into consideration including side-channel re-
sistance, computation and storage efficiency. In practice, the tradeoff between
these performances is a bottleneck of this problem.
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It has been widely assumed that for cryptographic applications with λ bits
of security the statistical distance (SD) between the ideal distribution and the
approximated one should be roughly 2−λ such that there is only minor loss
in security [8]. Some other measures such as Kullback-Leibler (KL) divergence
and Rényi divergence are proved to provide more efficient security analysis than
the SD, as they can lower the requirement for precision and reduce the cost of
the algorithms in many practical cases [22, 24, 25, 3]. From a practical point of
view, the difficulty of DGS lies in the implementation of DGS in cryptographic
primitives with constrained resources. Besides the resilience against potential
side-channel attacks, a designer looking for the optimal DGS solution to a spe-
cific application strikes the balance of memory consumption and running time,
precision and efficiency.

There are already a variety of works addressing the application of DGS in
lattice-based primitives. Existing techniques include the Bernoulli sampler [7],
the cumulative distribution table (CDT) sampler [6], the Knuth-Yao sampler
[13], and the discrete Ziggurat sampler [16], etc. Rejection sampling can be used
to generate discrete Gaussian samples where one draws an element x from a
discrete domain uniformly at random and accepts it with probability proporti-
onal to exp(−x2/2σ2) where σ is the standard deviation. However, calculating
the exponential function requires high-precision computing and sufficient trials
are needed before the sampler produces an output. In [21], Peikert suggested to
perform binary search through CDT and he adapted it to the signature scheme
BLISS [7]. At the first step of BLISS, a discrete Gaussian vector is generated to
blind the secret. However, the CDT sampling itself takes 35 percent of the total
running time of BLISS [12] and the precomputed CDT requires larger memory
especially when a wider distribution is in need to improve the security level.

In [10], Hülsing et al. replaced the discrete Gaussian distribution in Lyu-
bashevsky’s signature scheme and BLISS by a rounded Gaussian distribution and
proved that these schemes were safe. As the term suggested, a rounded Gaussian
distribution is obtained by rounding continuous Gaussian samples which can be
efficiently realized by Box-Muller transform [4] in constant time. A convolution
method, first proposed in [21], can expand a discrete Gaussian distribution with
a small parameter to a wider one. A recent sampler design [19] exploits a base
sampler with small parameters to efficiently generate DGS with arbitrary and
varying parameters in a convolutional fashion. This application-independent al-
gorithm consists of an online and offline stage, both of which can be carried
out in constant time, proving a resilience against timing attack. [30] proposed a
constant-time sampler and applied Rényi divergence analysis to their algorithm.
[27] proposed a DGS algorithm for lattice signatures using arithmetic coding.

Contribution In this work, we propose a novel algorithm for DGS over the in-
tegers using polar codes. Polar codes are the first class of efficiently encodable
and decodable codes which provably achieve Shannon’s entropy bound in source
coding and channel capacity in channel coding, respectively [1, 2]. The power
of polar codes stems from the polarization phenomenon: under Arikan’s polar
transform, information measures of synthesized sources (channels) converge to
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either 0 or 1 when coding becomes trivial. Moreover, both encoding and deco-
ding run with O(N logN) complexity, where N denotes the length of a polar
code. Given their attractive performance, polar codes have found a wide range
of applications in information theory and communication systems. In particu-
lar, they have been standardized for the upcoming fifth-generation (5G) wireless
communication networks.

This work tackles the sampling problem from a source coding perspective,
namely, sampling can be considered the inverse problem of source coding. In
source coding or data compression, one typically encode a block of symbols of
a certain distribution into some bits which become uniformly random as the
block-length tends to infinity [5]. Since a source code is invertible, inverting this
process would produce samples from the desired distribution. When a large num-
ber of independent Gaussian samples are required in cryptographic applications,
polar codes are well suited because in this case the information source of dis-
tribution DZN ,c,s is memoryless. Obviously, this technique is not restricted to
sampling from the discrete Gaussian distribution, but can be extended to other
distributions of interest in cryptography.

The principal contributions of this paper are summarized as follows:

– A novel approach to sample from discrete Gaussian distribution over the
integers with multilevel polar codes. Using a binary partition tree, we recur-
sively partition Z into 2 cosets, 4 cosets, and so on. The number of levels
is only logarithmic in s. Each level gives rise to a binary source, which is
compressed by a binary polar code. The advantage of this multilevel coding
approach is that only binary codes are needed, which allow simpler imple-
mentation than nonbinary codes.

– Analysis of approximation errors. Although inverting this multilevel polar
code would produce the desired distribution DZN ,c,s, it is not exactly so. This
is because the bits after compression are not exactly uniformly random, so
feeding the inverted source code with uniformly random bits will only yield
an approximate version of the desired distribution. We derive upper bounds
on the closeness of the target discrete Gaussian and its approximation by
our polar sampler, in SD and KL divergence.

– Security analysis. To achieve a certain security level in a standard crypto-
graphic scheme with oracle access to a discrete Gaussian distribution, the
principle of setting the parameters of our polar sampler is also discussed. In
cryptographic applications where the number of queries q to the Gaussian
sampler is limited (e.g., q ≤ 264 in the NIST specifications of signatures), it
is well known that using Rényi divergence yields considerable savings. We
also apply Rényi divergence to analyze the security level associated with the
proposed polar sampler.

The proposed polar sampler complements and distinguishes from existing
discrete Gaussian samplers in the literature. In addition to offering a different
approach, it exhibits several salient features:

– Information theoretic optimality. Asymptotically, the polar sampler achie-
ves the entropy bound of the discrete Gaussian distribution. This implies
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that it requires minimum resources of random bits to produce the desired
distribution.

– Quasi-linear complexity. The multilevel approach to Gaussian sampling en-
joys low complexity. Both design and implementation require quasi-linear
complexity O(N logN) in storage and running time. The design can be done
at the offline stage, that is, given a target distribution, it is done once and for
all. The online stage of implementation requires certain a posteriori proba-
bilities, which can be computed in a successive manner. The polar transform
itself can be implemented efficiently in O(N logN) complexity.

– Constant-time implementation. The polar sampler also admits constant-time
implementation, since a polar code has a fixed-length. This compares favo-
rably with other source coding techniques such as Huffman coding whose
codewords have variable lengths. Moreover, all the computations required
run in constant time. This makes our polar sampler very attractive when
dealing with side-channel (e.g., timing) attacks.

Of course, the proposed sampler can be combined with existing “expander”
techniques such as convolution if needed. In this paper, we focus on the theo-
retic design and analysis of polar samplers, whereas various optimization issues
(e.g., concrete computational/storage costs, finite precision etc.) are left to future
work. Nevertheless, we have found it in experiments that even a prototype imple-
mentation significantly outperforms benchmark Knuth-Yao sampling in speed.

Roadmap The roadmap of this paper is given as follows. Section 2 introduces
the preliminaries of polar source coding and elucidates its relation to sampling.
Section 3 presents our polar sampler in detail. Section 4 gives an analysis on
the approximation error of our sampler based on both SD and KL divergence.
In Section 5, the security level of our sampler is analysed based on SD and
KL divergence, respectively. Section 6 compares the polar sampler with Knuth-
Yao regarding the complexity. Section 7 concludes this paper and gives some
suggestions on future work.

2 Source Coding versus Sampling

2.1 Notation

We use the notation x1:N as shorthand for a row vector (x(1), · · · , x(N)) of which
the i-th entry is denoted by x(i). Given a vector x1:N and a set A ⊂ {1, · · · , N},
xA denotes the subvector of x1:N indexed by A. Capital letters such as U and
X are used to denote variables while lowercase letters such as u and x represent
a realization of the corresponding variable. Denote by X ∼ P a distribution P
of X over a countable set X . Then the entropy of X is defined as HP (X) =
−
∑
x∈X p(x) log p(x). We write H(X) = HP (X) for brevity if the distribution

is clear. Suppose X and Y have a joint distribution P (X,Y ). The conditional

entropy of X given Y is defined as H(X|Y ) =
∑
x∈X ,y∈Y p(x, y) log p(y)

p(x,y) . The

logarithm to base 2 is denoted by log while the natural logarithm is denoted by
ln.
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2.2 Source Polarization

The key idea of polar source coding can be found in [2] where a polar code was
proposed to achieve Shannon’s source coding bound. Let (X1:N , Y 1:N ) denotes
N i.i.d. copies of a memoryless source (X,Y ) ∼ PX,Y , where X takes values
over X = {0, 1} while Y takes values over a countable set Y. The two random
source X and Y are correlated, and Y is called the side-information1. In source
coding, the encoder compresses a sequence X1:N into a shorter codeword, such
that the decoder can produce an estimation X̂1:N of X1:N using the codeword
side information Y 1:N .

Polar codes are proved to achieve Shannon’s source coding bound asympto-
tically. The source polarization transform from X1:N to U1:N is performed by
applying an entropy-preserving circuit to X1:N , i.e.,

U1:N = X1:NGN

and

GN =

[
1 1
1 0

]⊗n
BN ,

where ⊗n denotes the n-th Kronecker power, and BN is a bit-reversal permuta-
tion [1] of the input vector. Fig. 1 illustrates the source polarization transforms
of X1:2 and X1:4 where ⊕ denotes mod-2 sum. This transform preserves the
entropy in the sense that

H(U1:2 | Y 1:2) = 2H(X | Y ), H(U1:4 | Y 1:4) = 4H(X | Y ).

Meanwhile, it also polarizes the entropy in the sense that

H(U (1) | Y 1:4) ≥ H(S(1) | Y 1:2) = H(S(2) | Y 3:4) ≥ H(U (2) | Y 1:4, U (1)),

and

H(U (3) | Y 1:4, U1:2) ≥H(R(1) | Y 1:2, S(1))

=H(R(2) | Y 3:4, S(2)) ≥ H(U (4) | Y 1:4, U1:3).

By applying the construction in Fig. 1 recursively, we can obtain the induced
joint distribution of (U1:N , Y 1:N ) as

PU1:N ,Y 1:N =
∑
x1:N

PX1:N ,Y 1:N (x1:N , y1:N )· I{u1:N = x1:NGN}

=
∑
x1:N

(

N∏
i=1

PX,Y (x(i), y(i)))· I{u1:N = x1:NGN}, (1)

where I{·} is the indicator function. By computing the conditional entropy
H(U (i) | Y 1:N , U1:i−1), we have the following source polarization theorem.

1 Note that even if there is only one source in the context of this paper, the proposed
multilevel code still needs side information (which is basically information coming
from lower levels.)
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(a) (b)

Fig. 1. The source polarization transform [1]: (a) A two-by-two transform (b) A four-
by-four transform.

Theorem 1 (Source Polarization [2]). Let (X,Y ) be a source as above. For
any N = 2n,n ≥ 1, let U1:N = X1:NGN . Then, for any 0 < β < 0.5, as N →∞,∣∣∣{i ∈ [1, N ] : H(U (i) | Y 1:N , U1:i−1) ∈ (1− 2−N

β

, 1]
}∣∣∣

N
→ H(X | Y ) (2)

and ∣∣∣{i ∈ [1, N ] : H(U (i) | Y 1:N , U1:i−1) ∈ [0, 2−N
β

)
}∣∣∣

N
→ 1−H(X | Y ). (3)

Note that in the absence of side information Y , the above theorem still holds by
considering Y independent of X.

Definition 1 (Bhattacharyya Parameter [11]). Let (X,Y ) ∈ X × Y be a
pair of random variables where X = {0, 1} = GF(2) and Y is an arbitrary finite
set. Let X and Y follow the joint distribution PXY (x, y). If X is the source to
be compressed and Y is the side information, the Bhattacharyya parameter is
defined as

Z(X|Y ) ≡ 2
∑
y

PY (y)
√
PX|Y (0|y)PX|Y (1|y) (4)

= 2
∑
y

√
PX,Y (0, y)PX,Y (1, y).

Proposition 1 ([2], Proposition 2).

Z(X|Y )2 ≤ H(X|Y ) (5)

H(X|Y ) ≤ log(1 + Z(X|Y )). (6)

It is implied by Proposition 1 that for a source (X,Y ), the parameters H(U (i) |
Y 1:N , U1:i−1) and Z(U (i) | Y 1:N , U1:i−1) polarize simultaneously in the sense
that H(U (i) | Y 1:N , U1:i−1) approaches 0 (resp. 1) as Z(U (i) | Y 1:N , U1:i−1)
approaches 0 (resp. 1).
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For β ∈ (0, 1/2) and α = 2−N
β

, the indexes of U1:N can be divided into a
low-entropy set

LX|Y =
{
i ∈ [N ] : Z(U (i) | Y 1:N , U1:i−1) ∈ [0, α)

}
(7)

and its complement LcX|Y . Again, in the absence of side information Y , the two
sets are defined in the same way by considering Y independent of X and U .

This gives rise to the encoding and decoding scheme described in [2]. Spe-
cifically, for a realization of (X1:N , Y 1:N ) = (x1:N , y1:N ), the encoder computes
u1:N = x1:NGN and only shares uLc

X|Y
with the decoder. The compression rate

is defined as R = |LcX|Y |/N . The decoder can obtain an estimate û1:N of u1:N

in a successive manner as

û(i) =


u(i), if i ∈ LcX|Y
0, if i ∈ LX|Y and L

(i)
N (y1:N , û1:i−1) ≥ 1

1, if i ∈ LX|Y and L
(i)
N (y1:N , û1:i−1) < 1,

(8)

where L
(i)
N (y1:N , û1:i−1) is called the likelihood ratio (LR) defined by

L
(i)
N (y1:N , û1:i−1) =

P (U (i) = 0|Y 1:N = y1:N , U1:i−1 = û1:i−1)

P (U (i) = 1|Y 1:N = y1:N , U1:i−1 = û1:i−1)
. (9)

The probability of block error measured by Pe = Pr(Û1:N 6= U1:N ) = Pr(ÛHc
X|Y
6=

UHc
X|Y

) is upper-bounded by

Pe ≤
∑

i∈Hc
X|Y (N,R)

Z(U (i)|Y 1:N , U1:i−1), (10)

which can be further formalized as a theorem as follows.

Theorem 2 (An upper bound on error probability [2]). For any fixed
R > H(X|Y ) and β < 0.5, the probability of error for the above polar source

coding method is bounded as Pe = O(2−N
β

).

It implies that any rate R > H(X|Y ) is achievable with a vanishing block error
probability for sufficiently large N . As N goes to infinity, the polarization process
removes the randomness of the low-entropy set almost surely while the other set
becomes random. Additionally, the complexity of polar encoding and decoding
are both O(N logN). More details on the complexity of successive-cancellation
(SC) decoding can be found in Appendix A.

2.3 From Source Coding to Sampling

Now consider the sampling problem. To produce the above memoryless source
X given side information Y , we further define a high-entropy set2

HX|Y =
{
i ∈ [N ] : Z(U (i) | Y 1:N , U1:i−1) ∈ (1− α, 1]

}
. (11)

2 In [2], Lc
X|Y is called the high-entropy set, which is larger than HX|Y .
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According to polar source coding, the U (i) for i ∈ HX|Y with very high en-
tropy is approximately uniformly distributed and is approximately independent
of both U1:i−1 and the side information Y 1:N , while the U (i) for i ∈ LX|Y with

very low entropy is almost deterministic. Those U (i) for i ∈ HcX|Y \LX|Y (i.e.,

Z(U (i) | Y 1:N , U1:i−1) ∈ [α, 1 − α]) are unpolarized. As N goes to infinity, the
fraction of unpolarized indexes vanishes and the fraction of high-entropy indexes
approaches the entropy of X given Y according to Theorem 1.

Since the polarization transform is reversible, it is expected to produce an
approximation QX1:N of PX1:N by applying the above transform to U1:N , i.e.
X1:N = GNU

1:N . However, the unpolarized set may not be negligible for finite
length N , and should be handled with care. More precisely, those U (i) for i ∈
HcX|Y \LX|Y are not quite uniform; feeding them with uniform bits may cause
non-negligible distortion from the target distribution. Therefore, for sampling,
U (i)s should follow the distribution:

U (i) =

{
{0, 1} ∼ Bernoulli(0.5), if i ∈ HX|Y
arg maxu PU(i)|Y 1:N ,U1:i−1(u|y1:N , u1:i−1), if i ∈ LX|Y

(12)

and

U (i) =

{
0 w.p. PU(i)|Y 1:N ,U1:i−1(0|y1:N , u1:i−1)

1 w.p. PU(i)|Y 1:N ,U1:i−1(1|y1:N , u1:i−1)
if i ∈ HcX|Y \LX|Y . (13)

Fig. 2 shows the difference between source coding and sampling: although the
unpolarized set belongs to the compressed codeword in source coding, its bits
should be randomized as in (13) in sampling. Denote by PU1:N (resp. QU1:N ) the

(a)

(b)

Fig. 2. Polar source coding vs. polar sampling: (a) Subsets of indexes for polar source
coding (b) Subsets of indexes for polar sampling. The fraction of Lc

X|Y \HX|Y vanishes
as N goes to infinity.

distribution of U1:N (resp. U1:N ) induced by the polarization transform, see (1).
For some useful metric δ, the distance between PX1:N and QX1:N is bounded by
the data processing inequality

δ(PX1:N , QX1:N ) ≤ δ(PU1:N , QU1:N ).
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The goodness of a metric sometimes can help reduce the complexity of imple-
mentation. To evaluate the performance of our sampling scheme, we will compare
different metrics in the sequel, e.g. SD, KL divergence and Rényi divergence.

In order to realize the operations given in (12) and (13), one need to compute
PU(i)|Y 1:N ,U1:i−1 and define the two sets HX|Y and LX|Y by Bhattacharyya pa-

rameter Z(U (i) | Y 1:N , U1:i−1). To calculate PU(i)|Y 1:N ,U1:i−1 efficiently we can
formulate (X,Y ) into a binary memoryless symmetric source pair. Denote by
W a transition from X to Y with probability W (y|x) = PX,Y (X,Y )/PX(x). A
source pair (X,Y ) given as above is said to be symmetric if there exists a per-
mutation π(·) such that W (y|0) = W (π(y)|1). Some efficient algorithms to find
out the two sets HX|Y and LX|Y were proposed in [29, 20]. On the other hand,
PU(i)|Y 1:N ,U1:i−1 can be computed with quasi-linear complexity by SC decoding
proposed in [1].

Theorem 3 originally gives the connection between the Bhattacharyya para-
meters of an asymmetric channel and a symmetric one [11]. Similarly, the Bhat-
tacharyya parameter can be efficiently calculated by the corresponding Bhatta-
charyya parameter of a binary memoryless symmetric source pair.

Theorem 3 (Connection Between Bhattacharyya Parameters, adap-
ted from [11, 14]). Denote by (X,Y ) a source pair with a joint distribution
PX,Y where X ∈ X = {0, 1} and Y ∈ Y for some countable set Y. Let X̃ takes

values over X uniformly and let Ỹ = (X̃⊕X,Y ). X̃ and Ỹ can naturally be regar-
ded as a BMS source pair with transition probability W̃ (ỹ|x̃) = PX,Y (x, y) where

X̃ ∈ X and Ỹ ∈ Ỹ = X × Y. By performing the above transformation circuit
GN to N i.i.d. copies of X and X̃, i.e., U1:N = X1:NGN and Ũ1:N = X̃1:NGN ,
respectively, we can have two combined transition blocks WN : U1:N → Y 1:N

and W̃N : Ũ1:N → Ỹ 1:N , respectively. These two combined transitions can be
split back into a set of N sub-source pairs (U (i), Y 1:N × U1:i−1) giving rise to

N sub-transitions W
(i)
N : X → Y1:N × X 1:i−1 and W̃

(i)
N : X → Ỹ1:N × X 1:i−1,

respectively. For each sub-transition of WN and W̃N , we have the following pro-
perties regarding the probability distribution and the Bhattacharyya parameter,
i.e.,

PU1:i,Y 1:N (u1:i, y1:N ) = 2n−1PŨ1:i−1,Ỹ 1:N |Ũ(i)(u
1:i−1, (0, y1:N )|u(i)), (14)

and

Z(U (i)|U1:i−1, Y 1:N ) = Z̃(Ũ (i)|Ũ1:i−1, X1:N ⊕ X̃1:N , Y 1:N ). (15)

It is straightforward to see that the Bhattacharyya parameter of the symme-
tric source pair and asymmetric source pair are the same, and one can calculate
Z̃(Ũ (i)|Ũ1:i−1, X1:N ⊕ X̃1:N , Y 1:N ) with the known technique for symmetric po-
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lar codes [29, 20]. Furthermore, we can have

PU1:i,Y 1:N (u1:i−1, 0, y1:N )

PU1:i,Y 1:N (u1:i−1, 1, y1:N )
=
PU(i)|Y 1:N ,U1:i−1(0|y1:N , u1:i−1)

PU(i)|Y 1:N ,U1:i−1(1|y1:N , u1:i−1)
(16)

=
PŨ1:i−1,Ỹ 1:N |Ũ(i)(ũ1:i−1, (01:N , y1:N )|0)

PŨ1:i−1,Ỹ 1:N |Ũ(i)(ũ1:i−1, (01:N , y1:N )|1)
(17)

= L
(i)
N ((01:N , yN1 ), ũ1:i−1), (18)

where L
(i)
N ((01:N , yN1 ), ũ1:i−1) denotes the posterior probability ratio for a sub-

transition W̃
(i)
N . Therefore, the posterior probability PU(i)|Y 1:N ,U1:i−1 in (12) and

(13) can be computed with complexity O(N logN) by the SC decoding propo-
sed in [1]. In the same fashion, we can compute PU(i)|U1:i−1 by considering Y
independent of X.

3 Polar Sampling over the Integers

Definition 2. For any vectors c, x and any s > 0, let

ρc,s(x) = exp(−π‖x− c‖2/s2)

be a Gaussian function on R centred at x = c with parameter s. The total mass
of the function is

∫
x∈R ρc,s(x)dx = s.

Definition 3. For any c ∈ R, s > 0, define the discrete Gaussian distribution
over Z as

∀x ∈ Z, DZ,c,s(x) = ρc,s(x)/ρc,s(Z)

where ρc,s(Z) =
∑
z∈Z ρc,s(z).

In the above definition, the denominator ρc,s(Z) is for normalization. For con-
venience, we may omit c for c = 0, e.g. ρ0,s(x) = ρs(x) and DZ,0,s(x) = DZ,s(x).

Gaussian sampling over integers Z can be formulated as a multilevel coding
problem over a binary partition chain Z/2Z/4Z/ · · · 2rZ/· · · of which each level
is labeled by X1, X2, . . . , Xr, . . . (see Fig. 3). Then the discrete Gaussian distri-
bution over integers DZ,c,s induces a distribution PX1:r

whose limit corresponds
to DZ,c,s as r goes to infinity. By cutting off the tail of negligible probability,
a discrete Gaussian distribution over the integer lattice Z can be reduced to a
distribution over a finite set. An example is DZ,s=3

√
2π for which a constellation

of 32 points centred at 0 is somewhat sufficient because the total probability is
rather close to 1.

Suppose r levels of partition are employed to approximate DZ,c,s. The chain
rule of conditional probability and the chain rule of conditional entropy, i.e.

P (X1:r) =

r∏
k=1

P (Xk|X1:k−1), (19)

H(X1:r) =

r∑
k=1

H(Xk|X1:k−1), (20)
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Fig. 3. An r-level binary partition tree of the integer lattice Z.

imply that the Gaussian distribution over the finite constellation can be gene-
rated in a level-by-level way. For the k-th level, we can generate the component
source Xk by the the scheme proposed in Subsection 2.3 given the samples x1:k−1
from lower levels as side information. The sampling problem for each level can
be divided into two stages, construction and implementation.

For the first level, we want to generate the component source X1 in the
absence of any side information.

1. Construction: By performing the source polarization transformation GN on
N i.i.d. copies of X1, we obtain an N dimensional vector U1:N

1 = X1:N
1 GN .

For any β ∈ (0, 1/2) and α = 2−N
β

, we formally define two sets HX1
and

LX1
as

HX1
=
{
i ∈ [N ] : Z(U

(i)
1 | U1:i−1

1 ) ∈ (1− α, 1]
}

(21)

and

LX1
=
{
i ∈ [N ] : Z(U

(i)
1 | U1:i−1

1 ) ∈ [0, α)
}
. (22)

For any i ∈ HX1
, U

(i)
1 is approximately uniform and independent of U1:i−1

1 ,

while for i ∈ LX1 , U
(i)
1 is almost deterministic given the knowledge of U1:i−1

1 .

2. Implementation: After getting the two sets HX1
and LX1

, we can generate N
i.i.d. copies of X1 by applying the polarization transform circuit to the input
vector U1:N

1 of which each entry takes a value according to the following rule:

U
(i)
1 =

{
Bernoulli( 1

2 ) if i ∈ HX1

arg max
u
(i)
1
P
U

(i)
1 |U

1:i−1
1

(u
(i)
1 |u

1:i−1
1 ) if i ∈ LX1

, (23)

and

U
(i)
1 =

{
0 w.p. P

U
(i)
1 |U

1:i−1
1

(0|u1:i−11 )

1 w.p. P
U

(i)
1 |U

1:i−1
1

(1|u1:i−11 )
if i ∈ HcX1

\LX1
. (24)
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As discussed in Subsection 2.3, by converting the source X1 without side in-
formation to a BMS source pair (X̃1, X1 ⊕ X̃1), we can calculate the Bhatta-

charyya parameter Z(U
(i)
1 | U1:i−1

1 ) and the posterior probability P
U

(i)
1 |U

1:i−1
1

efficiently. Once we have a realization u1:N1 of U1:N
1 , we can obtain a realization

x1:N1 = u1:N1 GN of X1:N
1 and transmit it to the next level for further processing.

For higher levels with k ∈ (1, r], our task is to generate N i.i.d. copies of
source Xk given the side information x1:N1:k−1 which were generated at the previous
k − 1 levels.

1. Construction: By performing the source polarization transformation GN on
N i.i.d. copies of Xk, we obtain an N dimensional vector U1:N

k = X1:N
k GN .

For β ∈ (0, 1/2) and α = 2−N
β

, we define HXk|X1:k−1
and LXk|X1:k−1

as

HXk|X1:k−1
=
{
i ∈ [N ] : Z(U

(i)
k | X

1:N
1:k−1, U

1:i−1
k ) ∈ (1− α, 1]

}
(25)

and
LXk|X1:k−1

=
{
i ∈ [N ] : Z(U

(i)
k | X

1:N
1:k−1, U

1:i−1
k ) ∈ [0, α)

}
. (26)

2. Implementation: We can generate N i.i.d. copies of Xk by applying the
polarization transformation circuit to the input vector U1:N

k of which each
entry takes a value according to the following rule:

U
(i)
k =

{
Bernoulli( 1

2 ) if i ∈ HXk|X1:k−1

arg maxu PU(i)|X1:N
1:k−1,U

1:i−1
k

(u|x1:N1:k−1, u
1:i−1
k ) if i ∈ LXk|X1:k−1

(27)
and

U
(i)
k =

0 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(0|x1:N1:k−1, u
1:i−1
k )

1 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(1|x1:N1:k−1, u
1:i−1
k )

if i ∈ HcXk|X1:k−1
\LXk|X1:k−1

. (28)

Once we have a realization u1:Nk of U1:N
k , we can obtain a realization x1:Nk =

u1:Nk GN of X1:N
k and transmit it to the next level for further processing. Again,

Z(U
(i)
k | X1:N

1:k−1, U
1:i−1
k ) and P

U
(i)
k |X

1:N
1:k−1,U

1:i−1
k

can be calculated efficiently using

Theorem 3. Note that for a target statistical difference between the target distri-
bution and the distribution we generate, the two sets HXk|X1:k−1

and LXk|X1:k−1

for each level can be determined offline. By repeating the operations in (27) and
(28) from level 2 to level r, we can finally obtain N samples x1:N from DZ,c,s,
i.e.,

x1:N =

r∑
k=1

2k−1x1:Nk . (29)

Fig. 4 shows how this Gaussian sampler works at each level in terms of con-
struction and implementation. It also shows how to combine the output of each
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level. At the construction stage, W designates the probability transition from Xk

to X1:k. A sub-transition W
(i)
N is obtained by combining then spliting N copies

of i.i.d. source pair (Xk, X1:k−1). At this stage the Bhattacharyya parameters

of W
(i)
N are calculated to define HXk|X1:k−1

and LXk|X1:k−1
. At the implementa-

tion stage, realizations of U1:N are generated according to the implementation
rules (27) and (28). In Appendix C, we give the key functions invoked at the
construction and implementation stage. Given the two parameters N and β, the
closeness between the target distribution and the one our sampler can produce
will be analyzed in the next section.

(a) (b)

Fig. 4. The construction and implementation of the polar sampler: (a) Construction
(can run offline) (b) Implementation (runs online).

4 Closeness Analysis

4.1 Closeness Measures

Definition 4 (Statistical distance). Denote by P and Q two distributions
with countable supports and let A be the union of supports of P and Q. The SD
between P and Q is

V(P,Q) =
1

2

∑
a∈A
|P (a)−Q(a)|.
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Definition 5 (Kullback-Leibler divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let A ⊂ Ω be the strict support of P
(P (a) > 0 iff a ∈ A). The KL divergence DKL of Q from P is defined as:

DKL(P‖Q) =
∑
a∈A

P (a) ln

(
P (a)

Q(a)

)
with the convention that ln(x/0) = +∞ for any x > 0.

4.2 The Approximation Error Model

In a concrete implementation, an ideal DGS is replaced by an approximation. To
give a sharp estimation of the accuracy/security of a cryptographic primitive,
the closeness between the approximation and the ideal DGS should be measu-
red. Conventionally, the closeness between two distribution P and Q over the
same support A is measured by the SD and KL divergence. In this section,
we will derive the upper bounds on the closeness between the ideal DGS and
the distribution generated by our sampling scheme in SD and KL divergence,
respectively.

The approximation error comes from two sources, the tailcut (finite levels of
the partition employed) and the polar source coding. On the one hand, we need
to decide how many levels of partition are in need. On the other hand, the error
introduced by polar sampling should also be analyzed. Denote by DZ,c,s the tar-
get discrete Gaussian distribution and we decide to employ r levels of partition.
If polar sampling did not introduce any error, we would generate a distribution
PX1:r with a closeness measure δ(DZ,c,s, PX1:r ) which is determined only by r for
some metric δ. Then, let QX1:r

(x1:r) denote the distribution obtained by polar
sampling where the error introduced is δ(PX1:r

, QX1:r
). By the triangle inequa-

lity of SD, we obtain the SD between the ideal discrete Gaussian distribution
and ours as follows,

V(DZ,c,s, QX1:r ) ≤ V(DZ,c,s, PX1:r ) + V(PX1:r , QX1:r ). (30)

Since the KL divergence does not satisfy the triangle inequality, we will only
give D(DZ,c,s‖PX1:r

) and D(PX1:r
‖QX1:r

) rather than a total KL divergence
D(DZ,c,s‖QX1:r

). However, as discussed in [24, Section 3] the lack of symmetry
and triangle inequality can be easily handled in KL-based security analysis.

4.3 Approximation Error from Tailcut

Definition 6 (Smoothing Parameter [18]). For an n-dimensional lattice Λ,
and positive real ε > 0, we define its smoothing parameter ηε(Λ) to be the smallest
s such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

The smoothing parameter quantifies how large s is sufficient such that DΛ,c,s

behaves like the continuous Gaussian distribution. It is implied by Definition 6
that for any ε > 0, the smoothing parameter ηε(Z) of Z is the smallest s such
that ρ(sZ) ≤ 1 + ε.
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Lemma 1 (Lemma 4.2, [9]). For any ε > 0, any s > ηε(Z), and any t > 0,

Pr
x←DZ,c,s

(|x− c| ≥ t· s) ≤ 1 + ε

1− ε
· 2e−πt

2

.

Instead of sampling over the full domain of the integer lattice, a distribution tail
of negligible probability is cut off in practice. Suppose 2r samples are left after
the tailcut. Let A = Z ∩ [−2r−1 + c, 2r−1 + c). The distribution of the finite set
is

Dγ(a) =
ρc,s(a)∑
a∈A ρc,s(Z)

= DZ,c,s(a)/DZ,c,s(A),

where γ is the probability of the tail. This constellation A of 2r points can be
represented as a binary partition tree labeled by X1:r in the same way as Fig. 3.
In our sampling scheme, we obtain a sample labeled by

x1:N =

r∑
k=1

2k−1x1:Nk .

There exists a one-to-one mapping from X1:r to A. Therefore PX1:r
and the

tailcut distribution Dγ are exactly the same and we can obtain V(DZ,c,s, PX1:r
)

(resp. DKL(DZ,c,s‖PX1:r
)) by calculating V(DZ,c,s, Dγ) (resp. DKL(DZ,c,s‖Dγ)).

SD-Based Analysis Given the tailcut distribution Dγ over the finite constel-
lation A as above, the SD between DZ,c,s and Dγ is

V(DZ,c,s, Dγ) =
1

2

∑
a/∈A

|DZ,c,s(a)− 0|+ 1

2

∑
a∈A
|DZ,c,s(a)−Dγ(a)|

=
1

2
γ +

1

2

∑
a∈A

∣∣∣∣DZ,c,s(a)

(
1− 1

Dγ(A)

)∣∣∣∣
=

1

2
γ +

1

2
(1− γ)

∣∣∣∣1− 1

Dγ(A)

∣∣∣∣
=

1

2
γ +

1

2
(1− γ)

∣∣∣∣1− 1

1− γ

∣∣∣∣
= γ.

By Lemma 1, the SD between DZ,c,s and PX1:r is bounded as

V(DZ,c,s, PX1:r
) = V(DZ,c,s, Dγ)

≤ 1 + ε

1− ε
· 2e−πt

2

, (31)

for any ε > 0, s > ηε(Z) and t · s = 2r−1.
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KL-Based Analysis Given the one-to-one mapping between A and X1:r and
the tailcut setting as above, Dγ over the finite constellation A can be written in
the form

P (X1:r = x) = DZ,c,s(a)/
∑
a∈A

DZ,c,s(a)

= DZ,c,s(a|a ∈ A).

The KL divergence between Dγ and DZ,c,s is

DKL(Dγ‖DZ,c,s) =
∑
a∈A

DZ,c,s(a|a ∈ A) ln
DZ,c,s(a|a ∈ A)

DZ,c,s(a)

=
∑
a∈A

DZ,c,s(a|a ∈ A) ln
DZ,c,s(a|a ∈ A)

DZ,c,s(a|a ∈ A)DZ,c,s(x ∈ A)

=
∑
a∈A

DZ,c,s(a|a ∈ A) ln
1

DZ,c,s(a ∈ A)

= ln
1

DZ,c,s(a ∈ A)
.

According to the second-order Taylor bound, if DZ,c,s(x ∈ A) = 1 − γ for any
0 < γ < 1, DKL(Dγ‖DZ,c,s) is bounded as

DKL(Dγ‖DZ,c,s) = γ +O(γ2)

≈ V(PX1:r
, DZ,c,s). (32)

and so is DKL(PX1:r
‖DZ,c,s).

4.4 Approximation Error from Polar Sampling

KL-Based Error Analysis Let PX1:N
1:r

(x1:N1:r ) denote the distribution of N i.i.d.
X1:r defined as above. For any 0 < β < 0.5, N = 2n, n ≥ 1 and the corresponding
high and low-entropy sets defined in (25) and (26), one can generate a distri-
bution QX1:N

1:r
(x1:N1:r ) using the rules (27) and (28). To give the KL divergence

between PX1:N
1:r

(x1:N1:r ) and QX1:N
1:r

(x1:N1:r ), we first modify the implementation ru-

les (27) and (28) to

U
(i)
k =

{
0 w.p. 1

2

1 w.p. 1
2

if i ∈ HXk|X1:k−1
(33)

and

U
(i)
k =

0 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(0|x1:N1:k−1, u
1:i−1
k )

1 w.p. P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(1|x1:N1:k−1, u
1:i−1
k )

if i ∈ HcXk|X1:k−1
, (34)
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where only the deterministic decisions for U
(i)
k in LXk|X1:k−1

are replaced by

random decisions. Let Q′
X1:N

1:r
(x1:N1:r ) denote the distribution obtained from the

implementation rule described in (33) and (34). The KL divergence between
PX1:N

1:r
and Q′

X1:N
1:r

is given as follows,

DKL(PX1:N
1:r
‖Q′X1:N

1:r
)

(a)
= DKL(PU1:N

1:r
‖Q′U1:N

1:r
)

(b)
= DKL(PU1:N

1
PU1:N

2 |U1:N
1
· · ·PU1:N

r |U1:N
1:r−1
‖Q′U1:N

1
Q′U1:N

2 |U1:N
1
· · ·Q′U1:N

r |U1:N
1:r−1

)

(c)
= DKL(PU1:N

1
‖Q′U1:N

1
) +DKL(PU1:N

1 |U1:N
1
‖Q′U1:N

2 |U1:N
1

) + · · ·

+DKL(PU1:N
r |U1:N

1:r−1
‖Q′U1:N

r |U1:N
1:r−1

)

(35)

where the equalities and inequalities are due to

(a) One-to-one mapping from X1:N
1:r to U1:N

1:r ;

(b) The Chain rule of joint distribution;

(c) The chain rule of KL divergence.

For any level k ∈ {1, · · · r}, DKL(PX1:N
k |X1:N

1:k−1
‖Q′

X1:N
k |X1:N

1:k−1
) is bounded as

follows,

DKL(PX1:N
k |X1:N

1:k−1
‖Q′X1:N

k |X1:N
1:k−1

)

(d)
=

N∑
i=1

DKL(P
U

(i)
k |U

1:i−1
k ,U1:N

1:k

‖Q′
U

(i)
k |U

1:i−1
k ,U1:N

1:k

)

(e)
=
∑
i∈Hk

DKL(P
U

(i)
k |U

1:i−1
k ,U1:N

1:k

‖Q′
U

(i)
k |U

1:i−1
k ,U1:N

1:k

)

(f)
=
∑
i∈Hk

ln 2
[
1−HP (U

(i)
k |U

1:i−1
k , U1:N

1:k )
]

(g)

≤
∑
i∈Hk

ln 2
[
1− ZP (U

(i)
k |U

1:i−1
k , U1:N

1:k )2
]

(h)

≤ 2 ln 2 ·N2−N
β

, (36)

where the equalities and inequalities are due to

(d) The chain rule of KL divergence;

(e) For i ∈ HcXk|X1:k−1
, Q′(u

(i)
k |u

1:i−1
k , u1:N1:k−1) = P (u

(i)
k |u

1:i−1
k , u1:N1:k−1);

(f) The definition ofDKL(·‖·) andQ′(U
(i)
k |u

1:i−1
k , u1:N1:k−1) = 1

2 for i ∈ HXk|X1:k−1
;

(g) Z(X|Y )2 < H(X|Y ) < Z(X|Y ) [2];

(h) (25).
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According to (35) and (36), the KL divergence between PX1:N
1:r

and Q′
X1:N

1:r
is

bounded as

DKL(PX1:N
1:r
‖Q′X1:N

1:r
) ≤ 2 ln 2 · rN2−N

β

.

In a similar fashion, the KL divergence between QX1:N
1:r

and Q′
X1:N

1:r
is given as

follows,

DKL(QX1:N
1:r
‖Q′X1:N

1:r
)

= DKL(QU1:N
1:r
‖Q′U1:N

1:r
)

=

r∑
k=1

N∑
i=1

DKL(Q
U

(i)
k |U

1:i−1
k ,U1:N

1:k

‖Q′
U

(i)
k |U

1:i−1
k ,U1:N

1:k

)

(i)
=

r∑
k=1

∑
i∈LXk|X1:k−1

DKL(Q
U

(i)
k |U

1:i−1
k ,U1:N

1:k

‖Q′
U

(i)
k |U

1:i−1
k ,U1:N

1:k

)

(j)
=

r∑
k=1

∑
i∈LXk|X1:k−1

ln 2
∑

u1:i−1
k ,u1:N

1:k−1

−Q′(u1:i−1k , u1:N1:k−1) logQ′(ū
(i)
k |U

1:i−1
k , U1:N

1:k−1)

(k)

≤
r∑

k=1

∑
i∈LXk|X1:k−1

ln 2 ·HP (U
(i)
k |U

1:i−1
k , U1:N

1:k−1)

(l)

≤
r∑

k=1

∑
i∈LXk|X1:k−1

ln 2 · Z(U
(i)
k |U

1:i−1
k , U1:N

1:k−1)

(m)

≤ ln 2 · rN2−N
β

,

where the equalities and inequalities come from

(i) For i ∈ LcXk|X1:k−1
, Q′(u

(i)
k |u

1:i−1
k , u1:N1:k−1) = Q(u

(i)
k |u

1:i−1
k , u1:N1:k−1);

(j) The definition of DKL(·‖·) (see Appendix B);

(k) See Appendix B;

(l) Z(X|Y )2 < H(X|Y ) < Z(X|Y ) [2];

(m) (26).

If m samples are picked randomly from all the N samples produced by our
sampler, we can bound the KL divergence of the m-dimensional distributions by
sub-additivity as follows,

DKL(PX1:m
1:r
‖Q′X1:m

1:r
) ≤ ln 2 ·r2N2−N

β

and DKL(QX1:m
1:r
‖Q′X1:m

1:r
) ≤ ln 2 ·rN2−N

β

,

for any m ≤ N . Although we cannot give the KL divergence between PX1:N
1:r

and

QX1:N
1:r

due to the lack of triangle inequality, the absence of DKL(PX1:N
1:r
‖QX1:N

1:r
)

will not prevent us from the security analysis which will be explained in the
sequel.
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SD-Based Error Analysis

Theorem 4 (Polar Sampling Theorem). Let PX1:N
1:r

(x1:N1:r ) denote the distri-
bution of N i.i.d. X1:r defined as above. For any 0 < β < 0.5, N = 2n, n ≥ 1
and the corresponding high and low-entropy sets defined in (25) and (26), one
can generate a distribution QX1:N

1:r
(x1:N1:r ) using the rules (27) and (28), and the

SD between PX1:N
1:r

(x1:N1:r ) and QX1:N
1:r

(x1:N1:r ) is upper bounded as

V(QX1:N
1:r
, PX1:N

1:r
) ≤ (

√
2 + 1)

√
1

2
ln 2 · rN2−Nβ .

Proof. From the definition of Q′ given in KL-based analysis, it is straightforward

to obtain the SD between V(PX1:N
1:r
‖Q′

X1:N
1:r

) ≤ r2N2−N
β

by Pinsker’s inequality

as follows,

V(PX1:N
1:r
‖Q′X1:N

1:r
) ≤

√(
1

2
ln 2

)
DKL(PX1:N

1:r
‖Q′

X1:N
1:r

)

≤
√

ln 2 · rN2−Nβ .

In a similar fashion, we obtain

V(QX1:N
1:r
‖Q′X1:N

1:r
) ≤

√(
1

2
ln 2

)
DKL(QX1:N

1:r
‖Q′

X1:N
1:r

)

≤ (
√

2 + 1)

√
1

2
ln 2 · rN2−Nβ .

Since SD satisfies the triangle inequality and symmetry property, the SD between
PX1:N

1:r
and QX1:N

1:r
is bounded as

V(QX1:N
1:r
, PX1:N

1:r
) ≤ (

√
2 + 1)

√
1

2
ln 2 · rN2−Nβ (37)

It can be observed from (30), (31), (37) that for sufficiently large N and pro-
perly chosen β and r, the distribution QX1:N

1:r
generated by our sampler can well

approximate DZ1:N ,c,s. Usually, a cryptographic scheme needs many more than
one sample at each run. For example, in the context of Ring LWE-based encryp-
tion, each query to the oracle gives m discrete Gaussian samples where m is the
dimension of the ring. If m samples are picked arbitrarily from all the N sam-
ples generated by our sampler, we can bound the SD of the two m-dimensional
distributions by sub-additivity as:

V(QX1:m
1:r

, PX1:m
1:r

) ≤ (
√

2 + 1)

√
1

2
ln 2 · rN2−Nβ .
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5 Security Analysis and Parameter Selection

Definition 7 (Standard cryptographic scheme [19]). We consider an ar-
bitrary cryptographic scheme S, consisting of one or more algorithms with oracle
access to a probability distribution ensemble Pθ, and whose security against an
adversary A (also consisting of one or more algorithms) is defined in terms of
a game GPS,A defining the event that A succeed in breaking the scheme S. The
success probability of A against S (when using samples from Pθ) is defined as
εPA = Pr{GPS,A}. The cost of an attack A against S is defined as tA/ε

P
A, and that

the bit-security of S is the minimum (over all adversaries A) of log(tA/ε
P
A).

Lemma 2 ([19]). Let SP be a standard cryptographic scheme as in Definition
7 with a black-box access to a probability distribution ensemble Pθ, and δ any
cryptographically useful measure. If SP is λ-bit secure and δ(Pθ,Qθ) ≤ 2−λ,
then SQ is (λ− 1)-bit secure.

Lemma 2 illustrates how the security with respect to an ideal distribution
is related to the security with respect to an approximated distribution. To ap-
proximate a λ-bit secure scheme SP with a (λ − 1)-bit secure scheme SQ, one
need to guarantee that δ(Pθ,Qθ) ≤ 2−λ for some useful metrics e.g. SD. Sup-
pose SDZm,c,s guarantees a security level of λ+ 1, and we expect to achieve λ-bit

security for S
Q
X1:m

1:r where QX1:m
1:r

is an approximation of DZm,c,s.

5.1 Security Analysis with SD

As analyzed above, the SD between the ideal DGS and the one we generate
vanishes exponentially with block-length N for any β ∈ (0, 0.5) and appropriate
choice of r. In implementation, we should choose N , β and r properly to achieve
desired closeness due to the security requirement and the limitation on resources.
Moreover, the closeness determines the security level of a cryptographic primitive
in which an approximated distribution is applied instead of the ideal one. Before
giving the relation between the SD and security, we first introduce the standard
cryptographic scheme to which the SD can apply.

According to equation (30), the overall SD between DZm,c,s and QX1:m
1:r

breaks down into V(DZm,c,s, PX1:m
1:r

) caused by tailcut and V(PX1:m
1:r

, QX1:r1:m)
caused by polar coding. Lemma 2 suggests that V(DZm,c,s, QX1:m

1:r
) should be

no larger than 2−(λ+1), therefore both V(DZm,c,s, PX1:m
1:r

) and V(PX1:m
1:r

, QX1:m
1:r

)

should be no larger than 2−(λ+2). Moreover, Lemma 1 implies that a tailcut
of DZm,c,s with support Z ∩ [c − ts, c + ts] can approximate DZm,c,s with

V(DZ1:m,c,s, PX1:m
1:r

) ≤ 2−(λ+2) if t ≥
√

(λ+ logm+ 3) ln 2/π for s > ηε(Z) with
only a small loss in tightness; accordingly the number of levels r should be

no less than
⌈
log(2s

√
(λ+ logm+ 3) ln 2/π)

⌉
. By Theorem 4, the SD between

P 1:m
X1:r

and Q1:m
X1:r

is bounded as

V(PX1:m
1:r

, QX1:m
1:r

) ≤ 2−2
nβ−1+ 1

2n+
1
2 log r+1.
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for m ≤ N and N = 2n.
At the cost of some tightness, we can guarantee that V(PX1:m

1:r
, QX1:m

1:r
) ≤

2−(λ+1) if 2−2
nβ−1+ 1

2n+
1
2 log r+1 ≤ 2−(λ+2) for β ∈ (0, 0.5). The number of levels

r is determined once s and t is fixed, while n and β should be chosen properly to
minimize the requirement for memory and running time subject to the security
requirement.

As mentioned earlier, our algorithm consists of two stages: construction and
implementation. The former is done offline and the latter runs online. At the

implementation stage, the running time to produce one bit U
(i)
k varies with

respect to different sets due to different implementation rules according to which

U
(i)
k is generated either randomly or deterministically. The parameter β affects

the running time to produce U1:N
k by defining the high and low entropy sets. n

is obviously in a more dominant position because it greatly influences the two
stages with respect to the efficiency of both computational and memory costs.
Given multiple parameter options to achieve a target security level, we put the
one with a smaller n (or N) as a first priority for the sake of efficiency. Fig. 5
illustrates how security level λ of a scheme is related to β and n given that the
scheme with access to a perfect distribution DZm,c,s is (λ+1)-bit secure. There is
no surprise that the two graphs only have minor differences because a relatively
small r can meet the requirement for closeness of a large s.
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Fig. 5. The relation between security level of a scheme and β, n based on SD analysis:
(a) s=8. (b) s=210.

5.2 Security Analysis with KL Divergence

Lemma 3 (Bounding Success Probability Variations, [22]). Let EP be an
algorithm making at most q queries to an oracle sampling from a distribution P
and returning a bit. Let ε ≤ 0, and Q be a distribution such that DKL(P‖Q) <
ε. Let x (resp. y) denote the probability that EP (resp. EQ) outputs 1. Then,
|x− y| ≤

√
qε/2.
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Security argument [24] It can be concluded from Lemma 3 that if a scheme is λ-
bit secure with oracle access to a perfect distribution P and the KL divergence
between P and another distribution Q satisfies DKL(P‖Q) ≤ 2−λ, then this
scheme is also about λ-bit secure with oracle access to Q. Moreover, it turns a
bound of KL divergence into a bound of SD. The security argument based on
KL divergence verifies symmetry and triangle inequality though KL divergence
itself does not (see Section 3.2 in [24] for detail).

Consider that a scheme with access to a perfect distribution DZm,c,s is λ-bit
secure. An adversary calls the sampler m times at each query. In our sampling
algorithm, m ≤ the block-length N of polar codes. According to (32) and sub-
additivity of KL divergence, DKL(DZ1:m,c,s‖PX1:m

1:r
) . m(ε + ε2). In order to

achieve λ-bit secure after the tailcut, we have to guarantee m(ε + ε2) ≤ 2−λ

by selecting t ≈
√

(λ+ logm) ln 2/π. The number of levels needed is therefore
r = dlog(2t · s)e. It is observed that KL divergence is no better than SD with
respect to efficiency when used to analyze the tailcut error.

As given in Section 4.4, the approximation error from polar coding is deter-
mined by DKL(PX1:m

1:r
‖Q′

X1:m
1:r

), DKL(Q′
X1:m

1:r
‖PX1:m

1:r
) which are upper bounded

as

DKL(PX1:m
1:r
‖Q′X1:m

1:r
) ≤ r2N2−N

β

, DKL(QX1:m
1:r
‖Q′X1:m

1:r
) ≤ rN2−N

β

.

In order to achieve λ-bit security after PX1:m
1:r

is replaced by QX1:m
1:r

, we need to

select n = logN and β properly such that 2−2
nβ+n+log(r)+1 ≤ 2−λ. Fig. 6 shows

how the security level is related to n, β in terms of different s. KL divergence
shows its advantage over SD when used to analyse the approximation error from
polar coding. To achieve the same security level, we can choose much smaller β
and n than those obtained according to SD-based analysis, which will lead to a
great reduction in both memory and running time.
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Fig. 6. The relation between security level of a scheme and β, n based on KL analysis:
(a) s=8. (b) s=210.
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5.3 Security Analysis of Tailcut With Rényi Divergence

Definition 8 (Rényi divergence). Let P , Q be two distributions with supports
SP and SQ, respectively. Let SP ⊂ SQ. For a ∈ (1,+∞), we define the Rényi
divergence of order a by

Ra(P‖Q) =

(∑
x∈SP

P (x)a

Q(x)a−1

) 1
a−1

.

In [25], a sharper bound on security based on Rényi divergence is given under the
assumption that the number of adversary queries q to an λ-bit-secure scheme
is far less than 2λ. In NIST’s proposals for post-quantum cryptography, it is
assumed that q ≤ 264. Denote by Q and Qγ a distribution and its tailcut such

that
Qγ
Q ≤ 1 + γ over the support T of Qγ for some γ ≈ 1−Q(T ). It is proved

in [25] that Ra(Qγ‖Q) ≤ 1 + γ. Consider a cryptographic scheme with λ bits
of security making q ≤ 264 queries to Q. By the security argument in [25], this
scheme is believed to lose at most one bit of security if Q is replaced by Qγ
provided that

Ra(Qγ‖Q) ≤ 1 +
1

4q
for a = 2λ.

In implementation, we only need to guarantee that

Qγ
Q
≤ 1 + γ for γ =

1

4q
.

In this paper, it is sufficient to claim at most 1 bit of security loss if the ideal
distribution DZ,c,s is replaced by its tailcut PX1:r

for λ = 128 and q = 264 by
taking

r =

⌈
log

(
2s

√
(64 + logm) ln 2

π

)⌉
.

Compared with SD and KL-based analysis of tailcut, Rényi divergence is obser-
ved to yield a reduction on r by at most 1 level.

6 Complexity and Comparison

6.1 A Constant-Time Algorithm

At the implementation stage, the running time cost comes from two sources:
calculating the LRs by SC decoding level by level and producing binary samples
U1:N
1:r following the implementation rules given by (27) and (28). The polar sam-

pler yields N samples at each run. For a fixed block-length N , no matter what
the distribution is, the SC decoding at each level requires exactly N(1 + logN)
steps of LR calculations where two LRs are assembled to give a new one (Ap-
pendices A and C). On the one hand, drawing a bit in constant time uniformly
at random or deterministically according to (27) is easy and cheap. On the other
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hand, sampling from a distribution statistically 2−λ-close to a Bernoulli variable
Bp in (28) for a given bias p is also easy: take an approximation of p up to λ
correct bits, then sample a uniform real q ∈ [0, 1) up to λ bits of precision and
answer 1 if and only if q < p [7]. Moreover the fraction of unpolarized indexes
vanishes as N tends to ∞. Therefore, the implementation stage shown in Fig. 4
is block-wise constant in time if the conditions below are satisfied:

– The number of levels r and the number of DGS samples N to produce at
each run of the algorithm are fixed. Seeing that r is only related to the width
s of DZ,c,s and the security level λ, but it has nothing to do with c. We claim
polar sampling to be constant-time for fixed s but independent of c.

– The parameter β for each level is chosen properly such that H, L and Hc\L
for each level are determined.

6.2 Time Complexity

The Knuth-Yao and CDT sampler can work as a base sampler [19, 23] if combined
with an expander. The polar sampler also allows such extension. Karmakar et
al. [12] compared the time complexity of Knuth-Yao and CDT showing that the
former can be made more time-saving. It is fair to compare the polar sampler
only with Knuth-Yao. We used a non constant-time Knuth-Yao implemented in
C++3 which is faster than its constant-time version. We demonstrated the polar
sampler in MATLAB with key functions (Appendix C) accelerated by C-based
mex files. Seeing that this a prototype for functional test, there is a lot of room
to improve the efficiency in the future.

The experiment was conducted on a PC with intel core-i7-6700 processor
running at 3.40 GHz using one core. For the benchmarks, we select s ∈

√
2π ·

{3, 8, 32, 256} and the target security level λ = 64. According to the KL-based
security analysis, we specified β to achieve 64 bits of security with respect to N ∈
{213, 214, 215}, and we selected r = dlog(2st)e where t ≈

√
(λ+ logm) ln 2/π.

We assume that one query to the sampling algorithms can obtain m = 1024
integer samples. The simulation results are shown in Table 1. Firstly, the polar
sampler always outperforms Knuth-Yao in speed with respect to the above set-
ting. Secondly, Knuth-Yao slows down almost linearly as 2r grows while the polar
sampler still provides a competitive speed. Thirdly, the polar sampler shows a
modest speed reduction as N increases from 214 to 215. This doesn’t contradict
the asymptotic information optimality claim. The online computation complex-
ity of the polar sampler is O(N logN). The polarization phenomenon helps save
time by reducing the fraction of unpolarized set. If N is not large enough such
that the i.i.d. source pairs are not deeply polarized, the speedup benefited from
polarization may not be able to compensate for the drop of speed induced by
the increase of N .

3 https://github.com/AaronHall4/BKW-Algorithm
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Table 1. Comparison of time efficiency between the polar sampler and Knuth-Yao.

2r s
Knuth-Yao

(samples/second)

polar sampler (samples/second)

N = 213 N = 214 N = 215

26
3
√
2π 1.934E4/s

β = 0.487

3.639E4/s
β = 0.4535

3.782E4/s
β = 0.4244

3.737E4/s

27
8
√
2π 1.003E4/s

β = 0.4876

3.171E4/s
β = 0.454

3.225E4/s
β = 0.425

3.217E4/s

29
32
√
2π 2.833E3/s

β = 0.488

2.529E4/s
β = 0.4544

2.591E4/s
β = 0.4252

2.496E4/s

212
256
√
2π 3.555E2/s

β = 0.4885

1.616E4/s
β = 0.455

1.630E4/s
β = 0.4257

1.610E4/s

6.3 Memory Cost

At the construction stage, one calculates the Bhatacharyya parameters using the
degraded merging technique [29] to find the indexes of the high, low-entropy and
unpolarized sets. We employ a 2-bit flag to specify which set an index i is in.
Given the number of levels r and block-length N , to store all the flags requires
rN
4 bytes in total.

We also need to store a likelihood ratio table of the symmetrized channel,

e.g. LR(x1:k−1, xk) = W (xk=0|x1:k−1)
W (xk=1|x1:k−1)

for k ≤ r. The table consists of 2r data for

all the r levels. The likelihood ratio is stored in natural order of X1:k−1 such
that once the samples for the first k− 1 levels X1:N

1:k−1 are ready we can find the
corresponding likelihood ratio by the index x1:k without scanning the table.

In addition, as shown in Appendix C, the polar sampler will create a floating
point array of sizeN×(n+1) and a bit array of the same size to store instant data.
Fortunately, the space-efficient SC decoding proposed in [28] greatly reduces the
array size to N × 1.

7 Conclusions and Future Work

Our polar sampler is efficient, application-independent and constant-time. Our
algorithm is effective in the case that when a large number of discrete Gaussian
samples are required. The reduction in resources of random bits stems from
the polarization process in which the randomness moves to the high-entropy
set. For fixed parameters, the construction stage is prepared offline and the
implementation stage is carried out online and constant in time. KL divergence is
a more efficient metric than SD when used for security analysis of polar sampling.
The Rényi divergence-based analysis of polar coding is still an open problem by
now. It deserves more efforts to give a complete Rényi divergence-based analysis
of our sampler and exploit the potential efficiency of Rényi divergence.

In this paper, we only use the basic 2× 2 kernel, whose finite-length perfor-
mance is not the best. Optimizing finite-length performance using other kernels
of polar codes as well as various other issues are left to future work.
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A Computational Complexity of SC Decoding

Consider the SC decoding for an arbitrary polar code of length N . To estimate
u1:N according to the rules given in (8), one needs to calculate the full set of
LRs. Let W : X → Y denote a stochastic transition from the source X to side
information Y with transition probability W (Y |X) = P (Y |X). As shown in Fig.
1, the source polarization transform combines N i.i.d. copies of W in a recursive
manner such that for any 0 ≤ m ≤ n, M = 2m, N = 2n, 1 ≤ κ ≤ M/2, the
decoder calculates the LRs at the m-th layer of recursion as [1, Section VIII]

L
(2κ−1)
M (yM1 , û2κ−21 ) =

L
(κ)
M/2

(
y
M/2
1 , û2κ−21,o ⊕ û2κ−21,e

)
L
(κ)
M/2

(
yMM/2+1, û

2κ−2
1,e

)
+ 1

L
(κ)
M/2

(
y
M/2
1 , û2κ−21,o ⊕ û2κ−21,e

)
+ L

(κ)
M/2

(
yMM/2+1, û

2κ−2
1,e

) ,

(38)

and

L
(2κ)
M (yM1 , û2κ−11 )

[
L
(κ)
M/2

(
y
M/2
1 , û2κ−21,o ⊕ û2κ−21,e

)]1−2û2κ−1

· L(κ)
M/2

(
yMM/2+1, û

2κ−2
1,e

)
.

(39)
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where the notation û2κ−21,o (resp. û2κ−21,e ) represents a subvector of {û(1), · · · , û(2κ−2)}
with odd (resp. even) indexes. The stopping condition of the recursion is L

(1)
1 (y) =

W (y|0)
W (y|1) .

Observe that to calculate any LR pair
(
L
(2κ−1)
M (yM1 , û2κ−21 ), L

(2κ)
M (yM1 , û2κ−11 )

)
at the m-th layer of the recursion, the decoder needs to know another LR pair(
L
(κ)
M/2(y

M/2
1 , û2κ−21,o ⊕ û2κ−21,e ), L

(κ)
M/2(yMM/2+1, û

2κ−2
1,e )

)
at the (m-1)-th layer. The

calculation of N LRs at layer m requires exactly N LR assembling at layer m−1.
One can reversely compute the LRs layer by layer until he reaches the 0-th layer
which is exactly the raw stochastic transition W . Suppose that assembling an
LR pair of the (m−1)-th layer into one LR of the m-th layer takes one complex-
ity unit, then computing all the N LRs of the n-th layer requires N(1 + logN)
units. Fig. 7 gives an example of N = 8.

B KL Divergence for the Low-Entropy Set

For i ∈ LXk|X1:k−1
, Q′ and Q follow the distribution respectively as

Q′(u
(i)
k |u

1:i−1
k , u1:N1:k−1) = P (u

(i)
k |u

1:i−1
k , u1:N1:k−1)

and

Q(ū
(i)
k |u

1:i−1
k , u1:N1:k−1) = 1

for ū
(i)
k = arg max

u∈{0,1}
P
U

(i)
k |X

1:N
1:k−1,U

1:i−1
k

(u|x1:N1:k−1, u
1:i−1
k ).

By definition of KL divergence, we have

DKL(Q
U

(i)
k |U

1:i−1
k ,U1:N

1:k−1

‖Q′
U

(i)
k |U

1:i−1
k ,UN1:k−1

)

=
∑

u1:i−1
k ,u1:N

1:k−1

Q′(u1:i−1k , u1:N1:k−1)[−1 · logQ′(ū
(i)
k |u

1:i−1
k , u1:N1:k−1)

− 0 · log(1−Q′(ū(i)k |u
1:i−1
k , u1:N1:k−1)) + (0 log 0 + 1 log 1)].

By definition Shannon entropy,

HP (U
(i)
k |U

1:i−1
k , U1:N

1:k−1)

= −
∑

u1:i−1
k ,u1:N

1:k−1

Q′(u1:i−1k , u1:N1:k−1)
∑
u
(i)
k

Q′(u
(i)
k |u

1:i−1
k , u1:N1:k−1) logQ′(u

(i)
k |u

1:i−1
k , u1:N1:k−1)

for i ∈ LXk|X1:k−1
. It can be proved for 0.5 < Q′(u

(i)
k |u

1:i−1
k , u1:N1:k−1) < 1 that

−Q′(u(i)k |u
1:i−1
k , u1:N1:k−1) logQ′(u

(i)
k |u

1:i−1
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U
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C Functions

At the construction stage, we employed [29, Algorithm A and C] to efficiently
calculate the Bhatacharyya parameters. The following Algorithms are key functi-
ons at the implementation stage. Algorithm 1 yields X1:N

k given x1:Nk−1 produced
by upper levels of the partition tree as shown in Fig. 4. Due to space limitati-
ons, we briefly describe two sub-functions Algorithm 2 and 3 which evolve from
[28, recursivelyCalcP(),recursivelyUpdateB()] to efficiently calculate the LRs in
equation (18). We keep the notations consistent with Appendix A.

Fig. 7 shows an example of the butterfly circuit to calculate LRs when N = 8.
We define two properties of each layer, i.e., phase and branch denoted by integers
φ and ψ, respectively. At layer m, 1 ≤ φ ≤ 2m and 0 ≤ ψ < 2n−m. In Fig. 7, we
distinguish different phases at each layer by different colors. We have a global
array LRReg[N ][n + 1] indexed by integers 1 ≤ i ≤ N and 0 ≤ m ≤ n. Note
that for any layer m each integer 1 ≤ i ≤ 2n has a unique representation as

i = 〈φ, ψ〉m = φ+ 2m · ψ.

Therefore, each element LRReg[i][m] will be uniquely loaded by L
(φ)
2m of phase φ

and branch ψ in the routine. The other global array of the same size is denoted
by UReg[N ][n + 1] whose elements are single bits. For a generic array A we
abbreviate A[〈φ, ψ〉m][m] as A[〈φ, ψ〉][m].

Remark 1. The polar sampler yields samples in a block-by-block fashion rather
than one-by-one. What the routines do is to perform exactly N(logN + 1) steps
of LR assembling and to yield X1:N

k . Despite the if and else statements in
Algorithm 1, which conditional branch to go at each iteration of the for loop
will be fixed given the three index sets. Algorithm 2 and 3 traverse the butterfly
circuit and their overall time consumption is only determined by N .

Fig. 7. The butterfly circuit to calculate LR.
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input : L1:N
1 , HighEntropySet, LowEntropySet, (global:LRReg, URegister)

output: X1:N
k

1 LRReg [:][0]=L1:N
1 ;

2 for i← 1 to N do
3 LRReg ← CalcLR(n,i);
4 if index i ∈ HighEntropySet then
5 URegister[i][n]←randomBin(); // equation (27).

6 end
7 else if index i ∈ LowEntropySet then
8 URegister[i][n] = LRReg[i][n] < 1; // equation (27).

9 end
10 else index i ∈ Non-polarizedSet
11 URegister[i][n] =Uniform() < 1/(1 + LRReg[i][n]); // Uniform()

produces real y ∈ (0, 1] uniformly at random; equation (28).

12 end
13 URegister ← CalcBit(n,i);

14 end

15 return X1:N
k = URegister[:][0]

Algorithm 1: Polar sampler for any one level of the partition tree.

input : m,φ
output: updated LRReg

1 if m = 0 then return;
2 set κ← dφ/2e;
3 if φ mod 2 = 1 then CalcLR (m− 1, κ);
4 for ψ = 0, · · · , 2n−m − 1 do

5 if φ mod 2 = 1 then LRReg [〈φ, ψ〉][m]
equation(38)←−−−−−−−−

(LRReg[〈κ, 2ψ〉][m− 1], LRReg[〈κ, 2ψ + 1〉][m− 1]);

6 else temp=UReg [〈φ− 1, ψ〉][m]; LRReg [〈φ, ψ〉][m]
equation(39)←−−−−−−−−

(LRReg[〈κ, 2ψ〉][m− 1], LRReg[〈κ, 2ψ + 1〉][m− 1]);

7 end

Algorithm 2: The CalLR( ) function.

input : m,φ
output: updated UReg

1 if φ mod 2 = 1 then return;
2 set κ← dφ/2e;
3 for ψ = 0, · · · , 2n−m − 1 do
4 UReg [〈κ, 2ψ〉][m− 1]← UReg[〈φ− 1, ψ〉][m]⊕ UReg[〈φ, ψ〉][m];
5 UReg [〈κ, 2ψ + 1〉][m− 1]← UReg[〈φ, ψ〉][m];

6 end
7 if κ mod 2 = 0 then CalcBit (m− 1, κ) ;

Algorithm 3: The CalBit( ) function.


