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Abstract. The Learning with Errors (LWE) problem is the fundamental
backbone of modern lattice based cryptography, allowing one to establish
cryptography on the hardness of well-studied computational problems.
However, schemes based on LWE are often impractical, so Ring LWE
was introduced as a form of ‘structured’ LWE, trading off a hard to
quantify loss of security for an increase in efficiency by working over a
well chosen ring. Another popular variant, Module LWE, generalizes this
exchange by implementing a module structure over a Ring LWE instance.
In this work, we introduce a novel variant of LWE over cyclic algebras
(CLWE) to replicate the addition of the ring structure taking LWE to
Ring LWE by adding cyclic structure to Module LWE. The proposed
construction is both more efficient than Module LWE and conjecturally
more secure than Ring LWE, the best of both worlds. We show that the
standard security reductions expected for an LWE problem hold, namely
a reduction from certain structured lattice problems to the hardness of
the decision variant of the CLWE problem. As a contribution of theoretic
interest, we view CLWE as the first variant of LWE which naturally
supports non-commutative multiplication operations.

1 Introduction

With the predicted advent of quantum computers compromising the bulk of
existent cryptographic constructions, lattice based cryptography has emerged in
the last ten years as a promising foundation for long term security. In particular,
the Learning with Errors (henceforth LWE) problem introduced in [26], as well
as its variants over rings (RLWE) [16] and modules (MLWE) [14], provides a
natural intermediate step to base cryptographic hardness on lattice short vector
problems in a post quantum setting. Indeed, second round submissions to the
NIST post quantum standardisation process such as NewHope [1] and KYBER
[6] rely on the hardness of LWE variants. Cryptography based on the classical
LWE problem is typically somewhat impractical, in part due to large key sizes.
To solve this, the ring variant was introduced as a way to provide extra structure
in LWE to trade a potential loss of security for an increase in efficiency. MLWE
generalizes ring and classical LWE, providing a smoother transition between
security and efficiency than the binary option presented by ring or classical
LWE.



Conceptually, one may view all these problems as variations on a single prob-
lem. The (search) LWE problem tasks a solver with recovering a secret vector
s ∈ Znq from a collection of pairs (ai, b = 〈ai, s〉 + ei), where each ai ∈ Znq is
uniformly random and the ei’s are small random errors. In practice, we view this
collection of equations in matrix-vector form:

As + e = b,

where all operations and entries are over Zq and the challenge is to recover s
from A,b. The ring variant replaces A, s, e with elements a, s, e from the ring

Rq :=
Zq[x]

xn + 1
, requiring the solver to obtain s from samples ai ·s+ei. For power-

of-two n this can be expressed in matrix-vector form by considering the matrix
rot(a), the negacyclic matrix obtained from the coefficients of a. Explicitly, for
a = a0 +a1x+ ...+an−1x

n−1 and bold faced letters denoting coefficient vectors,
a sample from the RLWE distribution takes the form:

a0 −an−1 . . . −a1
a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0

 s + e = b

where once again operations and entries are over Zq. This is exactly a structured
version of the classical LWE problem, where the uniformly random matrix A
has been replaced by the negacyclic matrix rot(a). Of course, this should be an
easier problem to solve, yet no substantial progress has been made in using the
structure of rot(a) to solve the problem efficiently. We can extend this matrix-
vector view to MLWE as well. An MLWE instance takes place in a module M of
dimension d over Rq, such that a solver has to recover s ∈ M from a collection
of pairs (ai, 〈ai, s〉+ ei) where ai is a uniformly random element of M and each
ei is a small random element of Rq. A collection of such pairs can be viewed as
As + e = b, where the ambient space Zq has been replaced by Rq e.g. with d
samples: 

a1,1 a1,2 . . . a1,d
a2,1 a2,2 . . . a2,d

...
...

. . .
...

ad,1 ad,2 . . . ad,d

 s + e = b

where all operations are over Rq and each ai,j is uniformly random. Of course,
we could extend this to have operations over Zq by applying the rot(·) operation
coordinatewise, to obtain a structured LWE instance in dimension nd. An ad-
vantage of these structured matrices is that they allow for streamlined storage
and operations. For example, storing a uniformly random matrix A requires one
to store all n2 of its entries, but rot(a) requires a factor n less memory since
one need only store its first column. Equivalently, one RLWE sample generates
n LWE samples while reducing the storage space and key sizes.
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This concept of saving memory by adding structure motivates this work; can
we perform an analog of the transformation taking an LWE matrix A to an
RLWE matrix rot(a) for the module M? We solve this by constructing a new
variant of the LWE problem over a certain non-commutative space known as a
cyclic algebra. In recent years, cyclic algebras have received significant attention
in the field of coding theory (see e.g. [15, 18, 28]) due to the particular nature
of the matrix lattices they induce, and we view them as a suitable option for
defining an LWE problem over a non-commutative space. Though some efforts
have been made to construct non-commutative LWE problems, for example [3],
[9], the majority of non-commutative cryptography has relied on group theoretic
constructions, whose underlying hard problems are often less robust than those
of lattice cryptography. Somewhat informally, for a cyclic algebra A and well
chosen parameters there exists an automorphism θ of Rq and a γ ∈ Rq such that
an LWE style sample a · s+ e over A can be written in matrix-vector form

a0 γθ(ad−1) γθ2(ad−2) . . . γθd−1(a1)
a1 θ(a0) γθ2(ad−1) . . . γθd−1(a2)
a2 θ(a1) θ2(a0) . . . γθd−1(a3)
...

...
...

. . .
...

ad−1 θ(ad−2) θ2(ad−3) . . . θd−1(a0)

 s + e = b

where all entries and operations are now over Rq. Though more complex than
the transformation taking LWE to RLWE this fulfills our goal of providing a
structured version of MLWE, since we have replaced the uniformly random ma-
trix A over Rq with a structured matrix which we denote φ(a) that requires a
factor of d less storage. Of course, by applying the rot(·) operation coordinate-
wise, one can extend this to a high dimensional version of the LWE problem,
now with two sets of structure lying on top of each other.

1.1 Contributions and Methodology

The main novel contribution of this work is a definition of Cyclic Algebra LWE
(CLWE), together with justifications for its construction and a polynomial time
reduction from short vector problems over matrix lattices induced by ideals in
a cyclic algebra to CLWE, establishing its security on the assumption that such
problems are hard. Specifically, due to their similarity with the concept of ideals
in the ring of integers of a number field K, we consider ideal lattices induced by
the so-called natural order of A.

The ‘standard’ security reductions used in [26] and [16] use similar machin-
ery to reduce search LWE and RLWE to their respective lattice problems, then
establish hardness of the decision problem (the problem of distinguishing LWE
samples a · s+ e from the uniform distribution) via a search-decision reduction.
We reduce search CLWE to a BDD problem using the same method as in [16].
The methodology of their search-decision reduction is an adaptation of that of
Regev’s, which relies on guessing each coordinate of the secret s separately. The
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adaptation to the ring case instead guesses the coordinate of the secret ring ele-
ment s modulo a suitable collection of ideals pi such that guessing s mod piO∨K
requires only a polynomial number of guesses, from which s is recovered using
the Chinese Remainder Theorem. Though this is not immediately suitable for
our needs, because the relative factorization of ideals required does not transfer
to ideals in the natural order, we apply a similar method in suitable subrings to
deduce the hardness of our decision problem. As in [16], the algorithm bases the
security of CLWE on short vector problems over ideal lattices in A; similarly
to ideal lattices in K, these have some extra underlying structure that might
make computational problems easier. However, we leave the relative complexity
of these problems an open area of investigation.

We consider the advantages of our CLWE construction:

– Efficiency. Assuming for simplicity that the public key in LWE based schemes
is a sample (A,b), a public key generated as A = rot(φ(a)) requires only
as much storage as that of an equivalent dimension RLWE public key. Mul-
tiplication in cyclic algebras can be implemented over a product of skew
polynomial rings following a CRT style decomposition, for which well known
fast algorithms, such as those of [8] and [25], can be combined with the de-
composition of our Lemma 13 to compute the operation A ·s more efficiently
in the case where A = φ(a) than in the module case where A is uniform.

– Security. Following recent works on quantum attacks on related ideal lat-
tice problems (e.g. [4], [10], [11], [7] amongst others), we observe that the
non-commutativity of multiplication in cyclic algebras may be viewed as a
security advantage. This is because the Hidden Subgroup Problem (HSP),
an integral part of the majority of algorithms using quantum computing to
gain an advantage over classical computation, requires that the underlying
group, in this case the unit group of OK , is commutative, see e.g. [12], which
is untrue for a non-commutative algebra. We conjecture that the security
level will be as high as MLWE, but welcome further cryptanalysis. We ac-
tively avoid known attacks on previous attempts to create structured MLWE
(see Appendix A).

– Functionality. The non-commutative algebraic structure of CLWE opens up
the prospect of extra functionality. For example, since operations are com-
posable and non-commutative, one could hope to construct FHE in a non-
commutative space. We leave this frontier open for separate work.

Overall we consider it plausible that LWE in cyclic algebras could be both more
efficient than MLWE and more secure than Ring LWE in a quantum setting

1.2 Related Work and Future Work

An alternative construction for structured module LWE, called multivariate-
RLWE, was presented in [20], where they tensor product two (or more) number
fields in order to provide a structured module matrix. However, their efficient
implementations were attacked in [5], together with a warning about taking care
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when putting structure on a module. In short, [5] attacks certain instances of
m-RLWE by providing a homomorphism to some underlying subfield K, dramat-
ically reducing the dimension of the lattice problem to be attacked. Fortunately
for this work, a somewhat technical condition on the choice of γ known as the
non-norm condition precludes such a homomorphism existing to reduce the di-
mension of CLWE (see Appendix A).

As for future work, we view a drawback of our work to be that we are re-
stricted to certain instances of cyclic algebras. Although in practice most cryp-
tography would use a fixed choice of algebra, this is a function of our methods
and may be possible to remove. Additionally, we were unable to show a direct-
to-decision reduction by adapting the methods of [23], which may generalize the
choice of algebras. Finally, this work is focused on the theoretical construction
of a non-commutative LWE assumption, and we leave practical analysis and
implementation of cryptography based on CLWE as further research.

Roadmap In Section 2 we provide necessary background material on lattices,
number fields, and cyclic algebras. In Section 3 we provide a definition and
discussion of Cyclic LWE. In Section 4 we provide a reduction from search CLWE
to structured lattice problems. In Section 5 we provide search-worst case decision
reduction for CLWE. Finally, in Section 6 we show a normal form reduction for
CLWE and provide a sample cryptosystem.

2 Preliminaries

2.1 Lattices

A lattice is a discrete additive subgroup of a vector space V . If V has dimension
n a lattice L can be viewed as the set of all integer linear combinations of a
set of linearly independent vectors B = {b1, ...,bk} for some k ≤ n, written

L = L(B) = {
∑k
i=1 zibi : zi ∈ Z}. If k = n we call the lattice full-rank, and

we will only consider lattices of full-rank. We can extend this notion of lattices
to matrix spaces by stacking the columns of a matrix. We recall two standard
lattice definitions.

Definition 1. Given a lattice L in a space V endowed with a metric ‖ · ‖, the
minimum distance of L is defined as λ1(L) = minv∈Λ/{0} ‖v‖. Similarly, λn(L)
is the minimum length of a set of n linearly independent vectors, where the length
of a set of vectors {x1, ...,xn} is defined as maxi(‖xi‖).

Definition 2. Given a lattice L ⊂ V , where V is endowed with an inner product
〈·, ·〉, the dual lattice L∗ is defined L∗ = {v ∈ V : 〈L, v〉 ⊂ Z}.

We will return to lattices later, once we have defined some particular vector
spaces of interest.
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2.2 Gaussian Distributions

Definition 3. For a vector space V with norm ‖ · ‖ and an r > 0, we define the
Gaussian function ρr : V → (0, 1] by ρr(x) = exp(−π‖x‖/r2).

We can use this function to define the spherical Gaussian distribution Dr

over V , which outputs v with probability proportional to ρr(v). Similarly, we
can sample an elliptical Gaussian Dr in a basis b1, ...,bn of V , for r = (r1, ..., rn)
a vector of positive reals, by sampling x1, ..., xn independently from the one
dimensional Gaussian distributions Dri and outputting

∑n
i=1 xibi.

When sampling a Gaussian over a lattice L we will use the discrete form of
the Gaussian distribution. We define the distribution DΛ,r over Λ by outputting

x with probability
ρr(x)

ρr(L)
for each x ∈ L. This version of the discrete Gaussian

is centered at 0, which in general need not be the case.
An important lattice quantity, known as the smoothing parameter, was in-

troduced in [17]. The motivation for the name is provided by Lemma 1 following
the definition.

Definition 4. For a lattice L and ε > 0, the smoothing parameter ηε(L) is
defined as the smallest r > 0 satisfying ρ1/r(L∗/{0}) ≤ ε.

The following is a special case of [17], Lemma 4.1.

Lemma 1. For a lattice L over Rn, ε > 0, r ≥ ηε(L), and x ∈ Rn, the statistical
distance between (Dr + x) mod L and the uniform distribution modulo L is
bounded above by ε/2. Equivalently, ρr(L+ x) ∈ [ 1−ε1+ε ] · ρr(L).

We introduce well known lemmas used to relate the smoothing parameter to
standard lattice properties. The first comes from [2], the second from [23].

Lemma 2. For a lattice L of dimension n and c ≥ 1 it holds that c
√
n/λ1(L∗) ≥

ηε(L) for ε = exp(−c2n).

Lemma 3. For a lattice L and ε ∈ (0, 1) it holds that ηε(L) ≥
√

log(1/ε)/π

λ1(L∗)
.

2.3 Algebraic Number Theory

Basic Definitions

Definition 5. A number field K is a finite degree extension of the rationals Q.
Typically, we define a number field by adjoining some algebraic element α ∈ C
and set K = Q(α). The degree of K refers to its degree as a field extension.

To define a cyclic algebra, we will need to take an additional extension of K. In
particular, we will need the extension to be Galois over K, defined as follows.
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Definition 6. Let L/K be an extension of number fields of dimension n. The
Galois group of L over K is the group Aut(L/K) of automorphisms of L that fix
K. We say that the extension is Galois if the subfield of L fixed by Aut(L/K) is
exactly K.

We define a cyclic Galois extension L/K to be a Galois extension such that the
Galois group of L over K is the cyclic group generated by some element θ of
degree n := [L : K]. Finally, we require the ring of integers of a number field.

Definition 7. Given a number field K, its ring of integers OK is the ring con-
sisting of those elements of K whose minimal polynomial over Q lie in Z[x].

It is easy to check that if L/K is an extension of number fields thenOL∩K = OK .

The Canonical Embedding Let K = Q(α) be a number field of degree n. It is
a well known fact that there are exactly n distinct ring embeddings σi : K → C.
These embeddings correspond to the n distinct injective ring homomorphisms
mapping α to the roots of its minimum polynomial f . We split these embed-
dings and say that there are r1 real embeddings (whose image lie in R) and r2
conjugate pairs of complex embeddings (the complex embeddings come in pairs
since complex roots of f occur in conjugate pairs), such that r1 + 2r2 = n. The
standard convention is to order the embeddings such that the r1 real embeddings
come first and the complex embeddings are arranged such that σr1+j = σr1+r2+j
for 1 ≤ j ≤ r2.

Definition 8. Let K = Q(α) be a number field of degree n = r1 + 2r2. The
canonical embedding σ is the ring homomorphism σ : K → Rr1 × C2r2 defined
by

σ(x) = (σ1(x), ..., σn(x)).

Formally, σ maps into the space

H = {(x1, ..., xn) ∈ Rr1 × C2r2 |xr1+r2+j = xr1+j ∀1 ≤ j ≤ r2} ⊂ Cn,

which is isomorphic to Rn as an inner product space.

We can equip H with the orthonormal basis {hi}, where hi = ei for 1 ≤ i ≤ r1
and hj = 1√

2
(ej + ej+r2),hj+r2 =

√
−1√
2

(ej − ej+r2) for r1 < j ≤ r1 + r2, and

use the well defined `p norm induced by viewing H as a subset of Cn. Observe
that multiplication in K maps to coordinatewise multiplication in H. The `2
norm on H allows us to efficiently sample a Gaussian distribution Dr over K
by sampling such a Gaussian coordinatewise over H, although technically this
distribution is over the field tensor product KR = K ⊗Q R ∼= H. Furthermore, it
satisfies the property that for any x ∈ KR we have the equality of distributions
x · Dr and Dr′ , where r′i = ri · |σi(x)|. When we have an extension of number
fields L/K we will denote their respective canonical embeddings σL and σK as
maps into HL and HK to avoid confusion.
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Relative Embeddings In the case of an extension L of a number field K it is
sometimes more convenient to apply a different order on its embeddings induced
by extending embeddings of K to those of L. Given a tower L/K/Q where
K has degree k and L has degree n over K, there are precisely k embeddings
σ1, ..., σk of K into C. Assuming L/Q is Galois, each of these can be extended
to an embedding αi : L → L such that αi|K = σi. However, these extensions
are not unique, and it is easy to see that there are [L : K] = n choices for each
αi. In particular, in the case where L/K is a cyclic extension with Galois group
generated by θ it holds that the composite automorphisms αi ◦ θj(·), 1 ≤ j ≤ n,
run through the n choices of αi. Hence for a fixed choice of α1, ..., αk the nk
automorphisms of L can each be uniquely represented by some αi ◦ θj(·), which
we denote by αji (·), 1 ≤ i ≤ k, 1 ≤ j ≤ n. Given the usual ordering of embeddings
of K this induces two systematic orderings on the embeddings of L by running
through either the i or j coordinates first.

2.4 Cyclic Algebras

Definition 9. Let K be a number field with degree k, and let L be a Galois
extension of K of degree n such that the Galois group of L over K is cyclic of
degree n, Gal(L/K) = 〈θ〉. For non-zero γ ∈ K we define the resulting cyclic
algebra

A = (L/K, θ, γ) := L⊕ uL⊕ ...⊕ un−1L

where u ∈ A is some auxiliary generating element of A satisfying the additional
relations xu = uθ(x)∀x ∈ L and un = γ. We will call n the degree of the algebra
A. We call such an algebra a division algebra if every element a ∈ A has an
inverse a−1 ∈ A such that aa−1 = 1.

Since θ fixes K, the center of the cyclic algebra is precisely K. Oftentimes the
condition γ ∈ K is replaced by the stronger condition γ ∈ OK , and we will use
this condition in our work to guarantee the existence of a certain subring known
as the natural order. Note that the division property does not hold for arbitrary
γ, and such algebras are not always easy to construct, which we will discuss later
in this section.

Matrix Representation We present a representation of elements of A which
proves useful for computing multiplication in cyclic algebras. We can naturally
view an element a ∈ A as an n-dimensional vector Vec(a) over L, in which case we
can view left multiplication of elements as matrix-vector operations. This is done
by defining the map φ : A →Mn×n(L), where for x = x0+ux1+...+un−1xn−1 ∈
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A with each xi ∈ L,

φ(x) =


x0 γθ(xn−1) γθ2(xn−2) . . . γθn−1(x1)
x1 θ(x0) γθ2(xn−1) . . . γθn−1(x2)
x2 θ(x1) θ2(x0) . . . γθn−1(x3)
...

...
...

. . .
...

xn−1 θ(xn−2) θ2(xn−3) . . . θn−1(x0)

 .

We call this mapping a left regular representation of A, because it holds for
any a, b ∈ A that φ(a)Vec(b) = Vec(ab), and that φ(ab) = φ(a) · φ(b). In the
case where A is a division algebra it follows that each φ(a) is an invertible
matrix. Since θ is well defined on LR we abuse notation and extend this map
to φ :

⊕n−1
i=0 u

iLR → Mn×n(LR). We derive lattices from subrings of a cyclic
algebra by vectorising their images under φ.

Orders and the Natural Order

Definition 10. Let A = (L/K, θ, γ) be a cyclic division algebra. A Z-order Λ in
A is a finitely generated Z-module such that Λ ·Q = A and that Λ is a subring of
A with the same identity element as A. We call Λ maximal if there is no Z-order
Γ such that Λ ( Γ ( A. Here, Λ ·Q = {

∑m
i=1 aiqi : ai ∈ Λ, qi ∈ Q,m ∈ Z≥1}.

Since we are only concerned with Z-orders in this paper, we will just refer to
them as orders.

Example 1. The ring of integers OK of a number field K is the unique maximal
order of a number field. In the case of cyclic algebras a maximal order is not
necessarily unique.

An order of particular interest that we will use in our LWE construction is known
as the natural order, defined as Λ :=

⊕n−1
i=0 u

iOL. Unlike in the case of OK , this
order is not necessarily maximal. Note that in order for Λ to be closed under
multiplication the element γ must lie in OK .

Existence and Construction It is not a priori obvious whether well-defined
cyclic algebras or orders actually exist. As observed earlier, the existence of
γ enforcing the division algebra condition is a key component in constructing
such objects. Fortunately, it is sufficient for γ to satisfy the so called ‘non-norm
condition’, which may be found in [28]. This condition states that the lowest
power of γ that appears in NL/K(L), is γn, where NL/K represents the relative
norm of L into K.

Order Ideals Analogous to the use of OK ideals in RLWE, we will be interested
in ideals of the natural order Λ of a cyclic division algebraA. Although Λ is a ring,
it is non-commutative - thus there are three types of ideals. A left (respectively
right) ideal I of Λ is an additive subgroup of Λ such that for any i ∈ I, r ∈ Λ,
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we have r · i ∈ I (respectively i · r ∈ I). A two-sided ideal of Λ is an additive
subgroup that is closed under left and right scaling by Λ, i.e. a right ideal that
is also a left ideal. The sum and product of two ideals I,J are defined as usual;
I + J = {i+ j : i ∈ I, j ∈ J } and I · J = {

∑m
l=1 il · jl : il ∈ I, jl ∈ J ,m ∈ N}.

In the case of two-sided ideals we have the standard notion of a fractional ideal;
I is a fractional ideal of Λ if cI = J for a two-sided ideal J and some c ∈ K.

We remark that the structure of the collection of two-sided ideals of the
natural order is not as simple as those of OK , or indeed those of an arbitrary
maximal order. In a maximal order, Theorem 22.10 of [27] states that the group
of two-sided ideals is a free abelian group generated by the prime (e.g. maximal)
ideals, from which one can deduce obvious definitions of inverse and coprime
ideals. For a general order Γ , we define its prime ideals as its maximal two-sided
ideals and the inverse of an ideal I ⊂ Γ is

I−1 = {x ∈ A : I · x · I ⊂ Γ},

which lines up with the expected definition in the two-sided case (e.g. I · I−1 =
I−1 · I = Λ).

For the case of the natural order we do not have such a well-behaved ideal
group, and so rely on the exposition of Section 3 of [19]. In particular, we will use
the fact that for a two-sided ideal I ⊂ Λ, I ∩OK is an ideal of OK . For an ideal
I ⊂ OK , (I ·Λ) ∩OK = I, from which it follows that this intersection map is a
surjection onto the ideals of OK . However, it is not in general an injection since
several ideals of A may have the same intersection with OK . Since the ideals of
Λ do not in general form a finitely generated abelian group, we define two ideals
I,J of Λ to be coprime if I + J = Λ.

Some Useful Ideals For an order Λ we define the codifferent ideal

Λ∨ = {x ∈ A : Tr(xΛ) ⊂ Z}

where Tr refers to the reduced trace, defined Tr(a) := TrK/Q(Trace(φ(a))). Sim-
ilarly, for an arbitrary two-sided ideal I we define the dual ideal

I∨ = {x ∈ A : Tr(xI) ⊂ Z}.

Since the matrix trace satisfies Trace(AB) = Trace(BA), this definition is two-
sided. Note that the codifferent ideal and a general dual ideal may be fractional
ideals rather than full ideals, and they satisfy the equality I∨ = Λ∨ · I−1 for any
ideal I.

We will also be interested in principal ideals, but must take more care with
these than in commutative settings. For a central element t ∈ K, we can define
simply 〈t〉 = t ·Λ, the set of elements of Λ divisible by t. However, for a general t
that does not lie in the center of Λ we need the slightly more complex definition

〈t〉 =

{
m∑
i=1

ritsi : ri, si ∈ Λ,m ∈ N

}
,
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which can easily be seen to be a two-sided ideal, moreover the smallest one that
contains t.

Orders and Ideals as Integer Lattices Any order Λ of a cyclic algebra
A = (L/K, θ, γ) has dimension kn2 over Z and thus generates a lattice of di-
mension kn2 over Z. We will consider the following representation of these lat-
tices, which extends naturally to ideals of orders as well. Consider an element
x =

⊕n−1
i=0 u

ixi ∈ Λ. We can consider x as a vector over HL of dimension n
by σA(x) := {σL(x0), σL(x1), ..., σL(xn−1)}. Then, the collection σA(Λ) forms
an integer lattice of dimension kn2. We will refer to this representation as the
“module representation” and will sometimes double index the element x, de-
noting by xi,j the embedding σj(xi), and extend this notation in the obvious

manner to the space
⊕n−1

i=0 u
iLR. Though this representation is conceptually

simple, we remark that it has some drawbacks in the case where |σi(γ)| 6= 1 for
some i when considering sizes of lattice elements; we will choose γ carefully in
our constructions to remove this issue.

We will also make use of the following representation induced by the matrix
embedding. First, recall that for any embedding σi : K → K there are precisely
n extension embeddings αji : L → L which agree with σi on K, and for a
fixed choice of αi the compositions θj ◦ αi : L → L, j = 1, ..., n run through
all such choices. Fixing some choice α1, ..., αk of extensions of the embeddings
of K and letting α(y) = (α1(y), ..., αk(y))T be a column vector for y ∈ L, we
denote by α(φ(x)) the nk × n matrix obtained by applying α coordinatewise to
φ(x). Stacking the columns of this matrix results in a vector of dimension kn2;
applying this function to all elements of an order gives an integer lattice. Indeed,
since θj ◦ αi(·) runs over all of the embeddings of L this is just a reordering of
the entries of the previous visualization, with the exception that some elements
have been multiplied by various α embeddings of γ. We remark here that since
αji (·) agree on K for fixed i it follows that αi(γ) is fixed over the choice of αi.

Gaussian Distributions Over Cyclic Algebras As in (R)LWE, we will need
to sample Gaussian distributions over our ambient space in certain norms. In
the case of RLWE, the continuous Gaussians are sampled in KR ∼= H, defined in
Section 2.3. Since a cyclic algebra A can be viewed as an n-dimensional algebra
over L, we use the first visualization from the previous subsection and sample
our error distributions over

⊕n−1
i=0 u

iLR, which has the same structure as a vector
space as HL

n. For simplicity we restrict ourselves to the case when |σi(γ)| = 1
for each i. Although this is a strong condition on γ it holds in the case where it
is a root of unity, which we will enforce later. Otherwise, in order to maintain a
norm that is sub-multiplicative the norm and shape of γ must be considered.

Explicitly, we just consider the norm of an element of A to be equal to the
norm of the corresponding module element in Ln of dimension kn2 used in [14],
e.g. ‖x‖ = ‖(σL(x0), σL(x1), ..., σL(xn−1))‖2 for x = x0 +ux1 + ...+un−1xn−1 ∈
A. It is straightforward to check that this is indeed a norm in the case where
|σi(γ)| = 1 for each i, since γ is fixed under θ and multiplying by γ does not
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change the norm of an entry of σL. It is clear that this norm extends to any
y ∈

⊕n−1
i=0 u

iLR in a natural manner. Now that we have defined a norm, it is
easy to define a Gaussian distribution Dr on A, or its discrete analogue on Λ by
sampling over the module LR

n.

The Chinese Remainder Theorem In this subsection we state the Chinese
Remainder Theorem for order ideals, and deduce some important consequences.
We note that the following lemmas are merely adaptations of those in Section
2.3.8 of [16] extended to the case of cyclic algebras. The first is just the Chinese
Remainder Theorem.

Lemma 4. Let I1, ..., Ir be pairwise coprime two-sided ideals of an order Λ of a
cyclic algebra A, and let I =

∏r
i=1 Ii. Then, the natural map Λ→

⊕r
i=1(Λ/Ii)

induces an isomorphism Λ/I →
⊕r

i=1(Λ/Ii).

We call a CRT basis for a set of coprime order ideals I1, ..., Ir a basis C =
{c1, ..., cr} of elements of Λ satisfying ci = 1 mod Ii, ci = 0 mod Ij for i 6= j.

Lemma 5. Given pairwise coprime two-sided ideals I1, ..., Ir of a maximal or-
der Λ, there is a deterministic polynomial time algorithm that outputs a CRT
basis c1, ..., cr ∈ Λ for those ideals.

The proof is the same as in the ring case, Lemma 2.13 of [16]. Using Lemma 5
we can efficiently invert the natural CRT isomorphism. Given a = (a1, ..., ar) ∈⊕r

i=1(Λ/Ii), it can be easily checked that its inverse is b =
∑r
i=1 aici mod I.

The next two lemmas will be required later to construct an efficiently invert-
ible bijection between quotient spaces I/〈q〉 · I and Λ/〈q〉.

Lemma 6. Let I,J be two-sided ideals of the natural order Λ. Then, there
exists an element t ∈ I ∩ OK such that the ideal t · I−1 ⊂ Λ is coprime to J ,
and we can compute such a t efficiently given I and the prime factorization of
J ∩ OK .

Proof. For an ideal I ⊂ Λ, denote by I its intersection with OK . We apply the

corresponding Lemma 2.14 of [16] to obtain t ∈ I such that t · I−1 and J are

coprime as ideals of OK . Since I−1 ⊂ I−1 and t · I−1 + J = OK , we have
t · I−1 +J = OK . Since t lies in the center of A, we have t · I−1 = t · I−1. Now
observing that t · I−1 + J ⊂ t · I−1 + J we see that t · I−1 + J = OK , from
which it follows that t · I−1 + J = Λ, since the lift of any OK ideal P must
contain the ideal P · Λ. ut

The next lemma will be the one we use in our reduction. As in RLWE, in practice
we are interested in the case where J = 〈q〉 for a prime integer q and P = Λ∨. We
will use the familiar notation Iq := I/q · I for an ideal I and q ∈ Z throughout
the paper.

Lemma 7. Let I,J be two-sided ideals of Λ, with t ∈ I ∩ OK chosen as above
such that t · I−1 and J are coprime as ideals, and let P denote an arbitrary

12



fractional two-sided ideal of Λ. Then, the function χt : A → A defined as χt(x) =
t ·x induces a module isomorphism from P/J ·P → I ·P/I ·J ·P. Furthermore,
in the case J = 〈q〉 for a prime integer q we can efficiently compute the inverse.

Proof. The proof is similar to that of [16]. Since t lies in the center of Λ it is
clear that multiplication by t induces a module homomorphism. Given the map
χt : P → I · P/I · J · P and j ∈ J · P, χt(j) = t · j ∈ I · J · P, so it is clear that
J · P is in the kernel of this map. Conversely, if χt(x) = 0 then t · x ∈ I · J · P,
from which it follows that I−1 · t · x · P−1 ⊂ J . From the definition of coprime,
t · I−1 + J = Λ, from which it follows that there exists a ∈ t · I−1, b ∈ J such
that a+ b = 1. Hence (a+ b) · (x · P−1) = x · P−1, and hence that x · P−1 ⊂ J ;
finally x ∈ J · P, from which injectivity follows immediately.

To demonstrate efficient invertibility, we must work slightly harder. Now let
J = 〈q〉. Compute t as in Lemma 6 and observe that the bijection χt : Λq → Iq
is an additive homomorphism. Thus, it suffices to compute the inverse of all
elements of a Z basis of Iq, since then any element can be inverted by computing
its representation in this basis and inverting that. We construct such a basis as
follows. First, choose k2 · n4 elements xi, i = 1, ..., k2 · n4 from Λq uniformly at
random and compute yi = χt(xi) for each i. It follows that each yi is a uniformly
random element of Iq. Then, with high probability the yi’s form a spanning set
of Iq (see the proceeding lemma), which we can reduce to a Z basis y′1, ..., y

′
k·n2 .

This basis satisfies the desired property that each element has a known inverse. If
this algorithm fails (e.g. there is no suitable basis y′1, ...y

′
k·n2), we repeat, choosing

a fresh set of elements x1, ..., xk2·n4 until we succeed. ut

Lemma 8. Given a set of k2 · n4 independent and uniformly random elements
Ξ ⊂ Zk·n2

q , the probability that Ξ contains no set of k · n2 linearly independent
vectors (over Z) is exponentially small in n.

This lemma is a straightforward adaptation of Corollary 3.16 of [26].

2.5 Lattice Problems

Computational problems on lattices represent the foundations of the security
of (R)LWE, and will do so for our Cyclic LWE as well. The standard lattice
problems are as follows.

Definition 11. Let ‖ · ‖ be some norm on Rn and let ξ ≥ 1. Then the ap-
proximate Shortest Vector Problem (SVPξ) on input a lattice L is to find some
non-zero vector x such that ‖x‖ ≤ ξ · λ1(L).

Definition 12. Let ‖ · ‖ be some norm on Rn and let ξ ≥ 1. Then the (approx-
imate) Shortest Independent Vectors Problem (SIVPξ) on input a lattice L is to
find n linearly independent non-zero vectors x1, ...,xn such that maxi(‖xi‖) ≤
ξ · λn(L).

Definition 13. Let ‖ · ‖ be some norm on Rn, let L be a lattice, and let d <
λ1(L)/2. Then the Bounded Distance Decoding problem (BDDL,d) on input y =
x + e for x ∈ L and ‖e‖ ≤ d is to compute x, or equivalently e.
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The above problems are all well investigated, and believed to be sufficiently hard
to base post-quantum cryptographic security on; there are no known algorithms
for any of these problems (for suitable parameters) running in polynomial time
in dimension n. Unfortunately, these problems are not directly suitable for Cyclic
Algebra LWE, where we will be interested in their adaptations to lattices gen-
erated by order ideals, similarly to how ideal lattices are used the ring case.
Specifically we have the same problems on lattices that they induce under the
map α(φ(·)). So, SVP becomes:

Definition 14. Let A be a cyclic algebra, let I be some (possibly fractional) ideal
of the natural order Λ. Then, for an approximation factor ξ ≥ 1, the A-SVPξ is
to find a non-zero element a ∈ I such that |a| := ‖α(φ(x))‖2 ≤ ξ · λ1(α(φ(I))),
where as usual λ1(I) denotes the minimal length of elements of I in the given
norm.

Remark 1. When we use these problems in our security reductions, we will as-
sume that the ideals are in fact integral ideals (e.g. we exclude fractional ideals).
Observe that this may be done without loss of generality, since solving the A-
SVP problem on the fractional ideal I may be done by solving it on the integral
ideal cI (where c ∈ K is the element such that cI is integral) and rescaling the
solution. Additionally, in the case where |γ| = 1 as an element of C, it follows
that ‖α(φ(x))‖2 = ‖σA(x)‖2.

Essentially we have a specialized version of the SVP problem; we must find
an element of I with minimal norm (up to approximation factor) in the ideal
I. The extension of SIVP to A-SIVP is analogous, but since we consider our
objects as Z-lattices we require the independent ‘vectors’ a1, ..., ar to be linearly
independent over Z. For BDD, we need a suitable ambient space, and use the
following definition.

Definition 15. Let A be a cyclic algebra, let I be some (possibly fractional) ideal
of a maximal Z-order Λ, and let d < λ1(I)/2. Then the A-BDDI,d problem, on

input y = x + e for x ∈ I and e ∈
⊕n−1

i=0 u
iLR satisfying |e| ≤ d, is to compute

x.

2.6 The Learning With Errors Problem

We will briefly recall the initial Learning With Errors (LWE) problem here; in
Section 3 we will extend it to cyclic algebras. The problem comes in two forms;
search and decision, both of which are based on the LWE distribution. Let n and
q be positive integers, and let α > 0 be some error parameter. Define T := R/Z,
the unit torus.

Definition 16. For a secret s ∈ Znq , a sample (a, b) ← As,α is taken by sam-
pling a uniformly random vector a ∈ Znq and e ← Dα and outputting (a, b) =
(a, 〈a, s〉/q + e mod Z).

Given the above distribution, the LWE problem comes in two forms.
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Definition 17. The search LWE problem is to recover s from a collection of
samples As,α. The decision LWE problem on input a collection of samples on
Znq ×T is to decide whether they are uniform samples or were taken from As,α for
some secret s, providing the samples were taken from one of these distributions.

Typically, the number of samples provided in each of these problems depends on
the application. Since the decision problems has a probabilistic element, we will
be interested in the advantage of the algorithms that solve it, which is defined as
the difference between their acceptance probabilities on samples from an LWE
distribution As,α and the uniform distribution. In practice, the decision problem
is of more interest in cryptography.

We will not define the popular extensions of these problems to number fields
or modules, known as Ring-LWE and Module-LWE, but the unfamiliar reader
may find details in [16] and [14] respectively, both of which we reference fre-
quently in this work.

LWE Security In his initial LWE paper [26], Regev demonstrated a polynomial
time, partly quantum, reduction from SVP (or SIVP) to the Decision LWE
problem. Broadly speaking, the algorithm shows that a BDD instance can be
converted to an LWE sample. Then, there is a quantum algorithm given to
reduce the problem of sampling from a narrow discrete Gaussian distribution to
solving a BDD instance. Finally, sampling a narrow discrete Gaussian is sufficient
to solve the short vector problem. Thus, solving the search LWE problem is
sufficient to solve SVP; it follows that LWE is at least as hard as SVP for
suitable parameters. Regev also showed that search LWE and decision LWE are
polynomial time equivalent, and provided a worst case-to-average case reduction
for these problems. In [16], Lyubashevsky et al. construct analogous reductions
from RLWE to lattice problems on ideal lattices in number fields, though their
reduction relied on particular choices of number fields and moduli to support
the search-to-decision step. [14] does the same for MLWE to module lattice
problems.

3 Cyclic Algebra Learning With Errors

In this section we present the general construction of CLWE together with jus-
tifications for choices made in the definition, as well as suggestions for specific
algebras to use. We will save the security properties for the Section 4.

Definition 18. Let L/K be a Galois extension of number fields of dimension
[L : K] = n, [K : Q] = k with cyclic Galois group generated by θ(·). Let A :=
(L/K, θ, γ) be the resulting cyclic algebra with center K and invariant u with
un = γ ∈ OK . Let Λ be the natural order of A. For an error distribution ψ over⊕n−1

i=0 u
iLR, an integer modulus q ≥ 2, and a secret s ∈ Λ∨q , a sample from the

CLWE distribution Πq,s,ψ is obtained by sampling a← Λq uniformly at random,

e← ψ, and outputting (a, b) = (a, (a ·s)/q+e mod Λ∨) ∈ Λq, (
⊕n−1

i=0 u
iLR)/Λ∨.
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Remark 2. Unlike in commutative spaces, the order of multiplication of a and
s is important; we will justify our choice momentarily, but it seems likely that
similar security properties would hold if one took (s · a)/q + e instead. Also
observe that our modulo reduction in the second coordinate of the pair is well
defined, since (a · s)/q ∈ Λ∨q .

As usual, the associated CLWE problem will come in search and decision vari-
ants.

Definition 19. Let Πq,s,ψ be a CLWE distribution for parameters q ≥ 2, s ∈
Λ∨q , and error distribution ψ. Then, the search CLWE problem, which we denote
by CLWEq,s,ψ, is to recover s ∈ Λ∨q from a collection of independent samples
from Πq,s,ψ.

We do not state the number of samples allowed for this (or the next) problem,
as typically it depends on the application.

Definition 20. Let Υ be some distribution on a family of error distributions
over

⊕n−1
i=0 u

iLR and UΛ denote the uniform distribution on (Λq, (
⊕n−1

i=0 u
iLR)/Λ∨).

Then, the decision CLWE problem, written CDLWEq,Υ , is on input a collec-
tion of independent samples from either Πq,s,ψ for a random choice of (s, ψ)←
U(Λ∨q )×Υ or from UΛ, to decide which is the case with non-negligible advantage.

3.1 Discussions

Relation to Module-LWE First, we explain why we choose the order of
multiplication a · s. As discussed in the introduction, the transformation from
a (primal) RLWE sample to n related LWE samples provides our motivation.

Here, one RLWE sample a · s + e, where a, s, e ∈ Rq ∼=
Zq[x]

xn + 1
, generates n

LWE samples by considering the multiplication operation as As+e, where A :=
rot(a) is a negacyclic matrix. For appropriate choices of error distributions, this
is precisely n LWE samples with the exception that there is some structure in
the matrix A. By ordering the multiplication a · s, we get a similar transform
from CLWE to MLWE. Assuming for now that we have a discretized form of
CLWE, and observing that for q ∈ Z we have Λq ∼=

⊕n−1
i=0 u

iOL/qOL (see [19]),
we transform a CLWE sample a ·s+e into matrix-vector form to get φ(a) ·s+e,
where s and e are vectors of dimension n over OL/qOL. Setting A = φ(a),
one can see that for appropriate choices of error distribution this is similar to
n samples from the MLWE distribution with some additional structure in the
matrix A, as intended.

The Natural Order We have chosen to use the natural order rather than
some maximal order of an algebra A for a few reasons. Firstly, the natural
order is simple to construct and represent, whereas finding a maximal order is
computationally slow. Additionally, the natural order is somewhat orthogonal,
in the sense that it has the same span in each ui coordinate independently of
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the other coordinates. This is advantageous when considering the relation to
MLWE, where the module is always taken to be the full module OdK , and also
provides a considerable advantage in terms of conceptual simplicity.

A Pair of Number Fields In MLWE, we are free to choose the dimension of
our module over the underlying number field K. However, in the cyclic algebra
case we are restricted to cases where we can find L,K, and γ such that A =
(L/K, θ, γ) is well defined. From a theoretical standpoint it is not immediately
clear whether we want to consider asymptotic security in terms of k or n, but
following our motivation from MLWE we suggest that k is likely the suitable
choice since the module dimension n is typically small in applications using
MLWE, whereas the dimension of the underlying field K is large. However,
there seems to be no a priori reason why with the right techniques one could not
consider both k and n asymptotically; the only case a cyclic algebra precludes
is high dimensional MLWE over a low dimension number field L, because the
parameter n occurs in both the module and field dimension.

Explicit Examples of Suitable Algebras We demonstrate a method for
constructing suitable algebras for CLWE, together with some novel examples of
families of algebras we suggest as plausible choices for cryptography. Recall that
we seek algebras with root of unity γ in order to simplify our norm.

Lemma 9. For an integer m ≥ 1 and odd prime p there exist cyclic division
algebras A = (L/K, θ, γ) such that K = Q(ζ2m·p), [L : K] = p, and γ is a root
of unity.

Proof. We begin with a construction from Section 4 of [13], which constructs
a cyclic division algebra1 A = (F/M, θ′, γ) where M = Q(ζn) for some prime
power n := pa, γ is a root of unity, and F is a well chosen field such that F/M is a
cyclic Galois extension of degree n with γ = ζn is a non-norm element. Although
this construction provides us with a suitable γ, the relative degrees of the two
extensions are close. We proceed to increase the size of the first extension while
fixing [F : M ]. We start by setting a = 1.

A consequence of Theorem 30.8 of [27] is that for another extension E/M
satisfying E ∩ F = M , the algebra A′ = (EF/E, θ, γ) is a well-defined cyclic
algebra, where θ is any generator of the cyclic Galois group of EF/E of degree
[F : M ]. Furthermore, an easy application of the tower lemma shows that as
long as the relative degrees [E : M ] and [F : M ] are coprime, then E ∩ F = M ,
from which it follows that γ is still a non-norm element. Explicitly, combined
with the construction of [13] one can proceed with odd prime n e.g. 3, 5, 7 and
field E := M(ζ2m) = Q(ζ2m·p). Now [E : Q] = (n−1) ·2m−1 and [EF : E] = [F :
M ] = n, and it is clear that the degrees of E and F over M are coprime. The
resulting algebra A′ is as required, after relabeling K := E and L := EF . ut
1 In fact, they prove the existence of infinitely many such algebras, but we only need

one.
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In our structured module analogy, this family corresponds to modules of small
prime dimension n over number fields of degree n(n − 1)2m−1 for any choice
of integer m. Note that setting n = 1 results in L = K, and our algebras are
exactly the two-power cyclotomics popular in ring cryptography. For roughly
cryptographically relevant dimensions, one could consider setting for example
n = 3 and m = 7, resulting in an algebra of dimension 3 over a field L of
dimension 6 · 64 = 384, for a total dimension of 1152. Explicit choices of F can
be found in [13]; it is constructively chosen as a subfield of a prime cyclotomic
extension of M by considering the Galois group of the extension. It is then
straightforward to compute L.

One drawback of the above construction is that we are restricted to odd
module dimensions, but if one wanted to consider e.g. n = 4 we could replace
E with any odd degree extension of M (so that F ∩ E = M by coprimality),
for example by first setting E′ = M(ζp) for prime p = 3 mod 4, then setting
E = M(ζp+ ζ−1p ), an extension of M of odd degree p−1

2 . This results in a family

of extensions of degree [E : Q] = (p−12 ) · ϕ(n) and [EF : E] = n, corresponding
to an even module dimension2. Of course, if n is even and not a power of two
we can not begin with the construction of [13]; our construction is restricted to
prime or prime power n. We consider it likely that this method can be adapted
to construct other suitable algebras, but leave finding more algebras for cryp-
tography as an open problem. There are many other methods for finding these
objects, for example using local-global theory.

4 Hardness of Search CLWE

For the remainder of this paper, we will always be working in an extension of
number fields L/K, where [L : Q] = [L : K] · [K : Q] = n · k. Recall from the
motivation of structured MLWE and the sample algebras given that in practice
we seek asymptotic security in k, since the parameter n corresponds to the
typically small module dimension. Nonetheless, when considering the comparison
to modules, our number fields have dimension nk. We abbreviate the condition
|σi(γ)| = 1 for all i by |γ| = 1, since in fact these are equivalent for algebraic γ.

Definition 21. We define the family of error distributions Σα as the set of all
Gaussian distributions DΣ over

⊕n−1
i=0 u

iLR with covariance matrix obtained as
the distribution of the error in Lemma 12.

This is the family of error distributions we will claim hardness of search CLWE
for; although specifying this family of matrices precisely is not simple, we demon-
strate how the error is obtained in the BDD transformation step. For now, we
remark that it is a Gaussian distribution whose marginals are Gaussian with
variance at most α.

In the following theorem we denote by A−DGSξ the problem of sampling a
discrete Gaussian DI,ξ, where I is some ideal of the natural order Λ.

2 Here ϕ(n) denotes the usual Euler totient function.
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Theorem 1. Let A be an n-dimensional cyclic division algebra over a number
field L with center K and natural order Λ with |γ| = 1. Let α = α(n) ∈ (0, 1) and
q = q(n) ≥ 2 be parameters such that α · q ≥ ω(1). Then, there is a polynomial-
time quantum reduction from A-DGSξ to search CLWEq,Σα for any ξ = r ·√
nω(

√
log (n · k))/αq, where r >

√
2q · ηε(I).

From this we deduce the following corollary, similarly to [14], since the lattice
structure of our algebra is merely a special case of their modules.

Corollary 1. Let A, Λ, α and q be as above. Then, there is a polynomial-time
quantum reduction from A-SIVPξ to search CLWEq,Σα for any

√
8Nn · ξ =

(ω(
√
nk)/α).

The following theorem is our analogy of Lemma 4.10 of [14]. We useN := k·n2
to denote the dimension of our algebra.

Theorem 2. Given an oracle that solves CLWEq,Σα for an input α ∈ (0, 1), an
integer q ≥ 2, an order ideal I ⊂ Λ, a number r ≥

√
2q · η(I) satisfying r′ :=

r · ω(
√

logN)/(αq) >
√

2N/λ1(I∨), and polynomially many samples from the
discrete Gaussian DI,r there exists an efficient quantum algorithm that outputs
an independent sample from DI,r′ .

We can then prove Theorem 1 in the standard iterative manner; for a very large
value of r, e.g. r ≥ 22NλN (I), start by sampling classically from DI,r. Then
apply the above algorithm to obtain a polynomial number of samples from DI,r′ .
Repeating this step gives samples from progressively narrower distributions, until
we arrive at the desired Gaussian parameter s ≥ ξ. In order to classically sample
the initial collection of Gaussian samples, we use the standard Lemma 3.2 of [26]

to sample DI,r on the module representation
⊕n−1

i=1 u
iLR. As usual, we obtain

Theorem 2 in two steps, first the main reduction of Lemma 12, then the following
quantum step adapted from [26]. We use a form of A−BDDL,δ from [14] where

we bound the offset in the norm ‖e‖2,∞ := maxj
√

(
∑n
i=1 |σj(ei)|2) ≤ δ, where

σ denotes the canonical embedding of L.

Lemma 10. There is an efficient quantum algorithm that given any N = k ·n2
dimensional matrix lattice L := σA(I) for some ideal I, a real δ < λ1(L∗)/(2

√
2nk),

and an oracle that solves A-BDDL∗,δ with all but negligible probability, outputs
an independent sample from DL,

√
nω(
√

log(nk))/
√
2δ

.

4.1 BDD to Search CLWE

We begin with the cyclic algebra analogy of the BDD-to-LWE samples trans-
formation from Section 4 of [16]. As is standard for LWE security, we use the
following ‘modulo q’ definition of BDD:

Definition 22. For any q ≥ 2 the qA−BDDI,d problem is as follows: given an
instance of the A−BDDI,δ problem y = x + e with solution x ∈ I and error

e ∈
⊕n−1

i=0 u
iLR satisfying ‖e‖2,∞ ≤ δ, output x mod qI.
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We use (a special case of) Lemma 3.5 from [26], which lifts immediately since it
is lattice preserving.

Lemma 11. For any q ≥ 2 there is a deterministic polynomial time reduction
from A−BDDI,d to qA−BDDI,d.

We now present an algorithm which transforms qA-BDD samples to CLWE
samples given some additional Gaussian samples. The algorithm is the same in
spirit as Lemma 4.7 of [16], but has some technical differences induced by the
structure of cyclic algebras.

Lemma 12. Let A be as in Theorem 1. There is a probabilistic polynomial time
algorithm that on input a prime integer q ≥ 2, a fractional order ideal I∨ ⊂ Λ,
a qA−BDD

L,αq·ω(
√

log(nk))/
√
2nk·r instance y = x+ e where x ∈ I∨ is uniformly

random, a parameter r ≥
√

2q · η(I), and samples from the discrete Gaussian
DI,r′ with r′ ≥ r, outputs samples that are within negligible statistical distance
of the CLWE distribution Πq,s,Σ for a secret s = χt(x mod qI∨) ∈ Λ∨q , where
χt is as in Lemma 7 and Σ is an error distribution such that in the case where
|γ| = 1 the resulting error e′′ has marginal distribution in its i, jth coordinate
that is Gaussian with parameter ri,j ≤ α.

Proof. The proof will be in two parts - first, we will describe the algorithm, then
we will prove correctness. Recall that in the definition of CLWE, a sample is
in the form (a, b) = (a, (a · s)/q + e mod Λ∨), where e is taken from an error
distribution ψ ∈ Σα.

Begin by computing an element t ∈ I such that I−1 · 〈t〉 and 〈q〉 are coprime
using Lemma 6. We can now create a sample from the CLWE distribution as
follows: take an element z ← DI,r′ from the Gaussian samples, and compute a
pair

(a, b) = (ξ−1t (z mod qI), (y · z)/q + e′ mod Λ∨) ∈ (Λq × (

n−1⊕
i=0

uiLR)/Λ∨)

where e′ ← Dα/
√
2.

We now claim that these samples are within negligible statistical distance
of the CLWE distribution and that s is uniformly random. First we show that
a ∈ Λq is statistically close to uniform. By assumption, r ≥ q · η(I) and so by
appealing to Lemma 1 it can be seen that any value z mod qI is obtained with
probability in the interval [ 1−ε1+ε , 1] · β for some positive β, from which it follows
immediately that the statistical distance between z mod qI and the uniform
distribution is bounded above by 2ε. Since χt and its inverse are both bijections,
we conclude that a = χ−1t (z mod qI) is within statistical distance 2ε of the
uniform distribution over Λq.

Now we must show that b is in the form (a · s)/q+ e′′, for some suitable error
e′′ and a uniformly random s, where we condition on some fixed value of a. By
construction,

b : = (z · y)/q + e′ mod Λ∨

= (z · x)/q + (z · e)/q + e′ mod Λ∨,
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so since z = t · a mod Λ∨q and t lies in the center of A it follows that (z · x)/q =
(z · t · x)/q = (a · s)/q mod Λ∨ for s := χt(x mod qI∨). It follows that s is
uniformly random over Λ∨q as long as x is uniform over I∨, since χt is a bijection.

Finally it is left to show that, conditioned on a fixed value of a, the marginal
distribution of the i, jth coordinate of the error term e′′ = (z·e)/q+e′ is negligibly
close to that specified by Σ. We can explicitly calculate the error as

e′′ =

n−1∑
i=0

ui(
∑
j+k=i

θk(zj) · ek(1− (1− γ)1j+k≥n)) + e′ (1)

where the sum j + k is taken modulo n and the functon (1 − (1 − γ)1j+k≥n)
is 1 if j + k < n and γ otherwise3. Since |γ| = 1 and z ← DI,r is spherically
distributed, it follows that multiplying by γ and applying the permutation of j
coordinates induced by θ does not change the distribution of zi,j . Hence, each
marginal distribution may be analyzed independently as in the case of MLWE,
and the result follows using the analysis of the error from Lemma 4.15 of [14]. ut

Though we do not specify the covariance of Σ, one can see that each entry of
σA(z) appears in σA(e′′) exactly n times, and so by symmetry each element of
σA(e′′) has non-zero correlation with at most n2 other entries. Hence, a propor-

tion of at most kn3

k2n4 = 1
nk of entries of Σ are non-zero.

5 Search To Decision Reduction

In this section we will show that the hardness of decision CLWE follows from that
of the search problem. Once again, we will follow a combination of the expositions
of [16] and [14] for the ring and module cases, making necessary changes for the
structure of cyclic algebras. We will make heavy use of the following CRT style
decomposition, a rephrasing of Lemma 4 from [19].

Lemma 13. Let Λ be the natural order of a cyclic algebra A = (L/K, θ, γ) and
let I be an ideal of OK which splits completely as I = q1...qk as an ideal of OK .
Then, we have the isomorphism

Λ/IΛ ∼= R1 × ...×Rk,

where Ri =
⊕n−1

j=0 u
j(OL/qiOL) is the ring subject to the relations (`+qiOL)u =

u(θ(`) + qiOL) and un = γ + qi.

Of course, this is not a true CRT decomposition, because we are considering
ideals of OK rather than those of Λ. In the case where γ is a unit, Λ∨ =

⊕
i u

iO∨L
and the above lemma is also valid in the case where each instance of OL and Λ
are replaced with their respective duals.

3 This term is just indicating whether or not we have had to use the relation un = γ
in this summand or not.
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As in [16], our reduction will be limited to certain choices of algebras. The
above lemma considers the splitting of the ideal I as an ideal of the base field
K. Setting I = 〈q〉, the ideal generated by the modulus q, we will consider
cases where q splits completely in the base field. In particular, we restrict our
reductions to the family of algebras A in Section 3.1, but they would be valid in
the slightly more general case where the modulus splits completely in the base
field K. Now K = Q(ζ2m·n) and it follows that if q ≡ 1 mod 2m ·n then q splits
completely into a product of prime ideals q1, ..., qk as an ideal of OK . Hence, we
obtain the decomposition

Λ/qΛ ∼= R1 × ...×Rk

where Ri is as is Lemma 13.

Also as in [16], we see no way to avoid randomizing the error distribution
in the resulting decision problem. However, we face a new issue relating to the
automorphisms of A, or lack thereof. To solve this, we require an additional
assumption on oracles for the decision CLWE problem. Namely, we assume that
an oracle for CDLWEq,Υα on an algebra A = (L/K, θ, γ) is also an oracle for the
decision problem on any algebra A′ = (L/K, θ, γ′) over the same number fields
L,K and some other root of unity γ′ ∈ OK . Intuitively this assumption implies
that for fixed L and K as in Section 3.1 the hardness of the CDLWE problem
is invariant under the choice of root of unity γ, and will be required for Lemma
15. We view this as a natural assumption, since the respective natural orders
in A and A′ consist of the same elements and have the same density in their
respective algebras. Furthermore, there exist suitable isomorphisms sending A
to A′, which we will define shortly. Consequentially, the main theorem of this
section is as follows; we emphasize that our algorithm is only intended to be
efficient in the dimension of the base field k, since we expect to fix n as a small
constant in practice. Of course, the dimensions of K and L are tied together, so
formally to increase k = 2m−1 · (n− 1) while fixing n we increase the parameter
m.

Definition 23. The error distribution Υα on the family of possible error distri-
butions is sampled from by choosing an error distribution Σ ← Σα and adding it
to Dr, where each ri := α((n2 · k)1/4 ·√yi) for y1, ..., yn2·k sampled from Γ (2, 1).

Theorem 3. Let Λ, q, L,K be as above with q ∈ poly(k) and assume that α ·q ≥
ηε(Λ

∨) for a negligible ε = ε(n). Then, there is a probabilistic reduction from
CLWEq,Σα to CDLWEq,Υα which runs in time polynomial in k.

We will prove Theorem 3 in the usual manner: first we show that it is sufficient
to recover the value of s ∈ Λ∨/qΛ∨ in one of the rings Ri (Lemma 14). Then,
we use a hybrid distribution to define a decision problem in Ri, for which we
demonstrate a search to decision reduction (Lemma 15). We then use a hybrid
argument to conclude the proof (Lemma 17).
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5.1 CLWE in Ri

In this section we will abuse notation and denote by s mod Ri the value of
s ∈ Λ∨/qΛ∨ in the Ri coordinate under the isomorphism of Lemma 13.

Definition 24. The Ri−CLWEq,Σα problem is to find the value s mod Ri given
access to the CLWE distribution Πq,s,Σ for some arbitrary Σ ∈ Σα.

In the following lemmata we make use of the automorphisms of K coordinatewise
on the rings Ri. Since K is a Galois extension of Q and q splits completely,
it follows that the automorphisms σi of K act transitively on the ideals qi.
We demonstrate how to extend these to functions of A. First, extend these
automorphisms to automorphisms αi of L in some arbitrary manner. Then, we
can extend these to isomorphisms αi : A → A′, with A′ = (L/K, θ, γ′), which
agree with αi on L and send u to u′ with u′n = αi(γ) and xu′ = u′θ(x) for x ∈ L.
By the construction of K from [13], αi(γ) is a non-norm element since it is some
nth root of unity, and so it is easy to check that this A′ is a well defined division
algebra and that αi is indeed an isomorphism which sends A to A′. Furthermore,
it fixes the family of error distributions Σα. This is because each component
of z · e + e′ is defined coordinatewise over the n copies of LR in the module
representation of A, and since αi induces the same permutation of the entries
of the canonical embedding of L in each coordinate as an automorphism of L it
fixes the family of choices for each of z, e, e′; hence since αi is an isomorphism the
family of distributions z · e+ e′ is fixed. It follows that the extended αi function
maps the Ri−CLWEq,Σα problem in A to the same problem in A′, and moreover
that this map preserves Λ∨ and the CRT style decomposition (Lemma 13) of
Λ∨q by sending Ri to some Rj , where j depends on the choice of σi. We are now
ready for the first step of our reduction.

Lemma 14. There is a deterministic polynomial time reduction from CLWEq,Σ
to Ri−CLWEq,Σ.

Proof. Let Oi be an oracle for the Ri−CLWEq,Σ problem. Since Lemma 13
defines an isomorphism, it is sufficient to use Oi to solve the Rj−CLWEq,Σ for
each j. Let αj/i be an extension of the automorphism of K mapping qj to qi,
which exists by transitivity. Then, given a sample (a, b) ← Πq,sΣ , we construct
the sample (αj/i(a), αj/i(b)). Since Λq and Λ∨q are fixed by each αj/i, the resulting
pair is a valid CLWE sample in A′ = (L/K, θ, αj/i(γ)); feeding these samples
into Oi outputs a value tj mod Ri.

We claim α−1j/i(tj) = s mod Rj . Since αj/i is an automorphism, each sample

(a, b) is mapped to a new CLWE sample (αj/i(a), αj/i(a · s/q + e) mod Λ∨) in
a new algebra A′. We may write the second coordinate as αj/i(a) · αj/i(s)/q +
αj/i(e) mod Λ∨. Since our automorphisms fix our family of error distributions
and map the uniform distribution to the uniform distribution, it follows that this
is a valid CLWE instance with secret αj/i(s) and error distribution Σ′. Hence,

Oi outputs t = αj/i(s) mod Ri, from which we recover α−1j/i(t) = s mod Rj , as

required. ut
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5.2 Hybrid CLWE and Search-Decision

For this section we must introduce the cyclic algebra analog of the Hybrid LWE
distribution used in [16]; we use the decomposition into the rings Ri rather than
the Chinese Remainder Theorem.

Definition 25. For a secret s ∈ Λ∨q , distribution Σ over
⊕

j u
jLR, and i ∈ [k],

we define a sample from the distribution Πi
q,s,Σ over Λq × (

⊕n−1
i=0 u

iLR)/Λ∨ by
taking (a, b)← Πq,s,Σ and h ∈ Λ∨q which is uniformly random and independent
mod Rj , j ≤ i and 0 mod Rj , j > i, and outputting (a, b + h/q). If i = 0,we
define Π0

q,s,Σ = Πq,s,Σ.

Using this distribution we define a worst-case decision problem relative to one
Ri and reduce it to the search problem Ri−CLWE.

Definition 26. For i ∈ [k] and a family of distributions Σα, the W-CDLWEiq,Σα
problem is defined as the problem of finding j given access to Πj

q,s,Σ for j ∈
{i− 1, i} and valid CLWE secret and error distribution s,Σ.

Lemma 15. For any i ∈ [k] there is a probabilistic polynomial-time reduction
from Ri−CLWEq,s,Σα to W-CDLWEiq,s,Σ.

Proof. We follow the standard search-decision methodology of guessing the value
of the secret mod Ri and then modifying the samples so that the decision oracle
tells us whether or not our guess was correct. Note that there are onlyNL(qiOL)n

possible values of s mod Ri, which is bounded above by qn
2

, polynomial in k,
and so we may efficiently enumerate over the possible values.

We define the transform which takes a value g ∈ Λ∨q and maps Πq,s,Σ to

Πi−1
q,s,Σ if g = s mod Ri or Πi

q,s,Σ otherwise as follows. On input a CLWE
sample (a, b)← Πq,s,Σ , output the pair

(a′, b′) = (a+ v, b+ (h+ vg)/q) ∈ Λq × (

n−1⊕
i=0

uiLR)/Λ∨,

where v ∈ Λq is uniformly random mod Ri and 0 mod Rj for j 6= i and h ∈ Λ∨q
is uniformly random and independent mod Rj , j < i and 0 on the other Rj . It
is clear that a′ is still uniformly distributed on Λq, so we are left to show b′ is
correctly distributed. For a fixed value of a′, we write

b′ = b+ (h+ vg)/q

= (as+ h+ vg)/q + e

= (a′s+ h+ v(g − s))/q + e,

where e is still drawn from Σ. If g = s mod Ri, then v(g− s) = 0 mod Ri, and
so the distribution of the pair (a′, b′) is precisely Πi−1

q,s,Σ . Otherwise, v(g − s) is
uniformly random mod Ri and 0 mod the other Rj , and so letting h′ = h+v(g−s)
we see that the distribution of (a′, b′) is precisely Πi

q,s,Σ . ut
Remark 3. This is the only stage of the proof which enforces that the asymptotic
complexity scales only with k and not with n, since we are forced to guess all of
s mod Ri at once. We do not see a way of separating the coordinates further.
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5.3 Worst-Case to Average-Case Decision Reduction

Definition 27. For i ∈ [k] and a distribution Υα over possible error distri-
butions, an algorithm solves the CDLWEiq,Υα problem if with a non-negligible
probability over the choice pairs (s,Σ) ← U(Λ∨q ) × Υα it has a non-negligible

difference in acceptance probability on inputs from Πi
q,s,Σ and Πi−1

q,s,Σ.

This is the average case decision problem relative to Ri; in our worst-case to
average-case reduction we will need to randomize the choice of error distribution,
which we do by sampling from Υα.

Lemma 16. For any α > 0 and i ∈ [k] there is a randomized polynomial-time
reduction from W-CDLWEiq,Σα to CDLWEq, Υα

i.

Proof. Since the definition of Υα is a distribution over the family of distributions
obtained by sampling from Σα and adding an elliptical Gaussian, the proof is
the same as Lemma 5.12 of [16], except we replace each instance of mod qiR

∨

with mod Ri and each instance of Rq with Λq. ut

Remark 4. This choice of Υα means that our decision problem is closer to diago-
nal than the corresponding search problem! In fact, if one increased the elliptical
error in the decision problem, one could ‘flood out’ the non-diagonal entries of
the covariance matrix, leading to elliptical error which is easier to handle in
practice.

Finally, we conclude with our hybrid argument. We must first show that Πk
q,s,Σ

is uniformly random given Σ sampled from Υα, but again this follows the same
method as the ring case, except we must replace their use of Lemma 1 by [21],
Lemma 2.4.

Lemma 17. Let Υα be as above and let s ∈ Λ∨q . Then given an oracle O which
solves the CDLWEq,Υα problem there exists an efficient algorithm that solves
CDLWEiq,Υα for some i ∈ [k] using O.

Proof. The proof is identical to the ring case, Lemma 5.14 of [16], except that
the indexing set Z∗m is replaced by k ut

6 CLWE Cryptosystem

In this section we present a proof of concept cryptosystem using CLWE, although
we do not handle the technical details. To demonstrate our comparison against
MLWE our scheme will closely resemble the typical ‘compact’ LWE cryptography
schemes over modules, in particular Kyber (see [6]), although it is likely that an
adaptation of Regev style encryption from [26] would suit CLWE as well.

25



6.1 Making CLWE Suitable For Cryptography: Normal Form

We implicitly use some standard LWE facts: firstly, we discretize our error dis-
tribution e to Λ∨q ; discretizing does not reduce security since an attacker may
always discretize the samples themselves. Secondly, we can ‘tweak’ the problem
so that e, s ∈ Λq. Fortunately, in the case where γ is a unit, Λ∨ =

⊕
i u

iO∨L and
so this tweak is precisely multiplying on the right by the tweak factor taking
O∨L to OL (see e.g. [22]). Finally, we require hardness of a ‘normal’ form for the
CLWE distribution, where s is sampled from the same distribution as the noise
e.

Lemma 18. As long as a non-negligible proportion of elements of Λq are in-
vertible there is a polynomial time reduction from the CLWE problem with uni-
formly random secret s and error distribution Σ to the CLWE problem with
secret s′ ← Σ.

Proof. It is sufficient to show that there is an efficient transformation taking
samples with secret s to samples with some new secret s′ taken from Σ. Sample
pairs (a, b)← Πq,s,Σ until a pair (a1, b1 := a1 · s+ e1) such that a1 is invertible
in Λq is obtained. Since by assumption a non-negligible fraction of elements of
Λq are invertible, with high probability this step takes polynomial time.

Now, given a pair (ai, bi) ← Πq,s,Σ , we obtain a sample from the CLWE
distribution Πq,e1,Σ by outputting (ai, bi) = (aia

−1
1 , aia

−1
1 b1 − bi). Since a−11 is

invertible, ai is uniform. Similarly,

aia
−1
1 b1 − bi = (aia

−1
1 (a1 · s+ e1))− ai · s+ ei

= aia
−1
1 e1 − ei,

and so (ai, bi) is a valid CLWE sample with secret e1 and error distribution Σ.
ut

Recall that for the decision problem, we are interested in asymptotic complexity
in k. For our choice of number fields from Section 3.1, Propositions 1 and 4 of [19]
give us that Λq is isomorphic to a direct product of k matrix algebras of dimen-
sion n over Zq, for which a non-negligible proportion of elements are invertible.
Combining these properties, the hardness of the decision CLWE problem over
Λq × Λq ,where a is uniformly random and s, e ← Σ for some discretized error
distribution Σ, follows.

6.2 Sample Cryptosystem

Our scheme is parameterized by an algebra A := (L/K, θ, γ), where A is as in
Section 3.1, an error distribution Σ, and a prime modulus q ≡ 1 mod (2m · n)
(recall K = Q(ζ2m·n)). We will denote with bold faced letters the vector form of
an element of Λq, e.g. if a = a0 +ua1 + ...+un−1an−1 then a = (a0, a1, ..., an−1).
We note that OL/qOL has a polynomial representation of dimension n · k, and

so we encode our message m ∈ {0, 1}k·n2

as an entry of Λq as a vector m of n
{0, 1} polynomials. The scheme proceeds as follows:
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– Alice generates a CLWE sample (a, b := a · s+ e), where a ∈ Λq is uniformly
random and e← Σ, and outputs public key a,b.

– To encrypt m ∈ {0, 1}k·n2

, Bob samples t, e1, e2 ← Σ and outputs u :=
φ(a)T t + e1,v := φ(b)T t + e2 + d q2c ·m.

– To decrypt, Alice computes c = v− φ(s)Tu and recovers each coordinate of
m by rounding the corresponding entry of c to 0 or d q2c and outputting 0 or
1 respectively.

Remark 5. There are two benefits of instantiating this scheme in the cyclic al-
gebra setting rather than over modules as in [6], both following from the matrix
embedding φ. Firstly, in the module setting Alice must publish a matrix A rather
than the vector a in her key, since φ(a) lets us generate a matrix; this saves a
factor of n in the size of the public key. Secondly, by extending b to φ(b) we are
able to increase the dimension of v, and correspondingly increase the size of the
message by a factor of n.

Example 2. recall our sample parameters from Section 3.1 with [K : Q] = 128
and [L : K] = 3, such that [Λ : Z] = 1152. Without considering streamlined
implementation for specific NIST submissions, we will pick toy comparison pa-
rameters for equivalent module based systems and ring based schemes, e.g. Kyber
and NewHope. For the module case, consider a module of dimension 3 over a
ring L of dimension 384. Our public key (a,b) requires storing only 6 elements
of Rq = OL/q ·OL rather than 12 in the form (A,b) and our message consists of
1152 bits, corresponding to the total dimension of the algebra rather than the
module versions 384 which corresponds to the field dimension. Our ciphertext
sizes are the same. Overall this represents a noteworthy gain in key and mes-
sage size without loss in efficiency. For the ring case, consider an instantiation
of NewHope in dimension 1152. Both public keys are in the form (a, s) and so
require equivalent levels of storage (6 elements of a field of dimension 384 or 2
in dimension 1152), and the same phenomenon is true of ciphertext sizes and
message length. Hence, we hope to gain in security without losing efficiency.

Before considering security and correctness we need a somewhat technical lemma
allowing the use of the matrix transpose operation. Essentially, it states that if
the CLWE problem is hard in an algebra A, then for a, s, e ∈ Λq, the equation
φ(a)T s + e is a valid CLWE instance in some other algebra A′ for which the
CLWE problem is still hard.

Lemma 19. Let A = (L/K, θ, γ) be a cyclic division algebra with matrix em-
bedding φ(a) and natural order Λ. Then there exists another cyclic algebra A′ =
(L/K, θ, γ−1) with matrix embedding φ′(a′) and natural order Λ′ such that for
a ∈ A there exists a′ ∈ Λ′ satisfying φ(a)T = φ′(a′). Moreover, A′ still satisfies
the division algebra condition, and Λ′q are Λq canonically isomorphic as additive
groups.

Proof. The fact that A′ is still a division algebra follows from the non-norm
property on γ and the fact that NL/K(L×) is a multiplicative group. Λ′q and
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Λq are additive isomorphic because both algebras share the same underlying
fields and γ, γ−1 are both units of OL. Since the first row of φ(a) is precisely
(x0, γθ(xn−1), γθ2(xn−2), . . . , γθn−1(x1)), by setting a′ = x0 +uγθ(xn−1)+ · · ·+
un−1γθn−1(x1) and observing that θn is the identity it is easy to check that
φ(a)T = φ′(a′). ut

The proofs of correctness and security are similar in spirit to those of other
compact LWE schemes such as e.g. NewHope [1] or Kyber [6]. We proceed with
a somewhat informal security argument.

Lemma 20. The defined scheme is IND-CPA secure under the assumption that
the decision CLWEq,Υ problem is hard.

Proof. The goal of an IND-CPA adversary is to distinguish, with non-negligible
advantage, between encryptions of two plaintexts m1,m2. The challenger chooses
i ∈ {0, 1} uniformly at random and encrypts mi as u,v. By the assumption that
the decision CLWE problem is hard, the adversary cannot distinguish between
the case where b = as+ e and the case where it is replaced by a uniform random
b′, so we replace the challenge ciphertext v with v′ by replacing b with b′. Setting
v′′ := v′−d q2c·mi, it follows by Lemma 19 that u,v′′ represent two samples from
a valid CLWE distribution with secret t, and so the adversary cannot distinguish
them from uniform with non-negligible advantage. Hence, the challenger cannot
distinguish v′ from uniform with non-negligible advantage and so cannot guess
i with non-negligible advantage. ut

Finally, we demonstrate conditions on the error term for the scheme to be correct.

Lemma 21. The defined scheme is correct as long as the `∞ norm of e′ =
(φ(e)T t + e2 − φ(s)Te1) is less than d q4c, where the `∞ norm is over the vector
of all polynomial coefficients of each ui entry of e′ of dimension k · n2.

Proof. To decrypt, Alice computes v − φ(s)Tu and computes m by rounding.
Since φ(·) is a homomorphism, we have

v− φ(s)Tu = φ(b)T t + e2 + dq
2
c ·m− φ(s)T (φ(a)T t + e1)

= φ(e)T t + e2 − φ(s)Te1 + dq
2
c ·m

= e′ + dq
2
c ·m.

from which the result follows immediately. ut

We note that the error term e′ will be unsurprising to those familiar with LWE
based cryptography. Although we do not provide concrete correctness estima-
tions, the error parameters for our decision reduction are equivalent to those of
MLWE up to some small covariance terms. We do not expect this covariance
to greatly affect the distribution of the error and thus for equivalent parameter
choices we expect a similarly small probability of decryption failure.
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A Regarding BCV Style Attacks

For m = 2, the m-RLWE protocol of [20] can be considered as a structured vari-
ant of MLWE, where the matrix A in the operation As+e is a negacyclic matrix
over some ring Rq. More explicitly, 2-RLWE considers the tensor product of two
fields K = K1 ⊗K2 and runs the LWE assumption in the ring of integers mod-
ulo Rq. The example use case given in [20] considers power-of-two cyclotomics
K1,K2 defined by the polynomials xk1 +1 and yk2 +1 respectively, claiming that

the resulting problem in Rq =
Zq [x,y]

(xk1+1,yk2+1)
effectively corresponds to an RLWE

problem of dimension k1 · k2 due to an obvious homomorphism between K and
the two-power cyclotomic field L of degree k1 · k2. The problem also represents

a structured MLWE instance over
Zq [x]

(xk1+1)
of dimension k2.

However, the observation of [5] is that there is a smaller field K ′ containing
K1 such that there is a homomorphism from K into K ′ with a well defined image
for y. This is because the roots of distinct two-power cyclotomic polynomials are
algebraically related. For example, in the case k1 = 8, k2 = 4, it is clear that the
map taking y to x2 and fixing K1 is a well defined homomorphism from K to
K1. Using this homomorphism, [5] simplifies the problem of solving one 2-RLWE
instance by considering it as four RLWE instances in dimension k1 rather than

30



one instance in dimension k1 · k2, essentially removing the module dimension k2
from the problem.

We argue that the non-norm condition of γ precludes the existence of a
homomorphism removing the module structure by taking a well defined cyclic
algebra A = (L/K, θ, γ) to a smaller subfield containing K. We restrict our
search to maximal subfields of A, since any subfield is contained in at least
one maximal subfield. It is a well known result on division algebras that any
maximal subfield E of A contains K and satisfies [E : K] = n, and that in the
case of a cyclic division algebra A there is a choice of u′ ∈ A such that the
cyclic algebra A′ :=

⊕
j u
′jE is isomorphic to A (see Section 15.1, Proposition

a of [24]). Assume, for a contradiction, that we had such a homomorphism χ :
A → L, where without loss of generality we assume the maximal subfield is
L by the aforementioned proposition. Since L is Galois, the restriction of χ to
L is an automorphism of L. It is clear that χ must agree on conjugates, since
χ(u) · χ(`) = χ(u · `) = χ(θ(`) · u) = χ(u) · χ(θ(`)) for any ` ∈ L. However, this
contradicts χ being injective on L and it follows that no such homomorphism
exists. Hence we conclude that the attack style of [5] does not threaten our
algebraic structure.
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