
The Art of Guessing in Combined Side-Channel

Collision Attacks

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang

School of Computer Science and Engineering, Nanyang Technological University,

chou@ntu.edu.sg,assklam@ntu.edu.sg,gyjiang@ntu.edu.sg

Abstract. Recent combined collision attacks have shown promising results for exploit-
ing side-channel leakage information from both divide-and-conquer and analytical
distinguishers. However, divide-and-conquer distinguishers used such as Correlation
Power Analysis (CPA) cannot directly provide the success probability of attack which
impedes effective threshold setting for determining the candidate space. In partic-
ular, they uniformly demarcate the thresholds for all sub-keys, which restricts the
candidate space that is able to be analyzed and increases the attack difficulty. More-
over, the existing works mainly focus on improving collision detection algorithms,
and lacks theoretical basis. Finally, the inadequate use of collision information and
backward fault-tolerant mechanism of existing schemes lead to low attack efficiency.
To overcome these problems, this work first introduces guessing theory into Template
Attack (TA) to facilitate the estimation of success probability and the corresponding
complexity of key recovery. We also extend Multiple-Differential Collision Attack
(MDCA) to a new combined collision attack named Multiple-Differential Combined
Collision Filter (MDCCF), which achieves the multiple-differential voting mechanism
via two levels: Distinguisher Voting (DV) and Collision Voting (CV). DV exploits
the information from CPA, TA and Correlation enhanced Collision Attack (CCA) to
filter the candidates of TA that fall within a threshold. CV further applies differen-
tial voting on the selected sub-keys with the smallest number of candidates to vote
other sub-keys. The experimental results show that the proposed MDCCF signifi-
cantly improves key ranking, reduces the candidate space and lowers the complexity
of collision detection, without compromising on the success probability of attacks.

Keywords: MDCCF · distinguisher voting · collision voting · combined collision
attack · candidate space · collision attack · side-channel attack

1 Introduction

Implementations of cryptographic algorithms on devices produce unintentional leakages
such as power consumption [18], electromagnetic radiation [2] and cache patterns [30],
which pose security vulnerabilities to Side-Channel Attacks (SCA). SCA has been demon-
strated successfully on various chips and devices, such as SIM cards [19], PDAs [14],
desktop computers [15] and even cloud servers [17]. Existing methods for SCA can be di-
vided into two general approaches: divide-and-conquer and analytical. These approaches
can exploit two types of information: direct leakages and collision leakages.

Existing divide-and-conquer distinguishers, such as Differential Power Analysis (DPA)
[18], Correlation Power Analysis (CPA) [9] and Template Attack (TA) [10, 25], divide the
huge candidate key space into several small blocks and conquer them one by one. They
are often combined with key enumeration [24, 12] to avoid unnecessary guesses, but this
is only feasible if the keys fall within the enumerable space. In practice, keys often locate
in spaces that cannot be enumerated directly. On the other hand, analytical attacks such

mailto:chou@ntu.edu.sg, assklam@ntu.edu.sg, gyjiang@ntu.edu.sg

2 The Art of Guessing in Combined Side-Channel Collision Attacks

as algebraic attack [26] and collision attack [27, 3], exploit more leakage information than
divide-and-conquer distinguisher, but are harder to mount.

In order to leverage the benefits of the two approaches, combined collision attacks
have been proposed. These attacks combine a divide-and-conquer distinguisher and an
analytical collision distinguisher to exploit more leakage information and construct the
relationship between different sub-keys. They rely on the principle wherein several weak
distinguishers can construct a stronger distinguisher. Here we take voting, one of the
simplest differential methods, to illustrate this principle. For a set of testing samples, each
weak distinguisher obtains a set of classification results. Majority voting is then used to
determine their final classes, which is more accurate than that of a single distinguisher.
This paper takes one step further by extending the Multiple-Differential Collision Attack
(MDCA) to a combined collision attack and introducing guessing theory to enhance it.
Before introducing our contributions, we will introduce the related works in the next
sub-section.

1.1 Related Works

Existing combined collision attacks combine a divide-and-conquer distinguisher (e.g. CPA)
and an analytical collision distinguisher (e.g. Correlation enhanced Collision Attack
(CCA) [20]) to construct the relationship between different sub-keys and exploit more
leakage information. Each distinguisher can delimit the range (i.e. threshold) of candi-
dates to be considered based on the guessing conditions. For example, the thresholds τk

and τd of CPA and CCA indicate that only the first τk and τd candidates of these two
distinguishers are considered. The undesirable candidates that do not satisfy the given
collision conditions are discarded. In other words, only desirable candidates satisfying the
given collision conditions are remained. In this way, the original candidate space can be
significantly reduced to lower the attack difficulty.

Combined collision attack was first proposed in [5] where a scheme called Test of Chain
(TC) was presented. TC tries to find a long chain from the first sub-key to the last sub-
key within the threshold τk. However, how to implement TC was not discussed. The first
practical combined collision attack was proposed in [29] considering the combination of
CPA and CCA, and τd = 1. This method, called Fault Tolerant Chain (FTC), aims to find
the collisions between the first sub-key and the other 15 sub-keys, and exhaust the first
sub-key. Due to the insufficient usage of collision information, FTC needs to enumerate a
large number of candidates.

MDCA [4] uses multiple thresholds to conduct differential voting when matching the
power traces of two intermediate values (e.g., binary voting and ternary voting based on
Euclidean distance between them). Obviously, MDCA here is not a combined collision
attack and hence, it is not the focus of this paper. The work in [22] considers τd > 1 using
a combined collision attack called Group Verification based Multiple-Differential Collision
Attack (GV-MDCA). Unlike MDCA, the differential voting mechanism of GV-MDCA is
performed on the number of collisions, not on the matching degree of power traces of
two intermediate values like Euclidean distance. It votes a sub-key using the collisions
between its candidates and the candidates of the remaining 15 sub-keys (i.e., the groups).
The candidates are then ranked in descending order according to the number of votes.
GV-MDCA makes more sub-keys rank first, thus improving CPA’s efficiency. Although
GV-MDCA can be regarded as a kind of combined collision attack, it does not alter the
rank of the key due to the unchanged probabilities or scores of the candidates.

A flaw of FTC caused by insufficiently utilized collision information was also shown in
[21] wherein if the i-th sub-key ki and the collision value were both wrongly guessed, and
the two candidates from k1 and ki still constituted a collision, then FTC would regard
them as desirable candidates. The larger τk and τd are, the more frequently this situation
occurs. To solve this problem in FTC, Group Collision Attack (GCA) [21] was further

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 3

proposed. The huge candidate space was divided into several big groups (e.g., 16 sub-keys
of AES-128 are divided into 4 non-overlapping big groups). Intra-group collision is used to
perform the first round of undesirable candidates deletion within groups, and inter-group
verification is used to perform another round of deletion among groups. GCA exploits
collisions about three times more than FTC.

Both FTC and GCA combine CPA with CCA. CPA is exploited to determine the ranks
of sub-keys, and CCA further filters possible collisions from them. This contributes to a
significant reduction of the candidate space, thus decreasing the difficulty of attack. In
this way, GCA exploits more collision information and further extends FTC’s conquerable
space. However, GCA still encounters great difficulty when dealing with larger space
(see Section 7 for details). Moreover, the correlation coefficients produced by CPA do
not provide a reasonable reference for the delimitation of threshold τk. To find a good
threshold, we need to constantly test and adjust it. Finally, FTC and GCA set a unified
threshold τk for all sub-keys in CPA. In order to ensure that all sub-keys are within
the threshold, τk should be greater than or equal to the one with the deepest position.
Obviously, a large number of additional undesirable candidates need to be considered,
which increases the complexity of key recovery.

1.2 Our Contributions

The main contributions of this paper are as follows:

- We introduce guessing theory into TA to optimize the setting of threshold τk, which
aids in rapid estimation of the success probability and the corresponding guessing
space. This helps to optimize the choice of τk based on the available computing
power, hence increasing the efficiency of attacks and evaluations.

- We extend the traditional analytical distinguisher MDCA to a combined collision
attack, and propose a two-level Multiple-Differential Combined Collision Filter (MD-
CCF). In the first level, the information from CPA, TA and CCA is extracted to
build a multiple-differential voting mechanism named Distinguisher Voting (DV).
DV can be further optimized by voting on candidate values of TA using the ones
from CPA and the utilization of collision information in CCA is left behind MDCCF.

- In the second level of MDCCF, we select several sub-keys with the smallest num-
ber of candidates to vote other sub-keys, thus building a second differential voting
mechanism on collisions with fault tolerance named Collision Voting (CV). CV fur-
ther eliminates some undesirable candidates and narrows the search space, which
significantly lowers down the complexity of attacks.

A good combined collision attack should reduce candidate space as much as possible
without significantly reducing the probability of successful key recovery. The proposed
two-level MDCCF with fault-tolerant mechanism obviously can achieve this. Its success
probability is close to the theoretical one under a very limited number of measurements if
the collision conditions are set reasonably to make most collisions fall within thresholds and
consider fault tolerance on others. This is significantly higher than the success probability
of both FTC and GCA.

1.3 Organization

The rest of the paper is organized as follows. The experimental setup, principles of TA
and collision attack, and the existing combined collision attacks are introduced in Section
2. Mathematical metrics of guessing theory, including guessing model under TA, marginal
guesswork and partial guessing metrics, are given in Section 3. DV and CV, the two levels

4 The Art of Guessing in Combined Side-Channel Collision Attacks

of our MDCCF, are introduced in detail in Sections 4 and 5. Trade-off considerations
to balance success probability and complexity is given in Section 6. Experiments are
performed on an AT89S52 micro-controller in Section 7 to demonstrate the practicability
and efficiency of MDCCF. Finally, Section 8 concludes this paper.

2 Preliminaries

2.1 Experimental Setup

Our experiments are performed on the power traces leaked from an AT89S52 micro-
controller. The operating frequency of the AT89S52 system is 12 MHz, the shortest
instructions take 12 clock cycles to execute. We use assembly language to implement
the AES-128 algorithm, and the instruction "MOVC A, @A+DPTR" is utilized to
complete S-box operation, which requires 24 clock cycles. The DPTR register saves the
starting address of the S-box, register A saves the offset, and the output of the look-up
table operation is saved back in register A. The sampling rate of our Picoscope 3000 is
set to 125 MS/s. We finally acquire 51200 power traces and use CPA to select a Point-
of-interest (POI) [13] with the highest correlation coefficient to perform the subsequent
experiments.

2.2 Template Attack

Template Attack (TA) [10, 25, 16] is one of the most powerful side-channel distinguishers.
It can be divided into two stages: template construction and template classification. Let
|N | denote the number of sub-keys and |Kj | denote the candidate space of the j-th sub-
key, ti

j [1 · · ·n] (1 ≤ j ≤ |N | , 1 ≤ i ≤ |Kj |) denote a total of n power traces used to profile

the i-th intermediate value of the j-th sub-key Ii
j (e.g. the S-box output in the first round

of AES-128), and mi
j , Ci

j denote the corresponding mean power consumption vector and

the noise covariance matrix, which constitute a template
(

mi
j ,C

i
j

)

. Here

mi
j =

1

n

n
∑

κ=1

ti
j [κ] (1)

and

Ci
j =

1

n

n
∑

κ=1

(

ti
j [κ]−mi

j

) (

ti
j [κ]−mi

j

)T
, (2)

and symbol "T " denotes matrix transposition. For a power trace t used for attack, the
probability of it corresponding to template

(

mi
j ,C

i
j

)

is:

p
(

t
∣

∣mi
j,C

i
j

)

=
e−

(m
i
j

−t)·(C
i
j)

−1
·(m

i
j

−t)T

2

√

(2 · π)|m
i
j| det

(

Ci
j

)

, (3)

where
∣

∣mi
j

∣

∣ represents the length of mi
j , i.e., the number of POIs used to profile the

templates.

2.3 Collision Attacks

We consider AES-128 in this paper, which performs 16 parallel S-box operations in its
first round. Let xj1

∈ F28 and kj1
∈ F28 denote the j1-th byte of a plaintext to be

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 5

encrypted and the j1-th sub-key, a linear collision happens if two S-boxes generate the
same intermediate values:

Sbox (xj1
⊕ kj1

) = Sbox (xj2
⊕ kj2

) (4)

as shown in Fig. 1. Eq. 4 means that these two S-boxes accept the same input: xj1
⊕kj1

=
xj2
⊕ kj2

. In this case, this pair of collision can determine the XOR value of two sub-keys:

δj1,j2
= kj1

⊕ kj2
= xj1

⊕ xj2
(5)

if the plaintexts are known (in fact, plaintexts are usually assumed to be known in SCA).
For simplicity, we use kj1

↔ kj2
to represent this pair of collision.

S-box

1
jx

1
jI

1
jk

2
jx

2
jk

2
jI

S-box

Figure 1: A pair of collision between two S-boxes in AES-128.

A specific implementation of CCA was given in Algorithm 2 in [29]. Taking the
collision between the first and second S-boxes of AES-128 as an example, CCA divides the
measurements of the first and second bytes into 256 classes according to their plaintexts,
calculates the mean power consumption vector of each class, and computes the correlation
coefficient

ρ
{(

mx1

1 ,m
x1⊕δ1,2

2

)

∣

∣x1 = 0, 1, 2, · · · , 255
}

(6)

under a guess δ1,2 (see Eq. 5).

2.4 Combined Collision Attacks

A combined collision attack named Test of Chain (TC) in [5] tried to find a long chain
from the first sub-key to the 16-th sub-key including 15 pairs of collisions. TC opened
up a new direction of combined attacks, but unfortunately there was no feasible solution
given. Wang et al. gave the first practical scheme named Fault Tolerant Chain (FTC)
in [29], which combined CPA and CCA, and tried to find the collisions between the first
sub-key and the other 15 sub-keys (as shown in Fig. 2). Here two thresholds τk and
τd are for CPA and CCA respectively, ξj1

denotes the candidates of the j1-th sub-key
sorted in descending order according to their probabilities or scores, and ξi

j1
denotes its

i-th candidate. If τk = 10(τd = 10), only first 10 candidates for each sub-key (collision
δj1,j2

) are considered. However, guessing all the sub-keys together is not conducive to
making full use of collision information. Moreover, the candidate space is too large, which
dramatically weakens the advantage of divide-and-conquer.

Group Collision Attack [21] improves FTC by dividing the 16 sub-keys of AES-128
into 4 big non-overlapping groups. The sub-key combinations within each group that do
not meet the given collision conditions are discarded, and the candidate space is further
reduced by inter-group verification. There are 3 ∼ 4 pairs of collisions on each sub-key.
Verification is essentially a kind of collision. In order to reduce collision detection, GCA
continuously verifies long chains from short chains (see Example 1).

6 The Art of Guessing in Combined Side-Channel Collision Attacks

1 2 3 164

k

Figure 2: Fault Tolerant Chain (FTC).

Example 1. Take the three C4 chains (see Section III-A in [21]) including 3 pairs of
collisions among 4 sub-keys from the 1-st ∼ 4-th, 3-rd∼6-th and 5-th ∼8-th sub-keys of
an experimental output in Fig. 3 as an example, 17↔ 242 and 192↔ 24 in 17↔ 242↔
192 ↔ 24 are also in 212 ↔ 153 ↔ 17 ↔ 242 and 192 ↔ 24 ↔ 229 ↔ 126. In this way,
17↔ 242↔ 192↔ 24 is verified and regarded as a desirable candidate.

It is noteworthy that the verified chain 17 ↔ 242 ↔ 192 ↔ 24 in Example 1 does
not mean that the 4 candidates on it are correct. In fact, the 4-th sub-key k4 is 9.
Inter-group verification greatly alleviates the growth of guessing space after the candidate
recombination from the 4 groups.

212 153 17 242

17 242 192 24

192 24 229 126

Correct: 9

x

Figure 3: Key verification in GCA.

3 Mathematical Metrics of Guessing Difficulty

3.1 Guessing Model

Considering a sub-key kj , we wish to evaluate the efficiency of an attacker trying to recover
it given access to an oracle for queries "is ξi

j = kj?" Actually, Eq. 3 gives the probability

of a new measurement t corresponding to template
(

mi
j,C

i
j

)

(i.e. the probability that

the sub-key kj = ξi
j). We normalize and rank the probabilities in descending order, and

obtain pj =
{

p1
j , p

2
j , . . . , p

|Kj |
j

}

satisfying

|Kj |
∑

i=1

pi
j = 1 (7)

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 7

and
p1

j > p2
j > . . . > p

|Kj|
j (8)

as introduced in [11], where pi
j is the i-th largest probability. The optimal brute-force

attack [11] can be performed if the candidates are enumerated in this order. It represents
the minimum number of candidates that an attacker needs to guess in order to recover
the sub-key.

3.2 Marginal Guessworks

The widely used Guessing Entropy (GE) [28] in SCA provides the expected position of a
sub-key. The expected number of guesses required by an attacker to find kj in a guess
was defined as guesswork or guessing entropy by Pliam in [23]:

G (Kj) =

|Kj |
∑

i=1

i · pi
j , (9)

which is the optimal brute-force search. Choudary et al. named this guesswork as Massey’s
guessing entropy (GM) in [11], and proved its superiority compared to GE in evaluation.
The theoretical boundaries of the average number of guesses have also been deeply dis-
cussed in [6, 8]. These techniques can be extended to TA to evaluate the difficulty of
recovering a sub-key.

3.3 Partial Guessing Metrics

As stated in [6], guesswork and entropy metrics failed to model the tendency of real-
world attackers to cease guessing against the most difficult cases. For example, they
may choose a small part of candidates with high probabilities to guess and discard most
candidates with low probabilities in TA (e.g. the first 240 full-key candidates with the
greatest probabilities from the total space 2128 of AES-128). This often happens when
the computing power is limited. A typical example is key enumeration.

Suppose that an attacker tries to recover the sub-key kj only from its first β candidates,
the probability of success in an attack is

λβ (Kj) =

β
∑

i=1

pi
j, (10)

which was defined as β-success-rate in [7]. The ”success rate” here is actually the the-
oretical expectation of success. It is different from the one defined by Standaert et al.
in [28], which is the proportion of the number of successful attacks to the total number
of experiments in reality. Another metric considers only the candidates that satisfy the
given probability value α ∈ (0, 1):

µα (Kj) = min

i
′

∣

∣

∣

i
′

∑

i=1

pi
j ≥ α

, (11)

which is named as α-work-factor in [23]. These two typical partial guessing metrics can
be used in SCA, and their superiority will be fully demonstrated in the next sections.

4 Distinguisher Voting

Several weak distinguishers can be combined to construct a stronger distinguisher to
exploit more leakage information. Here we combine CPA, TA and CCA to complete Dis-
tinguisher Voting (DV), the first level of our MDCCF. To comply with rules of combined

8 The Art of Guessing in Combined Side-Channel Collision Attacks

collision attacks, we use CPA+CCA and TA+CCA to select candidates of TA, with the
aim recovering the key from the collision space of TA+CCA (i.e. the remaining candidate
space after combined collision attacks). Specifically, our target is simply to divided the
16 sub-keys of AES-128 into 8 big blocks, on which a multi-differential collision voting
mechanism is further established to reduce the key search space. This can be undertaken
after completing DV and CV, since voting on sub-keys is more effective than voting on
collisions.

4.1 Distinguisher Selection

As stated in [21], the combination of several distinguishers with close performance is more
meaningful. If one has much better performance than others, SCA can be performed
on it directly without considering others. We use Amplified Template Attack in [31] to
improve the efficiency of TA. In this case, the probability of a candidate ξi

j to be the
correct one, is the product of the probabilities that all n power traces are classified into
their corresponding templates according to it, namely pi

j =
∏n

κ=1 p
i
j [κ].

Since all probabilities are smaller than 1, pi
j decreases with the growth of the number

of traces. If there are too many power traces, the probability products may be too small
to be expressed. Here we use logarithmic function to solve this problem:

ln pi
j = ln

n
∏

κ=1

pi
j [κ] =

n
∑

κ=1

ln pi
j [κ] . (12)

In this case, pi
j = exp

(
∑n

κ=1 ln pi
j [κ]

)

. All probabilities then minus the maximum value

of ln pj denoted by ln pmax
j = max

(

ln pi
j

∣

∣i = 1, . . . , |Kj |
)

, since

pi
j

pmax
j

=
exp

(

ln pi
j

)

exp
(

ln pmax
j

) = exp
(

ln pi
j − ln pmax

j

)

. (13)

We then normalize them. With the increase number of measurements, the success prob-
ability by guessing the first several candidates of each sub-key increases. We randomly
encrypt 25600 plaintexts for templates construction. The average success probability of
first sub-key under different numbers of guesses when 160 ∼ 360 power traces are consid-
ered in each of 200 repetitions is shown in Fig. 4.

0 5 10 15 20 25 30 35 40 45

The number of candidates

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

cc
es

s
p

ro
b

ab
il

it
y

n=160

n=200

n=240

n=280

n=320

n=360

Figure 4: The average success probability of first sub-key under different numbers of
guesses.

The performance of CPA and TA is much better than that of CCA. It’s not surprising
since CCA’s classic use is to attack flawed masking schemes (e.g., DPA contest v4.1 [1]).

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 9

We use 4th-order Minkowski distance instead of correlation coefficient in Eq. 6 when
classifying each power trace, which achieves good results in our experiments.

4.2 Voting

As different distinguishers have different classification performance, this makes the rank
of candidates different when dealing with the same measurements. Let ξi1

j1
and ξi2

j2
denote

the i1-th and i2-th candidates of the j1-th and the j2-th sub-keys, δCPA

j1,j2
and δTA

j1,j2
denote

the candidates of collision between them in CPA+CCA and TA+CCA. Here we define a
simple Distinguisher Voting (DV) mechanism:

Ψ
(

ξi1

j1
, ξi2

j2

)

=

{

1, ξi1

j1
⊕ ξi2

j2
∈

(

δCPA

j1,j2

⋂

δTA

j1,j2

)

0, otherwise.
(14)

This means, if a collision ξi1

j1
↔ ξi2

j2
satisfies ξi1

j1
⊕ ξi2

j2
∈ δTA

j1,j2
and ξi1

j1
⊕ ξi2

j2
∈ δCPA

j1,j2
, we keep

it, otherwise discard it. In this case, we filter a part of collisions in TA+CCA using the
collisions from CPA+CCA, which further optimizes the guessing space.

Example 2. Taking an experimental result under 300 measurements, α = 0.95 and
τd = 70 as an example, TA+ CCA and CPA+CCA have 13 and 15 pairs of collisions
between the first two sub-keys respectively (as shown in Fig. 5). The threshold of CPA is
the same as TA. The long red arrows in Fig. 5 represent the common collisions between
CPA+CCA and TA+CCA. Since τd > 1, each candidate of a sub-key can have at most
τd pairs of collisions. For example, the candidate 166 has 4 pairs of collisions 166↔ 153,
166 ↔ 113, 166 ↔ 116 and 166 ↔ 83 on TA+CCA, and only has two pairs of collisions
166 ↔ 153 and 166 ↔ 28 on CPA+CCA. Only a common collision 166 ↔ 153 satisfies
the collision conditions given in Eq. 14. Therefore, 3 other collisions are discarded, 166
and 153 are the remaining candidate of the first and second sub-keys respectively.

TA+CCA

CPA+CCA

9 142

233
218

83

153

113
166

116

83

153

145

45
212

233

116

83

78
9

142

153

145
212

45

233

28

142
147

233

138

145

60 197

233

153
166

28

Figure 5: Distinguisher voting between the first two S-boxes of AES-128 considering
CPA+CCA and TA+CCA.

4.3 Relaxation Factor

Since CPA is weaker than TA, the expected ranks of its sub-keys should be deeper than
TA. Therefore, we need to set an independent threshold greater than µα for it to ensure
that the corresponding sub-key falls into the space under consideration. We define this
threshold as π ·µα and the coefficient π (≥ 1.0) as relaxation factor. For example, if we set
π = 1.2, only 6 pairs of collisions are in both collision sets, and other 7 pairs of collisions of
TA+CCA are filtered out (see Fig. 5). The parameter π should be carefully determined.

10 The Art of Guessing in Combined Side-Channel Collision Attacks

Larger π leads to looser constraints, and fewer collisions of TA+CCA would be filtered
out. The complexity of our DV to filter collisions between two sub-keys kj1

and kj2
is

only O(µα (Kj1
) · µα (Kj2

)), which does not bring too much computation to the attacks.
To maintain a candidate of TA, Eq. 14 requires a pair of collision in both CPA+CCA

and TA+CCA. This condition is stringent and may delete sub-keys in some cases. For
example, when n is large, the number of candidates of a sub-key under TA and fixed µα

is often very small. If the threshold of CPA (i.e. π · µα) is not set sufficiently large, it is
easy to mistakenly delete the sub-keys. On the other hand, if π is set very large and n is
small, both TA and CPA contain a large number of unfiltered candidates, which affects
the computation efficiency. The reasonable settings of π will be discussed in detail in
Section 7.1.

4.4 Optimization

The collision threshold τd does not change in the combined collision attacks TA+CCA and
CPA+CCA in DV, the first level of MDCCF. This means that the collision information
we get from CCA does not change. Therefore, we can improve MDCCF by optimizing the
voting mechanism performed on TA and CPA, and performing collision detection on the
remaining candidate space. In this case, let ξTA

j and ξCPA
j denote the ranked candidates

of kj output by TA and CPA, Eq. 14 can be further optimized as

(

ξTA

j

)

′

= ξTA

j

⋂

ξCPA

j . (15)

Obviously, combining the collision information in CCA with the remaining candidates of
TA can avoid a lot of unnecessary collision detection.

Example 3. The intersection of CPA+CCA and TA+CCA collisions in Fig. 5 can be fur-
ther simplified as the collisions between CCA and the remaining candidates {9, 212, 166}
and {142, 233, 153, 45, 145}, which is the intersection of CPA and TA. In this way, un-
necessary collision detection between 218 and 83, 60 and 145, 147 and 28 etc., can be
avoided.

It is noteworthy that fault tolerance can also be decided according to the probabilities
of candidates, and the larger the probabilities, the better fault-tolerant mechanisms are
required. In other words, the smaller the probability of a candidate, the lower requirements
on fault tolerance. In this case, a new optimized DV mechanism is given as:

Ψ
(

ξi
j

)

=

1, pi
j ≥ 0.1

1, ξi
j ∈ ξ

CPA

j & pi
j ∈

(

10−5, 0.1
)

0, otherwise.

(16)

The above Eq. 16 means that, for each candidate ξi
j (i ∈ [1, µα (Kj)]) of a sub-key kj whose

probability pi
j in TA is greater than 0.1, it can be maintained directly. If pi

j is between

10−5 and 0.1, and ξi
j is a candidate in CPA, it will be maintained. These strategies are

designed to reduce the relaxation factor π and the loss caused by mistakenly deleting the
sub-keys, while not considerably reducing the success probability of key recovery.

It is difficult to guarantee the key recovery if it is in a very deep space. Due to
the limitation of computing power, we can only selectively guess a small part of key
candidates using key enumeration. Collision detection is performed on all candidates
within the threshold. For the case that when the probability threshold α is set to a large
value which leads to a large volume of candidates, we can discard a lot of candidates if
their probabilities are too small. This is because they will not significantly improve the
success probability of attacks, but instead drastically increase the workload of collision
detection. This optimization is embodied in Eq. 16, i.e., a candidate is discarded if its
probability is smaller than 10−5.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 11

5 Collision Voting

DV, the first level of MDCCF, can be optimized into a simple collision-free voting mech-
anism (see Eq. 15 and Eq. 16). However, if 16 sub-keys are divided into 8 big group
before Collision Voting (CV), it will inevitably vote a large number of collisions. Ac-
tually, this can also be done after CV. CV, the second level of our MDCCF, is mainly
multiple-differential combined collision attack to enable fault tolerance, built on the lists
with smallest number of candidates that we selected in Section 5.1. Its voting mechanism
is also a fault-tolerant mechanism, and the candidates of each sub-key to be voted that
satisfy the given collision conditions are retained.

5.1 Lists Selection

CV further filters the candidates by making full use of collisions information, and theo-
retically provide relaxed filtering conditions to reduce the possibility of mistakenly deleting

sub-keys. Detecting all collisions among |N | sub-keys has a complexity ofO
(

∏|N |
j=1 µα (Kj)

)

.

This would be very time-consuming if there are too many sub-keys and a large number of
collisions among them. Therefore, there is a need to optimize CV.

0 2 4 6 8 10 12 14 16

The re-ranked sub-keys

0

25

50

75

100

125

150

A
v
er

ag
e

n
u
m

b
er

 o
f

ca
n
d
id

at
es

n=160

n=200

n=240

n=280

n=320

n=360

Figure 6: The average number of candidates of 16 re-ranked sub-keys.

We rank all the 16 lists of candidates of AES-128 in ascending order according to their
α-work-factor, and evaluate their corresponding average number of guesses by repeating
each evaluation 200 times and using 160 to 360 measurements in each repetition. In order
to be consistent with the experiments in Section 7, we set α to 0.996, and obtain the
results shown in Fig. 6. The average number of candidates and probability distribution
of the re-ranked sub-keys vary greatly in TA. Moreover, with the increase number of
measurements n, the average number of candidates of the 8 deepest sub-keys decreases
significantly. However, the average number of candidates of the 5 shallowest sub-keys is
less than 25 when n ≥ 200. Obviously, it will be very efficient if we select these sub-keys
with fewest candidates to establish a differential voting mechanism to vote the remaining
sub-keys.

5.2 Fault Tolerance on Sub-keys

The sub-keys beyond threshold τk often happen on the ones with the lowest Signal-to-
Noise Ratio (SNR) of their power traces, which illustrates the necessity of fault tolerance
on them. Suppose that the nα sub-keys with minimum number of candidates are selected
to vote the remaining 16−nα sub-keys. Since the probability distribution of each sub-key
in TA is independent, the probability Pr that X sub-keys from these nα sub-keys fall into

12 The Art of Guessing in Combined Side-Channel Collision Attacks

the candidate space µα follows the Bernoulli distribution X ∼ B (nα, α):

Pr (X = κ) =

(

nα

κ

)

ακ (1− α)nα−κ
. (17)

Here κ = 0, 1, 2, . . . , nα and
(

nα

κ

)

=
nα!

κ! (nα − κ)!
. (18)

If we set nα and α to 6 and 0.996, and a sub-key out of its threshold τk = µα is allowed,
the success probability will reach Pr (X = 0 or 1) = 0.9966 + 6 ·

(

0.9965
)

· 0.0041 = 0.9998,
compared to Pr (X = 0) = 0.9966 = 0.9762. If α = 0.9, Pr (X = 0 or 1) = 0.8857 and
Pr (X = 0) = 0.5314, which shows significant improvements in success probability and
illustrates the effectiveness of our fault-tolerant mechanism on CV.

Example 4. A simplified example is shown in Fig. 7, wherein a collision 153 ↔ 26
between k2 and k4 is used to vote the candidate 192 of k5. That is, two sub-keys k1

and k3 are fault-tolerated, and only other two sub-keys k2 and k4 are used for voting.
This requires a total of three pairs of collisions: one between these two sub-keys, and two
between them and the sub-key k5 to be voted.

1 2 3 54

k

Figure 7: A collision 153↔ 26 between k2 and k4 is used to vote the candidate 192 of k5.

If all the sub-keys and collision values are within the thresholds τk and τd, there will

be a total of

(

nα + 1
2

)

pairs of collisions between each two of the nα sub-keys used for

voting and the sub-key waiting for voting. A large number of candidates will not satisfy
this strict collision condition, which is also verified by our experiments. It is noteworthy
that fault-tolerant mechanism DV voting on sub-keys is not simply reducing the number

of collisions from

(

nα + 1
2

)

, since they are not necessarily related to the fault-tolerated

sub-keys. If σ sub-keys are out of threshold, all collisions associated with them should be
fault-tolerated. In this case, a total of

ηnα,σ =

(

nα + 1
2

)

−

(

nα + 1− σ
2

)

(19)

pairs of collisions are allowed to be out of thresholds τk and τd, and the differential

threshold is set to τσ =

(

nα + 1− σ
2

)

.

Example 5. Taking σ = 1 and σ = 2 under nα = 5 for example, the threshold τσ is only
10 and 6 respectively. In other words, 10 (or 6) pairs of collisions between other 4 (or 3)
sub-keys are required to collide with the sub-key to be voted.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 13

It is worth mentioning that it would be better if the above fault-tolerant mechanism
is only performed on the nα sub-keys used for voting. If it is applied on the sub-keys
to be voted, the exhaustion of a fault-tolerated sub-key will be very time-consuming and

space-consuming. This also explains why Eq. 19 adopts

(

nα + 1− σ
2

)

as the differential

threshold for the fault tolerance on the sub-keys used for voting, without considering the
exhaustion of the fault-tolerated ones.

5.3 Fault Tolerance on Collisions

Whether a candidate is retained depends on the number of collisions required. The more
pairs are required, the larger probability that it will be deleted. The fault tolerance on
collisions reduces the number of required collisions, increases the probability of sub-keys
falling into the remaining candidate space, but also enlarges it. GCA requires 3 ∼ 4 pairs
of collisions occurring on each candidate without any fault-tolerant mechanism. If we use
nα = 4 sub-keys to vote the remaining 12 sub-keys, and 2 pairs of collisions 212↔ 17 and
153↔ 192 are fault-tolerated, each candidate to be voted requires 2 ∼ 5 pairs of collisions,
since we allow the fault-tolerated collisions to occur anywhere (see Fig. 8).

1 2 3 54

k

Figure 8: Two collisions out of threshold are tolerated in CV.

Here we use our CV, a new multiple-differential combined collision attack, to further
establish a fault-tolerant mechanism. Specifically, let ψ

(

ξi1

j1
, ξi2

j2

)

denote the collision flag

of ξi1

j1
and ξi2

j2
, if the collision establishes, i.e., ξi1

j1
⊕ ξi2

j2
∈ δTA

j1,j2
, this flag is set to 1. It

satisfies

ψ
(

ξi1

j1
, ξi2

j2

)

=

{

1, ξi1

j1
⊕ ξi2

j2
∈ δTA

j1,j2

0, otherwise.
(20)

In order to reduce the repetitive detection of collisions, not only all possible combinations
of the nα sub-keys used for voting but also the total number of collisions corresponding to

each combination should be calculated. Suppose that
(

ξi1

1 , ξ
i2

2 , . . . , ξ
inα
nα

)

is a combination,

its total number of collisions is

η
(

ξi1

1 , ξ
i2

2 , . . . , ξ
inα
nα

)

=

nα−1
∑

j1=1

nα
∑

j2=j1+1

ψ
(

ξ
ij1

j1
, ξ

ij2

j2

)

. (21)

If σ pairs of collisions are allowed to be out of thresholds τk and τd, the multiple-differential
threshold can be

τσ =

(

nα + 1
2

)

− σ. (22)

14 The Art of Guessing in Combined Side-Channel Collision Attacks

From the number of collisions point of view, this collision condition is much higher than
fault tolerance on sub-keys (see Eq. 19). In fact, all combinations with σ collisions out of
threshold can be discarded directly during collision detection, thus reducing the detection
burden when considering the subsequent sub-keys.

It is not difficult to see from Figs. 7 and 8 that fault tolerance on sub-keys is different
from that on collisions. For the former, the collisions between the fault-tolerated sub-
keys and other sub-keys (including the one to be voted) are tolerated. However, for the
latter, it’s fault-tolerance is only for collisions, not sub-keys. Two collisions (σ = 2 and
τσ = 10− 2 = 8) are fault-tolerated in Fig. 8, so these five candidates of k1 ∼ k5 can still
satisfy the collision conditions. If σ = 0 or σ = 1, this combination will be discarded. The
selected sub-keys have the smallest number of candidates, we can appropriately increase
α, which will not considerably increase the load of collision detection in CV but can
significantly improve the reliability of voting. This fully illustrates the advantages of CV.

5.4 Collision Detection Algorithm

Fault tolerance on sub-keys and collisions requires collision detection. In principle, the
performance of the algorithms wherein all collisions are not repeatedly detected would
be better. However, it is difficult to achieve this goal in fault tolerance. We vote the
remaining 10 sub-keys by using nα = 6 sub-keys with the fewest candidates, where one
sub-key and an additional pair of collision are allowed to be beyond thresholds τk and
τd. As introduced in Section 5.3, we first find collisions between these sub-keys used for
voting and obtain all combinations with the number of collisions larger than the threshold
τσ. We then detect the collisions between them and the remaining sub-keys. These two
steps are given in Algorithms 1 and 2.

The inputs of Algorithm 1 include the number of sub-keys nα used for voting, the
re-ranked sub-keys ξ =

(

ξ1, ξ2, . . . , ξ|N |

)

, and their corresponding number of candidates

within the threshold µα (K)
(

K =
{

K1,K2, . . . ,K|N |

})

. The outputs include all combina-
tions Θ of these nα sub-keys satisfying the collision condition and the corresponding pairs
of collisions η. We use Q = ξ \ ξj2

and K
′

= K \ Kj2
to denote the removal of kj2

, i.e.
the fault tolerance on kj2

, and use Ω to record the intermediate results of each round of
fault-tolerance (Step 2). Ω is initialized by Q1 (Step 3).

φ is used to record the number of collisions on each chain in Ω. For each sub-key added
subsequently, we initialize φ

′

as a flag array with the same number of flags as the chains

in Ω (expressed by Row (Ω)). We also initialize the fault-tolerant threshold τσ =

(

j1

2

)

−1,

since only a pair of collision is allowed to be out of τd except for the fault-tolerated sub-
key kj2

(Step 4). To achieve this goal, we need to detect collisions between the j1 − 1

candidates in each row of Ω and candidates Qi1

j1
within threshold µα

(

K
′

j1

)

(Step 7). For

example, the s-th candidate of the q-th chain Ωs
q collides with Qi1

j1
, the flag cn of the

new chain
[

Ωq, Q
i1

j1

]

including j1 candidates will increase by 1. Each combination of the
selected nα = 6 sub-keys should contain at least 9 pairs of collisions. If the new chain
satisfies this collision condition, it will be added to Ω

′

cn (Steps 8 ∼ 11). φ and Ω are

updated by φ
′

and Ω
′

after traversing all µα

(

K
′

j1

)

candidates in Qj1
(Step 14). The

fault-tolerant results of ξj2
will also be updated accordingly, ηj2

is updated by φ and Ω is
saved in Θ(j2−1)·nα+1:j2·nα

, i.e., the columns from (j2 − 1) · nα + 1 to j2 · nα of Θ.

Based on the output Θ and η of Algorithm 1, the CV of a remaining sub-key k
′

r is
shown in Algorithm 2. For each sub-key to be voted, it is only necessary to traverse each
row of Θ, detect the number of collisions tc (Step 5) and ηj of that chain, and check if

the total number of collisions tc + η
q
j exceeds the threshold τ

′

σ (which is set to 14 in our
experiments since a sub-key and another pair of collision is fault-tolerated (Step 6)). Due

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 15

Algorithm 1: Collision detection performed on the sub-keys selected in voting.

Input: µα (K), nα and ξ.
Output: Θ and η.

1 for j2 from 1 to nα do

2 Q = ξ \ ξj2
; K

′

= K \ Kj2
; Ω = Q1; φ = ∅;

3 for j1 from 2 to nα − 1 do

4 φ
′

= ∅; Ω
′

= ∅; cn = 0; τσ =

(

j1

2

)

− 1;

5 for i1 from 1 to µα

(

K
′

j1

)

do

6 for q from 1 to Row (Ω) do

7 tc =
∑j1−1

s=1 ψ
(

Ωs
q, Q

i1

j1

)

;

8 if tc + φq ≥ τσ then

9 cn+ +; φ
′

cn = tc + φq;

10 Ω
′

cn =
[

Ωq, Q
i1

j1

]

;

11 end

12 end

13 end

14 φ = φ
′

; Ω← Ω
′

;

15 end

16 ηj2
= φ; Θ(j2−1)·nα+1:j2·nα

← Ω;

17 end

Algorithm 2: Collision detection on the sub-key to be voted.

Input: Θ, η, τ
′

σ, nα, ξr and µα (Kr).
Output: ξ

′

r.
1 for i from 1 to µα (Kr) do

2 cflag = 0; ξ
′

r = ∅;
3 for j from 1 to nα do

4 for q from 1 to |ηj | do

5 tc =
∑j·nα

s=(j−1)·nα+1 ψ
(

Θs
q, ξ

i
r

)

;

6 if tc + η
q
j ≥ τ

′

σ then

7 ξ
′

r = ξ
′

r ∪ ξ
i
r; cflag = 1;

8 break ;

9 end

10 end

11 if cflag = 1 then

12 break;
13 end

14 end

15 end

16 The Art of Guessing in Combined Side-Channel Collision Attacks

to the introduction of fault tolerance, the number of chains used for voting in Θ increases,
while ξi

r can be retained if it satisfies at least one of them. Therefore, we set a collision
flag cflag. If the number of collisions exceeds the threshold, the candidate ξi

r satisfies
the given collision condition. We set the collision flag to 1, save ξi

r in ξ
′

r and break the
current loop (Steps 6 ∼ 9). In order to avoid unnecessary collision detection, if cflag is
1, the fault tolerance on other sub-keys used for voting is not required, then Algorithm 2
continues to detect the next candidate (Steps 10 ∼ 11).

It is noteworthy that it is too time-consuming for Algorithms 1 and 2 when τd and
α are very large, and there are too many sub-keys. Since too many collisions need to
be detected. However, the number of candidates of the first nα sub-keys in Fig. 6 will
not change significantly in a wide range of number of measurements. Therefore, using
them to vote the other 16 − nα sub-keys in Algorithms 1 and 2 is highly efficient. The
number of possible chains in Θ is very small, which reduces the probability that very
limited number of candidates are deleted in ξr . This is because it would be easier to
satisfy the given collision conditions under a large number of chains. This also makes the
algorithm complete quickly and saves collision detection time. Finally, we divide the 16
lists of remaining candidates into 8 big groups and use key rank estimation to estimate
the key ranking (see Section 6.3 for details).

6 Success Probability and Complexity

6.1 Success Probability Estimation

Previous works such as FTC and GCA, set a unified threshold for all sub-keys. The
optimal threshold should just be the position of the deepest sub-key, which is difficult to
obtain in practice, since the full-key is unknown. The number of candidates of different sub-
keys under the same α-work-factor defined in Section 3.3 can be very different. Therefore,
each sub-key can have an independent threshold. Success probability and the candidate
space are two core factors to determine the thresholds. The larger probability of key
recovery, the better. However, this may also increase the difficulty of key recovery. The
existing combined collision attacks and our MDCCF reflect the balance between them.

The probabilities of 16 sub-keys recovery of AES-128 in TA are independent. Therefore,
the probability of 16-byte full-key falling into the threshold α =

(

α1, α2, . . . , α|N |

)

is

pα =

|N |
∏

j=1

λβj
(Kj) ≥

|N |
∏

j=1

αj . (23)

Standaert et al. defined partial success rate and global success rate in [28], the former is
like the success probability of a sub-key of AES-128, the latter is like the success probability
of the first-round key. However, the success probability here is different from success rate,
since the former represents the theoretical expectation of success and the latter represents
the success in practice.

Simply raising the threshold of each sub-key will make the candidate space grow rapidly.
A good fault-tolerant mechanism can effectively reduce the candidate space, thus reducing
the difficulty of collision detection. For example, if we set α = 0.95, the probability that
all 16 sub-keys fall within the threshold is only pα = 0.9516 ≈ 0.4401. If we improve α to
0.99, pα only reaches 0.9916 ≈ 0.8515). Obviously, this means a much larger key space,
which makes it more difficult for us to recover the key (see Fig. 4). The proposed DV
and CV significantly improve the success probability of key recovery without significantly
enlarging the candidate space, which fully illustrates their superiority and significance.

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 17

6.2 Candidate Space Estimation

One advantage of combined distinguishers is that classification information from different
distinguishers can be combined and made full use of. The CPA used in FTC and GCA
in [29, 21] does not directly reflect the success probability of attackers. They use the
same threshold τk for all sub-keys. To ensure a successful guess that all the sub-keys
are within τk, the threshold should be set larger than the deepest sub-key. Obviously,
most of the sub-keys do not reach such a depth, and thus a large number of additional
undesirable candidates need to be considered. This significantly increases the cost of
collision detection.

Unlike CPA, each sub-key can have an independent threshold under probabilities nor-
malized TA. The size of candidate space under given α =

(

α1, α2, . . . , α|N |

)

of an algo-
rithm with |N | sub-keys is

Ψ =

|N |
∏

j=1

µαj
(Kj) . (24)

It is noteworthy that FTC, GCA and MDCCF vote and discard some candidates from each
sub-key to reduce the candidate space. The probability of successful key recovery should
be equal to the global success probability of the remaining candidates (i.e. satisfying Eq.
23). This is because combined collision attacks such as FTC, GCA and our MDCCF
only skip guessing the discarded candidates, they do not change the original probability
distribution of TA.

6.3 Key Rank Estimation

The attacker can selectively set thresholds τd and τk, and acquire the corresponding guess-
ing space within his computing power. The difficulty of attack depends both on the can-
didate space and the rank of the key. An attacker has to face huge candidate space when
detecting collisions if he sets very large α. We use DV to reduce the space of collision
detection, and further use CV, the second level of MDCCF, to carry out collision detec-
tion. A smart attacker will not exhaust the remaining candidate space, but uses a key
enumeration scheme to optimize his key recovery. GCA divides 16 sub-keys into 4 big
”blocks”. We simply compute collisions between k1 and k2, k3 and k4, · · · , k15 and k16,
and launch histogram based key enumeration [24] on these 8 big ”blocks”.

7 Experiments Results

The main purpose of MDCCF is to reduce the candidates, so as to reduce the number
of collisions to be detected and improve the key ranking to facilitate key recovery (e.g.,
key enumeration). Important parameters, such as relaxation factor π, collision threshold
τd and the number of measurements n, are involved in our MDCCF, and we will discuss
them separately in the next 3 subsections. Measurements are randomly selected to launch
attacks, and each experiment is repeated 200 times. Histogram based key rank estimation
[24] is directly performed on the original space and the remaining space of FTC and GCA,
and the 8 big ”blocks” built after MDCCF as introduced in Section 6.3. α is set to 0.996
and the corresponding global success probability pα = 0.99616 = 0.9372.

7.1 The Influence of Relaxation Factor

Firstly, we consider the influence of relaxation factor π on DV, the first level of our MD-
CCF. Since FTC and GCA are independent of relaxation factor, we defer the introduction
of their results to Section 7.3. Specifically, we only show the impacts of π on the remaining
candidate space and the rank of full-key in this sub-section. Since the distinguisher voting

18 The Art of Guessing in Combined Side-Channel Collision Attacks

is actually the intersection of the candidates of 16 sub-keys between TA and CPA, the
computational complexity is very small, we no longer compare its time consumption. We
set τd to 60, and randomly select 240 from 25600 measurements for analysis. The collision
makes the probability of the correct key falling into the remaining key space less than
the theoretical one, since a part of candidates that do not satisfy the collision condition
are discarded. The remaining full-key candidate spaces when π varies from 0.6 to 1.6 are
shown in Fig. 9.

20 30 40 50 60 70 80

Candidate space (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
n
ta

g
e

=0.6

=0.8

=1.0

=1.2

=1.4

=1.6

Figure 9: Candidate space (bits) under different thresholds π.

As can be seen from Fig. 9, with the decrease of relaxation factor π, more candidates
are discarded by TA, which makes the remaining candidate space smaller. It is worth
mentioning that although the change of candidate space on the right side is significantly
smaller than that on the left in Fig. 9, this does not mean that the smaller the π is, the
faster the candidate space declines. For example, 10 bits drop from 60 to 50 and from 40
to 30 looks similar, but the former is much larger than the latter. The decrease of π also
makes the corresponding success probability lower (see the highest success rates under
different computing power in Fig. 10). Actually, there are 189 times in 200 attacks that
the correct full-key falls into the threshold α = 0.996, close to the theoretical probability
0.9372. The success rate changes to 0.665, 0.790, 0.845, 0.880, 0.890 and 0.915 when π

ranges from 0.6 to 1.6.

0 10 20 30 40 50 60 70 80

Computing power (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

es
s

R
at

e

=0.6

=0.8

=1.0

=1.2

=1.4

=1.6

Figure 10: Key rank estimation under different thresholds π.

The key rank estimation under different thresholds π is also shown in Fig. 10. We
can see that the success rates under different π are close to each other for the keys that

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 19

are ranked smaller than 20 bits. This indicates that the looseness or strictness of π does
not seriously affect the recovery of the key if its rank is shallow. The reason can also be
found from Eq. 16 that we directly retain the candidates with probabilities greater than
0.1. However, some keys locating in deeper spaces are difficult to recover when π is small,
which make the difference of their success probabilities greater. Therefore, we need to
set a larger π. It can also be seen from Fig. 10 that the change of success probability
is relatively large when π is smaller than 1.2, and becomes very small when π > 1.2.
Therefore, it’s very reasonable to set π to 1.4 in our experiments.

7.2 The Influence of τd

We set relaxation factor π = 1.4 and the number of power traces used in each repetition to
240, and investigate how τd affects the performance of our MDCCF. Actually, recovering
the key from the remaining candidate space after the combined collision attack such as
FTC and GCA, is a key rank estimation problem. Therefore, τd of CCA is independent of
the original space, so we only compare the performance of FTC, GCA and our MDCCF
in this section, while the introduction of the original candidate space under 240 power
traces will be presented in Section 7.3 (see Fig. 12). The success rates under different
computing power are shown in Fig. 11. With the increase of τd, more candidates satisfying
the collision conditions of FTC, GCA and MDCCF are maintained, and the remaining
candidate space increases gradually. Significant changes also occur in the rank of the key.

0 10 20 30 40 50

Computing power (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
cc

es
s

R
at

e

(a) FTC

0 10 20 30 40

Computing power (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
cc

es
s

R
at

e

(b) GCA

0 10 20 30 40 50

Computing power (log
2
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

es
s

R
at

e

(c) MDCCF

d
=20

d
=30

d
=40

d
=50

d
=60

d
=70

d
=80

Figure 11: Success rate under different thresholds τd.

The smaller the τd, the shallower the rank of the key, and the lower the success rate
(as shown in Fig. 11). This indicates that fewer candidates (including the correct and
wrong ones) satisfy the collision conditions. This also tells us that smaller τd requires
more relaxed collision conditions and better fault-tolerant mechanism. Unlike Fig. 10,
the success rates of FTC, GCA are not entangled under different τd, since there is no
corresponding fault-tolerant mechanism to preserve candidates with high probabilities.
When τd is from 20 to 80, the success rates of FTC and GCA increase rapidly, but are
still relatively low. They only reach 0.68 and 0.65 at τd = 80. MDCCF achieves success
rate of 0.68 at τd = 20, which also illustrates its high efficiency. When τd reaches 60, the
success rates of MDCCF are very close, so we think that τd = 60 is a good threshold when
n = 240. There are 190 times in 200 repetitions that the full-key falls into µα, so the real
success rate is 0.95, close to the theoretical probability 0.9372. It becomes 0.925 after DV,
the first level of MDCCF. This shows that DV does not cause a significant change in the
success rate. It can also be seen from Fig. 11 that the success rate of MDCCF is about
0.90 when τd ≥ 60, which shows its superiority.

In terms of algorithm runtime, FTC and MDCCF do not change much under different

20 The Art of Guessing in Combined Side-Channel Collision Attacks

Table 1: Time consumption (seconds) under different thresholds τd.

τd 20 30 40 50 60 70 80

FTC 0.037 0.038 0.046 0.058 0.067 0.093 0.091

GCA 0.21 0.57 1.28 2.60 5.41 13.21 37.50

MDCCF 0.23 0.36 0.49 0.58 0.60 0.58 0.56

thresholds τd, while GCA is significantly affected by it (see TABLE 1). In fact, τd also
has a significant impact on MDCCF. However, we can mitigate its impact by selecting
6 sub-keys with the least number of candidates for CV in the second level of MDCCF,
which makes the number of chains used for voting smaller when n = 240 (see Fig. 6), and
improves the efficiency of voting. On the other hand, Algorithm 2 exits the rotating fault
tolerance on sub-keys when there is a chain making a candidate satisfy the fault-tolerant
conditions, which notably reduces detection time.

7.3 The Influence of the Number of Traces

The number of power traces plays an important role in attacks, more power traces will
provide more leakage information and reduce the number of guesses of sub-keys (i.e.,
smaller µα (K)), thus smaller the candidate space. We set the relaxation factor π to 1.4
and the collision threshold τd to 60, and the experimental results when the number of
traces n ranges from 160 to 320 are shown in Fig. 12. We also show the corresponding
original candidate spaces since they are dramatically affected by n. For example, the
probability of candidate space larger than 70 bits is almost 1 when n ≤ 180, and only
50% when n = 240, and decreases to nearly 0 when n = 280. The estimated ranks of keys
from TA in Fig. 12 also illustrate that their locations are shallower.

The keys in FTC rank deeper than those in GCA and MDCCF. The success rates of
FTC and GCA are similar and relatively low. They only reach 0.70 and 0.61 respectively
when n = 320, and are much lower than 0.82 of MDCCF under n = 160. This fully
demonstrates the high efficiency of DV and CV, which significantly improves the success
rate without considerably increasing the candidate space and the difficulty of key recov-
ery. More power traces will make the success rate of MDCCF closer to the theoretical
probability of key falling into α = 0.996. The difference between them is about 0.13 at
n = 160 and decreases to 0.04 when n = 320. These results demonstrate the superiority
of MDCCF over FTC and GCA.

Table 2: Time consumption (seconds) under different numbers of traces.

n 160 180 200 220 240

FTC 0.66 0.39 0.21 0.29 0.068

GCA 707.84 213.92 75.27 17.91 5.95

MDCCF 217.02 30.80 10.69 2.76 0.69

n 260 280 300 320 −

FTC 0.030 0.019 0.012 0.007 −

GCA 2.89 1.35 0.63 0.35 −

MDCCF 0.20 0.066 0.024 0.012 −

The runtime of GCA is most severely affected by the number of power traces (as
shown in TABLE 2). We set α to 0.996 in our experiments. The number of candidates
of the 6 sub-keys selected by CV are quite large when n is too small (e.g. about 25
for the second and about 60 for the 6-th re-ranked sub-keys in average as shown in Fig.
6). This also makes it time-consuming for MDCCF to tolerate sub-keys and collisions

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 21

0 10 20 30 40 50 60

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(i) n=320

candidate space

TA

FTC

GCA

MDCCF

0 10 20 30 40 50 60 70

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(h) n=300

0 10 20 30 40 50 60 70 80

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(g) n=280

0 10 20 30 40 50 60 70 80

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(f) n=260

0 20 40 60 80 100

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(e) n=240

0 20 40 60 80 100

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(d) n=220

0 20 40 60 80 100

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(c) n=200

0 20 40 60 80 100 120

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1

S
u
cc

es
s

R
at

e

(b) n=180

0 20 40 60 80 100 120

Computing power (log
2
)

0

0.2

0.4

0.6

0.8

1
S

u
cc

es
s

R
at

e
(a) n=160

Figure 12: Success rates under different numbers of traces.

outside the thresholds. It is worth noting that the parameter α can be flexibly adjusted
according to the computing power. For example, we can set α = 0.9 when n = 160,
and α = 0.998 when n = 320. MDCCF can easily obtain the success probability of key
recovery and determine the candidate space it needs to deal with. It also facilitates to
choose a reasonable threshold.

8 Conclusions

This work combines TA with guessing theory to provide an attacker with estimation of
the difficulty and success probability of key recovery. Moreover, in order to better filter
the candidates, we extend MDCA and propose a two-level multiple-differential combined
collision attack named MDCCF, which includes two parts: Distinguisher Voting and Col-
lision Voting (i.e. DV and CV). DV can be further optimized to vote on candidates of
TA to reduce the candidate space of collision detection in CV. The utilization of collision
information in CCA is left behind MDCCF. CV further chooses several sub-keys with the
smallest number of candidates to vote the remaining sub-keys, and retains the candidates
satisfying the given collision conditions. Since the sub-keys used for voting have the fewest
candidates, CV can flexibly enlarge the thresholds to make more sub-keys fall within them.
If the differential condition is set reasonably, the probability of recovering the key from
the remaining candidate space is similar to the one from the original space. The proposed
MDCCF has made significant improvements compared to the existing combined collision
attacks. However, it still has to face the challenge of huge candidate space under very
limited measurements. Our future work will focus on optimizing CCA to facilitate the
setting of collision threshold, and optimize the collision detection algorithms discussed in
Section 5.4 to make them feasible in much deeper guessing space.

22 The Art of Guessing in Combined Side-Channel Collision Attacks

References

[1] Dpa contest. http://www.dpacontest.org/home/.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s).
In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International

Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, pages
29–45, 2002.

[3] A. Bogdanov. Improved side-channel collision attacks on AES. In Selected Areas

in Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada, August

16-17, 2007, Revised Selected Papers, pages 84–95, 2007.

[4] A. Bogdanov. Multiple-differential side-channel collision attacks on AES. In Crypto-

graphic Hardware and Embedded Systems - CHES 2008, 10th International Workshop,

Washington, D.C., USA, August 10-13, 2008. Proceedings, pages 30–44, 2008.

[5] A. Bogdanov and I. Kizhvatov. Beyond the limits of DPA: combined side-channel
collision attacks. IEEE Trans. Computers, 61(8):1153–1164, 2012.

[6] J. Bonneau. The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012,

San Francisco, California, USA, pages 538–552, 2012.

[7] S. Boztas. Entropies, guessing, and cryptography. Department of Mathematics, Royal

Melbourne Institute of Technology, Tech. Rep, 6:2–3, 1999.

[8] S. Boztas. On renyi entropies and their applications to guessing attacks in cryptog-
raphy. IEICE Transactions, 97-A(12):2542–2548, 2014.

[9] E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model.
In Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International

Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, pages 16–29, 2004.

[10] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Cryptographic Hardware

and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores,

CA, USA, August 13-15, 2002, Revised Papers, pages 13–28, 2002.

[11] M. O. Choudary and P. G. Popescu. Back to massey: Impressively fast, scalable and
tight security evaluation tools. In Cryptographic Hardware and Embedded Systems -

CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,

Proceedings, pages 367–386, 2017.

[12] L. David and A. Wool. A bounded-space near-optimal key enumeration algorithm
for multi-subkey side-channel attacks. In Topics in Cryptology - CT-RSA 2017 -

The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA, USA,

February 14-17, 2017, Proceedings, pages 311–327, 2017.

[13] F. Durvaux and F. Standaert. From improved leakage detection to the detection
of points of interests in leakage traces. In Advances in Cryptology - EUROCRYPT

2016 - 35th Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages
240–262, 2016.

[14] C. H. Gebotys, S. Ho, and C. C. Tiu. EM analysis of rijndael and ECC on a wire-
less java-based PDA. In Cryptographic Hardware and Embedded Systems - CHES

2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005,

Proceedings, pages 250–264, 2005.

http://www.dpacontest.org/home/

Changhai Ou, Siew-Kei Lam and Guiyuan Jiang 23

[15] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer. Stealing keys from pcs using a
radio: Cheap electromagnetic attacks on windowed exponentiation. In Cryptographic

Hardware and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-

Malo, France, September 13-16, 2015, Proceedings, pages 207–228, 2015.

[16] N. Hanley, M. Tunstall, and W. P. Marnane. Unknown plaintext template attacks. In
Information Security Applications, 10th International Workshop, WISA 2009, Busan,

Korea, August 25-27, 2009, Revised Selected Papers, pages 148–162, 2009.

[17] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar. Cache attacks
enable bulk key recovery on the cloud. In Cryptographic Hardware and Embedded

Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA,

August 17-19, 2016, Proceedings, pages 368–388, 2016.

[18] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in

Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 15-19, 1999, Proceedings, pages 388–397, 1999.

[19] J. Liu, Y. Yu, F. Standaert, Z. Guo, D. Gu, W. Sun, Y. Ge, and X. Xie. Small tweaks
do not help: Differential power analysis of MILENAGE implementations in 3g/4g
USIM cards. In Computer Security - ESORICS 2015 - 20th European Symposium on

Research in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings,

Part I, pages 468–480, 2015.

[20] A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-enhanced power analysis
collision attack. In Cryptographic Hardware and Embedded Systems, CHES 2010, 12th

International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings,
pages 125–139, 2010.

[21] C. Ou, Z. Wang, D. Sun, and X. Zhou. Group collision attack. IEEE Trans. Infor-

mation Forensics and Security, 14(4):939–953, 2019.

[22] C. Ou, Z. Wang, D. Sun, X. Zhou, and J. Ai. Group verification based multiple-
differential collision attack. In Information and Communications Security - 18th

International Conference, ICICS 2016, Singapore, November 29 - December 2, 2016,

Proceedings, pages 145–156, 2016.

[23] J. O. Pliam. On the incomparability of entropy and marginal guesswork in brute-
force attacks. In Progress in Cryptology - INDOCRYPT 2000, First International

Conference in Cryptology in India, Calcutta, India, December 10-13, 2000, Proceed-

ings, pages 67–79, 2000.

[24] R. Poussier, F. Standaert, and V. Grosso. Simple key enumeration (and rank esti-
mation) using histograms: An integrated approach. In Cryptographic Hardware and

Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA,

USA, August 17-19, 2016, Proceedings, pages 61–81, 2016.

[25] C. Rechberger and E. Oswald. Practical template attacks. In Information Security

Applications, 5th International Workshop, WISA 2004, Jeju Island, Korea, August

23-25, 2004, Revised Selected Papers, pages 440–456, 2004.

[26] M. Renauld, F. Standaert, and N. Veyrat-Charvillon. Algebraic side-channel attacks
on the AES: why time also matters in DPA. In Cryptographic Hardware and Em-

bedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,

September 6-9, 2009, Proceedings, pages 97–111, 2009.

24 The Art of Guessing in Combined Side-Channel Collision Attacks

[27] K. Schramm, G. Leander, P. Felke, and C. Paar. A collision-attack on AES: combin-
ing side channel- and differential-attack. In Cryptographic Hardware and Embedded

Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August

11-13, 2004. Proceedings, pages 163–175, 2004.

[28] F. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of side-
channel key recovery attacks. In Advances in Cryptology - EUROCRYPT 2009, 28th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, pages 443–461, 2009.

[29] D. Wang, A. Wang, and X. Zheng. Fault-tolerant linear collision attack: A combina-
tion with correlation power analysis. In Information Security Practice and Experience

- 10th International Conference, ISPEC 2014, Fuzhou, China, May 5-8, 2014. Pro-

ceedings, pages 232–246, 2014.

[30] Y. Yarom, D. Genkin, and N. Heninger. Cachebleed: A timing attack on openssl
constant time RSA. In Cryptographic Hardware and Embedded Systems - CHES

2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,

Proceedings, pages 346–367, 2016.

[31] H. Zhang. How to effectively decrease the resource requirement in template attack?
In Advances in Information and Computer Security - 9th International Workshop

on Security, IWSEC 2014, Hirosaki, Japan, August 27-29, 2014. Proceedings, pages
119–133, 2014.

	Introduction
	Related Works
	Our Contributions
	Organization

	Preliminaries
	Experimental Setup
	Template Attack
	Collision Attacks
	Combined Collision Attacks

	Mathematical Metrics of Guessing Difficulty
	Guessing Model
	Marginal Guessworks
	Partial Guessing Metrics

	Distinguisher Voting
	Distinguisher Selection
	Voting
	Relaxation Factor
	Optimization

	Collision Voting
	Lists Selection
	Fault Tolerance on Sub-keys
	Fault Tolerance on Collisions
	Collision Detection Algorithm

	Success Probability and Complexity
	Success Probability Estimation
	Candidate Space Estimation
	Key Rank Estimation

	Experiments Results
	The Influence of Relaxation Factor
	The Influence of d
	The Influence of the Number of Traces

	Conclusions

