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Abstract

Applying the Fiat-Shamir transform on identification schemes is one of the main ways of
constructing signature schemes. While the classical security of this transformation is well un-
derstood, it is only very recently that generic results for the quantum case has been proposed
[DFMS19, LZ19]. In this paper, we show that if we start from a commit-and-open identification
scheme, where the prover first commits to several strings and then as a second message opens
a subset of them depending on the verifier’s message, then the Fiat-Shamir transform is quan-
tum secure, for a suitable choice of commitment scheme. Unlike previous generic results, our
transformation doesn’t require to reprogram the random function H used in the Fiat-Shamir
transform and we actually only require a quantum one-wayness property.

Our techniques can in some cases lead to a much tighter security reduction. To illustrate
this, we apply our techniques to identifications schemes at the core of the MQDSS signature
scheme, the Picnic scheme (both present in the round 2 of the post quantum NIST competition)
and the Stern signature scheme. For all these schemes, we show that our technique can be
applied with essentially tight results.

1 Introduction

There has been a strong interest in post-quantum cryptography in the last years. While we are still
very far from having a full quantum computer, there are important technological advances each
year and it is still very possible that future quantum computers will be powerful enough to run
Shor’s algorithm [Sho94] or other quantum algorithms devastating for current cryptography.

Post-quantum cryptosystems are based on computational problems which are not known to be
broken by quantum computers like problems based on lattices, multivariate polynomials, isogenies
or error correcting codes; and there is currently a standardization process of post-quantum cryp-
tosystems organized by the NIST [Nis17]. Quite surprisingly, while all the proposals are based on
problems believed to be hard for quantum computers, many of the submissions, even the round 2
submissions, do not have a proper security proof against quantum computers. This is specially true
for signature schemes where about half of the round 2 submissions do not have an explicit quantum
security proof, even if the recent results of [DFMS19, LZ19] are quickly solving this problem. This
shows how hard these quantum security proofs can be.
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1.1 The quantum Fiat-Shamir transform for signature schemes

In this paper, we will be interested in some technical aspects related to proving the security of
signatures schemes in the Quantum Random Oracle Model (QROM) using the Fiat-Shamir trans-
form. The Fiat-Shamir is a very important procedure that can transform (interactive) identification
schemes into non-interactive ones. For a long time, nothing was known about the quantum security
of the Fiat-Shamir transform. First impossibility results showed settings where, in all generality,
the quantum Fiat-Shamir transform is not secure [DFG13, ARU14]. On the positive side, [DFG13]
proved the security of the quantum Fiat-Shamir transform when oblivious commitments are used.
Unruh [Unr15] then showed that it was possible to do a Fiat-Shamir like transform to remove
the interaction from identification protocols. This transform is however rather inefficient and was
hardly used in practice. More recently, there have been new exciting results related to the quantum
security of the Fiat-Shamir transform. If an identification scheme is lossy, then [KLS18] showed
that the Fiat-Shamir transform is quantum secure. They used this result to prove the security
of the Dilithium signature [DKL+17], which is a NIST competitor. Another result is the security
proof of qTESLA [ABB+19]. Unruh [Unr17] also showed the quantum security of the Fiat-Shamir
transform for identification schemes with statistical security where the security of the underly-
ing signature scheme with a dual-mode hard instance generator, a property closely related to the
lossiness property.

Recently, 2 papers [DFMS19, LZ19] showed generic reduction for the quantum Fiat-Shamir
transform. Unlike what was believed before, they show that it is actually possible to perform
reprogramming of a quantum random oracle and to follow the classical proofs. Their results are
not tight and lose at least a factor of O(q2) where q is the number of queries to the random function.
Moreover, they didn’t apply their results to signature schemes like MQDSS and Picnic since their
underlying identification schemes only have 3-special soundness and not regular soundness.

1.2 Contributions and techniques

Motivated by the concrete security study of MQDSS and Picnic, we study commit-and-open iden-
tification schemes. In a commit-and-open identification scheme, the prover first commits to several
strings and then as a second message opens a subset of them depending on the verifier’s message.
Our contributions are the following:

1. We prove that with a well chosen commitment scheme, namely a random function from {0, 1}l
to {0, 1}3l we have quantum security of signature schemes constructed from a commit-and-
open identification scheme with the Fiat-Shamir transform in the Quantum Random Oracle
Model. Unlike previous results, we show how to start from the special soundness property
and we don’t require reprogramming of the random function

2. The above technique can also lead to more efficient reductions. We can apply our results to
the Picnic (including the one that uses plain Fiat-Shamir) signature scheme[CDG+17] and
to the Stern signature scheme[Ste93], for which we show an almost tight (i.e. tight up to log
factors) quantum security.

We also apply our results to the 3-pass identification scheme [SSH11]. The MQDSS signature
[CHR+16] is actually based on the optimized 5-pass variant of [SSH11] so we essentially prove
quantum security of the non-optimized variant of MQDSS. We leave the quantum security of
the full scheme as an open question.
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3. Our first contribution requires to use as a commitment a random function from {0, 1}l to
{0, 1}3l for some l. This can make the signature scheme very inefficient. We show how to
circumvent this inefficiency by using random sponges which will make the commitments much
smaller and the scheme much more efficient.

In order to prove our results, we use the following strategy:

• We generalize the result in [Unr17] and show that we can prove quantum security for an
identification scheme with computational-statistical-soundness and not statistical soundness.
The notion of computational-statistical-soundness captures security against a prover who is
computationally limited when sending the first message but with unbounded power when
sending the second message.

• We show that any commit-and-open identification scheme that uses as a commitment a ran-
dom function from {0, 1}l to {0, 1}3l indeed has computational-statistical-soundness. This also
gives the strict soundness property to our scheme, which is known to be necessary [ARU14].

• For our second contribution on existing schemes, we actually use Zhandry’s framework on
how to record quantum queries. This will allow to remove the quadratic loss that comes from
one of the steps of our proof (Proposition 3). From a technical standpoint, we generalize
a result of Zhandry that relates the contents of his compressed oracle and of his standard
oracle.

1.3 Organization of the paper

In Section 3, we present different definitions for identification schemes and signature schemes. In
Section 4, we show our results on generic commit-and-open identification schemes. In Section 5,
we show how to make this security much tighter when considering identification schemes which
are a parallel repetition of commit-and-open schemes of challenge size 3. In Section 7, we show
how to instantiate the commitments we require with a random sponge while preserving efficient
communication.

2 Preliminaries

2.1 Quantum query algorithms and the quantum random oracle model

For any quantum algorithm A , we denote by |A | it’s total running time. We will also consider
query algorithms A O that will make a certain amount of calls to an oracle O. The Quantum
Random Oracle Model (QROM) is a model where we model a certain function with a random
function H. Since we are in the quantum setting, we have a black box access to H but also to the
unitary OH(|x〉|y〉) = |x〉|H(x) + y〉. Zhandry presented in [Zha18] an alternative way at looking at
the QROM that we present in Section 6.

2.2 Quantum lower bounds

The study of quantum security in the QROM involves several quantum query lower bounds. We

present here those that will be used in this paper. Throughout the paper, x
$←− S means that x is

chosen uniformly at random from S.
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Lemma 1 ([Zha15]). For any quantum query algorithm A O making q queries to O, we have∣∣∣Pr[A OΓ outputs 0 : Γ
$←− F Y

X ]− Pr[A OG outputs 0 : G
$←− F Y

X (r)]
∣∣∣ ≤ O(

q3

r
).

where F Y
X is the set of functions from X to Y and F Y

X (r) is the set of functions f from X to Y
such that |Im(f)| = r.

Another useful quantum lower bound is a generalization of Grover’s lower bound.

Lemma 2. Let F Y
X be the set of random functions from X to Y . For each x ∈ X, we associate a

set Ux ⊆ Y such that |Ux||Y | ≤ ε. For any quantum query algorithm A O making q queries to O, we
have

Pr[H(x) ∈ Ux : H $←− F Y
X , x← A OH(·)] ≤ O(q2ε).

The above lemma was implicitly stated and proven in [Unr17, Theorem21]. The idea is to
construct a function H2(x) = H(x) + u(x) where u(x) is a random element from Ux and use
standard lower bounds for Grover search on random functions. It is also possible to directly use
the recent framework of recording of quantum queries [Zha18, Theorem 4.1] to obtain exactly the
same result.

Finally, we present another result by Zhandry[Zha12] that states that the following

Lemma 3. Let F Y
X be the set of functions from X to Y and let W Y

X (2q) be a set of 2q-wise
independent functions from X to Y . For any quantum query algorithm A O making q queries to
O, we have

Pr[A OH outputs 0 : H $←− F Y
X ] = Pr[A Of outputs 0 : f

$←−W Y
X (2q)].

We can construct sets W Y
X (2q) such that it is possible to generate f

$←− W2q, compute f and
compute f−1 in time O(q log(|Y |)). Take for example for W2q random polynomials of degree 2q−1.
More discussion on this can be found in [Unr15].

3 Identification schemes and signature schemes

Throughout the paper, x
$←− S means that x is chosen uniformly at random from S. We put some

quantum preliminaries on the quantum random oracle and quantum lower bounds in Appendix 2.

3.1 Identification schemes

An identification scheme IS = (Keygen, P, V, Sch), consists of the following:

• A key generation algorithm Keygen(1λ)→ (pk, sk).

• The prover’s algorithm P = (P1, P2) for constructing his messages. We have P1(sk)→ (x, St)
where x corresponds to the first message and St is some internal state. P2(sk, x, c, St) → z
where c ∈ Sch is the challenge from the verifier and z the prover’s response (second message).

• A verification function V (pk, x, c, z) used by the verifier that outputs a bit, 0 corresponds to
‘Reject’ and 1 to ‘Accept’.
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We do not specify here the different string lengths of x and z to not make notations too heavy. We
explicit the challenge space Sch as it will often appear in our definitions and statements. We want
all the different algorithms presented above to be efficient and we will usually omit their running
times (i.e. fix them to 1), again to significantly reduce the amount of notations we introduce. Even
though we deal with concrete security parameters in this paper, we kept the notation Keygen(1λ)
with a unary representation of a security parameter to remind this implicit efficiency requirement.
We present below more precisely the different steps of an identification scheme.

Identification scheme IS = (Keygen, P = (P1, P2), V, Sch)

Initialization. (pk, sk)← Keygen(1λ). The prover has (pk, sk) and the verifier pk.
Interaction.

1. P generates (x, St)← P1(sk) and sends x to the verifier.

2. The verifier sends a uniformly random c ∈ SCh.

3. P generates z ← P2(sk, x, c, St) and sends z to the verifier.

Verification. The verifier accepts iff. V (x, c, z) = 1.

The first property we want from an identification scheme is that the verifier accepts if a prover
runs the scheme honestly.

Definition 1 (Completeness). An identification scheme IS = (Keygen, P, V, Sch) has perfect com-
pleteness if

Pr[V (x, c, z) = 1 : (pk, sk)← Keygen(1λ), (x, St)← P1(sk), c
$←− Sch, z ← P2(sk, x, c, St)] = 1.

The second property we want is honest-verifier zero-knowledge, meaning that an honest verifier
cannot extract any information (in particular about the secret key sk), from its interaction with
an honest prover.

Definition 2 (HVZK). An identification scheme IS = (Keygen, P, V, Sch) is ε-HVZK if there
exists an efficient simulator S such that the 2 distributions:

• D1 : (pk, sk)← Keygen(1λ), (x, St)← P1(sk), c
$←− Sch, z ← P2(sk, x, c, St), return (x, c, z).

• D2 : (x′, c′, z′)← S(pk, 1λ), return (x′, c′, z′).

have statistical distance at most ε.

Finally, the third property that we require is soundness. We don’t want a cheating prover that
doesn’t know the secret key sk to make the verifier accept.

3.2 Different flavors of soundness

There are different notions of soundness and the interplay between them will play an important
role in our proofs. We put directly the running time of the attacker t in those definitions instead of
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just putting a polynomially bounded prover. This type of definition is better suited when dealing
with concrete security bounds.

We first define the notions of soundness advantage and special-soundness advantage for a cheat-
ing adversary A .

Definition 3. Let IS = (Keygen, P, V, Sch) be an identification scheme. For any quantum algo-
rithm (a quantum cheating prover) A = (A1,A2), we define

QADVIS(A ) = Pr[V (x, c, z) = 1 : (pk, sk)← Keygen(1λ), (x, St)← A1(pk), c
$←− Sch, z ← A2(pk, x, c, St)]

QADV sp
IS(A ) = Pr

[
V (x, c, z) = 1 ∧ V (x, c′, z′) = 1 : (pk, sk)← Keygen(1λ) ; (x, c, z, c′, z′)← A (pk)

]
.

Remark: Special soundness corresponds usually to the existence of an efficient extractor E such
that E(pk, x, c, z, c′, z′) produces a valid secret key sk from a pair of accepting transcripts (x, c, z)
and (x, c′, z). In the context of identification schemes, it is always coupled with the hardness of
generating a valid secret key. If such an extractor E exists then our quantity QADV sp

IS(A ) is upper
bounded by the probability of outputting a valid secret key. Therefore, these 2 notions of special
soundness play the same role and are essentially equivalent.

From these definitions, we can define the notion of advantage related to respectively computa-
tional soundness, statistical soundness and special soundness.

Definition 4. Let IS = (Keygen, P, V, Sch) be an identification scheme. We define

QADVIS(t) = max
A =(A1,A2),
|A1|+|A2|=t

QADVIS(A )

QADV st
IS = max

A =(A1,A2)
QADVIS(A )

QADV sp
IS(t) = max

A =(A1,A2),
|A1|+|A2|=t

QADV sp
IS(A )

When we talk about soundness, we will actually talk about the advantage related to those
different notions of soundness. Next, we define a new hybrid notion of advantage between compu-
tational and statistical soundness: computational-statistical-soundness. Here we want the prover
to be bounded in the first message but unbounded in the second message.

Definition 5. Let IS = (Keygen, P, V, Sch) be an identification scheme. We define

QADV cs
IS(t) = max

A =(A1,A2),
|A1|=t

QADVIS(A )

The relationship between those different notions is the following, for all t

QADVIS(t) ≤ QADV cs
IS(t) ≤ QADV st

IS .

Finally, we define the notion of strict soundness which says that for the second message, there
is at most one valid message z that the verifier will accept.

Definition 6. Let IS = (Keygen, P, V, Sch) be an identification scheme. We say that IS has strict
soundness iff.

∀x, ∀c, |{z : V (x, c, z) = 1}| ≤ 1.
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3.3 Soundness vs. special soundness

The reason why we have to deal with special soundness is that in many cases, we can construct
identification schemes for which the special soundness can be directly reduced to a computationally
hard problem. However, when we want to use identification schemes for instance for signature
schemes, we require them to have computational soundness. Therefore, we need to find ways to
relate them.

In the classical setting, we can actually interpret the use of the forking lemma [PS96] as a way
to relate the soundness and the special soundness of the underlying protocols. In the quantum
setting, we often seem to require powerful theorems such as a quantum forking lemma or quantum
rewinding, which are known to be hard problems. In the context of Fiat-Shamir constructions of
signature schemes, many of these problems can be seen as a way to relate the soundness and the
special soundness of identification schemes (or more generally Σ-protocols).

We present here the relation we will use between those soundness notions in the quantum
setting.

Proposition 1. Let IS = (Keygen, P, V, Sch) be an identification scheme with strict soundness.
For any t,

QADVIS(t) ≤ 1

|Sch|
+ 4

(
QADV sp

IS(2t)
)1/3

.

Depending on the context (short challenge size, not perfect strict soundness, ...) there can be
different relations which will be better, see [Unr12, CSST11, CL17]. We’ll prove this proposition
in Appendix A

3.4 The Fiat-Shamir transform for identification schemes

The Fiat-Shamir transform [FS87] is a major cryptographic construction that converts any Σ-
protocol into an non-interactive protocol. The idea is use a function H, modeled as a random
function, and to replace the verifier’s challenge c ∈ Sch by the string H(x) where x is the prover’s
first message. Since the prover can compute H(x) himself, there is no need for interaction anymore.
For any identification scheme IS, we denote by FSH[IS] its Fiat-Shamir transform.

Running FSH[IS] for an identification scheme IS = (Keygen, P, V, Sch)

Initialization. (pk, sk)← Keygen(1λ). The prover has (pk, sk) and the verifier pk.
One-way communication. P generates (x, St) ← P1(sk), computes c = H(x) and generates
z ← P2(sk, x, c, St). He sends the pair (x, z) to the verifier.
Verification. The verifier accepts iff. V (x,H(c), z) = 1.

The Fiat-Shamir transform is very useful as it can be used (among other things) to construct sig-
nature schemes from identification schemes. As for identification schemes, we can define soundness
properties. Here we will only present computational soundness.

Definition 7. Let IS = (Keygen, P, V, Sch) be an identification scheme and FSH[IS] its Fiat-
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Shamir transform. Let A OH be a query algorithm. We define

QADVFSH[IS](A
OH) = Pr[V (x,H(c), z) = 1 : (pk, sk)← Keygen(1λ), (x, z)← A OH ].

QADVFSH[IS](t) = max
A OH :|A OH |=t

QADVFSH[IS](A
OH)

This advantage notion will be directly related to the security of the associated signature scheme.

3.5 Commit and open identification schemes

A commit-and-open identification scheme is a specific kind of identification schemes where, for the
first message, P commits to some values y1, . . . , yn and after the verifier’s challenge, he reveals a sub-
set of those values. More precisely, a commit-and-open identification scheme IS(Keygen, P,G, V ′, Sch)
consists of the following

• A key generation algorithm Keygen(1λ)→ (pk, sk).

• A function G : {0, 1}l → {0, 1}m that will act as a commitment scheme.

• P1(sk)→ (x, St) has to output x = (G(y1), . . . , G(yn)) for some values yi and St = y1, . . . , yn.

• The challenge c corresponds to a subset Ic of {1, . . . , n}.

• P2 always outputs z = yIc where yIC = yi1 , . . . , yi|Ic| for Ic = {i1, . . . , i|Ic|}, i1 < i2 < · · · < i|Ic|.

• The verification function V must satisfy

V (pk, x, c, z) = 1⇔ (∀i ∈ Ic, G(yi) = xi) ∧ V ′(pk, c, z) = 1.

Here, we explicit 3 parameters l,m, n: each yi ∈ {0, 1}l, each xi = G(yi) ∈ {0, 1}m and the
prover commits to n values. Notice that in the above verification function, we require V ′ to be
independent of x, this captures the fact that x is only used as a commitment and will rule out some
unwanted cases. All the real life identification schemes we will consider have this property.

Commit-and-open Identification scheme IS = (Keygen, P,G, V ′, Sch)

Initialization. (pk, sk)← Keygen(1λ). The prover has (pk, sk) and the verifier pk.
Interaction.

1. P generates (G(y1), . . . , G(yn), y1, . . . , yn) ← P1(sk) and sends x1, . . . , xn =
G(y1), . . . , G(yn) to the verifier.

2. The verifier sends a random c ∈ SCh that corresponds to a subset Ic ⊆ {1, . . . , n}.

3. P sends z = yIc to the verifier.

Verification. The verifier accepts iff. (∀i ∈ Ic, G(yi) = xi) ∧ V ′(pk, c, z) = 1.

In Appendix B, we show how to transform any identification scheme into a commit-and-open
one. This transformation is very inefficient so we will not use it in our proofs but just wanted to
point this possibility in case of interest.
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3.6 Signature schemes

A signature scheme S consists of 3 algorithms (S.keygen,S.sign,S.verify):

• S.keygen(1λ) → (pk, sk) is the generation of the public key pk and the secret key sk from
the security parameter λ.

• S.sign(m, pk, sk)→ σm : generates the signature σm of a message m from m, pk, sk.

• S.verify(m,σ, pk) → {0, 1} verifies that σ is a valid signature of m using m,σ, pk. The
output 1 corresponds to a valid signature.

Correctness. A signature scheme is correct iff. when we sample (pk, sk) ← S.keygen(1λ), we
have for each m

S.verify(m,S.sign(m, pk, sk), pk) = 1.

Security definitions We consider the standard EUF-CMA security for signature schemes. To
define the advantage of an adversary A , we consider the following interaction with a challenger:

Initialize. The challenger generates (pk, sk)← S.keygen(1λ) and sends pk to A .
Query phase. A can perform sign queries by sending each time a message m to the challenger
who generates σ = S.sign(m, pk, sk) and sends σ to A . Let m1, . . . ,mqS the (not necessarily
distinct) queries made by A . The adversary can also make qH queries to H.
Output. A outputs a pair (m∗, σ∗). The advantage Adv(A ) for A is the quantity

QADV EUF-CMA
S (A ) = Pr[A outputs (m∗, σ∗) st.

S.verify(m∗, σ∗, pk) = 1 ∧m∗ 6= m1, . . . ,mqS ],

where m∗ 6= m1, . . . ,mqS means ∀i, m∗ 6= mi.

Definition 8. Let S = (S.keygen,S.sign,S.verify) be a signature scheme. We define

QADV EUF-CMA
S (t, qH, qS) = max

A
QADV EUF-CMA

S (A ).

where we maximize over an adversary running in time t, performing qH hash queries and qS sign
queries.

We can directly construct a signature scheme from an identification scheme via the Fiat-Shamir
transform. From an identification scheme IS = (Keygen, P = (P1, P2), V, Sch), we define the
following signature scheme
SIS = (SIS .keygen,SIS .sign,SIS .verify) that uses a random function H:

• SIS .keygen(1λ) = Keygen(1λ)

• SIS .sign(m, pk, sk) : (x, St)← P1(pk), c← H(x,m), z ← P2(sk, x, c, St), output σ = (x, z).

• SIS .verify(m,σ = (x, z), pk) = V (pk, x,H(x,m), z).
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Proposition 2. [KLS18] Let IS be an identification scheme which is ε-HVZK and has α bits of
min-entropy. Let SIS the corresponding signature scheme. We have

QADV EUF-CMA
SIS (t, qH, qS) ≤ QADVFSH[IS](t+ qHqS , qH) + qS2−α + qSε.

The min-entropy here is the min-entropy of the prover’s first message when he in honest. All
schemes we consider will have very large min-entropy so the qS2−α will be negligibly small. Notice
that in [KLS18], they prove a more general result where the identification scheme IS allows some
aborts. The above proposition shows that we only need to focus on the soundness of the Fiat-Shamir
transform in order to build signature schemes, which is what we will do in the next section.

4 The Fiat-Shamir reduction for commit-and-open identification
schemes

The goal of this section is to prove the following theorem

Theorem 1. Let ISΓ = (Keygen, P,Γ, V ′, Sch) be a commit-and-open identification scheme where
Γ is modeled as a random function from {0, 1}l to {0, 1}3l. Let FSH[ISΓ] its Fiat-Shamir transform
that uses a function H modeled as a random function. For any quantum adversary A OG,OH running
in time t making qC queries to OΓ and qH queries to OH, we have

QADVFSH[ISΓ](t, qC , qH) ≤ qH

√
1

|Sch|
+ 4(QADV sp

ISΓ
(2t+ 2O(l(q2

C + nqC)), 2n))1/3.

The above theorem proves the quantum security (or more precisely the soundness against quan-
tum attacks) of the Fiat-Shamir transform for commit-and-open identification schemes. Notice also
that the reduction we present here is non-tight. While some amount of non-tightness seems neces-
sary here, we suspect that there are steps which can be improved to make the theorem tighter.

If we want to replace the random function Γ with a random function G with small range r, we
can use the following Lemma

Lemma 4. Let ISΓ = (Keygen, P,Γ, V ′, Sch) be a commit-and-open identification scheme where Γ
is modeled as a random function from {0, 1}l to {0, 1}3l. Let ISG the same identification where Γ
is replaced by G which is modeled as a random function from {0, 1}l to {0, 1}3l with small range r.
We have

QADVFSH[ISG](t, qC , qH) ≤ QADVFSH[ISΓ](t, qC , qH) +O(
q3
C + n

r
).

Notice that above, we introduced a new notation. QADVFSH[ISΓ](t, qC , qH) maximizes over all
adversaries that run in time t, perform qC queries to OΓ and qH queries to OH. We will use this
notation throughout the section. Sometimes, we will only specify one number of queries. What it
refers to should always be clear from context. For example, on the right hand side of the above,
the 2n in QADV sp

ISΓ
(2t + 2O(l(q2

C + nqC)), 2n)) corresponds to OΓ queries, since there is no H in
ISΓ.

We first present in high level the different steps of the proof and then prove each of those steps.

0. We start from a commit-and-open identification scheme ISΓ = (Keygen, P,Γ, V ′, Sch) where
Γ is a modeled as a random function Γ from {0, 1}l to {0, 1}3l.
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1. Notice that because Γ is injective with overwhelming probability, ISΓ has strict soundness.
Using Proposition 1, we have

QADVISΓ
(t, qC) ≤ 1

|Sch|
+ 4

(
QADV sp

ISΓ
(2t, 2qC)

) 1
3

(1)

2. Next, we prove that ISΓ actually has computational-statistical-soundness.

QADV cs
ISΓ

(t, qC) ≤ QADVISΓ
(t+O(l(q2

C + nqC)) + n, n) (2)

3. Then, we can prove that the Fiat-Shamir transform of ISΓ (actually of any identification
scheme with computational-statistical-soundness) has quantum soundness.

QADVFSH[ISΓ](t, qC , qH) ≤ qH
√
QADV cs

ISΓ
(t, qC) (3)

4. Finally, we use the small range lower bound again to go back to ISG and prove Lemma 4.

QADVFSH[ISG](t, qC , qH) ≤ QADVFSH[ISΓ](t, qC , qH) +O(
q3
C + n

r
). (4)

Chaining all the inequalities from (3) to (1), we obtain our theorem:

QADVFSH[ISΓ](t, qC , qH) ≤ qH

√
1

|Sch|
+ 4(QADV sp

ISΓ
(2t+ 2O(l(q2

C + nqC)), 2n))1/3.

or if we add from a function G with small range r (plugging in Lemma 4)

QADVFSH[ISΓ](t, qC , qH) ≤ qH

√
1

|Sch|
+ 4(QADV sp

ISΓ
(2t+ 2O(l(q2

C + nqC)), 2n))1/3 +O(
q3
C + n

r
).

4.1 Proving Theorem 1

Here, we will prove Equations 2,3,4 which will prove the theorem.

Proposition 3 (Equation 2). Let ISΓ = (Keygen, P,Γ, V ′, Sch) be a commit-and-open identifica-
tion scheme where Γ is modeled as a random function from {0, 1}l to {0, 1}3l. We have

QADV cs
ISΓ

(t, qC) ≤ QADVISΓ
(t+O(l(q2

C + nqC)) + n, n)

Proof. Let A OΓ = (A OΓ
1 ,A OΓ

2 ) an adversary running in time t and making qC queries to OΓ such
that

QADV cs
ISΓ

(t, qC) = QADV cs
ISΓ

(A OΓ).

For each x, let px := 1
Sch
|{c ∈ Sch : ∃z, V (x, c, z) = 1}|. We have by definition

QADV cs
ISΓ

(A OΓ) = E(pk,sk)←Keygen(1λ)

(x,St)←A
OΓ
1 (pk)

[px] .

For each y = y1, . . . , yn ∈ {0, 1}ln, we define qy = 1
Sch
|{c ∈ Sch : V ′(c, yIc) = 1}. where Ic is the

challenge set associated to c. Notice that px1,...,xn ≤ qΓ−1(x1),...,Γ−1(xn) and that this holds for any
injective Γ since V ′ is independent of Γ. We first show the following lemma

11



Lemma 5. For any quantum algorithm B running in time t, we have

E(pk,sk)←Keygen(1λ)
y←B(pk)

[qy] ≤ QADVISΓ
(t+ n, n).

Proof. Fix a quantum algorithm B running in time t. We construct the following quantum algo-
rithm B′OΓ = (B′OΓ

1 ,B′OΓ
2 ):

• B′OΓ
1 (pk) : y = (y1, . . . , yn)← B(pk). return (x, St) = ((Γ(y1), . . . ,Γ(yn)), (y1, . . . , yn)).

• B′OΓ
2 (pk, x, c, St) : return z = yIc where Ic is the challenge set associated to c.

With the way we constructed B′, the commitment constraints xi = Γ(yi) for i ∈ Ic are always
verified hence

QADVISΓ
(B′) = Pr[V ′(c, yIc) = 1 : (pk, sk)← Keygen(1λ), c

$←− Sch, y ← B′OΓ
1 (pk)]

= E(pk,sk)←Keygen(1λ)
y←B(pk)

[qy] .

since B′ has running time t + n (recall we count the running time of Γ as 1), this concludes the
proof of our lemma.

We can now finish the proof of Proposition 3. We consider the adversary A O but we replace
calls to Γ with calls to Γ̃ where Γ̃ is taken from a family of 2qC-wise functions from {0, 1}l to {0, 1}3l.
By Lemma 3, we can take for example random polynomials of degree 2qC and a qC quantum query
algorithm will output indistinguishable outcomes i.e.

∀x,Pr[x : x← A OΓ
1 ] = Pr[x : x← A

O
Γ̃

1 ].

Moreover, Γ̃ can be constructed and inverted in time O(lqC). We consider the following quantum

algorithm B : run (x, St) = A
O

Γ̃
1 and output y(x) = (Γ̃−1(x1), . . . , Γ̃−1(xn)). Because Γ̃ is injective

with overwhelming probability, for any x, px = qy(x). From there, we conclude

QADV cs
ISΓ

(A OΓ) = E(pk,sk)←Keygen(1λ)

(x,St)←A
OΓ
1 (pk)

[px]

= E(pk,sk)←Keygen(1λ)

(x,St)←A
O

Γ̃
1 (pk)

[px]

= E(pk,sk)←Keygen(1λ)
y←B(pk)

[qy]

≤ QADVISΓ
(t+O(l(q2

C + nqC)) + n, n) from Lemma 5

where in the last inequality, we use that the running time of B is t+ O(l(q2
C + nqC)). Indeed, we

have to replace qC calls to OΓ with calls to O
Γ̃

which takes time O(l(q2
C)) and invert Γ̃ n times

which takes time O(l(nqC)).

Proposition 4 (Equation 3). Let IS be any identification scheme. We have

QADVFSH[IS](t, qH) ≤ qH
√
QADV cs

IS(t)

12



Proof. Let IS be an identification scheme and let A H a quantum algorithm that makes q queries
to H and runs in total time t. Let also

Uδ = {x : |{c ∈ Sch : ∃z, V (x, c, z) = 1}| ≥ δ|Sch|} .

Let ε = QADV cs
IS(t). By definition, we have that A H can find an element in Ukε with probability

at most 1
k for any k > 0, or else we would have QADV cs

IS(t) > ε. Let κ a parameter that will be
fixed later. We have:

QADVFSH[IS](A
H) = Pr[V (x,H(x), z) = 1 : (x, z)← A H]

= Pr[V (x,H(x), z) = 1 : x ∈ Uκε, (x, z)← A H]+

Pr[V (x,H(x), z) = 1 : x /∈ Uκε, (x, z)← A H]

≤ 1

κ
+O(q2κε) using Lemma 2

≤ O(q
√
ε) by taking κ =

1

q
√
ε

Finally, we prove the lemma that allows to replace the random function Γ with a random
function G with small range.

Lemma 6 (Lemma 4 restated, Equation 4). Let ISΓ = (Keygen, P,Γ, V ′, Sch) be a commit-and-
open identification scheme where Γ is modeled as a random function acting on {0, 1}l. Let ISG the
same identification where Γ is replaced by G which is modeled as a random function from {0, 1}l to
{0, 1}l with small range r. We have

QADVFSH[ISG](t, qC , qH) ≤ QADVFSH[ISΓ](t, qC , qH) +O(
q3
C + n

r
).

Proof. Let A OG,OH a quantum query algorithm that makes qC queries to OG and qH queries to
OH. We consider the following algorithm ZOG,OH :

• ZOG,OH : (pk, sk) ← Keygen(1λ), (x, z) ← A OG,OH(pk), c ← H(x), b ← (∀i ∈ Ic, G(yi) =
xi) ∧ V ′(pk, c, z) = 1, return b

ZOG,OH simply runs A OG,OH and outputs 1 if A OG,OH successfully cheated for FSH[ISG]. From
there, we clearly have

Pr[b = 1 : b← ZOG,OH ] = QADVFSH[ISG](A
OG,OH).

Now, we consider the algorithm ZOΓ,OH where each (quantum or classical) call to G is replaced by
a call to Γ which gives

Pr[b = 1 : b← ZOΓ,OH ] = QADVFSH[ISΓ](A
OΓ,OH).

Notice that ZOG,OH perform at most qC + n calls to G: qC when running A OG,OH and at most n
when running the checks (∀i ∈ Ic, G(yi) = xi). From there, we can use Lemma 1 to have

QADVFSH[ISG](A
OΓ,OH) ≤ QADVFSH[ISΓ](A

OΓ,OH) +O(
q3
C + n

r
).
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5 Practical analysis

In this section, we will do a practical analysis of identification schemes which are a parallel repetition
of commit-and-open identification schemes with challenge size 3. MQDSS,Picnic/Fish and the Stern
signature are all based on an identification scheme which satisfies this property so the theorem below
applies to these schemes.

Theorem 1 already proves their security but is highly non tight. We show here that by tailoring
our previous techniques to this specific case, we get much tighter bounds than those of Theorem 1
and also much tighter than what is proven in [DFMS19] and [LZ19].

Theorem 2. Let ISG = (Keygen, P,G, V ′, {0, 1, 2}) be a commit-and-open identification scheme
where G is modeled as a random function from {0, 1}l to {0, 1}2l. Let IS⊗kG be its parallel repetition
k times. We have

QADVFSH[IS⊗kG ](t, qG, qH) ≤ 2kQADVIS(Õ(t), qG) +
6k

2l
+O(q2

H(2/3)2k).

Proof. Let

SGpk =
{

(x0, x1, x2) : ∃z0, z1, z2 st. G(zi) = xi for i ∈ {0, 1, 2} ∧ V ′012(pk, z0, z1, z2) = 1
}
.

The proof goes informally as follows: consider an adversary A OG,OH that runs in time t and
performs respectively qG queries to G and qH queries to H. A wants to output (x, z) such that
V (x,H(x), z) = 1. We can write x = (x1

0, x
1
1, x

1
2, . . . , x

k
0, x

k
1, x

k
2) and we distinguish 2 cases:

1. ∃j, (xj0, x
j
1, x

j
2) ∈ SGpk. We will show from here how to construct an adversary that breaks the

soundness of IS.

2. ∀j, (xj0, x
j
1, x

j
2) /∈ SGpk. We show that this breaks the one-wayness of H.

We define

UGpk =
{
x = (x1

0, x
1
1, x

1
2, . . . , x

k
0, x

k
1, x

k
2) : ∃j ∈ {1, . . . , k} st. (xj0, x

j
1, x

j
2) ∈ SGpk

}
.

This first lemma will deal with the first case.

Lemma 7.

Pr
(pk,sk)←Keygen(1λ)

(x,z)←A (pk)

[
x ∈ UGpk

]
≤ 2kQADVIS(Õ(t)) +

6k

22l
.

Proof. Proving this proposition is the purpose of Section 6.

This next lemma will deal with the second case.

Lemma 8.

Pr
(pk,sk)←Keygen(1λ)

(x,z)←A (pk)

[
V (pk, x,H(x), z) = 1 ∧ x /∈ UGpk

]
≤ O(qH(2/3)2k).
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Proof. Let x = (x1
0, x

1
1, x

1
2, . . . , x

k
0, x

k
1, x

k
2) /∈ UGpk and for each j, xj = (xj0, x

j
1, x

j
2). ∀j we have that

xj /∈ SGpk so let c̃j such that ∀zj , V (xj , c̃j , zj) = 0. Now fix a string c = c1, . . . , ck ∈ {0, 1, 2}k. If

∃j, cj = c̃j then for all z, V (x, c, z) = 0. From there, let Vx,pk = {c : ∃z, V (pk, x, c, z) = 1}. From
the previous discussion, we have |Vx,pk| ≤ 2k. Using Lemma 2, we can conclude that

Pr
(pk,sk)←Keygen(1λ)

(x,z)←A (pk)

[
V (pk, x,H(x), z) = 1 ∧ x /∈ UGpk

]
≤ O(q2

H
|Vx,pk|

3k
) = O(q2

H(2/3)k).

We can now put everything together. We have

QADVFSH[IS⊗kG ](A
H) = Pr

(pk,sk)←Keygen(1λ)

(x,z)←A OH (pk)

[V (pk, x,H(x), z) = 1]

≤ Pr
(pk,sk)←Keygen(1λ)

(x,z)←A OH (pk)

[V (x,H(x), z) = 1 ∧ x ∈ UGpk] +

Pr
(pk,sk)←Keygen(1λ)

(x,z)←A OH (pk)

[V (pk, x,H(x), z) = 1 ∧ x /∈ UGpk].

≤ 2kQADVIS(Õ(t)) +
6k

2l
+O(q2

H(2/3)k).

where we use respectively Lemma 7 and Lemma 8.

We want to point that the term O(q2
H(2/3)k) is necessary (up to some k factors) and correctly

identifies an attack on FSH[IS⊗kG ]. Indeed, suppose there is an adversary for IS such that for any
pair of challenges (c∗1, c

∗
2), it can produce x so that it successfully answers these challenges with O(1)

queries. This is definitely not rules out but soundness and is actually true for the Stern signature
scheme.

By applying this strategy k times on FSH[IS⊗kG ] each time choosing a random pair (c∗1, c
∗
2),

this breaks FSH[IS⊗kG ] with probability (2
3)k performing O(k) queries. By performing amplitude

amplification, we get an attack on FSH[IS⊗kG ] that uses O(k(3
2)k/2).

6 Proving Lemma 7

In order to prove our lemma, we will need to dive in Zhandry’s formulation of the QROM.

6.1 The Quantum Random Oracle Model, reminder

The Quantum Random Oracle Model (QROM) is a model where we model a certain function with
a random function H : {0, 1}n → {0, 1}m. Since we are in the quantum setting, we have a black
box access to H but also to the unitary OH(|x〉|y〉) = |x〉|H(x) + y〉.
Notation: When we write a state of n qubits in the Hadamard basis, we will write |b〉H which will
correspond to the state 1√

2n

∑
y(−1)b·y|y〉.
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6.2 Zhandry’s oracles

One difficulty when dealing with the QROM is to deal with inherent randomness in the choice of
H. In [Zha18], Zhandry proposed another way at looking at a QROM, where the choice of H is
encoded in a quantum register D (for database) which is a purification of the working register.
This framework is quite elaborate and we present here some of the ideas and a small subset of the
results presented in [Zha18]. We sometimes will go a little fast and we refer to [Zha18] for more
details and explanations.

It is good for now to think of D as an internal register of the oracle function. This approach
allows us to work on a single quantum state instead of dealing with a random choice of H.

The standard oracle. The internal database of the oracle is initialized at

|D0〉D =
1√
m2n

∑
H∈F

{0,1}m
{0,1}n

⊗
x∈{0,1}n

|x〉|H(x)〉

=
1√
m2n

∑
H∈F

{0,1}m
{0,1}n

|H〉 where |H〉 :=
⊗

x∈{0,1}n
|x〉|H(x)〉.

which stores in a uniform superposition over all functions H : {0, 1}n → {0, 1}m of all the in-
put/output pairs (x,H(x)). If |D0〉 is measured in the computational basis, we obtain the full
specification of a random function H. The registers that contain the x are called the input registers
and those that contain H(x) the output (or image) registers. We say that x (resp. y) is in the
input (resp. output) registers is there exists an input (resp. output) register that contains x (resp.
f(x)).

How do we query OH in this framework? By applying the unitary OSt : |x〉X|y〉Y|H〉D →
|x〉X|y+H(x)〉Y|H〉D where X,Y are the input registers to the oracle and D is its internal quantum
register containing the description of H. Notice that this unitary only uses D as a classical control
so even is it can entangle (X,Y) and D, measuring D in the computational basis will still yield a
uniformly chosen H ∈ Fn

m. Using OSt with an internal register D is actually equivalent from an
adversary’s point to view to applying OH for a randomly chosen H.

At any point, we say that (x, y) is in the database if when measuring the whole register D in
the computational basis, we get an element x,H(x) = y.

It seems that this is just a rewriting technique and that not much has been done. However,
having access to this extra register D allows us to control the different possibilities of H after some
queries done by an algorithm. It is shown in [Zha18] how to use this to (re)prove tight lower bounds
for the both the search and the collision problem for random functions.

The compressed standard oracle. One problem with the standard oracle described above is
that the database register D is of exponential size so we cannot efficiently manipulate it and hence
cannot emulate efficiently the whole QRO. The idea will be to store a compressed version of this
database. To see how, notice that |D0〉 =

⊗
x |x〉|0〉H. We now define some quantum that will allow

us to define the compressed oracle.
Fix an integer t. Let X = (x1, . . . , xt) be an ordered tuple of different values in {0, 1}n and let

R = (r1, . . . , rt) be a tuple of values in {0, 1}m each different from 0. We define the state |ψSX,R〉
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on register D as:

|ψSX,R〉 =
⊗

x∈{0,1}n
|x〉|y(x)〉H.

where y(x) = ri if x = xi and y(x) = 0 otherwise. This state corresponds to the standard
database where we associate to each xi the value ri in the Hadamard basis and associate the
uniform distribution i.e. the value 0 in the Hadamard basis to other values. Zhandry showed that
after t queries, the database register is in span{|ψSX,R〉}X,R where the set is over all the X,R defined

above of size at most t. We also define the state |φCX,R(q)〉 as:

|ψCX,R(q)〉D =
⊗

i∈{1,...,t}

|xi〉|ri〉H
⊗

j∈{t+1,q}

|⊥〉|0〉.

with the convention that {q + 1, . . . , q} = ∅. This state corresponds to the compressed database
after t queries we associate to each xi the value ri in the Hadamard basis. q here is the total number
of queries. Since these states are of size at most q, they can be stored and manipulated efficiently.

There is a (not necessarily efficient) isometry E that goes from |ψSX,R〉 to |ψCX,R(q)〉 so this

compression is lossless. The idea of the compressed database is to store states |ψCX,R(q)〉 instead of

|(ψSX,R)〉. Let DC the register in which the |ψCX,R(q)〉 lie. The compressed oracle is the unitary

OC : |x〉X|y〉YE(|H〉)DC → |x〉X|y〉YE(|H〉)DC .

Proposition 5 ([Zha18]). Consider any quantum algorithm A O . We have

Pr[A OSt(·) = 1]− Pr[A OC (·) = 1] = 0.

In order words, applying OC is indistinguishable to applying OS.

We can emulate A OC efficiently by keeping track of the compressed database register DC .
Zhandry showed a procedure that achieves this in time Õ(q) where q is the total number of queries
to OC .

6.3 Main technical lemma

The above proposition shows that the working registers of an algorithm using the standard oracle
or the compressed oracle are indistinguishable. An interesting feature is to be able to recover
information about H from DC efficiently. Lemma 5 of [Zha18] shows that if an algorithm A OC

outputs (x, y) st. H(x) = y then it can retrieve efficiently (x, y) in DC with very high probability
(while it always appears in D).

Here, we extend this lemma when to the case where the algorithm outputs a value y but without
knowing a preimage x. We fix here n = l and m = 3l for some integer l so we consider the functions
H : {0, 1}l → {0, 1}3l.

Lemma 9. Consider an quantum algorithm A O that does q queries to O acting on registers XYZ
where XY are the query registers to O. For each triplet y = (y0, y1, y2) where each yi ∈ {0, 1}3l, we
associate a set Zy ⊆ {0, 1}l × {0, 1}l × {0, 1}l. Consider the 2 following scenarios:

1. Run an algorithm A OS on registers XYZD where D is the database register. For each y =
(y0, y1, y2), we define py = Pr[∃(x0, x1, x2) ∈ Zy, (xi, yi) ∈ D for i ∈ {0, 1, 2}|A OS outputs y].
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2. Run an algorithm A OC on registers XYZDC where DC is the compressed database regis-
ter. For each y ∈ {0, 1}3l, we define p′y = Pr[∃(x0, x1, x2) ∈ Zy, (xi, yi) ∈ DC for i ∈
{0, 1, 2}|A OC outputs y].

For any triplet y = (y0, y1, y2), we have

py ≤ 2p′y +
6

22l
.

Proof. Fix a value triplet ỹ = (ỹ0, ỹ1, ỹ2) where each ỹi ∈ {0, 1}3l and let p = pỹ and p′ = p′ỹ. Con-
sider the first scenario and let |Φ1〉 be the state in XYZD conditioned on the algorithm outputting
ỹ. We can write

|Φ1〉 =
∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R

αu,X,R|u〉XYZ|ψSX,R〉D =
∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R
Y=(y1,...,yt)

(−1)
∑t
i=1 ri·yiαu,X,R|u〉|ηSX,Y 〉

where for X = (x1, . . . , xt) and Y = (y1, . . . , yt), |ηSX,Y 〉 =
⊗

x∈{0,1}n |x〉|y(x)〉 where |y(x)〉 = |yi〉
if x = xi and |y(x)〉 = |0〉H otherwise. Let

YX = {(y1, . . . , yt) : ∃i, j, k, st. ỹ0 = yi; ỹ1 = yj ; ỹ2 = yk and (xi, xj , xk) ∈ Zỹ.

We write:

|Φ1〉 =
∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R
Y=(y1,...,yt):ỹ∈YX

(−1)
∑t
i=1 ri·yiαu,X,R|u〉|ηSX,Y 〉 +

∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R
Y=(y1,...,yt):ỹ /∈YX

(−1)
∑t
i=1 ri·yiαu,X,R|u〉|ηSX,Y 〉

= |A〉+ |B〉

where |A〉 and |B〉 are respectively the first and second (unnormalized) pure state of the above
sum. ỹ ∈ YX = (y1, . . . , yt) means that there exists i, j, k, st. ỹ0 = yi, ỹ1 = yj and ỹ2 = yk and that
(xi, xj , xk) ∈ Zỹ. We also use the convention

∑0
i=1 ri · yi = 0.

|A〉 and |B〉 can be written as projections of |Φ1〉 so ‖|A〉‖ ≤ 1 and ‖|B〉‖ ≤ 1. Let us define

Πỹ the projection on the output registers containing ỹ0, ỹ1 and ỹ2. We have p =
∥∥Πỹ|Φ1〉

∥∥2
and we

have Πỹ|A〉 = |A〉. Now look at |B〉. The only way to get ỹ in the output register is to have ỹ0, ỹ1

or ỹ2 it in the elements |0〉H. For each ỹi and each |0〉H, this happens with probability ≤ 1
23l and

there are at most 2l such elements and 3 possible ỹi. By a union bound we have
∥∥Πỹ|B〉

∥∥2 ≤ 3·2l
23l .

p =
∥∥Πỹ|Φ1〉

∥∥2
=
∥∥|A〉+ Πỹ|B〉

∥∥2
.

Now consider the second scenario and let |Φ2〉 be the state in XYZDC conditioned on the
algorithm outputting ỹ. We can write

|Φ1〉 =
∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R

αu,X,R|u〉XYZ|ψCX,R〉DC =
∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R
Y=(y1,...,yt)

(−1)
∑t
i=1 ri·yiαu,X,R|u〉|ηCX,Y 〉
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where for X = (x1, . . . , xt) and Y = (y1, . . . , yt), |ηCX,Y 〉 =
⊗

i∈{1,...,t} |xi〉|yi〉
⊗

j∈{t+1,q} |⊥〉|0〉. We
now write

|Φ2〉 =
∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R
Y=(y1,...,yt):ỹ∈YX

(−1)
∑t
i=1 ri·yiαu,X,R|u〉|ηCX,Y 〉 +

∑
u

t∈{0,...,q}
X=(x1,...,xt)

R=(r1,...,rt):0/∈R
Y=(y1,...,yt):ỹ /∈YX

(−1)
∑t
i=1 ri·yiαu,X,R|u〉|ηCX,Y 〉

= |A′〉+ |B′〉

The probability p′ to see a good ỹ in the compressed database outputs is
∥∥Πỹ|A′〉

∥∥2
= ‖|A′〉‖2 =

‖|A〉‖2. From there we can conclude

|√p−
√
p′| =

∣∣∣ ∥∥|A〉+ Πỹ|B〉
∥∥− ‖|A〉‖ ∣∣∣ ≤ ∥∥Πỹ|B〉

∥∥ ≤√3 · 2l
23l

.

This gives immediately

p ≤

(√
p′ +

√
3 · 2l
23l

)2

≤ 2p′ +
6

22l
.

Remark: This lemma and proof are quite similar to Lemma 5 proven in [Zha18]. However in
their case, the algorithm also outputs a preimage of y whereas we don’t have this possibility so it
complicates slightly the analysis.

6.4 Proof of Lemma 7

Definition 9. Consider an algorithm A OS acting on registers X,Y,Z where X,Y are query registers
and Z is an extra register. Let also D the internal database register of OS. Let

ADV1(A OSt) = Pr
(pk,sk)←Keygen(1λ)

x0,x1,x2←A OSt (pk)

[
∃z0, z1, z2 : (zi, xi) ∈ Dx0,x1,x2 for i ∈ {0, 1, 2} ∧ V ′012(pk, z0, z1, z2) = 1

]
.

where Dx0,x1,x2 is the database register D of the oracle OS measured in the computational basis,

conditioned on the output x0, x1, x2 of A OS .

Definition 10. Consider an algorithm A OC acting on registers X,Y,Z,DC where X,Y are query
registers and Z is an extra working register and Dc is the compressed register. Let

ADV2(A OC ) = Pr
(pk,sk)←Keygen(1λ)

x0,x1,x2←A OC (pk)

[
∃z0, z1, z2 : (zi, xi) ∈ DC

x0,x1,x2
for i ∈ {0, 1, 2} ∧ V ′012(pk, z0, z1, z2) = 1

]
.

where DC
x0,x1,x2

is the database register DC measured in the computational basis, conditioned on the

output x0, x1, x2 of A OC .

Proposition 6. ADV1(AOSt) ≤ 2ADV2(AOC ) + 6
22l .
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Proof. Fix an algorithm A OSt that outputs some values x0, x1, x2. We can apply directly Lemma
9 by taking y = (x0, x1, x2) and Zy = {(z0, z1, z2) : V ′012(pk, z0, z1, z2) = 1} to get the desired
result.

Proof of Lemma 7. Consider an adversary A OH running in time t and performing q queries to OH.
Consider the algorithm BOH that does the following: run A O and let (x, z) be the output with
x = (x1

0, x
1
1, x

1
2, . . . , x

k
0, x

k
1, x

k
2). Output xj0, x

j
1x
j
2 for a random j. We have

Pr
(pk,sk)←Keygen(1λ)

(x,z)←A (pk)

[
x ∈ UGpk

]
≤ kADV1(BOSt) ≤ 2kADV2(BOC ) +

6k

22l
.

But notice thatADV2(BOC ) can be related toQADVIS . Indeed, an algorithm that can outputz0, z1, z2

such that V ′012(pk, z0, z1, z2) = 1 can break the identification scheme. Since BOC runs in time Õ(t),

we have ADV2(BOC ) ≤ QADVIS(Õ(t)) which allows us to conclude.

7 Compressing the commitments

Theorems 1 and 2 show the security of the Fiat-Shamir transform but the resulting non-interactive
scheme (hence the resulting signature scheme) still requires a random permutation as a hash func-
tion. Signature schemes based on commit-and-open identification already have a quite high sig-
nature length (i.e.communication cost) and using a random function from {0, 1}l to {0, 1}3l can
significantly increase the signature length.

In Lemma 4, we showed how to replace this random function by a random function with small
range but this doesn’t reduce the commitment size since this range is unknown. To overcome this
problem, we use random sponges which will allow to reduce the commitment size. We present here
only an informal discussion.

We only consider sponge functions with the same number of input and output bits. We can
see a sponge function as 2 functions, an absorb and a squeeze function (Sabs, Ssq) such that Sabs :
{0, 1}l → {0, 1}r+c and Ssq : {0, 1}r+c → {0, 1}l where l is the number of input/output bits, r is the
rate and c is the capacity of the sponge. The whole sponge function S will then be S = Ssq ◦ Sabs
(this includes eventual padding operations) where f is underlying function of.

In [CHS19], it is shown that random sponges are indistinguishable from random functions.

Proposition 7. For any quantum query algorithm A O , we have

Pr
H←F

{0,1}3l

{0,1}l

[A OH(·) = 1]− Pr
S←Sp

[A OS (·) = 1] ≤
8π2(q + 2l

r )3

3 · 2c
.

where Sp is the set of random sponges (for a randomly chosen internal function). This shows
that we require a bit more than 2c/3 queries to distinguish both settings.

We now show how to modify the above Fiat-Shamired identification schemes to reduce the
commitment costs.
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FSH[IS]

• P constructs c0 = S(z0), c1 = S(z1), c2 = S(z2) as in IS. Let also αi = Sabs(zi). He
computes c = H(c0, c1, c2). Let Ic the corresponding subset of values he has to open. He
sends to the verifier z = {zi}i∈Ic and {αi}i/∈Ic (instead of {ci}i/∈Ic).

• The verifier computes {ci = S(zi)}i∈Ic and {ci = Ssq(αi)}i/∈Ic . Let x = {ci}i∈{0,1,2}
computes c = H(x) and checks whether V (x, c, z) = 1.

With this transformation, each commitment has size c + r which can be made small. For
example, we can take c = 400, r = 64 (to not have a too big number of rounds) and from the above
proposition, we would have more than 128 bits of quantum security, for reasonable values of l.

8 Wrapping up and conclusion

In this paper, we showed techniques for proving the quantum security of the Fiat-Shamir transform,
completing the new generic results of [DFMS19, LZ19]. Theorem 1 applies to commit-and-open
identification schemes with a very strong commitment schemes. It has a theoretical appeal as it
uses different techniques and doesn’t require reprogramming of the quantum oracle.

From a practical perspective, Picnic, Stern and the non-optimized variant of MQDSS are signa-
ture schemes based on the Fiat-Shamir transform of identification schemes which are the parallel
repetition of commit-and-open identification schemes with challenge size 3. Their security directly
follows from our Theorem 2 and Proposition 2 and was not previously explicitly stated. We showed
in particular how to deal with triple special soundness without losing tightness.

More generally, for any such scheme which uses some kind of commitment scheme, we can
first require very strong properties for those schemes and then replace them by efficient quantum
sponges, using their quantum security [CHS19].
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A Relating soundness and special soundness

In this section, we prove the following proposition.

Proposition 8. Let IS = (Keygen, P, V, Sch) be an identification scheme with strict soundness.
For any t,

QADVIS(t) ≤ 1

|Sch|
+ 4

(
QADV sp

IS(2t)
)1/3

.

We restate a (slightly modified) version of Theorem 3 of [CL17].
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Proposition 9 (Theorem 3, [CL17]). Consider n projectors P1, . . . , Pn and a quantum mixed state
σ. Let V := 1

n

∑n
i=1 tr(Piσ) and let

E :=
1

n(n− 1)

∑
i,j 6=i

tr(PiPjσPjPi).

Then it holds that V ≤ 1
n + 4E1/3.

Proof of Proposition 1. Fix an identification scheme IS and consider a cheating A = (A1,A2)
running in time t. Now consider the following algorithm B(pk): run (x, St) ← A1(pk), choose
random c, c′ ∈ Sch with c 6= c′. Run z ← A2(pk, x, c, St) and z′ ← A2(pk, x, c′, St). Output
(x, c, z, c′, z′). For a fixed x, c, A2(pk, x, c′, St) can be modeled as a quantum projective measurement
M c = {M c

1 , . . . ,M
c
ν} where ν is the output of the measurement. Let also σx,St be the state

conditioned on A1 outputting x, St.
For each c, from strict soundness, there is at most 1 value ν such that V (x, c, ν) = 1. We define

Pc = M c
ν such a ν exists and Pc = 0 otherwise. Let Vx,St = 1

|Sch|
∑

c tr(Pcσx,St) that corresponds
to A2 outputting a valid z = ν given that A1 outputs x, St.

Let also Ex,St = 1
|Sch|(|Sch|−1)

∑
c,c′ 6=c tr(Pc′Pcσx,StPcPc′). which corresponds to the probability

that B outputs a valid (x, c, z, c′, z′) given that his run of A1 outputs (x, St).
By definition, we have

QADVIS(A ) = E(pk,sk)←Keygen(1λ)
(x,St)←A1(pk)

[Vx,St] .

and

QADV sp
IS(B) = E(pk,sk)←Keygen(1λ)

(x,St)←A1(pk)

[Ex,St] .

Using Proposition 9, we have Vx,St ≤ 1
|Sch| + 4E

1/3
x,St. From there, we can conclude

QADVIS(A ) = E(pk,sk)←Keygen(1λ)
(x,St)←A1(pk)

[Vx,St]

≤ E(pk,sk)←Keygen(1λ)
(x,St)←A1(pk)

[
1

|Sch|
+ 4E

1/3
x,St

]

≤ 1

|Sch|
+ 4

(
E(pk,sk)←Keygen(1λ)

(x,St)←A1(pk)

[Ex,St]

)1/3

by concavity of x→ x1/3

≤ 1

|Sch|
+ 4

(
QADV sp

IS(B)
)1/3

.

Finally, to conclude, notice that B runs A1 once and A2 twice so takes at most twice the time as
A .

Remark: There are other similar bounds that can be derived, see for example [CSST11] and
[Unr12].
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B Any identification scheme can be transformed into a commit-
and-open scheme

We present the transformation below as a remark, to show that any identification scheme can be
transformed into a commit-and-open identification scheme, with a loss in efficieny. Consider any
public coin identification scheme IS = (Keygen, P, V, SCh). The interaction between the prover
and the verifier is the following.

Identification scheme IS

Initialization. (pk, sk)← Keygen(1λ). P has (pk, sk) and V has pk.
Interaction.

1. P generates (x, St)← P1(sk) and sends x to the verifier.

2. The verifier sends a random c ∈ SCh.

3. P generates z ← P2(sk, x, c, St) and sends z to the verifier.

Verification. The verifier accepts iff. V (x, c, z) = 1.

We can transform this scheme into a commit-and-open scheme. The idea is to commit to x and
to all the possibles z’s depending on the challenge. The commitment is modeled with a random
function G : {0, 1}l → {0, 1}3l.

Identification scheme IScao

Initialization. (pk, sk)← Keygen(1λ). P has (pk, sk) and V has pk.
Interaction.

1. P generates (x, St)← P1(sk), as well as a string zc ← P2(sk, x, c, St) for each c ∈ Sch. He
sends (G(x), G(z1), . . . , G(z|Sch|)) to the verifier.

2. The verifier sends a random c ∈ SCh.

3. P sends x and zc to the verifier.

Verification. The verifier accepts iff. V (x, c, zc) = 1.

The above construction is very reminiscent of the Unruh transform [Unr15]. We show very infor-
mally that IScao retains completeness, soundness and the honest-verifier zero-knowledge property
of the original scheme IS. Completeness follows easily from the completeness of IS. Soundness
holds because G is injective with overwhelming probability (so the commitment is perfectly bind-
ing) and by taking l large enough, the verifier cannot distinguish the first message from random
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elements in {0, 1}3l so the honest-verifier zero-knowledge is preserved.
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