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Abstract 

One of the main goals of securing data transmission is focused on the security of cloud data storage. In this paper, we describe 

several cryptographic techniques which can be used to address the relevant threats and security goals for analyzing cloud 

computing security. Private semi-trusted clouds, allow researchers to design private clouds by using cryptographic techniques, 

to protect the semi-trusted ones. Finally, we elaborate on semi-trusted clouds which are related to real-world deployments of 

cloud resources, and how optimizing cryptographic protocols, would indeed lead to the usage of this certain cloud and 

therefore practical ways of securing this type of data.   
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1. Introduction 

Cloud computing is predicted to be the next generation of IT 

enterprise architecture. It’s one of the best choices for big 

data processing and analytics which enables users to 

remotely store and analyze their data, using shared 

computing resources. The sharing of resources would in fact 

reduce the costs of storage for individuals. Cloud services 

potentials have not been fully unleashed due to users’ 

concerns about security and privacy of their data in the 

cloud. These concerns are mainly about the cloud operators 

having the chance of reaching the sensitive data, and 

therefore reduce the adoptability of cloud computing in many 

fields, such as the financial industry and governmental 

agencies. Cloud computing open doors for small and 

medium scale organizations to perform computations at very 

low costs. It outsources Software, Infrastructure and 

Platforms as Services to its clients. The cloud provider and 

tenants may be untrusted entities who try to tamper with data 

storage or computation. Preparing to meet and react against 

these threats, motivate the need of using cryptographic 

techniques to achieve cloud computing security goals. In 

summary, the contributions of this paper are as followed:  

 Analyzing the differences in various types of cloud 

data storage and optimizing the cryptographic 

solutions to achieve secure cloud computing. 

 Providing survey and categorizing current cloud-

based searchable cryptographic systems.  

 Identifying forthcoming challenges in multi-party 

computation and introducing future research 

avenues to address them. 

While that, the rest of the paper is organized by section 2 

introducing the principles of data security in the cloud, which 

mainly includes trusted, untrusted and semi-trusted clouds. 

In section 3, we describe the secure multi-party computation 

techniques which can be used to address the security goals in 

different cloud deployments. Finally, section 4 will close it 

with a concluding remark.  

 

2. The Principles of Data Security in the Cloud 

The recent study on Cloud computing is mainly focused on 

the service side, while the data security and trust have not 

been sufficiently studied yet. Though many techniques on 

the topics in cloud computing have been investigated in both 

academics and industries, data security and privacy 

protection are becoming more important for the future 

development of cloud computing technology in government, 

industry, and business. There are many security risks to any 

sensitive data which involved in cloud computing. Cloud 

computing is not just a third party data storage, but the need 

to entrust data protection to a third party cloud provider 

directs to the protections offered by cryptography in cloud. 

Actually, when the user data releases to a cloud environment 

and leaves the protection sphere of owners, then the required 

guarantees for protecting of data become serious problem.  

We believe that the best approach to the user to ensure 

security of cloud data storage is the use of cryptographic 

solutions and secure communication issues. These include 

confidentiality and integrity issues. Confidentiality indicates 

that all sight sensitive data should be accessible to only 

“legitimate” receivers and keep secure from any potentially 

adversarial or untrusted entities. Integrity means that any 

unauthorized modification of sensitive data is detectable. 

Thus the outputs of any computation on sensitive data should 

be consistent with the input data.  

Cloud deployment methods and the existent trust between 

entities are the basic needs to achieve confidentiality and 

integrity as well. There are three concepts for cloud data 

storage: Untrusted cloud, trusted cloud and semi-trusted 

cloud. Untrusted and trusted clouds correspond respectively 

to the public and private cloud deployment models. Semi-

trusted cloud may correspond to the hybrid, public, or private 
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clouds. Untrusted cloud is consistent with a cloud provider 

who is not trusted to the cloud nodes to maintain the 

confidentiality or integrity of data. Trusted cloud occurs 

while the cloud is deployed in an isolated environment from 

any outside adversaries. But, even in such environment, 

some nodes may be corrupted due to malicious insiders and 

lead to violate data and computation integrity. Semi-trusted 

cloud is consistent with a data owner who attempted to 

maintain security of sufficient fraction of the cloud 

resources, but some parts of cloud may be controlled by the 

untrusted parties. In an attempt to violate the confidentiality 

or integrity of the data or computations, the corrupted parties 

are the main threats in order to collecting of additional 

information through by combining the observations of 

malicious adversary.  

Suppose an agency which is responsible for creating the 

datasets and maintaining the reference database. The datasets 

contain metadata computed by the cloud using a set of 

effective algorithms and user criteria. Now, this agency does 

not fully trust that its cloud is free of adversaries and wishes 

to place some trust in its security. Actually, semi-trusted 

cloud corresponds to ignoring risk of malicious insider 

taking control of some cloud nodes.  

Now, we will describe the variety of cryptographic 

techniques for securing data in transit, in storage, and in use. 

We believe these techniques are applicable to achieving 

secure big data analytics in the cloud and will become an 

essential part of the big data ecosystem. The future of big 

data processing depends on close collaboration between 

cryptography and data science. Homomorphic Encryption, 

Verifiable Computation and Secure Multi-Party Computation 

are three cryptographic techniques that can be used to 

outsource the secure data processing to another entity, 

trusted to perform the computation correctly. Homomorphic 

encryption allows functions to be computed over encrypted 

data while maintaining the confidentiality of data. First 

scheme developed in 2009. Verifiable computation allows 

the data owner to check the integrity of the computation, but 

not trusted to perform the computation correctly. The 

combination of homomorphic encryption and verifiable 

computation may be resulted in both confidentiality of the 

input and output and also integrity of the computation. It 

enables secure computation over a completely untrusted 

cloud. Secure Multi-Party Computation is suited to take 

advantage of the semi-trusted cloud setting, to achieve 

confidentiality and integrity of the data and computation. It 

can be used in settings that the different sensitive inputs are 

held by different parties or in settings where a single client 

wants to outsource computation on its sensitive input by 

distributing the computation over multiple compute nodes. 

First schemes developed in mid 1980’s. In this scheme, no 

single party learns anything about the data, but if many 

parties are corrupted by an adversary, they can violate 

confidentiality. Table 1 compares three techniques with 

respect to their properties. 

  

Table 1. Comparison of cryptographic techniques showing 

the security guarantees provided and whether computation 

requires interaction between parties 
 

Cryptographic 

technique 

Adversary 

type 

Confidentiality Integrity Interaction 

between 

parties 

Homomorphic 

encryption (A) 

Malicious Y N N 

Verifiable 

computation (B) 

" N Y N 

A+B " Y Y Y 

Multi-Party 

computation 

" Y Y Y 

 

We will show that it’s possible to create all cryptographic 

challenges without relying on the trustworthiness of a single 

party or excluding anyone from participating. We achieve it 

by using secure multi-party computation. Despite big 

theoretical progress in recent years, real-world applications 

for multi-party computation (MPC) are still surprisingly rare.  

Now, we give a more detailed survey of the secure multi-

party computation. 
 

3. Secure Multi-Party Computation 

In some cases, data owners want to jointly compute some 

functions of the collection of their sensitive data. For 

example, companies wish to predict cyber threats by 

analyzing the related information from other companies, or 

hospitals may want to perform medical research on their 

combined patient data. In these cases, each party wants to get 

the result of the computation on the data obtained by all 

parties but without sharing their own sensitive information. 

Additionally, there may not be a trusted party to whom 

everyone wishes to allow their information and perform the 

secure computation. Secure multi-party computation is a 

computationally efficient approach that allows a client to 

outsource computation to a group of parties (or cloud 

providers), assuring that the client’s information is prevented 

from misuse even if some parties are corrupted or cannot 

fully be trusted. Secure multi-party computation is an area of 

cryptography that addresses this problem. Its protocols allow 

parties to perform distributed computation on their private 

data without the use of a trusted party [19] and exist for any 

computable function that provide privacy for new 

applications in which parties currently share their data. In the 

ideal world, there is a party that everyone trusts with their 

private inputs and the trusted party would perform 

distributed computation on outputs. Actually, secure 

multiparty computation is a powerful cryptographic notion 

that - in theory - can solve virtually any cryptographic 

protocol problem. In recent years the technology has been 

used in practice and holds great promise for future 

applications.  
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Cryptographic protocols typically aim to provide security 

against adversarial behaviors such as semi- honest adversary 

and malicious adversary. These adversaries will be done 

several efforts trying to actively interfere with the 

computation. Semi-honest adversary follows protocol 

description and tries to get unauthorized information from 

the messages he receives. A malicious adversary deviates 

arbitrary from the protocol in order to get private information 

or disrupt the protocol.   

MPC generally considers these two types of adversaries: 

semi-honest and malicious. In this manner, we can consider a 

single adversary who corrupts the subset of the parties, 

controls their behavior and also their inputs and outputs. We 

recognize that there are difference between computational 

security and information-theoretic security. Computational 

security is based on the assumed hardness of some 

computational problems, but information-theoretic security is 

based on the amount of information which adversary can 

collect.  

MPC provides less security guarantee than homomorphic 

encryption scheme, but more efficient. It is a promising 

candidate for use in more practical secure cloud 

computation. MPC on the cloud can be seen in Figure 1. The 

input holders share the data among the compute nodes, 

which perform multi-party computation on the shares. The 

data receiver reconstructs the output. In Figure 1, shaded red 

nodes are untrusted or adversarial; shaded green nodes are 

semi-trusted [1]. 

 
Figure.1. Secure multi-party computation with semi-trusted cloud 

[I=input node, C=compute nude, S=storage nude, R=result node] 

  = one or more nodes of                 [1] 

 

MPC technology can be used to implement, for instance, 

voting, auctions, procurement and benchmarking with better 

security, in particular without anyone having to reveal his 

private data to anyone else. What makes secure multi-party 

computation different than other forms of cryptography is the 

fact that it treats the participating parties as adversaries. 

 

3.1 Previous Works 

Yao [2] introduced the first two-party protocol for computing 

functions, providing computational security against a semi-

honest adversary in 1982. Yao suggested the popular 

millionaire problem, describing two millionaires interested in 

knowing which one of them is richer, without revealing their 

actual worth. Also, millionaire problem with rational players 

is a unified approach in classical and quantum paradigms. 

Fairplay [3] was the first compiler for secure two-party 

computation, using garbled circuits. TASTY [4] combines 

garbled circuits and homomorphic encryption. Since the 

development of these early compilers, there have been many 

implementations of garbled circuits with various 

optimizations. In the decades since, the two-party problem 

has been generalized to multi-party computation by Chaum, 

Crepeau, and Damgard [5] and also Ben-Or, Goldwasser, 

and Wigderson [6]. FairplayMP [7] extended Fairplay to 

multiple parties. VIFF [8], SEPIA [9], Choi et al. [20], 

Sharemind [11], PICCO [12], and Wysteria [13], compile 

code to secret-sharing based schemes for more than two 

parties. Secure two-party and multi-party computations have 

long stood at the center of the theoretical foundations of 

modern cryptography.  

Now, we identify forthcoming challenges in MPC and 

introduce future research avenues to address them.  

 

3.2 Discussion 

Secure multi-party computation allows a set             

of n total parties, which uses a threshold adversary structure 

                 for some t. This scheme limits the 

total number of nodes which can be corrupted by an 

adversary to t out of n total participating parties. It shares the 

input data among all participating nodes so that no set of 

fewer than t shares reveals anything about the input data. 

Then, the nodes make shares of the output which honest 

parties have enough shares to reconstruct the actual output. 

Because the cloud nodes have a distinct view of shares, they 

do not learn the computation output. Multi-party 

computation based on secret sharing has been more 

commonly used in production systems. In this scheme, since 

many standard protocols rely on secret sharing inputs, such a 

computation would require each party to share its input with 

the other parties. In a secure MPC, each party possesses 

some private data, while secret sharing provides a way for 

one party to spread information on a secret such that all 

parties together hold full information, yet no single party has 

all the information. 

In order to solving the secure multi-party computation 

problem, the adversary is specified by a single corruption 

type (active or passive) and a threshold t on the authorized 

number of corrupted parties. Goldreich, Micali, and 

Wigderson [14] proved that, based on cryptographic 

constraints, the secure multi-party computation is possible if 

and only if       parties are actively corrupted. The 

threshold for passive corruption is    . In the information-

theoretic model, which mutual secure channels between 

every pair of parties are assumed, Ben-Or, Goldwasser, and 

Wigderson [6] proved that perfect security is possible if and 

only if        for active corruption, and if and only if 

https://www.sciencedirect.com/science/article/pii/S0166218X05002428#bib14
https://www.sciencedirect.com/science/article/pii/S0166218X05002428#bib3
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      for passive corruption. Also, some MPC schemes 

based on the secret-sharing paradigm allow        

malicious corruptions. These results are shown in Table 2. 

 

Table 2. The threshold conditions for the secure multi-party 

computation 

Model Adversary 

Type 

Condition Reference 

 

Cryptographic 
Passive     [14] 

Active       [14] 

 

Information-

theoretic 

Passive       [5 , 6] 

Active       [6] 

MPC scheme 

based on secret-

sharing paradigm 

 

Active 
 

      
 

[5] 

 

MPC can be used in settings where different sensitive inputs 

are held by different parties or in settings where a single 

client wants to outsource computation on its sensitive input 

by distributing the computation over multiple compute 

nodes. Although MPC has been studied substantially, 

building solutions that are practical in terms of computation 

and communication cost is still a major challenge. There are 

a number of practical MPC implementations. Most famously, 

Danish farmers used it in auctions to agree on the price of 

sugar beets [15]. Among the specific functions of interest in 

secure multiparty computation, Private Set Intersection (PSI) 

is probably one of the most strongly motivated by practice 

[21]. PSI allows n parties to compute the intersection of their 

datasets without revealing any additional information. The 

VIFF library [16] runs several MPC protocols and takes 2.1 

seconds to evaluate a single AES1 block [17]. Keller et al. 

focused on modern secret sharing based MPC protocols and 

pre-processing of SPDZ and VIFF protocols [26]. Wójcik 

compared the secure MPC frameworks FRESCO and Bristol 

SPDZ in terms of infrastructural differences, practicality and 

performance [22]. Bogdanov et al. developed Sharemind2, 

which is secure against t = 1 honest-but-curious corruption. 

Sharemind is trying to achieve cloud privacy of data 

computations (of single party) by distributing to multiple 

cloud servers. Sharemind takes 0.24 seconds to evaluate an 

AES block [11]. X. Wang et al. proposed a new, constant-

round protocol for multi-party computation of boolean 

circuits that is secure against an arbitrary number of 

malicious corruptions [23]. Burkhart et al. developed Sepia 

[9] to be secure against       honest-but-curious 

corruptions. This improvement paves the way for new 

applications of MPC in the area of networking [10]. Gupta 

                                                        
1 AES = Standard Block cipher. The time to compute a one block 

AES encryption is a commonly used benchmark for testing 

efficiency of MPC protocols. 
2 Sharemind framework relies on secure multi-party computation, 

which is secure against     malicious corruptions. 

proposed the first systematic consideration of Intel’s 

Software Guard Extensions as a platform on which to 

implement two-party secure function evaluation, facilitating 

efficient protocols and future work will include the 

implementation of these protocols and improvements to their 

efficiency and security properties [24]. Schneider assessed 

the idea of using one party as a helper (i.e. one party for 

assisting computation) in the context of secure-multi party 

computation [25]. Ejgenberg et al. are currently developing 

an efficient general purpose library called Secure 

Computation Application Programming Interface (SCAPI3) 

[18], achieving to implement many of the efficient MPC 

protocols. Finally, Microsoft researchers could enable 

individuals to share encrypted data through the cloud while 

giving the owners of that data complete control over specific 

pieces of information. Users can encrypt and store their data 

online and share pieces of earmarked information with 

specific parties. 

 

4. Conclusions 

In this paper, we discussed the use of secure multi-party 

techniques to address cloud computing security goals. 

Cryptographic techniques and secure communication issues 

improve users’ concerns over security of cloud data storage. 

These solutions initiate a good event to achieve secure cloud 

computing in the real world. We showed that MPC is in fact 

efficient enough to securely create cryptographic challenges. 

Also, it can be shown that for cryptographic challenges it is 

sufficient to rely on MPC protocols which are secure against 

semi-honest adversaries, by verifying honest behavior once a 

challenge is solved and showing how to combine FHE and 

MPC to get something much better and practical. Further 

research is needed to optimize the cryptographic protocols 

for use in the private cloud which leads to practical solutions 

for data security in cloud.  

                           

                                                        
3 SCAPI (Secure Computation Application Programming Interface) 

is an open-source general library tailored for secure computation 

implementations. 

https://sharemind.cyber.ee/
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