
SIKE'd Up: Fast and Secure Hardware

Architectures for Supersingular Isogeny Key

Encapsulation

Brian Koziel12, A-Bon Ackie2, Rami El Khatib2, Reza Azarderakhsh2, and
Mehran Moza�ari-Kermani3

1Texas Instruments, kozielbrian@gmail.com.
2CEECS Dept, FAU, {bkoziel2017, aackie, relkhatib2015,

razarderakhsh}@fau.edu.
3CSE Dept, USF, mehran20@usf.edu.

Abstract. In this work, we present a fast parallel architecture to per-
form supersingular isogeny key encapsulation (SIKE). We propose and
implement a fast isogeny accelerator architecture that uses fast and par-
allelized isogeny formulas. On top of our isogeny accelerator, we build a
novel architecture for the SIKE primitive, which provides both quantum
and IND-CCA security. Since SIKE can support static keys, we propose
and implement additional di�erential power analysis countermeasures.
We synthesized this architecture on the Xilinx Virtex-7 and Kintex Ul-
traScale+ FPGA families. Over Virtex-7 FPGA's, our constant-time im-
plementations are roughly 20% faster than the state-of-the-art with a
better area-time product. At the NIST security level 5 on a Kintex Ul-
traScale+ FPGA, we can execute the SIKE protocol in 15.6 ms. This
work continues to improve the speed of isogeny-based computations and
also features the �rst full implementation of SIKE, with results applica-
ble to NIST's post-quantum standardization process.

Field-programmable gate array, isogeny-based cryptography, post-quantum
cryptography, SIKE.

1 Introduction

Although it is unclear when large-scale quantum computers will be available, it is
very clear that such an event will have huge rami�cations on today's public-key
cryptosystems. Notably, Shor's algorithm [1] could be used in conjunction with a
quantum computer to break factorization, discrete logarithm, and elliptic curve
discrete logarithm problems which are the security foundation for RSA, Di�e-
Hellman, and elliptic curve cryptography, respectively. These quantum computer
fears have existed for decades and inspired a new domain of cryptography: post-
quantum cryptography (PQC). PQC focuses on cryptographic algorithms that
are resistant to attackers armed with both classical and quantum computers.

However, the use of elliptic curves in public-key cryptography is not dead.
Isogeny-based cryptography relies on the di�culty to compute isogenies between
elliptic curves. Rather than �nding a secret point with a secret point multiplica-
tion, the objective of isogeny-based cryptography is to �nd a secret elliptic curve
isomorphism class by performing a secret walk on an isogeny graph. For large
�nite �elds, it is di�cult to construct an isogeny between two distant isomor-
phism classes of isogenous curves. This supersingular isogeny problem is related
to the claw problem, which is hard even in the quantum sense.

The use of isogenies for a cryptosystem was �rst proposed in independent
works by Couveignes [2] and Rostovtsev and Stolbunov [3] that were �rst pub-
lished in 2006. This isogeny-based key-exchange was protected by the di�culty
to compute isogenies between ordinary elliptic curves. In 2009, Charles et al.
further explored this problem and designed an isogeny-based hash function [4].
In 2010, Childs, Jao, and Soukharev [5] proposed a quantum algorithm to com-
pute isogenies between ordinary elliptic curves in subexponential time. Then, in
2011, Jao and De Feo [6] proposed a di�erent isogeny-based cryptosystem that
was instead protected by the di�culty to compute isogenies between supersin-
gular elliptic curves. This was called the supersingular isogeny Di�e-Hellman
(SIDH) key exchange and is based on the supersingular isogeny problem, for
which there is no known quantum attack in subexponential time. In addition to
the standard SIDH primitive, the supersingular isogeny problem has also been
used to create digital signatures [7,8] and undeniable signatures [9].

At PQCrypto 2016, NIST announced a standardization process for post-
quantum algorithms [10]. Among the primary quantum-resilient candidates, there
is no clear winner. There are various tradeo�s in underlying quantum security,
key sizes, and e�ciency. Isogeny-based cryptography sticks out as a strong can-
didate because it features the smallest key sizes of known PQC algorithms. Small
key sizes reduce transmission cost and storage requirements. Over NIST security
level 5, the public keys in supersingular isogeny Di�e-Hellman (SIDH) key ex-
change are approximately 576 bytes and key compression [11,12] further reduces
this to 336 bytes. However, the primary downsides to SIDH are that static keys
cannot be reused (as malicious public keys can reveal bits of a user's private keys
[13]) and that it is slow.

The supersingular isogeny key-encapsulation (SIKE) scheme [14] was sub-
mitted to NIST's standardization process as an isogeny-based key exchange al-
ternative to SIDH that can safely support static keys. This scheme resembles
SIDH in computations, but also adds additional hashing operations to provide
indistinguishability under chosen ciphertext attack (IND-CCA). Over a public
channel over NIST security level 5, a 564 byte public key and 596 byte ciphertext
are exchanged and a 24 byte shared secret is computed.

On the e�ciency side, much research has gone into bringing SIDH and isogeny
computation times down. Notably, faster isogeny arithmetic [15,16], double-point
multiplication schemes [17], and large-degree isogeny parallelization [18] have
improved the performance of isogeny computations. On the software side over
NIST security level 2, the SIDH protocol on a high-performance processor has

dropped from the order of 1.3 s [6] to 10 ms [14]. Other software implementations
have improved the isogeny computation time on smaller ARM processors [19,20].
On the hardware side over NIST security level 2, the SIDH protocol on a high-
performance FPGA has dropped from 34 ms [21] to 14 ms [22].

Contribution. In this paper, we improve upon the high-performance archi-
tecture presented in [22] and present a fast and secure FPGA hardware imple-
mentation that continues to push isogeny-based computations faster. We pro-
pose a fast isogeny accelerator architecture, over which we utilize fast parallelized
isogeny formulas. Even with additional di�erential power analysis countermea-
sures, our constant-time implementation performs isogeny-based primitives 20%
faster than the previous fastest known FPGA implementation with a better
area-time product. We implement the IND-CCA secure SIKEp503 and SIKEp751

which conservatively provide NIST security levels 2 and 5 over large �nite �elds
of 503 and 751 bits, respectively.

Organization. Our paper is organized as follows. In Section 2, we review
isogeny-based cryptography preliminaries. In Section 3, we present design choices
in our �nite �eld accelerator and scheduling that achieve faster isogeny acceler-
ation than the previous state-of-the-art. In Section 4, we describe our architec-
ture to encapsulate all SIKE functionalities on top of our isogeny accelerator. In
Section 5, we introduce and describe our implemented side-channel countermea-
sures. In Section 6, we present our FPGA results and compare to the previous
state-of-the-art. Lastly, in Section 7, we conclude this paper.

2 Preliminaries

Here, we review some preliminaries of isogeny-based cryptography that are nec-
essary for SIKE. We point the reader to [23] for a more in-depth review of isogeny
fundamentals.

2.1 Isogeny-Based Cryptography

Elliptic curve cryptography deals with the study of elliptic curves over �nite �elds
with many useful applications to public-key cryptography. An elliptic curve over
a �nite �eld Fq is the collection of all points (x, y) as well as the point at in�nity
that satisfy the short Weierstrass form:

E/Fq : y2 = x3 + ax+ b

where a,b, x, y ∈ Fq. The set points form an abelian group [24]. Consider a
point P = (x, y). We can perform consecutive point addition and doublings to
compute an elliptic curve point multiplication, Q = kP where k ∈ Z and P,Q ∈
E. Scalar point multiplication forms the basis for the elliptic curve discrete
logarithm problem, for as the abelian group becomes very large (such as 2256

points), it becomes infeasible to �nd k given Q and P . However, this is only in a
classical security model. Shor's algorithm [1] will break the elliptic curve discrete

logarithm problem by computing discrete logarithms in polynomial time on a
quantum computer.

Isogeny-based cryptography on the other hand, deals with the relationships
between elliptic curves. We de�ne an elliptic curve isogeny over Fq, φ : E → E′

as a non-constant rational map from E(Fq) to E
′(Fq) that preserves the point

at in�nity. The j-invariant of a curve acts as its unique identi�er for an elliptic
curve isomorphism class. An isogeny is a mapping of points from one elliptic
curve to another. We can compute a unique isogeny by using Vélu's formulas
[25] over a kernel, φ : E → E/〈ker〉. The degree of an isogeny is its degree as a
rational map. We can compute large-degree isogenies of the form `e by chaining
e isogenies of degree `.

In this work, we are particularly interested in supersingular elliptic curves
rather than ordinary elliptic curves as Childs et al. [5] have proposed a quantum
subexponential attack on ordinary curves. The non-commutative nature of a su-
persingular curve's endomorphism ring renders the quantum attack in [5] useless.
Thus, for supersingular elliptic curves, q = p2 and there are p/12 isomorphism
classes.

Isogeny-based cryptography relies on the di�culty to compute isogenies be-
tween elliptic curves. For φ : E → E′ where φ is given as a product of small-
degree isogenies, it is simple to perform an isogeny from E to E′, but it is
di�cult to �nd an isogeny from E to E′. This problem can be visualized as a
walk on an isogeny graph where each node represents an isomorphism class and
the edges are isogenies of degree `. Considering a speci�c `, this is a complete
graph where each node has ` + 1 unique isogenies up to isomorphism of degree
`. For an unknown isogeny of degree s, the best known classical and quantum
attacks to �nd an isogeny between two distant supersingular elliptic curves have
complexity O(

√
p) and O(3

√
p), respectively.

2.2 Supersingular Isogeny Di�e-Hellman

The supersingular isogeny Di�e-Hellman (SIDH) key-exchange [6] protocol uti-
lizes the supersingular isogeny problem for two parties to securely agree on a
shared secret. The idea behind the protocol is that Alice and Bob have secret
isogeny walks on their respective isogeny graphs. They each perform their secret
walk over public parameters, exchange them, then perform their secret walk on
the public keys. Alice and Bob each perform two secret walks, but in a di�erent
order. The end result is that both parties end up at a secret isomorphism class
where the j-invariant can be used as a shared secret.

To perform this protocol, Alice and Bob �rst agree on a prime p of the form
`eAA `eBB ±1, where `A and `B are small primes and eA and eB are positive integers.
They then agree on a supersingular elliptic curve E0(Fp2) and �nd torsion bases
{PA, QA} and {PB , QB} that generate E0[`

eA
A] and E0[`

eB
B], respectively. Lastly,

Alice chooses a private key nA ∈ Z/`eAA Z and Bob likewise chooses a private key
nB ∈ Z/`eBB Z.

To perform a secret isogeny walk, Alice and Bob separately generate a secret
kernel by performing a double-point multiplication, R = P +nQ and computing

Public Parameters

prime p = `eAA `eBB ± 1
supersingular curve E0/Fp2 with order (`eAA `eBB)2

torsion basis {PA, QA} for E0[`
eA
A]

torsion basis {PB , QB} for E0[`
eB
B]

Key Generation

1. sB ∈R [0, 2blog23
eB c − 1]

2. φB : E0 → EB =
E0/〈PB + [sB]QB〉

3. pkB = {EB , φB(PA), φB(QA)}
4. s ∈R {0, 1}k

Key Encapsulation

1. m ∈R {0, 1}k
2. r = G(m,pkB)mod 2eA

3. φA : E0 → EA =
E0/〈PA + [r]QA〉

4. pkA = {EA, φA(PB), φA(QB)}
5. φ′A : EB → EAB =

EB/〈φB(PA) + [r]φB(QA)〉
6. c = F (j(EAB))⊕m
7. ciphertext (ct) = {pkA, c}
8. ssA = H(m,pkA, c)

Key Decapsulation

1. φ′B : EA → EBA =
EA/〈φA(PB) + [sB]φA(QB)〉

2. m′ = F (j(EBA))⊕ c
3. r′ = G(m′,pkA)mod 2eA

4. φ′′A : E0 → E′
A =

E0/〈PA + [r′]QA〉
5. pk′A = {E′

A, φA(PB), φA(QB)}
6. if pk′A == pkA, then ssB =
H(m′,pkA, c)
7. else ssB = H(s,pkA, c)

Bob Alice

pkB

{pkA, c}

Fig. 1. Supersingular isogeny key encapsulation protocol [14].

a unique isogeny over that kernel φ : E → E/〈R〉. SIDH is composed of two
rounds of isogenies. In the �rst round, Alice computes the isogeny φA : E0 →
EA = E0/〈PA + [nA]QA〉 and also projects Bob's basis points under the new
curve, {φA(PB), φA(QB)} ⊂ EA. Bob likewise computes the isogeny φB : E0 →
EB = E0/〈PB + [nB]QB〉 and projects Alice's basis points under the new curve,
{φB(PA), φB(QA)} ⊂ EB . Alice's public key is the tuple {EA, φA(PB), φA(QB)}
and Bob's public key is the tuple {EB , φB(PA), φB(QA)}. For the second round,
Alice and Bob perform their secret isogeny walk over the public keys from the
other party. Alice computes her isogeny φ′A : EB → EAB = EB/〈φB(PA) +
[nA]φB(QA)〉 and Bob computes his isogeny φ′B : EA → EBA = EA/〈φA(PB) +
[nB]φA(QB)〉. The curves EAB and EBA reside in the same isomorphism class,
so the j-invariant can be used as the shared secret.

The security of SIDH depends on whichever secret isogeny walk is easier to
compute. Alice performs an isogeny of degree `eAA and Bob performs an isogeny
of degree `eBB .Thus, assuming `eAA ≈ `eBB , the classical and quantum security of
SIDH is approximately O(4

√
p) and O(6

√
p), respectively.

2.3 Supersingular Isogeny Key Encapsulation

The SIKE protocol is an IND-CCA variant of SIDH. Since this is a key encap-
sulation mechanism, SIKE produces a random shared secret that is encrypted
and broadcast over an open channel. This was created by applying the Hofheinz,
Hövelmanns, and Kiltz transform [26] to the supersingular isogeny public-key
encryption scheme �rst proposed by Jao and De Feo [6]. This protocol consists
of three phases: generate keys, encapsulate key, and decapsulate key. Figure 1
shows the full SIKE protocol. Let F,G,H be hashing functions.

Similar to SIDH as described in the previous section, Alice and Bob �rst
agree on a prime p of the form `eAA `eBB ±1, where `A and `B are small primes and
eA and eB are positive integers. They then agree on a supersingular elliptic curve
E0(Fp2) and �nd torsion bases {PA, QA} and {PB , QB} that generate E0[`

eA
A]

and E0[`
eB
B], respectively. However, in contrast to SIDH, it is only Bob that

chooses a private key sB ∈ Z/`eBB Z. The security properties of SIKE allow Bob
to safely reuse any private keys.

To illustrate the SIKE protocol, let us assume that Alice and Bob want to
agree on a shared secret. Bob starts by choosing public parameters (similar to
SIDH) and broadcasts a public key with the key generation phase. For this step,
Bob computes the secret isogeny, φB : E0 → EB = E0/〈PB + [sB]QB〉. Bob
publishes his public key, pkB = {EB , φB(PA), φB(QA)}, and also computes a
hidden key of length k bits, s =R {0, 1}k.

Alice wants to engage in secure communications with Bob. Upon receiv-
ing Bob's public key, Alice performs key encapsulation by �rst generating a
random message of length k bits, m =R {0, 1}k. She �nds a secret scalar by
hashing the random message with Bob's public key, r = G(m, pkB). With this
secret scalar, Alice performs two secret isogenies, one over the public param-
eters, φA : E0 → EA = E0/〈PA + [r]QA〉 and another over Bob's public
key: φ′A : EB → EAB = EB/〈φB(PA) + [r]φB(QA)〉. Alice's public key is
pkA = {EA, φA(PB), φA(QB)}. Following the supersingular isogeny public-key
encryption, Alice hashes her secret curve's j-invariant, h = F (j(EAB)), and
XORs this with her random message, c = h ⊕ m. Alice then computes the
shared secret by hashing her random message with her public key and encrypted
j-invariant, ssA = H(m, pkA, c). Lastly, Alice broadcasts her ciphertext which is
her public key and encrypted j-invariant, ct = {pkA, c}.

To decapsulate the key, Bob decrypts the random message by computing his
secret isogeny walk over Alice's public key, φ′B : EA → EBA = EA/〈φA(PB) +
[sB]φA(QB)〉. Using this secret curve's j-invariant, Bob can recover the random
message, m′ = F (j(EBA))⊕ c. To ensure nothing went wrong with the key en-
capsulation, Bob performs the �rst step of encryption to check if the public keys
match. He recalculates Alice's secret scalar, r′ = G(m′,pkB) and recalculates
Alice's secret isogeny walk, φ′′A : E0 → E′A = E0/〈PA + [r′]QA〉. If the resulting
public key, pk′A = {E′A, φ′′A(PB), φ

′′
A(QB)}, matches Alice's public key then the

key encapsulation was performed correctly and Bob computes the shared secret,
ssB = H(m′, pkA, c). If for any reason the public key validation fails, Bob instead
uses his hidden key to compute an invalid shared secret, ssB = H(s,pkA, c).

The instantiated version of SIKE uses a similar set of public parameters as
SIDH. Notably, the SIKE round 1 speci�cation lists three sets of public param-
eters: SIKEp503, SIKEp751, and SIKEp964. These are intended to give a low,
medium, and high assurance of quantum security. The public primes are chosen
with `A = 2 and `B = 3 and the hash functions F,G,H are each cSHAKE256,
the customizable SHAKE function based on the Keccak sponge construction [28].
We summarize the security levels, key sizes, and ciphertext sizes in Table 1. In

Table 1. Summary of round 1 SIKE public parameters [14]. Each of the NIST security
levels are based on the di�culty to break existing cryptosystems proposed in [27]. For
instance, AES di�culty is based on exhaustive key search and SHA di�culty is based
on collision search. Note that SIKEp503= 22503159 − 1, SIKEp751= 23723239 − 1, and
SIKEp964= 24863301 − 1.

Curve: E0/Fp2 : y2 = x3 + x (All sizes in bytes).

Parameter Set
NIST Security Public Cipher Shared

Level Key Text Secret

SIKEp503 2 (SHA256) 378 402 16

SIKEp751 5 (AES256) 564 596 24

SIKEp964 >5 (AES256) 726 766 32

particular, we implement SIKEp503 and SIKEp751, for which the SIKE proposal
also provides optimized software implementations [14].

In the NIST PQC competition, each set of parameters is assigned a NIST se-
curity level. Each of the NIST security levels are based on the di�culty to break
existing cryptosystems on a scale from 1-5. NIST security level 1 represents the
di�culty to break AES128 with exhaustive key search and NIST level 2 repre-
sents the di�culty to break SHA256 by �nding a collision. This di�culty goes in
the order AES128, SHA256, AES192, SHA384, and AES256. Initially, the �rst
round SIKE submission used the security levels 1, 3, and 5 for schemes SIKEp503,
SIKEp751, and SIKEp964, respectively. More exploration of the problem revealed
that this estimate may have been too conservative. A recent paper by Adj et al.
[29] suggests that a 434-bit prime gives 128-bit classical security (NIST level 1)
and subsequent work by Jaques and Schanck [30] supported this proposition and
gave further insights into quantum attacks on SIDH/SIKE. Lastly, a new crypt-
analysis paper by Costello et al. [27] proposes that the parameter set SIKEp751
is su�cient for NIST security level 5 and provides metrics that SIKEp503 is
approximately NIST security level 2.

3 A Fast Isogeny Computation Accelerator

Here, we present our architecture to accelerate supersingular isogeny computa-
tions. Our methodology revolves around fast �nite �eld arithmetic units and
highly parallelized fast isogeny formula for a high performance implementation.

3.1 Fast Finite Field Arithmetic

At the lowest level of computations, elliptic curve and isogeny arithmetic is based
on operations over �nite �elds. Speci�cally, since we are working on various su-
persingular elliptic curves, we de�ne all arithmetic over the quadratic extension
�eld Fp2 . For isogeny-based computations, we are interested in �nite �eld addi-
tion, subtraction, multiplication, squaring, and inversion. At an even lower level,
we can build each of these operations from just addition and multiplication over

Dual-Port Register RAMPort A Port B

A +/- B

C -/+ 2p

2pC

 Dual

Mult

0

Dual

Mult

1

Dual

Mult

n-1
...

output

select
0 1 2n-1

P2n-2 P2n-1P2 P3P0 P1

Radix-k Montgomery Multiplier

start

A+/-B mod 2p ABR
-1

 mod 2p

A B

addrA addrBwrA wrB

m

m m

m

2n-22 3

Fig. 2. Proposed �eld arithmetic unit. This design centers on isolated �eld addition
(left side) and multiplication (right side) pipelines. In this work, we implement over
SIKEp503 and SIKEp751.

Fp. The �eld arithmetic unit is shown in Figure 2. The general idea is to have
two separate pipelines, one for �nite �eld addition and the other for �nite �eld
multiplication. At the top, we use a dual-port RAM block to hold the registers
to feed in operands.

Single-cycle addition/subtraction unit. Our addition/subtraction unit
implements the carry-compact addition scheme from [31]. By combining carry-
look ahead and parallel pre�x adders towards an FPGA target, we can greatly
reduce the critical path. The parameters in this scheme are L (length of carry
chain) and H (hierarchy level). For our target Virtex-7 and Ultrascale+ FPGAs
, we found that the values L = 39, H = 3 and L = 43, H = 3 produce the
fastest adders for SIKEp503 and SIKEp751, respectively. This addition scheme
allowed us to perform a full 751-bit addition or subtraction in a single cycle,
in contrast to 3 cycles in [22]. To perform Fp addition/subtraction, we cascade
two adder/subtractor units in our �addition� pipeline and take the correct result
modulo 2p. By separating the addition and conditional subtraction portions for
Fp addition, we isolate their computations rather than scheduling them on the
same adder unit. Thus, this results in faster modular additions and less demand
for resources from a scheduling point of view.

Similar to hardware architectures for elliptic curve cryptography, the critical
�eld arithmetic unit choice is the modular multiplier. A simple multiplication
between two Fp elements will produce an element that is twice as long as the
inputs, requiring a reduction. To perform modular multiplication e�ciently, we
compared various architectures for the well-known Montgomery multiplication
[32] algorithm. Montgomery multiplication is fast and e�cient because it con-
verts expensive division operations to shift operations, which are very cheap in
hardware. The only caveat to Montgomery multiplication is that both inputs
must be in the Montgomery domain, which requires a few extra multiplications

Table 2. Comparison of systolic Montgomery multiplier with varying radix sizes on a
Virtex-7 FPGA. Based on the multiplier from [21]. Increasing the radix size increases
the size of multiplications within a processing element (PE). A single DSP48E can
compute a 17x17 unsigned multiplication, two DSPs can compute a 24x24 unsigned
multiplication, and four DSPs can compute a 34x34 unsigned multiplication. Our se-
lected radix sizes are bolded.

Radix t #PEs #DSPs
Mult Freq Time
(cc) (MHz) (ns)

SIKEp503

16 32 64 100 207 483

17 30 60 94 198 475

22 23 92 73 169 432

23 22 88 70 171 409

24 21 84 67 167 401

34 15 120 49 105 467

SIKEp751

16 48 96 148 202 734

23 33 132 103 166 620

24 32 128 100 167 600

29 26 208 82 123 667

34 23 184 73 122 600

at the beginning and end of an algorithm. For isogeny-based operations, there
are many multiplication and addition operations, so this cost is negligible.

Higher radix and faster Montgomery multiplier. Our modular mul-
tiplier follows the interleaved systolic architecture from [22]. This multiplier's
systolic architecture utilizes many processing elements composed of two paral-
lel radix t-bit multiplications followed by four 2t-bit additions. Based on the
pipeline structure of this systolic architecture, two Montgomery multiplications
can be performed in parallel so long as they start on an �even� cycle and an �odd�
cycle, respectively. Furthermore, once the inputs are consumed in the pipeline,
we can interleave a new multiplication in the �even� or �odd� cycle slot. With a
strong choice of radix t, this scalable multiplier provides high-performance and
high throughput.

However, rather than use radix t = 16 for each processing element, we exper-
imented with various radices to �nd the best choice for performance, resulting
in performance gains in exchange for more DSPs.The t-bit multiplications were
optimized by using the FPGA's DSP48E1. A single DSP can compute a 17× 17
bit unsigned multiplication, but we can also combine multiple DSPs for larger
multiplications. In particular, two DSPs can compute a 24 × 24 bit unsigned
multiplication and four DSPs can compute a 34 × 34 bit unsigned multiplica-
tion. In general, the larger the radix t, the fewer number of processing elements
in the systolic architecture, resulting in smaller latencies. We focused our ef-
forts on �nding the sweet spot where latency and frequency produced the best
performance.

Table 3. Latency of arithmetic operations in our architecture. We compare our results
with that of Koziel et al. [22]. We note that although our operations generally require
fewer cycles that our operating frequency is lower. See the implementation results in
Section 6.2 for a full comparison.

Prime
Max Latency (cc) Latency (ns)
Freq. Fp Add

Fp Multiplication Fp Add
Fp Multiplication

(MHz) Mult. Interleave Mult. Interleave

SIDH Implementation by Koziel et al. [22]

SIKEp503 202.1 4 100 69 19.8 495 341

SIKEp751 203.7 6 148 101 29.5 727 496

Our SIKE implementation with the same primes

SIKEp503 171.2
2

70 49 11.7 409 286
SIKEp751 167.4 100 69 11.9 597 412

In our experiments shown in Table 2, we found that t = 23 and t = 24 were
optimal for SIKEp503 and SIKEp751 architectures, respectively. We note that
for SIKEp503, t = 23 is approximately the square root of 503. We chose t = 23
instead of t = 24 as our subsequent scheduling over those parameters found a
1% improvement in performance for the full SIKE protocol. For SIKEp751, there
was a sign�cant performance hit when moving from 2 DSPs per multiplication
to 4 DSPs per multiplication. However, for SIKEp964 or larger parameters, we
expect that 4 DSPs per processing unit will feature the greatest performance as
there will be a large enough reduction in latency to counteract the critical path
hit. We compare the latency of our �nite-�eld architectures with that of Koziel
et al. [22] in Table 3.

The main con�guration option for our architecture is how many replicated
multipliers to include. Our addition unit is fully pipelined so it can accept a new
modular addition or subtraction operation every cycle. However, our multiplier
is not fully pipelined and takes many more cycles. Based on the �nite �eld
scheduling methodology we discuss in the next section, we found the best balance
between area and timing results at 3 and 4 dual-multipliers for SIKEp503 and
SIKEp751, respectively.

3.2 Fast Parallelized Isogeny Formulas

Next comes the design of a controller that can e�ciently issue instructions to
the �eld arithmetic unit to perform the isogeny-related computations fast. To
achieve this, our controller reads from a program ROM to control our addition
and multiplication pipelines. We utilized a dual-port block RAM (BRAM) as
our register �le. This contains up to 256 registers for parallelized isogeny com-
putations.

Montgomery curve arithmetic. For SIKE and SIDH, the top-level isogeny
computations involve generating a secret kernel, R = P + [n]Q, (n is the private
key) and then performing a large-degree isogeny over that kernel, φ : E →

Algorithm 1 Right-to-left ladder to compute x(P + [k]Q) [17]. Note that addi-
tions indicate di�erential point addition.

Input: k, a v-bit scalar, x(P), x(Q), x(Q− P) ∈ E(Fq)
Output: x(P + [k]Q)
1. R0 = x(Q), R1 = x(P), R2 = x(Q− P)
2. for i in 0 to v − 1 do
3. if ki = 1, then
4. R1 = R0 +(R2) R1

5. else
6.R2 = R0 +(R1) R2

7. end if

8. R0 = [2]R0

9. end for

10. return R1 = x(P + [k]Q)

E/〈R〉. To perform these computations e�ciently, we utilize state-of-the-art for-
mulas over Montgomery curves [33]. Montgomery curves are well-known for their
extremely fast di�erential doubling and addition point arithmetic on the Mont-
gomery powering ladder where the y-coordinate is not needed.

Fast kernel generation. Previously, the best known algorithm for comput-
ing R = P + [n]Q was from Jao and De Feo [15] and required two di�erential
point additions and one point doubling per bit in n. However, a new algorithm
from Hernandez et al. [17] sped this up to roughly the same complexity as the
Montgomery ladder. This is shown in Algorithm 1. By performing a right-to-left
ladder, a step of the three-point di�erential ladder only requires one di�erential
point addition and one point doubling. Further, the SIKE instantiation speci�ed
public parameters where Q is de�ned over Fp, resulting in much cheaper Fp point
double operations for public key generation computations.

Fast inversion-free projective isogeny formulas. For isogeny-based com-
putations, the fast di�erential point arithmetic and absence of y-coordinate also
produce extremely fast isogeny formulas. The primary targets for optimization
have been for `A = 2 and `B = 3 since they scale well for exponentially large iso-
genies. We opted for the fast projective isogeny formulas for degree ` = 3, 4 from
Costello and Hisil [34]. Since the SIKE parameters have even eA, we can perform
base isogenies of degree 22 = 4 to reduce the number of isogeny computations. In
these formulas, a projective map between curves implies that an additional curve
coe�cient, C, is updated after each isogeny. This allows us to compute a large
number of isogenies in sequence and then compute an expensive inversion at the
end of a protocol operation, similar to how projective coordinates arithmetic
greatly sped up scalar point multiplications. To the best of our knowledge, this
is the �rst hardware implementation of isogeny-based cryptography that utilizes
these new and faster formulas.

Large-Degree Isogeny Computation. The most expensive computation
in SIKE and SIDH is the large-degree isogeny computation. Given some large-
isogeny of degree `e, we can chain together isogenies of degree ` by computing
isogenies over speci�c representations of the secret kernel point. For a base curve
E0 and kernel point R0 = R of order `e we compute e isogenies of degree ` as
follows:

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri) (1)

This computation can be represented as traversing an acyclic graph in the
shape of a triangle starting from the kernel point (R0) to each of the leaves
(`e−i−1Ri). To traverse this graph, moving left requires a point multiplication by
` and moving right requires an isogeny evaluation of degree `. Two simple strate-
gies to compute this are the multiplication-based and isogeny-based strategies
with complexity O(e2) [6]. A much more e�cient strategy comes from the in-
sight that an optimal strategy can be composed from two optimal sub-strategies
[15]. Thus, by comparing the cost of a point multiplication by ` and an isogeny
evaluation of degree `, we can �nd a traversal path of least cost to e�ciently
compute the large-degree isogeny with complexity O(e log e). This requires sav-
ing multiple pivot points, but the reduced complexity greatly brings the total
computation time of large-degree isogenies down. For this implementation, we
used optimal strategies found with the ratio 2:1, where a point multiplication
by ` is twice as expensive as an isogeny evaluation by `. By forcing the se-
rial point multiplications to be more expensive, we emhasize performing more
isogeny evaluations which can be e�ectively parallelized.

Isogeny evaluation loop unrolling. Similar to [22], we performed isogeny
computations (�nding a new mapping between curves) serially and isogeny eval-
uations (pushing a point through the new map) in parallel. By unrolling the
isogeny evaluation loop up to twelve times and balancing our resource utiliza-
tion, we can ensure close to maximum utilization of our memory and arithmetic
pipelines. The order in which we perform the unrolled operations is determined
by the availability of resources and data dependencies as determined by our
scheduler. With our many registers we can balance each of the computations
necessary in multiple isogeny evaluations to perform it much faster than a naive
serial implementation.

Greedy scheduler. To schedule these isogeny-related computation blocks,
we utilized an external scheduling script over our assembly code to generate
a program ROM. We utilized a greedy algorithm that would track available
resources each cycle. As soon as data dependencies were ful�lled and the mem-
ory and arithmetic pipelines were available we could schedule an instruction.
We simply unrolled all Fp2 arithmetic into basic Fp operations and allowed our
compiler to �t each instruction based on available resources. The order of our as-
sembly code dictated which instructions would have priority to our architecture's
resources.

Scheduling for all SIKE parameter sets. In this work, we primarily
optimized for one particular parameter set. Each of the isogeny formulas are

identical across the parameter sets. The multiplication and addition units are
generic and can be used across parameter sets so long as the controls are slightly
altered. Thus, by including a large multiplier/adder we can support each of the
smaller parameter sizes. To optimize the performance for these parameter sets,
we would include a scheduling block rather than a cycle-by-cycle program ROM.
This scheduling block would schedule resources on-the-�y, but would most likely
not be as optimized.

4 Upgrading an Isogeny Accelerator to a SIKE

Architecture

Here, we describe how we expand our isogeny accelerator to include all com-
ponents necessary for supersingular isogeny key encapsulation. The goal of this
architecture was to encapsulate all isogeny, hashing, and storage functionalities
needed to independently perform SIKE operations.

4.1 Proposed SIKE Architecture

To implement a SIKE architecture, we require a Keccak hash function and extra
registers to handle the encrypted message and hidden key. Thus, we now have
four di�erent object entities to interact with: isogeny register �le, secret scalars,
Keccak function, and message bu�er. To handle interactions between these en-
tities, we implemented an addressing mode for the input and output of each
entity, which is shown in Figure 3. This approach allowed us to move data in
chunks of 64 bits from each object entity to any object entity.

Keccak sponge function. Since our isogeny accelerator already performs
all necessary isogeny functions, the emphasis was on interfacing with our Keccak
block. For the Keccak implementation, we reused the high-performance module
provided by the Keccak team [28]. We modi�ed it, however, for cSHAKE256,
which required a rate of 1088 bits per permutation. Keccak �absorbs� data in
chunks of 1088 bits and then �squeezes� out data also 1088 bits at a time. For an
output of size d bits, cSHAKE256 provides a collision resistance of min(d2 , 256)
bits. Each value in Fp was 63 bytes and 94 bytes for SIKEp503 and SIKEp751,
respectively. This is an awkward divisor, so we decided to shift all values into
our Keccak input bu�er byte by byte. When the bu�er was full, an XOR with
the current state would trigger a new run of Keccak permutations.

We utilized two di�erent approaches to pushing data to our Keccak block:
(a) specifying a speci�c byte or (b) loading a 64-bit value from some other
module (i.e., from register �le or ciphertext) and sequentially shifting each byte.
Pushing speci�c bytes was necessary for customization strings and 64-bit values
were pushed to hash the public keys. The results from the Keccak block were
then pushed to their consumer, such as the secret scalar for key encapsulation
or secret hash to encrypt the random message.

Isogeny Accelerator

Isogeny Register File

256 registers

Secret Key

0

1

2

3

0

1

2

3

2:4 DEMUX 4:2 MUX

module_sel

2

output_sel

2

SIKE

Controller

0

1

input_sel

64 64

2:1 MUX

data_outdata_in
64

SIKE_cmd

Keccak-1088 Sponge

Function

Secret Buffer

Fig. 3. Proposed SIKE architecture. The architecture moves data in chunks of 64-bits
to facilitate each SIKE function. The four main components are isogeny register �le,
secret scalars, Keccak function, and message bu�er.

Secret bu�er. The secret bu�er was simply 3k registers where k = 192
or k = 256 bits for SIKEp503 and SIKEp751, respectively. We used one chunk
of k bits to hold Bob's hidden key if decapsulation failed and the other two
k-bit chunks to hold Alice's random message in plaintext and ciphertext form.
We converted between plaintext and ciphertext by XORing the �rst k-bit chunk
with the �rst k-bit chunk from our Keccak block, as is described in SIKE.

SIKE controller. On top of the isogeny accelerator, Keccak, and secret
message block, we implemented an additional controller. The primary purpose of
this controller is to drive data to the Keccak block and call the isogeny accelerator
functions with the correct inputs. Our SIKE control unit included a number
of simple functionalities such as reading multiple consecutive words to heavily
reduce the total number of instructions. For SIKEp503 and SIKEp751 we had
a program ROM of 163 and 167 instructions, respectively. This also included
support for producing invalid shared secrets on failed key decapsulations.

4.2 Additional Complexity for SIKE

To transform an isogeny accelerator to SIKE, we required a Keccak unit, secret
bu�er registers, and SIKE controller. If this accelerator interacted with a CPU
or device that already had a cSHAKE256 block, then this overhead would be
greatly reduced.

The largest of these additions is the Keccak hash function. Based on the
implementation from the Keccak team, our Keccak block required 1,600 registers

for the Keccak state, 1,088 registers for shifting in new data, and other logic
for the Keccak permutations. When synthesizing on a Virtex-7, we found no
problems running the Keccak block at 200 MHz after place and route, despite
performing a single Keccak permutation each clock cycle. The Keccak synthesis
required 3,826 LUTs and 2,703 �ip-�ops on a Xilinx FPGA. If the Keccak block
contained the critical path, 1,600 additional registers could be placed after the
ρ block, which is approximately half-way through a Keccak permutation.

For the SIKE controller, we �t all SIKE functionality with less than 170 32-
bit instructions, thus �tting well within a 1KB ROM block. Ignoring any isogeny
costs, key generation took 7 cycles, key encapsulation took 3,086 cycles, and key
decapsulation took 3,089 cycles for SIKEp503. Compared to around a million
cycles for isogeny computations, these costs are extremely small.

5 Side-Channel Considerations

Here, we propose the side-channel countermeasures that are included in our
implementation. Although the SIKE protocol claims IND-CCA security, a real-
world implementation of SIKE also emits various side-channels such as power,
timing, heat, and electromagnetic radiation. Clever abuses of these side-channels
have broken implementations of cryptosystems by recovering a user's private
keys. Fault [35], power analysis [36], and exposure [37] attacks have been pro-
posed in the context of isogenies. Luckily, many of the isogeny-based compu-
tations resemble elliptic curve computations, so the elliptic curve side-channel
literature can be leveraged for isogenies. In what follows, we discuss several com-
mon side-channel attacks and our implemented countermeasures.

5.1 Side-Channel Model

In isogeny-based schemes like SIDH and SIKE, the scheme is e�ectively broken
if

1. A party's private key n is recovered;
2. A party's secret kernel point R = P + nQ is recovered; or
3. A party's secret isogeny walk φ : E → E′ = E/〈R〉 is recovered.

Any combination of side-channels can be used to recover these pieces of infor-
mation.

In the SIKE protocol, there are three steps: key generation, key encapsu-
lation, and key decapsulation. In this protocol, Bob starts out by choosing a
private key and creates his own public key over a parameter set, which is done
only once and then broadcast over a public channel. From there, any party can
securely exchange keys with Bob by performing key encapsulation and sending
Bob the ciphertext. Upon receiving the ciphertext, Bob can perform key decap-
sulation so that both parties agree on the same shared secret. When considering
side-channels, a malicious party Eve can send a number of ciphertexts/public
keys to Bob and passively observe Bob's power or timing measurements.

Algorithm 2 Proposed and implemented isogeny di�erential power analysis
countermeasures for Bob's secret key operations in SIKE. By randomizing the
representations of our secret key k and public input points, our implementation
provides additional resistance against di�erential power analysis attacks. Note
that the double point multiplication scheme will not work if order(Q) = 2ea . In
Step 2, we represent points with projective Kummer coordinates where a point
P = (X : Z) and x(P) = X/Z.

Input: k, a v-bit scalar, x(P), x(Q), x(Q− P) ∈ E(Fp2)
Random inputs λ0, λ1, λ2 =R {0, 1}p, r =R {0, 1}64
Output: x(P + [k]Q)
1. k′ = k + r × order(Q)
2. R0 = (x(Q)× λ0 : λ0), R1 = (x(P)× λ1 : λ1),
R2 = (x(Q− P)× λ2 : λ2)
3. for i in 0 to v + 63 do
4. if k′i = 1, then
5. R1 = R0 +(R2) R1

6. else
7.R2 = R0 +(R1) R2

8. end if

9. R0 = [2]R0

10. end for

11. return R1 = x(P + [k′]Q) = x(P + [k]Q)

5.2 SPA and Timing Countermeasures

Variations in timing and power information can be used to pinpoint critical
pieces of secret values. For SIDH and SIKE implementations, it is typical to
iterate over each bit of the private key n to perform the three-point ladder. A
naive implementation may perform a step of this ladder di�erently if the current
iterator bit is '1' or '0'.

Our implementation performs the SIKE protocol in constant-time. A con-
stant set of operations are performed over SIKEp503 and SIKEp751, regardless
of the private keys. This implies that there will be a single timing signature from
running a SIKE operation, reducing the attack surface of a malicious observer.
Likewise, the power consumption signatures will also be extremely similar among
runs as the same set of operations will be performed regardless of secret keys,
providing an e�ective countermeasure against simple power analysis (SPA).

5.3 DPA Countermeasures

Di�erential power analysis (DPA), on the other hand, analyzes the power sig-
natures of many di�erent runs to �nd correlations in key bits and other secret
information [38]. In this case, Eve poses as di�erent identities and sends Bob
many di�erent public keys. By passively observing the power levels over many

di�erent runs, Eve can statistically determine bits of the private key n even if
the implementation is constant-time.

The primary countermeasure to DPA is to include some randomness in sen-
sitive operations so that key correlations are much more di�cult. In the SIKE
protocol, the only private key is generated by Bob. Bob only needs to generate
his public key once with his secret key, but he must also use this private key mul-
tiple times for each key decapsulation. In particular, we attempt to mask both
the double-point multiplication and large-degree isogeny in Bob's key generation
and decapsulation steps.

Since all arithmetic is de�ned over Fp2 , we can create a random representa-
tion of the secret kernel point (in projective form) which will then help random-
ize the power consumption over secret isogeny walk computations. For elliptic
curve scalar multiplication, Coron et al. [39] proposed blinding the private scalar,
blinding the base point, and randomly projectivizing the base points as e�ective
countermeasures for DPA attacks. Blinding the base point is not realistic since
we are working with Montgomery di�erential point arithmetic, but we consider
the other two further in the context of SIKE.

Scalar randomization. To generate the secret kernel in isogeny-related
computations, we perform the double-point multiplication R = P +nQ, where n
is the secret scalar. Interestingly, since points on an elliptic curve form an abelian
group under addition, there are multiple possibilities for n that will still produce
the same result. The general goal of scalar randomization is to blind the scalar n
by adding some random multiple, r, of the curve of Q, i.e., n′ = n+ r · order(Q).
For SIKE, the order of a valid Q changes based on if we are performing an
isogeny over `A = 2 over `B = 3. For the former, the order of Q is 2eA . The latter
will have order 3eB . Unfortunately, our choice of double-point multiplication in
Algorithm 1 will not work with scalar randomization for 2eA . Notice that point
Q has order 2eA and we double this point at each step of the ladder. Thus, for
keys that are larger than 2eA , Q will be the point at in�nity which will break the
laddering algorithm. Luckily, the SIKE speci�cation uses Bob's private keys over
points of order 3eB and we can utilize this countermeasure. One more note is
that the order 3eB does not have a simple representation, so random multiples of
this order will not produce a large bias [40]. For Bob's decapsulation, we utilized
scalar randomization with a random 64-bit scalar.

Projective point randomization. Another countermeasure is to randomly
generate a di�erent representation of the base point. For a base point P = (x, y),
we can perform a projective point randomization by �nding a random λ 6= 0 and
scaling P = (λx, λy, λ). For isogeny-based computations, we have three input
points: P,Q,Q− P . Thus, to be conservative, we scale each point by a random
scalar. We generate three random scalars, λ0, λ1, λ2 ∈ Fp, and λ0, λ1, λ2 6= 0
and randomly project P,Q,Q−P , respectively. With our choice of double-point
multiplication, this scaling does not a�ect the complexity of kernel generation
as the cost of each ladder step remains the same. The main cost is generating
three random numbers in Fp.

In total, we require 1,573 and 2,317 bits of randomness for private key oper-
ations used by Bob in SIKEp503 and SIKEp751, respectively. We illustrate the
use of these two countermeasures in Algorithm 2. We note that our architecture
does not include a TRNG to generate these random bits. Our architecture ex-
pects this randomness to be initialized in the SIKE register �le before SIKE key
generation or SIKE key decapsulation as these operations will use Bob's private
key. One such FPGA TRNG in the literature [41] operates over �ip-�op meta-
stability to pass the NIST statistical test suite with only 128 LUTs, 10 FFs, and
2 block ROMs.

5.4 Fault Attacks

Malicious third-parties can also perform active attacks to divulge key information
from an implementation. This can be done by sending invalid public information
or forcing the device into an error state with a laser. In the SIDH/SIKE setting,
a malicious third party can send malicious public keys or force an accelerator to
fail, potentially revealing critical internal information.

Based on the SIKE protocol, any active attack that attempts to disrupt
Bob's key decapsulation is almost certain to cause a failed key decapsulation
as there is an integrity check to check that the other party's public key was
honestly generated. In this case, Bob will know that the key exchange failed and
act accordingly. The primary fault attack that we choose to protect against is
the loop-abort fault proposed in [35]. This loop-abort attack reveals portions of
Bob's secret isogeny walk by forcing Bob to prematurely end the large-degree
isogeny walk. If Bob unknowingly uses the shared secret after loop-aborting,
then Bob unknowingly reveals a portion of his secret isogeny walk.

Since the large-degree isogeny is an iterative computation, a loop counter
keeps track of how many isogenies have been computed. This loop-abort attack
faults the loop counter so that the isogeny computation ends prematurely, and
a partial isogeny walk public key is handed out. Again, this attack will produce
a failed decapsulation and be protected, but the countermeasure is to include
redundant loop counters to make the attack signi�cantly harder. Such a coun-
termeasure is very cheap in hardware gates, so this was implemented.

6 SIKE on FPGA Results

In this section, we describe our SIKE implementation results on a Virtex-7 FPGA
and Kintex UltraScale+ FPGA. We synthesized the SIKE core with Xilinx Vi-
vado 2015.4 to a Xilinx Virtex-7 xc7vx690t�g1157-3 device and Xilinx Vivado
2018.2 to a Xilinx Kintex UltraScale+ xcku13p-�ve900-3-e. All results were ob-
tained after place-and-route.

Our accelerator interacts with a host as is shown in Figure 4. The host ini-
tializes any isogeny inputs (values x(Q), x(Q − P), x(P),key k) as well as any
randomness inputs (λ0, λ1, λ2) which are directly accessible from the SIKE mul-
tiplexer selects when the SIKE accelerator is not running. We veri�ed our ar-
chitecture by using the Known Answer Tests (KATs) from the SIKE submission

Host CPU

TRNG

SIKE Accelerator

Isogeny

Acclerator

Keccak-

1088

Isogeny

Controller

Program ROM

data_in

data_out

SIKE_cmd

SIKE mux selects

64

64

3

32

Register

File

Fig. 4. Proposed SIKE input/output architecture. The host initializes certain registers
in the register �le before initiating an operation. Once a SIKE command is sent from
the host, the SIKE accelerator will perform the entire operation to completion. In order
to provide di�erential power analysis countermeasures, the host must initialize speci�c
SIKE registers with some aspect of randomness.

Table 4. Area results of SIKE architectures on targeted FPGAs. Note that slices are
utilized on Virtex-7 platforms and CLBs are utilized on UltraScale+ platforms. FPGA
resource utilization appears on the second row for an implementation.

Prime
Area

#
Mults. FFs LUTs Slices DSPs BRAMs

Xilinx Virtex-7

SIKEp503 6
26,971 25,094 9,514 264 34
3.11% 5.79% 8.78% 7.33% 2.31%

SIKEp751 8
50,390 45,893 17,530 512 43.5
5.82% 10.59% 16.19% 14.22% 2.96%

Kintex UltraScale+

SIKEp503 6
27,122 25,041 4,461 264 34
3.97% 7.34% 10.35% 7.48% 4.57%

SIKEp751 8
49,016 39,810 7,541 512 43.5
7.18% 11.66% 17.68% 14.51% 5.85%

team [14]. Speci�cally, our testbench acted as the host CPU, initialized the in-
put registers, ran a command, and checked that the public key, ciphertext, and
shared secret matched the KAT speci�cations.

6.1 Implementation Results

Our area results are shown in Table 4 and our timing results are shown in
Tables 5 and 6. To achieve a high performance with a reasonable amount of
resources, we targeted 6 and 8 multipliers in our arithmetic unit (3 and 4 dual-
multipliers, respectively). More multipliers means that more multiplications can
be performed in parallel, but at diminishing returns as data dependencies be-
come the bottleneck. We chose 6 multipliers for SIKEp503 and 8 multipliers for
SIKEp751 as our best balance point between performance and area. As our tim-

Table 5. Timing results of SIKE architectures on targeted FPGAs. Note that SIKE
total time includes key encapsulation and decapsulation.

Prime
Time

Freq. Latency Total
SIKE/s

Mults. (MHz) (cc× 106) time (ms)

Xilinx Virtex-7

SIKEp503 6 171.2 2.33 13.6 73.5

SIKEp751 8 167.4 4.51 26.9 37.1

Kintex UltraScale+

SIKEp503 6 288.0 2.33 8.1 123.5

SIKEp751 8 289.3 4.51 15.6 64.1

Table 6. Latency of SIKE operations on our SIKE accelerator. Note that the latency
is identical for Virtex-7 and Kintex UltraScale+. Table 5 contains the corresponding
FPGA frequencies.

Latency (cc× 106)

Scheme KeyGen Encaps Decaps total(Encaps + Decaps)

SIKEp503 0.64 1.12 1.21 2.33

SIKEp751 1.24 2.17 2.33 4.51

ing results indicate, we only require a few million cycles for the SIKE scheme. For
our SIKEp751 Virtex-7 and Ultrascale+ results, the DSP was the most utilized
resource at 14.5%.

When analyzing the scaling of our architecture, the area and timing results
appear to scale quadratically with the prime size. Moving from SIKEp503 with 6
multipliers to SIKEp751 with 8 multipliers (approximately 1.5 times larger public
parameters) almost doubles all resources except for BRAMs. This area scaling
can primarily be attributed to the quadratic area scaling of the Montgomery
multiplier. Likewise, the latency increase can be derived from the superlinear
latency scaling of the Montgomery multiplier (O(m logm), where m = log2p)
as well as the superlinear scaling of the large-degree isogeny (O(e loge)). In
extrapolating these results, we expect the total time of public parameters of 434
bits (which [27] estimates is NIST security level 1) to be around 10 ms and 6
ms for our Virtex-7 and Kintex UltraScale+ implementations, respectively, by
using the ratio (434503)

2 ≈ 0.75.

In Table 7, we include a breakdown of the area consumption of our major
components for our SIKEp503 implementation with 3 dual-multipliers (6 total
multipliers). As can be seen, the �eld arithmetic unit consumes about 81% of
total �ip-�ops and 65% of total LUTs. This is to be expected as there are multi-
ple large multipliers that accelerate the many needed �nite-�eld multiplications.
The Keccak-1088 block was added to support fast hashing for SIKE and con-
sumed about 10% of total �ip-�ops and 15% of total LUTs. In terms of memory

Table 7. Area breakdown of major components in our SIKEp503 implementation. The
critical path of this implementation is the multiplier.

Component #FFs #LUTs #DSPs #BRAMS

Field Arithmetic Unit 21,779 16,777 264 0

Dual-Multiplier 5,752 2,952 88 0

Adder/Subtractor 1,520 2,453 0 0

Keccak-1088 2,703 3,826 0 0

Isogeny Program ROM 0 0 0 18

Register File 0 0 0 14.5

Total 26,971 25,893 264 34

Table 8. Area comparison of isogeny architectures on a Virtex-7 at approximately
NIST security level 5 (SIKEp751). Our implementation includes DPA countermeasures.

Work Scheme
#
FFs LUTs Slices DSPs BRAMs

[18] SIDH 46,857 32,726 15,224 376 45.5

[22] SIDH 48,688 34,742 14,447 384 58.5

[14] SIKE 51,914 44,822 16,756 376 56.5

This work SIKE 50,390 45,893 17,530 512 43.5

elements, the isogeny program ROM and register �le consumed about 96% of
total block RAM units.

We chose to include the Kintex UltraScale+ results as a way to showcase
progress in FPGA products for our architecture. The Virtex-7 family was re-
leased in 2010 and the Kintex Ultrascale+ family �rst appeared in 2016 as Xil-
inx's mid-range family. Despite being a mid-range family, our SIKE implemen-
tation is approximately 70% faster in the Kintex UltraScale+ FPGA.

In our latency results shown in Table 6, the SIKE total latency is simply the
sum of the key encapsulation and decapsulation operations. This is consistent
with the methodology in the SIKE proposal [14]. Generally, for a set of SIKE
parameters, Bob needs to only generate a public key once. Any parties that want
to exchange secrets with Bob can transmit their encapsulated keys and Bob can
decapsulate them with his private key.

6.2 Comparison to Other Isogeny Works

In Tables 8 and 9, we compare our architecture results to the previous state-
of-the-art on the Virtex-7 FPGA [22,18] as well as the SIKE submission [14].
Each of these works target high-performance FPGA architectures. We note that
the SIKE submission hardware implementation [14] is similar to the Koziel et al.
[22] SIDH implementation, but includes the additional Keccak hash function and
registers. Our architecture achieves about 20% faster results with a better area-
time product by optimizing �nite �eld addition and multiplication, simplifying
the �eld arithmetic unit architecture, and incorporating faster elliptic curve and

Table 9. Timing comparison of isogeny architectures on a Virtex-7 at approximately
NIST security level 5 (SIKEp751). Our implementation includes DPA countermeasures.
Note that SIKE total time includes key encapsulation and decapsulation. The Area-
Time (AT) product is included based on the number of slices and protocol time for
each implementation.

Work Scheme
Freq. Cycles Total Time AT Product
(MHz) (cc× 106) (ms) (#Slices×s)

[18] SIDH 182.1 7.74 42.5 647

[22] SIDH 203.7 6.86 33.7 487

[14] SIKE 198 6.60 33.4 560

This work SIKE 167.4 4.51 26.9 472

Table 10. Hardware comparison of Round 1 PQC submissions that have moved on to
Round 2. BIKE measures total time with key generation and encapsulation. All others
measure total time with key encapsulation and decapsulation. BIKE is on an Artix-7
FPGA and all other implementations are on a Virtex-7 FPGA

PQC Submission
NIST Public Area Total

Security Key Size # # # Time
Level (Bytes) FFs LUTs Slices (ms)

BIKE1 [42] 1 2,541 - - 1,559 10.2

McEliece2 [43] 5 1,044,992 111,299 66,615 - 1.43

SIKEp751 [14] 5 564 51,914 44,822 16,756 33.4

SIKEp503 (this work) 2 378 26,971 25,893 9,514 13.6

SIKEp751 (this work) 5 564 50,390 45,893 17,530 26.9

1. BIKE-1 (CPA security) with 2 optimization levels + hash

2. mceliece6688128 with area and time balanced

3. Key generation takes about 120 ms

isogeny formulas. Since we implemented SIKE, we also included timing attack,
di�erential power analysis, and fault attack countermeasures.

At face value, the architecture presented in this work utilizes a similar amount
of resources as the SIKE submission [14] (as large multipliers dominate the area),
but features a lower latency, resulting in 19.5% faster computation times despite
the lower maximum frequency. In terms of area, this work requires about 36%
more DSPs, but also requires 23% fewer block RAMs. We emphasize that these
are all a result of our design choices. By performing a higher radix Montgomery
multiplication, we can perform a modular multiplication with less latency for
a small hit to the frequency. Our simpli�cation of the �nite �eld arithmetic
unit to a single Fp addition and Fp multiplication pipeline simpli�es the greedy
scheduling algorithm as there are only two simple operations that also reduces
the number of memory calls (rather than addition, subtraction, reduction, etc.
over a single adder as is the case in [14,22]). Simpler scheduling brings the 23%
reduction of RAM. Lastly, we emphasize that our implementation includes two
di�erent di�erential power analysis countermeasures.

When comparing the area results of the implementations in [14] and [22],
we note that the number of �ip-�ops increased by about 6.6% and the number
of LUTs increased by 29%. We can attribute this uptick in LUTs primarily the
Keccak and multiplexer interface created by converting SIDH to SIKE, as this
is a great amount of combinatorial logic.

6.3 Comparison to Other NIST Round 2 Candidates

Since SIKE is a Round 2 candidate in NIST's post-quantum standardization
process, we compare our hardware results with the results of other candidates
in Table 10. Unfortunately, the majority of Round 2 candidates do not include a
hardware implementation. We included hardware results for the BIKE [42] and
Classic McEliece [43] schemes, both based on code-based cryptography.

Table 10 only gives a rough estimate of hardware complexity for these quantum-
resistant schemes. Di�erent foundational problems, design rationales, FPGA
platforms, and target NIST security level make a fair comparison among these
hardware architectures di�cult. The performance of isogeny-based key encap-
sulation and decapsulation operations are a few times slower than the BIKE
schemes with several times more area (disregarding the di�erence in FPGA plat-
forms). Classic McEliece is much faster for encapsulation and decapsulation, but
the key generation takes about 120 ms, public keys are over a MB, and much
more FPGA area is consumed. Although no FPGA results were included in any
lattice-based schemes, it is expected that the performance and area will be an
order of magnitude better than SIKE.

SIKE's primary advantage is that it has the smallest public keys, which
we highlight in Table 10. Considering that currently deployed public keys are 32
bytes for X25519, any of these quantum schemes will raise the bar for establishing
secure communications on the internet. Minimizing public key sizes are critical
for reducing transmission and storage requirements. There is no clear winner
among any of the NIST PQC candidates, but having signi�cantly smaller public
keys while still having competitive performance are compelling arguments for
the SIKE scheme.

7 Conclusion

In this work, we presented a fast and secure implementation of the SIKE pro-
tocol. Our design choices push isogeny-based computations 20% faster than the
previous fastest FPGA results. We implemented fast isogeny arithmetic over
Montgomery curves and optimized our controller for fast isogeny formulas. Our
SIKE architecture features a Keccak-centered methodology to perform key en-
capsulation and decapsulation. Our constant-time implementation utilizes DPA
countermeasures to help protect static keys. The SIKE protocol is an IND-CCA
key encapsulation mechanism featuring the smallest keys in the NIST post-
quantum standardization project. This work continues to push the total time of

isogeny-based computations lower in hopes that it will be standardized in the
future.

Our future works focus on further characterization of the performance and
security of this architecture. Depending on the results of the �rst round of NIST's
standardization project, the public parameters of SIKE may be revised. In partic-
ular, if the security analysis of Adj et al. [29] and Costello et al. [27] holds, then
434-bit primes would provide NIST level 1 security (AES128). Such a change
would further reduce the area and timing results of our architecture (751-bit
prime down to 434-bit prime). After that, designing, implementing, and testing
our device over ASIC devices is a next step. With DPA equipment at hand, our
goal is to evaluate the leakage of naive and countermeasure-included versions
of our architecture. Comparing such results to past elliptic curve cryptogra-
phy implementations serves to give con�dence in the leakage of isogeny-based
cryptography. Lastly, we plan to apply our architecture to CSIDH [44], which
utilizes a variant of the supersingular isogeny problem for smaller keys at the
cost of longer latency.

References

1. P. W. Shor, �Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring,� in 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), 1994, pp. 124�134.

2. J.-M. Couveignes, �Hard Homogeneous Spaces,� Cryptology ePrint Archive, Report
2006/291, 2006.

3. A. Rostovtsev and A. Stolbunov, �Public-Key Cryptosystem Based on Isogenies,�
Cryptology ePrint Archive, Report 2006/145, 2006.

4. D. X. Charles, K. E. Lauter, and E. Z. Goren, �Cryptographic Hash Functions from
Expander Graphs,� Journal of Cryptology, vol. 22, no. 1, pp. 93�113, Jan 2009.

5. A. M. Childs, D. Jao, and V. Soukharev, �Constructing Elliptic Curve Isogenies
in Quantum Subexponential Time,� Journal of Mathematical Cryptology, vol. 8,
no. 1, pp. 1�29, 2014.

6. D. Jao and L. De Feo, �Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies,� in Post-Quantum Cryptography: 4th International
Workshop, PQCrypto 2011, 2011, pp. 19�34.

7. Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, �A Post-quantum
Digital Signature Scheme Based on Supersingular Isogenies,� in Financial Cryptog-
raphy and Data Security: 21st International Conference, FC 2017. Cham: Springer
International Publishing, 2017, pp. 163�181.

8. S. D. Galbraith, C. Petit, and J. Silva, �Identi�cation Protocols and Signature
Schemes Based on Supersingular Isogeny Problems,� in Advances in Cryptology �
ASIACRYPT 2017, Cham, 2017, pp. 3�33.

9. D. Jao and V. Soukharev, �Isogeny-Based Quantum-Resistant Undeniable Sig-
natures,� in Post-Quantum Cryptography: 6th International Workshop, PQCrypto
2014, 2014, pp. 160�179.

10. L. Chen, S. P. Jordan, Y.-K. Liu, D. Moody, R. C. Peralta, R. A. Perlner, and
D. Smith-Tone, �Report on Post-Quantum Cryptography,� 2016, NIST IR 8105.

11. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, �Key Compression
for Isogeny-Based Cryptosystems,� in Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, 2016, pp. 1�10.

12. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik, �E�cient
Compression of SIDH Public Keys,� in Advances in Cryptology � EUROCRYPT
2017: 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2017, pp. 679�706.

13. S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, �On the Security of Supersingular
Isogeny Cryptosystems,� in Advances in Cryptology - ASIACRYPT 2016, 2016, pp.
63�91.

14. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev,
and D. Urbanik, �Supersingular Isogeny Key Encapsulation,� Submission to
the NIST Post-Quantum Standardization Project, 2017. [Online]. Available:
https://sike.org/

15. L. De Feo, D. Jao, and J. Plût, �Towards Quantum-Resistant Cryptosystems from
Supersingular Elliptic Curve Isogenies,� Journal of Mathematical Cryptology, vol. 8,
no. 3, pp. 209�247, Sep. 2014.

16. C. Costello, P. Longa, and M. Naehrig, �E�cient Algorithms for Supersingular
Isogeny Di�e-Hellman,� in Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, 2016, pp. 572�601.

17. A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodríguez-Henríquez, �A
Faster Software Implementation of the Supersingular Isogeny Di�e-Hellman Key
Exchange Protocol,� IEEE Transactions on Computers, vol. 67, no. 11, pp. 1622�
1636, Nov 2018.

18. B. Koziel, R. Azarderakhsh, and M. Moza�ari-Kermani, �Fast Hardware Archi-
tectures for Supersingular Isogeny Di�e-Hellman Key Exchange on FPGA,� in
Progress in Cryptology � INDOCRYPT 2016: 17th International Conference on
Cryptology in India, 2016, pp. 191�206.

19. B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and M. Moza�ari-Kermani, �NEON-
SIDH: E�cient Implementation of Supersingular Isogeny Di�e-Hellman Key Ex-
change Protocol on ARM,� in Cryptology and Network Security: 15th International
Conference, CANS 2016, 2016, pp. 88�103.

20. A. Jalali, R. Azarderakhsh, and M. Moza�ari-Kermani, �E�cient Post-Quantum
Undeniable Signature on 64-Bit ARM,� in Selected Areas in Cryptography � SAC
2017, 24th International Conference, 2018, pp. 281�298.

21. B. Koziel, R. Azarderakhsh, M. Moza�ari-Kermani, and D. Jao, �Post-Quantum
Cryptography on FPGA Based on Isogenies on Elliptic Curves,� IEEE Transac-
tions on Circuits and Systems I: Regular Papers, vol. 64, no. 1, pp. 86�99, Jan
2017.

22. B. Koziel, R. Azarderakhsh, and M. Moza�ari-Kermani, �A High-Performance and
Scalable Hardware Architecture for Isogeny-Based Cryptography,� IEEE Transac-
tions on Computers, vol. 67, no. 11, pp. 1594�1609, Nov 2018.

23. L. D. Feo, �Mathematics of Isogeny Based Cryptography,� CoRR, vol.
abs/1711.04062, 2017. [Online]. Available: http://arxiv.org/abs/1711.04062

24. J. H. Silverman, The Arithmetic of Elliptic Curves, ser. GTM. New York: Springer,
1992, vol. 106.

25. J. Vélu, �Isogénies Entre Courbes Elliptiques,� Comptes Rendus de l'Académie des
Sciences Paris Séries A-B, vol. 273, pp. A238�A241, 1971.

26. D. Hofheinz, K. Hövelmanns, and E. Kiltz, �A Modular Analysis of the Fujisaki-
Okamoto Transformation,� in Theory of Cryptography, 2017, pp. 341�371.

27. C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia, �Improved classical
cryptanalysis of the computational supersingular isogeny problem,� Cryptology
ePrint Archive, Report 2019/298, https://eprint.iacr.org/2019/298.

28. G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V.
Keer. (2012, May) Keccak Implementation Overview. [Online]. Available:
https://keccak.team/�les/Keccak-implementation-3.2.pdf

29. G. Adj, D. Cervantes-Vázquez, J. Chi-Domínguez, A. Menezes, and F. Rodríguez-
Henríquez, �On the Cost of Computing Isogenies Between Supersingular Elliptic
Curves,� Cryptology ePrint Archive, Report 2018/313, 2018. [Online]. Available:
https://eprint.iacr.org/2018/313

30. S. Jaques and J. M. Schanck, �Quantum cryptanalysis in the ram model:
Claw-�nding attacks on sike,� Cryptology ePrint Archive, Report 2019/103,
https://eprint.iacr.org/2019/103.

31. T. B. Preuÿer, M. Zabel, and R. G. Spallek, �Accelerating Computations on FPGA
Carry Chains by Operand Compaction,� in 2011 IEEE 20th Symposium on Com-
puter Arithmetic, July 2011, pp. 95�102.

32. P. L. Montgomery, �Modular Multiplication without Trial Division,� Mathematics
of Computation, vol. 44, no. 170, pp. 519�521, 1985.

33. ��, �Speeding the Pollard and Elliptic Curve Methods of Factorization,� Math-
ematics of Computation, pp. 243�264, 1987.

34. C. Costello and H. Hisil, �A Simple and Compact Algorithm for SIDH with Ar-
bitrary Degree Isogenies,� in Advances in Cryptology � ASIACRYPT 2017 - 23rd
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, 2017, pp. 303�329.

35. A. Gélin and B. Wesolowski, �Loop-Abort Faults on Supersingular Isogeny
Cryptosystems,� in Post-Quantum Cryptography : 8th International Workshop,
PQCrypto 2017, 2017, pp. 93�106.

36. B. Koziel, R. Azarderakhsh, and D. Jao, �Side-Channel Attacks on Quantum-
Resistant Supersingular Isogeny Di�e-Hellman,� in Selected Areas in Cryptography
� SAC 2017, 24th International Conference, 2018, pp. 64�81.

37. ��, �An Exposure Model for Supersingular Isogeny Di�e-Hellman Key
Exchange,� in Topics in Cryptology - CT-RSA 2018 - The Cryptographers'
Track at the RSA Conference 2018, 2018, pp. 452�469. [Online]. Available:
https://doi.org/10.1007/978-3-319-76953-0_24

38. P. Kocher, J. Ja�e, and B. Jun, �Di�erential Power Analysis,� in Advances in
Cryptology � CRYPTO' 99, 1999, pp. 388�397.

39. J.-S. Coron, �Resistance Against Di�erential Power Analysis For Elliptic Curve
Cryptosystems,� in Cryptographic Hardware and Embedded Systems: First Inter-
national Workshop, 1999, pp. 292�302.

40. K. Okeya and K. Sakurai, �Power Analysis Breaks Elliptic Curve Cryptosys-
tems Even Secure against the Timing Attack,� in Progress in Cryptology �
INDOCRYPT 2000, 2000, pp. 178�190.

41. M. Majzoobi, F. Koushanfar, and S. Devadas, �FPGA-Based True Random Num-
ber Generation Using Circuit Metastability with Adaptive Feedback Control,� in
Cryptographic Hardware and Embedded Systems � CHES 2011, 2011, pp. 17�32.

42. N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Gueron, T. Güneysu, C. A. Melchor, R. Misoczki,
E. Persichetti, N. Sendrier, J.-P. Tillich, V. Vasseur, and G. Zémor, �Bit Flipping
Key Encapsulation,� Submission to the NIST Post-Quantum Standardization
Project, 2017. [Online]. Available: https://bikesuite.org/

43. D. J. Bernstein, T. Chou, T. Lange, I. v. Maurich, R. Misoczki, R. Niederhagen,
E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W. Wang,
�Classic McEliece: conservative code-based cryptography,� Submission to

the NIST Post-Quantum Standardization Project, 2017. [Online]. Available:
https://classic.mceliece.org/

44. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, �CSIDH: An Ef-
�cient Post-Quantum Commutative Group Action,� Cryptology ePrint Archive,
Report 2018/383, 2018.

