
Noname manuscript No.
(will be inserted by the editor)

Generalized Related-Key Rectangle Attacks on Block Ciphers with
Linear Key Schedule

Applications to SKINNY and GIFT

Boxin Zhao · Xiaoyang Dong · Willi Meier ·
Keting Jia · Gaoli Wang

Received: date / Accepted: date

Abstract This paper gives a new generalized key-recovery model of related-key rectangle attacks on block
ciphers with linear key schedules. The model is quite optimized and applicable to various block ciphers with
linear key schedule. As a proof of work, we apply the new model to two very important block ciphers, i.e.
SKINNY and GIFT, which are basic modules of many candidates of the Lightweight Cryptography (LWC)
standardization project by NIST.

For SKINNY, we reduce the complexity of the best previous 27-round related-tweakey rectangle attack
on SKINNY-128-384 from 2331 to 2294. In addition, the first 28-round related-tweakey rectangle attack
on SKINNY-128-384 is given, which gains one more round than before. For the candidate LWC SKINNY
AEAD M1, we conduct a 24-round related-tweakey rectangle attack with a time complexity of 2123 and a
data complexity of 2123 chosen plaintexts. For the case of GIFT-64, we give the first 24-round related-key
rectangle attack with a time complexity 291.58, while the best previous attack on GIFT-64 only reaches 23
rounds at most.

Keywords MSC (2000): 94A60; Key Recovery, Rectangle Attack, SKINNY, SKINNY AEAD, GIFT,
Related-Key

Mathematics Subject Classification (2000) 94A60

1 Introduction

The boomerang attack [46], proposed by Wagner, is a variant of differential cryptanalysis [17]. It combines
two short differentials with high probabilities to get a long distinguisher. Refinements on the boomerang
attack have been published, namely, the amplified boomerang attack [31], and thereafter the rectangle
attack [7]. At ASIACRYPT 2009, Biryukov et al. [13] introduced the concept of boomerang switch to further
increase the probability of the boomerang distinguisher. Another improvement was made by Dunkelman
et al. [23], which is called sandwich attack. At Eurocrypt 2018, Cid et al. [20] proposed a novel technique
named Boomerang connectivity table (BCT), which solved the problem of incompatibility in boomerang
distinguishers noted by Murphy [36]. Later, the BCT effect in multiple rounds of boomerang switch was
studied by Wang and Peyrin [47] and Song et al. [42].

Boomerang and rectangle attacks in a related-key setting [9] are quite powerful, which break various
important block ciphers, including the key-recovery attacks on KASUMI [10, 23] and AES [13]. Recently,
many (tweakable) block ciphers adopt linear key schedules, such as MANTIS [11], LED [25], MIDORI [4],
GIFT [16], Simon [18], CRAFT [15], and the popular TWEAKEY [29] framwork based ciphers, including
SKINNY [11], Deoxys-BC [30], QARMA [3], and Joltik-BC [29]. Notably, in the CAESAR competition [21]
for secure authenticated encryption, Deoxys-II [30], which is based on Deoxys-BC, has been selected as one
of the winners.

Boxin Zhao is with Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of
Mathematics, Shandong University, Jinan 250100, China. E-mail: boxinzhao@mail.sdu.edu.cn
Xiaoyang Dong is with Institute for Advanced Study, Tsinghua University, Beijing 100084, China.
E-mail: xiaoyangdong@tsinghua.edu.cn
Willi Meier is with FHNW, Institute ISE, Windisch, Aargau Switzerland. E-mail: willi.meier@fhnw.ch
Keting Jia is with Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.
E-mail: ktjia@tsinghua.edu.cn
Gaoli Wang is with Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai 200062, China.
E-mail: glwang@sei.ecnu.edu.cn
Xiaoyang Dong is the corresponding author.



2 Boxin Zhao et al.

With the significant spread of the Internet of Things (IoT) in recent years, lightweight cryptography is
urgently needed in numerous devices with little computing power. Therefore, NIST launched the Lightweight
Cryptography (LWC) standardization project [37] to select lightweight authenticated encryption with as-
sociated data (AEAD) and hashing function. In 2019, about 56 candidates were included in the Round
1 of the project [37]. Among the candidates, many are based on block ciphers with linear key schedule
to become lightweight, such as SKINNY-AEAD and SKINNY-Hash [12], SUNDAE-GIFT [5], TGIF [26],
GIFT-COFB [6], Remus [27], Romulus [28] and Saturnin [19], etc. The study of boomerang and rectangle
attacks on block ciphers with linear key schedule becomes relevant. At ToSC 2017, Liu et al. [33] intro-
duced a generalized key-recovery model for the related-key rectangle attack on block ciphers with linear
key schedule. Then, they applied their model to the attacks on reduced-round SKINNY [11].

Our Contributions.
In this paper, we find that Liu et al.’s model [33] can be significantly improved in the phase of generating

quartets. Therefore, we construct a new key-recovery model for the related-key rectangle attacks on block
ciphers with linear key schedules. In order to show the effectiveness of model, we apply it to the two
important block ciphers, i.e. SKINNY [11] and GIFT [16]. Note that, in the LWC standardization project
by NIST [37], many candidates such as SKINNY-AEAD and SKINNY-Hash [12], SUNDAE-GIFT [5],
TGIF [26], GIFT-COFB [6], Remus [27] and Romulus [28] are based on SKINNY or GIFT. To study
SKINNY and GIFT is very important for the security evaluation of these candidates.

For the sake of a clear comparison between our model and the previous one by Liu et al. [33], we utilize
the same 23-round boomerang distinguishers of SKINNY-128-384 [11] as proposed by Liu et al. [33] and
the same 19-round boomerang distinguishers on GIFT-64 [16] as proposed by Chen et al. [22] to launch
our key-recovery attacks.

– For SKINNY-128-384, we improve the time complexity of the best previous 27-round attack by a factor
of 237. Moreover, we present the first key-recovery attack on 28-round SKINNY-128-384 with a time
complexity of 2315.25 and 2122 chosen plaintexts.

– In addition, we give a related-tweakey rectangle attack on 24-round SKINNY-128-384 with time and
data complexities of 2123, which is successfully applied to the SKINNY AEAD member M1 [12] (one of
the 56 candidates in the NIST Lightweight Cryptography selection process). To our knowledge, this is
the first attack on round-reduced SKINNY AEAD M1.

– For GIFT-64, we conduct a 24-round attack 1, which gains one more round than the best previous
attacks, and the time complexity is 291.58.

The cryptanalysis results on SKINNY-128-384, SKINNY AEAD M1 scheme and GIFT-64 are listed in
Table 1.

2 The Related-key Rectangle Attack

The boomerang attack, proposed by Wagner [46], is an extension of the differential attack using adaptive
chosen plaintexts and ciphertexts to analyze block ciphers. It attempts to generate a quartet structure at
an intermediate value halfway through the cipher. When the adversaries can not find a long differential
characteristic with probability higher than for a random permutation, they can decompose the cipher in
two shorter ciphers as E = E1 ◦E0 and connect two short differential trails to conduct the attack. For E0,
the differential characteristic is α→ β with probability p, and the differential characteristic for E1 is δ → γ
with probability q.

Then a right quartet can be obtained by a boomerang distinguisher which is the connection of the two
shorter differential characteristics as in the following steps:

1. Randomly choose a plaintext pair (P1, P2) with difference P1⊕P2 = α, and make queries over E to get
the ciphertext pair (C1, C2), where C1 = E(P1), C2 = E(P2).

2. Generate another ciphertext pair (C3, C4) by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, then make queries to the
decryption oracle to obtain their plaintexts (P3, P4) with two adaptive chosen-ciphertext queries.

3. Check whether the difference of (P3, P4) equals to α or not.

The adversary can get a right quartet with a probability of p2q2, thus the probability of the distinguisher
has to satisfy pq > 2−n/2.

When the values of α and δ are fixed and don’t restrain the values of β and γ as long as β 6= γ, the
boomerang attack is developed into the amplified boomerang attack [31] or rectangle attack [7], which are

1 Note that the authors of GIFT [16] do not give any security claim in the related-key setting, but as shown by Liu et
al. [48] and Chen et al. [22], it is still theoretically meaningfull to understand its security margin in this setting.



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 3

Table 1: Summary of analysis results of SKINNY-128-384, GIFT-64 and SKINNY AEAD M1. (I)DC
stands for (impossible) differential cryptanalysis; IC stands for integral cryptanalysis; MITM stands for

meet-in-the-middle attack; SK stands for single-key; RK stands for related-key.

SKINNY-128-384
Rounds Approach Setting Time Data Memory Size set up Ref.
22 IDC SK 2373.48 292.22 2147.22 k = 384 [45]
22 MITM SK 2382.46 296 2330.99 k = 384 [43]

27
rectangle RK 2351 2127 2160 k = 384 [33]
rectangle RK 2331 2123 2155 k = 384 [33]
rectangle RK 2294 2122 2122.32 k = 384 Sect. 4.4

28 rectangle RK 2315.25 2122 2122.32 t < 68, k > 316 Sect. 4.5

GIFT-64
Rounds Approach Setting Time Data Memory Size set up Ref.
14 IC SK 297 263 – k = 128 [16]
15 MITM SK 2120 264 – k = 128 [16]
15 MITM SK 2112 – – k = 128 [38]
19 DC SK 2112 263 – k = 128 [48]
20 DC SK 2112.68 262 2112 k = 128 [49]
21 DC SK 2107.61 264 296 k = 128 [49]
23 boomerang RK 2126.6 263.3 – k = 128 [34]
23 rectangle RK 2107 260 260 k = 128 [22]
24 rectangle RK 291.58 260 260.32 k = 128 Sect. 5.3

SKINNY AEAD M1
Rounds key size Time Data Memory Approach Ref.

SKINNY M1 24 128 2123 2123 2121 rectangle Sect. 4.7

0E 0E

1E 1E

0E 0E

1E 1E

 












1K

2K 4K
3K

P1

P2

P3

P4

C1

C2

C3

C4

Fig. 1: Related-key rectangle distinguisher framework

chosen-plaintext attacks. The probability of getting a right quartet is 2−np̂2q̂2, where

p̂ =

√∑

i

Pr2(α→ βi) and q̂ =

√∑

j

Pr2(γj → δ).

If the four plaintexts in a quartet are encrypted under different master keys K1, K2, K3 and K4

respectively, the attack is developed into a related-key rectangle attack [9], where C1 = EK1
(P1), C2 =

EK2
(P2), C3 = EK3

(P3), and C4 = EK4
(P4). Assume one has a related-key differential α → β over E0

under a key difference ∆K with a probability p and another related-key differential γ → δ over E1 under
a key difference ∇K with probability q, and K1 ⊕K2 = ∆K, K3 ⊕K4 = ∆K, K1 ⊕K3 = ∇K. Then a
right quartet can be obtained as follows:

1. Randomly choose two plaintext pairs (P1, P2) and (P3, P4) with difference P1⊕P2 = α and P3⊕P4 = α,
and encrypt them with E to get the ciphertext pairs (C1, C2) and (C3, C4) under four master keys, where
K1 ⊕K2 = ∆K, K3 ⊕K4 = ∆K and K1 ⊕K3 = ∇K.



4 Boxin Zhao et al.

1E 1E

1E 1E

 












1K

2K 4K
3K

P1

P2

P3

P4

C1

C2

C3

C4

0E 0E

0E 0E

Eb

Eb

Eb

Eb

Ef

Ef

Ef

Ef

  



 

 

Fig. 2: Related-key rectangle attack framework

2. Check whether the differences satify C1 ⊕ C3 = δ and C2 ⊕ C4 = δ or not. If yes, a right quartet is
obtained, otherwise return to step 1.

In the key recovery process, adversaries only need to recover one of the four master keys, since the
values of ∆K and ∇K are known and the other three master keys can be computed by the recovered key.

For clarity, the related-key rectangle framework is illustrated in Figure 1.

3 New Model of Related-key Rectangle Attack

Under a related-key rectangle distinguisher, our key recovery algorithm is adapted from Biham et al.’s
algorithm [8] which is a single-key rectangle attack and Liu et al.’s [33] algorithm which is a related-key
rectangle attack. In the key recovery algorithm, we follow the notations in [33].

We decompose the cipher algorithm E into three components as E = Ef ◦E′◦Eb, where E′ is determined
by the related-key rectangle distinguisher and Eb and Ef are the rounds extended backward from the start
and forward from the end of the distinguisher, respectively. Let c denote the size of a cell (the unit goes
through Sbox), k denote the size of the master key and n be the size of the state in the block cipher.
After extending the rectangle distinguisher backward for several rounds (i.e. Eb) under the related-key
difference ∆K, we denote the number of unknown bits in the difference of plaintexts as rb. Let mb be the
number of involved subkey bits that affect the plaintext difference while encrypting plaintext pairs to the
position of the known difference under Eb. Similarly, when extending several rounds for the difference of the
distinguisher δ under Ef by the related-key difference ∇K, we define rf and mf for Ef . The related-key
rectangle framework is illustrated in Figure 2. The algorithm being composed of data collection and key
recovery is as follows:

1. Construct structures including 2rb plaintexts, which traverse all the possible values for the rb/c active
cells while assigning suitable constants to the other cells that hold zero or known differences. If s denotes
the expected number of right quartets, attackers need to prepare y =

√
s·2n/2−rb/p̂q̂ different structures.

2. Query the corresponding ciphertexts for the 2rb plaintexts in each structure under the four related keys
K1, K2, K3 and K4 and get four plaintext-ciphertext sets L1, L2, L3 and L4, where K1 is the secret
key and K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K. Insert L2 and L4 into hash tables
H1 and H2 indexed by the rb bits of plaintexts.

3. Guess the 2mb possible mb bits of subkey involved in Eb:
(a) Initialize a list of 2mf counters, each of which corresponds to a mf -bit subkey guess.



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 5

(b) For each set L1 of every structure, partially encrypt plaintext P1 ∈ L1 under Eb by the guessed
subkeys of K1, and partially decrypt it under the subkey of K2 = K1⊕∆K to the plaintext P2 after
xoring the known difference α, i.e. P2 = DbK2

(EbK1
(P1)⊕ α) where DbK2

is the partial decryption
process Db using K2. Then check H1 to find the corresponding plaintext-ciphertext pair indexed by
the rb bits of P2. Proceed with a similar process for sets L3 and L4 and obtain two sets as

S1 ={(P1, C1, P2, C2) : (P1, C1) ∈ L1, (P2, C2) ∈ L2, EbK1
(P1)⊕ EbK2

(P2) = α}

and

S2 ={(P3, C3, P4, C4) : (P3, C3) ∈ L3, (P4, C4) ∈ L4, EbK3
(P3)⊕ EbK4

(C4) = α}.

(c) There are M = y · 2rb chosen plaintexts under each key, and the sizes of S1 and S2 are all y · 2rb due
to y structures. Denote δ′ being the truncated form propagated from δ under Ef with probability
1. There are n − rf bits whose differences are 0 in δ′. Insert S1 into hash table H3 indexed by the
n− rf bits of C1 and n− rf bits of C2 that are 0 in δ′. Then for each element of S2, we check the
hash table H3 to find (P1, C1, P2, C2) so that (C1, C3) and (C2, C4) collide in the n− rf bits. There

will be about M2 · 2−2(n−rf ) quartets remaining.
(d) With the quartets obtained in step (c), we conduct the key recovery process for the subkeys involved

in Ef . Instead of guessing all the mf -bit subkeys at once, we firstly determine whether a candidate
quartet is useful by guessing only a small fraction of the unknown involved subkey bits, which is
just a guess and filter procedure. We denote the time complexity in this step as ε.

(e) Select the top 2mf−h hits in the counter to be the candidates, which delivers a h-bit or higher
advantage.

(f) Guess the remaining k − mb − mf unknown key bits exploiting the key schedule algorithm, and
exhaustively search over them to recover the correct master key. If the guessed mb-bit keys are not
right, go to step 3 with another guess.

Since the key recovery attack is a related-key attack, the data complexity is D = 4M = 4y · 2rb chosen
plaintexts.

In the quartets collection and key recovery process, we need 2mb · 2M table look-ups in step 3(b) and
2mb ·M table look-ups in step 3(c) resulting in 2mb ·3M to prepare the quartets. M2 ·2−2(n−rf ) ·ε encryptions
in step 3(d) and 2k−h encryptions in step 3(f) are needed to recover the master key. Thus the total time
complexity, which is composed of data collection and key recovery, is 4M + 2mb ·M2 · 2−2(n−rf ) · ε+ 2k−h.

The memory complexity is 4M +M + 2mf = 5M + 2mf .
Success Probability. We use the method by Selçuk [39] to compute the success probability:

Ps = Φ(

√
sSN − Φ−1(1− 2−h)√

SN + 1
), (1)

where SN is the signal-to-noise ratio and SN = p̂2q̂2/2−n.
Compared to the related-key rectangle attack in [33], the main improvements in time complexity are

summarized as follows:

1. In the data collection program to prepare quartets, paper [33] constructs quartets first, and then checks
whether the quartet can be encrypted to the difference of the start of the distinguisher one by one
to filter all the useless quartets. However, we guess the key bits involved in the Eb and make partial
encryption and decryption to construct plaintext pairs that can be encrypted to the difference of the
start of the distinguisher. Therefore, the quartets we obtained don’t need to be filtered. It makes the
time complexity be highly reduced.

2. In the key recovery process, we don’t guess all the key bits involved in Ef but utilize a process that
guess partial key bits one time and filter the useless quartets step by step. It makes the time complexity
reduce further.

4 Application to SKINNY

The SKINNY family [11] provides 64-bit and 128-bit block versions and denotes n as the block size. Several
candidates of the Lightweight Cryptography (LWC) standardization project by NIST [37] are based on the
SKINNY block cipher, such as SKINNY-AEAD and SKINNY-Hash [12], Remus [27] and Romulus [28].
The family of lightweight block ciphers SKINNY has three tweakey size versions SKINNY−n − t, where
t = n, t = 2n and t = 3n, and denotes the tweakey state by TK1 when t = n, by TK1 and TK2 when
t = 2n, and finally by TK1, TK2 and TK3 when t = 3n.



6 Boxin Zhao et al.

Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the mi

are s-bit cells, with s = n/16 (we have s = 4 for the 64-bit block SKINNY versions and
s = 8 for the 128-bit block SKINNY versions). The initialization of the cipher’s internal
state is performed by simply setting ISi = mi for 0 ≤ i ≤ 15:

IS =




m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15




This is the initial value of the cipher internal state and note that the state is loaded
row-wise rather than in the column-wise fashion we have come to expect from the AES;
this is a more hardware-friendly choice, as pointed out in [29].

The cipher receives a tweakey input tk = tk0‖tk1‖ · · · ‖tk30‖tk16z−1, where the tki are
s-bit cells. The initialization of the cipher’s tweakey state is performed by simply setting
for 0 ≤ i ≤ 15: TK1i = tki when z = 1, TK1i = tki and TK2i = tk16+i when z = 2, and
finally TK1i = tki, TK2i = tk16+i and TK3i = tk32+i when z = 3. We note that the
tweakey states are loaded row-wise.

Table 1. Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state.

Tweakey size t

Block size n n 2n 3n

64 32 rounds 36 rounds 40 rounds

128 40 rounds 48 rounds 56 rounds

The Round Function. One encryption round of SKINNY is composed of five opera-
tions in the following order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and
MixColumns (see illustration in Figure 1). The number r of rounds to perform during

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function applies five different transformations: SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

encryption depends on the block and tweakey sizes. The actual values are summarized in
Table 1. Note that no whitening key is used in SKINNY. Thus, a part of the first and last
round do not add any security. We motivate this choice in Section 3.

SubCells. A s-bit Sbox is applied to every cell of the cipher internal state. For s = 4,
SKINNY cipher uses a Sbox S4 very close to the PICCOLO Sbox [39]. The action of this
Sbox in hexadecimal notation is given by the following Table 2.

7

Fig. 3: The SKINNY round function

Since SKINNY was proposed, there has been a number of third-party cryptanalysis from all over
the world. Tolba et al. [45] applied impossible differential attacks to 18-, 20- and 22-round SKINNY-n-
n, SKINNY-n-2n and SKINNY-n-3n, respectively, in the single-key model at AFRICACRYPT 2017. At
ToSC 2017, Liu et al. [33] searched related-tweakey impossible differentials and related-tweakey rectangle
distinguishers and applied them to analyze up to 19-, 23- and 27-round SKINNY-n-n, SKINNY-n-2n and
SKINNY-n-3n respectively. In [2], Abdelkhalek et al. proposed a method to model the DDT of large Sboxes
and verified that no differential characteristic with probability higher than 2−128 for 14-round SKINNY-128
exists. In [41], Sadeghi et al. presented zero correlation attacks on SKINNY-64-64/128 and gave a related-
tweakey impossible differential attack on SKINNY-128-256 up to 23 rounds. At ASIACRYPT 2018, Shi
et al. [43] analyzed 22-round SKINNY-128-384 by the Demirci-Selcuk meet-in-the-middle attack. At ToSC
2019, Song et al. [42] revisited the Boomerang Connectivity Table [20] and recalculated the probabilities of
some related-tweakey boomerang distinguishers proposed in [33]. Besides, there are analyses on SKINNY-64
in [1, 40,44].

4.1 Specification of SKINNY and SKINNY AEAD

The block cipher SKINNY [11] is an SPN cipher that uses a compact Sbox, a sparse diffusion layer and a
light key schedule. SKINNY follows the TWEAKEY framework [29], thus except for a plaintext P and a
master key K it takes a tweak T as the third input, and different ciphertexts can be obtained under the
same plaintext and master key due to the different tweaks. Inspired by the TWEAKEY framework [29],
SKINNY provides a unified view for key and tweak by tweakey.

For all versions of SKINNY, the tweak size and the key size can vary according to the users but the key
size should be at least as large as the block size. Both the intermediate state and tweakey state are viewed
as a 4× 4 square array of cells indexed by




0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15


 .

Note that SKINNY adopts a row-wise form rather than column-wise fashion as AES [24], as it is more
hardware-friendly as pointed out in [35].

The Round Function. One encryption round of SKINNY consists of five operations in the following
order: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns

(MC), which is illustrated in Figure 3.

SubCells. Apply a 4-bit Sbox in case of n = 64 and an 8-bit Sbox in case of n = 128 to the 16 cells of the
state. It is the non-linear operation in the round function.

AddConstants. The round constants are generated by a 6-bit affine LFSR. Three round constants are xor’ed
to the first cell of the first three rows, respectively.

AddRoundTweakey. Only the first two rows of the round tweakey are xor’ed to the first two rows of the
internal state. The round tweakey tki in round i is defined as:

– t = n: tki = (TK1)i,
– t = 2n: tki = (TK1)i ⊕ (TK2)i,
– t = 3n: tki = (TK1)i ⊕ (TK2)i ⊕ (TK3)i,

where (TK1)i, (TK2)i and (TK3)i are generated by the tweakey schedule algorithm that is introduced
below.



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 7

Table 2: The two LFSRs used in SKINNY tweakey schedule

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)
LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

ShiftRows. Rotate the 4 cells of the j−th row right by ρ[j] positions, where ρ = (0, 1, 2, 3).

MixColumns. Pre-multiply the internal state by a 4× 4 binary constant matrix M to update the state. The
matrix M and its inverse matrix M−1 are represented as follows:

M =




1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


 , M−1 =




0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1


 .

Definition of the round tweakey (subtweakey). The tweakey schedule algorithm of SKINNY is a
linear transformation. The t-bit tweakey input is firstly divided into z = t/n n-bit blocks, and located in
TK1 with t = n, or TK1, TK2 with t = 2n or TK1, TK2, TK3 with t = 3n.

First, a permutation PT is applied to the cells of all tweakey arrays as TKzi ← TKzPT [i] for all 0 ≤ i ≤ 15
with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

for z ∈ {1, 2} and z ∈ {1, 2, 3}. This is a position permutation with the value unchanged.

Then, each cell in the first two rows of TK2 (or TK2 and TK3) are updated by one (or two) LFSRs
to get (TKm)i (m = 1, 2, 3). The LFSRs are listed in Table 2, we only give the LFSRs used for the 8-bit
cells.

The SKINNY AEAD modes.

The SKINNY AEAD modes are proposed by Beierle et al. [12] and included in the Round 1 candidates
of the NIST lightweight cryptography competition. The authenticated encryption scheme follows the ΘCB3
mode [32] and uses either SKINNY-128-384 or SKINNY-128-256 as its internal tweakable block cipher.
Totally, there are six AEAD modes proposed and the SKINNY AEAD M1 based on SKINNY-128-384 is
their primary member. M1 is a nonce-based AEAD and assumed to be nonce-respecting for the adversary.
Here, we give a simple description for the AEAD M1.

The tweakey size of SKINNY AEAD M1 is 384 bits, the last 256 bits of the tweakey is just the
concatenation of the 128-bit nonce N and the 128-bit key K, but the first 128 bits are different in different
blocks in a long message. They can be updated in a series of blocks in the following way.

The first 128 bits of tweakey store eight bytes that come from a 64-bit LFSR, followed by seven bytes
of zeros and a single byte for the domain separation (d0 or d1 whether the block is padded). The LFSR is
initialized to LFSR0 = 063||1 and updated by upd64 that is defined as

upd64 : x63||x62|| · · · ||x1||x0 → y63||y62|| · · · ||y1||y0
with:

yi ← xi−1 for i ∈ {63, 62, ..., 1}\{4, 3, 1},
y4 ← x3 ⊕ x63,
y3 ← x2 ⊕ x63,
y1 ← x0 ⊕ x63,
y0 ← x63.

Before the bytes of the LFSR are loaded in the tweakey input, the order of them is reversed, i.e. rev64(LFSR)||056||d0
(d0 will be replaced by d1 for the padded block), where rev64 is defined as

rev64 : x7||x6||x5||x4||x3||x2||x1||x0 7−→
x0||x1||x2||x3||x4||x5||x6||x7 (∀i : |xi| = 8)

In encryption for each block, the 384-bit tweakey is set to be rev64(LFSR)||056||d0||N ||K. In fact, as
described in [12], the 64-bit LFSR plays the same role as a block counter. The encryption part of SKINNY
AEAD M1 is illustrated in Figure 4. For more details, we refer to [12].



8 Boxin Zhao et al.

tweakey differs from the associated data processing only by the domain separation byte.
Here, the byte tk15 is fixed to d0 instead of d2.

To produce the tag, the XOR sum of the plaintext blocks noted Σ is computed and
then encrypted by SKINNY-128-384, where the 384-bit tweakey is analogously defined as
tk0‖tk1‖ . . . ‖tk47 = rev64(LFSR`m)‖056‖d4‖N‖K. Finally, the output of this encryption
is XORed with Auth. If t` = 0, i.e., the tag size is 128 bits, the result of this XOR is a tag.
If t` = 1, i.e., the tag size is 64 bits, the result of this XOR is truncated by trunc64 to 64
bit, where the truncation functions trunci are defined for inputs of length at least i by

trunci : X = x0‖x1‖ . . . ‖x|X|−1 7→ x0‖x1‖ . . . ‖xi−1.

M0

E
0‖d0

N,K

C0

M1

E
1‖d0

N,K

C1

Mlm−1

E
lm−1‖d0

N,K

Clm−1

. . . . . .

Σ

E
lm‖d4

N,K

tag

Auth

Figure 6: Encryption of SKINNY-AEAD with SKINNY-128-384 without padding when t` =
128. Again, E refers to SKINNY-128-384. For simplicity, we denote the block counter by
0, . . . , `m but actually refer to the state of the LFSRs serving as a block counter.

In the case |M | is not a multiple of 128 (Figure 7), the same padding pad10* as for the as-
sociated data is applied to M . In particular, M is split into M = M0‖M1‖ . . . ‖M`m−1‖M`m

with |Mi| = 128 for i ∈ {0, . . . , `m−1} and 0 < |M`m | < 127. The processing of the message
blocks Mi, i ∈ {0, . . . , `m−1} is the same as in the case described above. The last ciphertext
block C`m is computed as the XOR sum of the encryption of 0 with SKINNY-128-384

under the 384-bit tweakey tk0‖tk1‖ . . . ‖tk47 = rev64(LFSR`m)‖056‖d1‖N‖K (truncated
to |M`m | bits) with the plaintext block M`m .

For the tag computation, the checksum is computed as M0 ⊕M1 ⊕ · · · ⊕M`m−1 ⊕
pad10*(M`m) and it is encrypted with SKINNY-128-384 under the 384-bit tweakey

rev64(LFSR`m+1
)‖056‖d5‖N‖K.

Similar as for the unpadded case, the encryption is XORed with Auth and truncated in
the same way as described above if t` = 1.

Decryption. The decryption and tag verification procedure for given (K,N,A,C, tag) is
straightforward.

Formally, we provide the algorithms of the authenticated encryption members M1, M2,
M3, and M4, together with their decryption and tag verification procedure, in Algorithms 1,
2, 3, 4, 5, 6 and 7, 8, respectively.

12

Fig. 4: The encryption part of SKINNY AEAD M1

4.2 Notations and Definitions of SKINNY

In this section, the notations are defined as follows:

Xi : state before SC and AC operation in Round i, 0 ≤ i ≤ r − 1,
Yi : state after SC and AC operation in Round i, 0 ≤ i ≤ r − 1,
Zi : state after ART and SR operation in Round i,0 ≤ i ≤ r − 1,

The details of the i-th round (0 ≤ i ≤ r − 1) are as follows:

Xi
SC−→
AC

Yi
ART, SR−−−−→
STKi

Zi
MC−→ Xi+1.

∆X : difference of the state X,

Xi[j · · · k] : jth byte, · · · , kth byte of Xi, where 0 ≤ j, k ≤ 15,

Yi[j · · · k] : jth byte, · · · , kth byte of Yi, where 0 ≤ j, k ≤ 15,

Zi[j · · · k] : jth byte, · · · , kth byte of Zi, where 0 ≤ j, k ≤ 15.

4.3 Properties of SKINNY

Here, we introduce several properties and a lemma on SKINNY that will be used in the related-tweakey
rectangle attack.

1. The matrix used in the MixColumns operation is not an MDS matrix. Therefore, extra values of some
cells may need to be guessed except the active cells in both input and output of the MC operation,
which leads to more subtweakey bytes that need to be guessed. We use the same example as in [33]
which is illustrated in Figure 5 to explain the property.
When we backtrack the trail from ∆X17 to round 14 and guarantee that only ∆X14[8] is active, it
is necessary to check whether the differences in ∆X15[2, 10, 14] lead to a single active cell in ∆Z14[8].
Therefore, the differences of ∆X15[2, 10, 14] are needed to indicate the values as well as differences at
Y15[2, 10, 14]. To compute the value at Y15[10], the value of X16[4, 12] is required, thus an additional
cell STK16[4] needs to be guessed.

2. Since the AddRoundTweakey operation follows the SubCells operation, and ShiftRows and MixColumns

operations are all linear transformations, we can xor an equivalent subtweakey to the internal state after
the MC operation, i.e. STKeq = MC ◦ SR(STK) as can be seen in Figure 6.

Lemma 1. [33] For any non-zero input-output difference pair (δin, δout) for the SKINNY Sbox S, there is
one solution x satisfying S(x)⊕ S(x⊕ δin) = δout on average.

Note that MixColumns operation is not omitted in the last round of SKINNY, but it is well known
that MixColumns is a linear operation which does not impact the differential cryptanalysis. To simplify
the discussion, we omit the ShiftRows operation and MixColumns operation in the last round, and denote
SR ◦MC−1(C) (i.e. state Zr−1 in r-round attack) by C in the last round, where C is the ciphertext.



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 9

SC

AC

ART

SR

MC

Y14X14 Z14STK14

SC

AC

ART

SR

MC

Y15X15 Z15STK15

SC

AC

ART

SR

Y16X16 Z16STK16

Both the difference and the value are needed

Zero difference, but the value is needed

Additional key cell that need to be guessed

MC

X17

Fig. 5: Property of MC operation of SKINNY

0
4

1
5

2
6

3
7 SR

MC

STK
eq

STK

0
0

0
7

1
1

1
4

2
2

2
5

3
3

3
6

Fig. 6: The equivalent subtweakey after SR and MC operations

4.4 Related-tweakey Rectangle Attack on 27-round SKINNY-128-384

We use the same related-tweakey differential trail as in [33] which is listed in Table 3. As described in [33],
the probability of the 11-round related-tweakey differential trail is 2−21, and there are two trails holding
with the same probability with the input and output difference unchanged leading to p̂ = 2−20. A 12-
round differential trail with a probability of 2−37 can be obtained by extending one round at the start
of the 11-round trail, and connecting the 11-round and 12-round trails to construct a 23-round rectangle
distinguisher. When using the boomerang switch technique in [13], four Sboxes can be saved leading to
q̂ = 2−36. Thus the probability of the 23-round rectangle distinguisher is 2−n · p̂2q̂2 = 2−240.

We prefix two rounds at the beginning of the 23-round distinguisher and append two rounds at the end
to conduct a related-tweakey rectangle attact on 27-round SKINNY-128-384, which is illustrated in Figure
7.

In data collection, since ∆Y1 = ART−1 ◦SR−1 ◦MC−1(α), where α is the difference in the start of the
rectangle distinguisher that is known, we only need to guess the 8 bytes of STK0 to construct sets S1 and
S2. There are two bytes of 0 differences in the difference of plaintexts, rb = 14c, mb = 8c, rf = 13c and

mf = 12c where c = 8. Totally, there are about y2 · 22rb · 2−2(n−rf ) = y2 · 2176 quartets as (C1, C2, C3, C4)
remaining. We give the details of the key recovery process for the mf bit subtweakeys involved in Ef as
follows (we restate that we treat Z26 to be the ciphertext):

1. In the second column of the ciphertext pair (C1, C3), the value of Z26[13] is known and the value of
X26[13] can be deduced since there is no subtweaky involved. According to the inverse of the MixColumns
operation, ∆Z25[13] = ∆X26[13]⊕∆X26[1] and ∆Z25[13] = 0. With ∆X26[1] = ∆X26[13], ∆Y26[1] and
as the value as well as the difference at Z26[1] can be obtained from the ciphertext pair, there is one
solution for STK26[1] on average. Similarly, ∆X26[5] = ∆X26[9] ⊕ ∆X26[13] since ∆Z25[5] = 0, and
there is one solution for STK26[5] on average.

2. Partially decrypt the second column of ciphertext pair (C1, C3) for one round to get the values as well
as differences at Z25[1, 9]. Since the input difference of the Sbox at X25[1] can be obtained from the
rectangle distinguisher and the output difference is just ∆Z25[1], there is one solution for STK25[1] on



10 Boxin Zhao et al.



23-round distinguisher of SKINNY-128-384

Round 1

Round 25

Round 26

X25 Y25 Z25

Ciphertext

STK25

…
…

MCSB

AC SR

MC

X26 Y26 Z26

SB

AC


STK26

X1 Y1 Z1

SB

AC


STK1

SR



Plaintext Y0

STK0

MCSB

AC SR

MC

Round 0

Z0

SR

Both the difference and the value are needed

Zero difference, but the value is needed

Active cell

 

Fig. 7: Key-recovery attack against 27-round SKINNY-128-384

average. But the difference ∆Z25[9] can be mapped to the known difference ∆X25[11] with a probability
of 2−8. There are about y2 · 2176 · 2−8 = y2 · 2168 quartets remaining.

3. Partially decrypt the second column of ciphertext pair (C2, C4) to compute the values and differences at
Z25[1, 5, 9, 13]. The probability that ∆Z25[5, 13] = 0 is 2−16, the probability that Z25[1] of (C2, C4) can
be mapped to the known difference ∆X25[1] under the obtained subtweakey is 2−8, and the probability
that Z25[9] of (C2, C4) can be mapped to the known difference ∆X25[11] with no subtweakey involved
is 2−8. Totally, there are about y2 · 2168 · 2−32 = y2 · 2136 quartets remaining.

4. Similarly, for the first column of ciphertext pair (C1, C3), ∆X26[4] = ∆X26[8] ⊕ ∆X26[12] can be
deduced since ∆Z25[4] = 0 and ∆X26[8, 12] can be computed by the ciphertext pair. We can get one
value of STK26[4] on average. Then guess the value of STK26[0] and compute the values as well as
the differences at Z25[0, 4, 8, 12], deduce the value of STK25[0], check whether the known differences
∆X25[10, 13] can be obtained by the values at Z25[8, 12]. There are about y2 · 2136 · 28 · 2−16 = y2 · 2128

combinations of the remaining quartets associated with the guessed keys, i.e. there remains 28 candidate
values of STK26[0], STK25[0] with about 2120 quartets each. Then partially decrypt (C2, C4) with the
obtained subtweakey involved and check whether ∆Z25[4] = 0, ∆X25[0] = 0x80, ∆X25[10] = 0x83,
∆X25[13] = 0x80. There are about y2 · 2128 · 2−32 = y2 · 296 combinations of the quartets associated
with the guessed keys remaining.

5. Utilizing a similar process with step 1 to step 3 to recover STK26[3, 7] and STK25[3], there are about
y2 · 296 · 2−24 = y2 · 272 combinations of the quartets associated with the guessed keys remaining.

6. Since ∆X26[6] = ∆Z26[6] = 0 and ∆X26[2] is unknown, we must guess the values of STK26[2, 6] to
compute the values as well as the differences at Z25[6, 14]. Utilizing the filtration at X25[5, 15] and
Z25[6, 14], there are about y2 · 272 · 216 · 2−24 = y2 · 264 combinations of the quartets associated with
the guessed keys remaining to count for the 96-bit subtweakeys involved in Ef .

7. Output the top 2mf−h counters for the candidates and exhaustively search the other k −mb −mf bit
keys to check whether the guessed key is correct.



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 11

When the expected number of right quartets s = 1, y =
√
s · 2n/2−rb/p̂q̂ = 28, the data complexity

is D = 4M = 4 · y · 2rb = 2122 chosen plaintexts. And 2mb · 3M = 2185.58 table look-ups are needed. In
each guessed mb-bit subtweakey, M2 · 2−2(n−rf ) one-round decryptions are conducted which are equal to
M2 ·2−2(n−rf ) ·1/27 = 2187.25 encryptions, thus the time complexity is 4M+2mb ·M2 ·2−2(n−rf ) ·ε+2k−h ≈
2294 when the size of the master key is k = 384, and the success probability is 84.39% when h = 90. The
memory complexity is 5M + 2mf ≈ 2122.32.

When the expected number of right quartets equals 2, the data complexity is 2122.5 chosen plaintexts,
time complexity is 2294 and the memory complexity is 2122.82. And the success probability is 92.56% when
h = 90.

4.5 Related-tweakey Rectangle Attack on 28-round SKINNY-128-384

Extending one more round backward from the 27-round attack in Subsection 4.4, all the bytes of difference
in the plaintext are active. However, the ART operation can be conducted after the MC operation by
xoring an equivalent subtweakey as it is described in Sec.4.3. Therefore, the 28-round rectangle attack only
needs to guess extra 64-bit subtweakeys compared to the 27-round attack. We have rb = 14c, mb = 16c,
rf = 13c and mf = 12c where c = 8. The key recovery process is identical to that in the 27-round attack
on SKINNY-128-384.

If the expected number of right quartets s = 1, a 28-round related-tweakey rectangle attack on SKINNY-
128-384 can be conducted with a data complexity of 2122 chosen plaintexts, a time complexity of 2315.25 +
2304 ≈ 2315.25 encryptions when h = 80, a memory complexity of 2122.32 and a success probability is
83.15%.

4.6 Related-tweakey Rectangle Attack on 24-round SKINNY-128-384

We construct a 24-round related-tweakey rectangle attack by extending the 23-round distinguisher one
round forward, i.e. we delete the first two rounds and the last one round from the 27-round attack for
SKINNY-128-384 which is illustrated in Figure 7, and we treat the state Z25 to be the ciphertext. Since
there is no round extended from the start of the distinguisher, no involved subtweakey needs to be guessed.
There are four active bytes in the start of the distinguisher, eight active bytes in ∆Z25 and four bytes of
subtweakey involved in the last round. Thus rb = 4c, mb = 0, rf = 8c and mf = 4c where c = 8.

We choose y structures of 232 plaintexts each, and M2 · 2−2(n−rf ) = y2 · 264 · 2−2(128−64) = y2 · 2−64

quartets. The key recovery process can be conducted as follows:

1. Since the difference at X25[0] is known, the difference at Y25[0] and the value at Z25[0] can be obtained
from the ciphertext pair (C1, C3), one solution of STK25[0] can be computed on average. Then by
verifying the obtained keys by the ciphertext pair (C2, C4), about y2 ·2−72 quartets are remaining. Since
no byte of STK25 is involved in the computation of Z25[8, 12], the values of Z25[8, 12] in both(C1, C3)
and (C2, C4) can be computed to the known differences ∆X25[10, 13] with a probability of 2−32, and
about y2 · 2−104 quartets are remaining.

2. Conducting a process similar to that in step 1 to the other three columns of Z25, about y2 · 2−160

quartets are remaining to count for the 32-bit subtweakey.

When the expected number of right quartets s = 4 and advantage h = 20, y =
√
s · 2n/2−rb/p̂q̂ = 289, a

24-round related-tweakey rectangle attack on SKINNY-128-384 can be conducted with a data complexity
of 2123 chosen plaintexts, a time complexity of 2123 + 2114/24 + 2100 ≈ 2123 encryptions, and the success
probability is 97.6%. Since no subtweakey needs to be guessed in the upper part, we don’t need to store
the chosen plaintexts, and the memory complexity is 2121.

4.7 Related-tweakey Rectangle Attack on SKINNY AEAD

We have analyzed the tweakable block cipher SKINNY-128-384 by a related-tweakey rectangle attack in
Section 4, where there is no constraint to the value and difference of the tweak. However, the SKINNY
AEAD member M1 adopts SKINNY-128-384 as its internal primitive, but M1 initializes the tweakey bytes
in a more complex process which leads to more constraints appearing when the adversary conducts a
related-tweakey attack on it. Here, we summarize the constraints as follows.

The first and most important, as depicted by the designers, the SKINNY AEAD member M1 employs
a 384-bit tweakey input but a 128-bit master key. And for all versions of SKINNY AEAD, they claim
full 128-bit security for key recovery, confidentiality and integrity in the nonce-respecting mode. Moreover,
when using the recommended parameters given in [12], the total size of the message does not exceed 264



12 Boxin Zhao et al.

blocks and the maximum number of messages that can be handled under the same key is 2128 in SKINNY
AEAD member M1. Therefore, only the attack on SKINNY-128-384 with time complexity ≤ 2128 can be
applied to SKINNY AEAD M1.

Secondly, a restriction to the difference of TK1 appears due to the specific initialization of the first
128-bit tweakey. The first 128-bit tweakey is composed of a 64-bit number that is updated by a linear
transformation rev64 and a LFSR, 7 bytes of zeros and a single byte for the domain separation that is a
constant. The other 256-bit tweakey is the concatenation of nonce N and key K. Thus, in a related-tweakey
attack, the last 64 bits of TK1 can not contain any difference. Fortunately, both ∆K used in the upper trail
and ∇K used in the lower trail don’t contain any difference in the 64 bits in the 23-round related-tweakey
rectangle distinguisher.

Thirdly, for a AEAD scheme, no decryptions are proceeded when a tag is invalid and only a null character
is returned. This implies that the adversary can only make queries to the encryption oracle, which prevents
any chosen ciphertext attack. But it is not problematic to the rectangle attack where only chosen plaintext
is needed.

Finally, the nonce input of the AEAD mode may be a problem in data collection. SKINNY AEAD M1 is
a nonce-respecting scheme, the adversary can only query a nonce once under the same key, but a nonce can
be queried several times in different keys i.e. in the related-key setting. In the case of SKINNY AEAD M1,
the nonce N is used in tweakey input together with the master key and some other string, which implies
that the tweakey input is controlled for the adversary. Thus the adversary can make queries in advance and
conduct a related-tweakey rectangle attack on its internal primitive SKINNY-128-384.

Explanation for the data collection. As described in [12], the 384-bit tweakey of the SKINNY AEAD M1
consist of a 128-bit rev64(LFSR)||056||d0, a 128-bit nonceN and a 128-bit secret keyK, where rev64(LFSR)
play the same role as a block counter that traverses from 0 to 264 − 1. The attacker can make queries to
the encryption oracle as follows:

1. The attacker can choose an arbitrary nonce N1 and query a plaintext chain with a size of 264 blocks
under the secret key K1, the block counter denoted by l1 will traverse from 0 to 264−1. Note that there
is no constraint to the plaintexts, the attacker can set arbitrary value to each plaintext block.

2. The attacker choose another nonce N2 and query a plaintext chain with a size of 264 blocks under the
secret key K2, the block counter denoted by l2 will also traverse from 0 to 264 − 1. But the nonce N2

and secret key K2 must satisfy that N1⊕N2 and K1⊕K2 are equal to the differences in ∆K. For each
value of block counter l1 and the corresponding plaintext block P1, there exists a value of block counter
l2 that l1 ⊕ l2 satisfies the differences in ∆K, so the value of the plaintext block P2 corresponding to
block counter l2 must satisfies that P1 ⊕P2 is equal to the difference in the start of the attack. Totally,
the attacker can obtain 264 plaintext pairs in the two steps to proceed the attack.

3. Utilizing a way similar to steps 1 and 2, the attacker can make queries under nonces N3, N4 and secrect
keys K3,K4. The values of plaintext blocks under N3 and K3 can be arbitrary, but the differences
N1⊕N3 and K1⊕K3 must be equal to the differences in ∇K. The values of plaintext blocks under N4

and K4 will be set according to the value of block counter following the same way as in step 2, and the
differences N3 ⊕N4 and K3 ⊕K4 need to be equal to the differences in ∆K.

Note that each query made by the attacker is used to construct plaintext pairs without waste. Therefore,
the attack on SKINNY AEAD M1 does not need a higher data complexity.

The related-tweakey rectangle attack on 24-round SKINNY-128-384 has a data complexity of 2123

chosen plaintexts and a time complexity 2123, which is applicable to the SKINNY AEAD M1.

5 Application to GIFT-64

The GIFT block cipher, proposed by Banik et al. at CHES 2017 [16], is an improved version of PRESENT
[14]. In the NIST Lightweight Cryptography Standardization process [37], the candidates SUNDAE-GIFT
[5], TGIF [26] and GIFT-COFB [6] are based on the GIFT block cipher. GIFT has two versions, GIFT-64
and GIFT-128, according to the block size, while both versions support the 128-bit key size. At IWSEC
2018, Sasaki [38] introduced a MitM attack on 15-round GIFT-64 with a time complexity 2112. At CT-RSA
2019, Zhu et al. [48] analyzed the 19-round GIFT-64 with a 12-round differential characteristic under the
single-key mode, and give a 22-round differential attack for GIFT-128. At ACISP 2019, Liu and Sasaki [34]
explored the BCT effect on GIFT-64 and GIFT-128 by a SAT-based method, and gave a 23-round key-
recovery attack on GIFT-64. Concurrently, Chen et al. [22] also gave a 23-round key-recovery attack based
on the generalized model of related-key rectangle attack by Liu et al. [33]. In this paper, we use the same
distinguisher given by Chen et al. [22] to launch a new 24-round key-recovery attack based on our new
generalized model of related-key rectangle attack.



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 13

Table 3: 11-round trail for SKINNY-128-384 in [33]. The 23-round distinguisher uses the 11-round trail
for the upper part and in the lower part the 12-round trail which is extended backward for one round

from the 11-round one where 0x7b is used instead. In each round, the rows represent input/output
differences of the Sbox layer and the round tweakey difference.

∆K
0,aa,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,e6,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,cf,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0

R1
0,20,0,0, 10(7b),0,0,0, 0,0,0,10, 0,0,10,0
0,83,0,0, 40,0,0,0, 0,0,0,40, 0,0,40,0
0,83,0,0, 0,0,0,0

R2
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,40,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,04,0,0
0,0,0,0, 0,0,0,0

R3
04,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
01,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
01,0,0,0, 0,0,0,0

R4
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0

R5
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0

R6
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0

R7
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0

R8
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0

R9
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,01,0

R10
0,0,0,0, 0,0,0,0, 0,0,0,01, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,20, 0,0,0,0
0,0,0,0, 0,0,0,0

R11
0,20,0,0, 0,0,0,0, 0,20,0,0, 0,20,0,0
0,80,0,0, 0,0,0,0, 0,80,0,0, 0,80,0,0
0,0,0,0, 0,83,0,0

5.1 Specification of GIFT

GIFT [16], proposed by Banik et al. in 2017, is an SPN cipher. There are two versions for GIFT according
to the block size i.e. GIFT-64 and GIFT-128. Both versions have a key length of 128-bit and the number
of rounds is 28 and 40 for GIFT-64 and GIFT-128, respectively.

The round function is composed of three subfunctions named SubCells, PermBits and AddRoundKey,
which are defined as follows:

1. SubCells : Apply the 4-bit Sbox to every nibble of the internal state, where the Sbox is defined as Table
4.

2. PermBits : Update the internal state by a linear bit permutation as bP (i) ← bi, ∀i ∈ {0, 1, ...n − 1},
where the P (i)s are expressed as

P64(i) =4b i
16
c+ 16((3b i mod 16

4
c+ (i mod 4)mod 4) + (i mod 4),

P128(i) =4b i
16
c+ 32((3b i mod 16

4
c+ (i mod 4)mod 4) + (i mod 4),

for GIFT-64 and GIFT-128, respectively.
3. AddRoundKey : An n/2-bit round key RK is extracted from the key state and is further partitioned into

2 s-bit words RK = U ||V = us−1...u0||vs−1v0, where s = n/4.
For GIFT-64, the round key is XORed to the state as

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, ∀i ∈ {0, ..., 15}.

For GIFT-128, the round key is XORed to the state as

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, ..., 31}.



14 Boxin Zhao et al.

Table 4: The Sbox of GIFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Table 5: Differential paths of 19-round GIFT-64 [22], where “*” denotes the probability of the rounds that
are evaluated for the ladder switch.

Round Differentce ∆ki ∆ki+1 Probability
1r 0000 00a0 0000 6000 (4, 0, 0, 0) (0, 1, 0, 0) 2−4

2r 0000 0000 0000 0000 (0, 0, 0, 0) (0, 0, 0, 0) 1
3r 0000 0000 0000 0000 (0, 0, 0, 2) (0, 0, 0, 0) 1
4r 0000 0000 0000 0010 (0, 0, 0, 0) (0, 0, 0, 0) 2−3

5r 0000 0008 0000 0000 (0, 0, 0, 4) (0, 0, 4, 0) 2−2

6r 0000 0000 0000 0000 (0, 0, 0, 0) (0, 0, 0, 0) 1
7r 0000 0000 0000 0000 (0, 0, 2, 0) (0, 0, 0, 0) 1
8r 0000 0000 0010 0000 (0, 0, 0, 0) (0, 0, 0, 0) 2−3

9r 0000 0080 0000 0000 (0, 0, 4, 0) (0, 0, 1, 0) 2−2

10r 0100 0000 0102 0200 (0, 0, 0, 0) (0, 0, 0, 0) 1∗

11r 00a2 0000 8020 0044 (0, 2, 0, 0) (0, 0, 0, 0) 1∗

10r 0000 0e03 0000 0073 (0, 0, 0, 1) (0, 0, 0, 0) 1∗

11r 0000 050c 0a00 0000 (0, 2, 0, 0) (0, 0, 0, 0) 1∗

12r 0a00 0000 0000 0000 (0, 8, 0, 0) (0, 0, 0, 0) 2−2

13r 0000 0000 0000 0000 (0, 0, 0, 0) (0, 0, 0, 0) 1
14r 0000 0000 0000 0000 (0, 0, 1, 0) (0, 0, 0, 0) 1
15r 0000 0000 0001 0000 (2, 0, 0, 0) (0, 0, 0, 0) 2−3

16r 0090 0000 0000 0000 (8, 0, 0, 0) (0, 0, 0, 0) 2−3

17r 0000 0000 0000 0000 (0, 0, 0, 0) (0, 0, 0, 0) 1
18r 0000 0000 0000 0000 (0, 1, 0, 0) (0, 0, 0, 0) 1
19r 0000 0001 0000 0000 (0, 0, 2, 0) (0, 0, 0, 0) 2−3

For both versions, a single bit ”1” and a 6-bit constant C are XORed into the internal state at positions
n− 1, 23, 19, 15, 11, 7 and 3 respectively.

The key schedule for GIFT is very simple. The 128-bit master key is initialized as K = k7||k6||...||k0,
where |ki| = 32. For GIFT-64, the round key RK is RK = U ||V = k1||k0. For GIFT-128, the round key
RK is RK = U ||V = k5||k4||k1||k0. And for both versions, the key state is updated as follows,

k7||k6||...||k0 ← k1 >>> 2||k0 >>> 12||...||k3||k2,

where ≫ i is an i-bit right rotation within a 16-bit word. For more details of GIFT, we refer to [16].

5.2 Notations and Definitions of GIFT

In this section, the notations are defined as follows:

∆P : the difference in plaintext

∆Xi
S : the difference after SubCells operation in Round i, 0 ≤ i ≤ r − 1

∆Xi
P : the difference after PermBits operation in Round i, 0 ≤ i ≤ r − 1

∆Xi
K : the difference after AddRoundKey operation in Round i, 0 ≤ i ≤ r − 1

”?” : represent an unknown difference

∆Xi
S [j · · · k] : jth byte, · · · , kth byte of ∆Xi

S

5.3 24-Round Attack on GIFT-64

We use the same 19-round related-key rectangle distinguisher of GIFT-64 listed in Table 5 by Chen et
al. [22] to give the first 24-round key-recovery attack on GIFT-64. We append three rounds backward and
two rounds forward to the distinguisher to conduct a 24-round related-key rectangle attack. The propagation
of the differentials is illustrated in Table 6.

Note that, there is no whitening key xored to the plaintext, we collect data in ∆X0
P , which is similar to

the previous works [22, 34, 48]. There are 46 unknown bits in ∆X0
P denoted by ”?” which affect 12 Sboxes

in Round 1 and four Sboxes in Round 2, thus rb = 46 and the number of key bits needed to be guessed in
the upper part is mb = 24. Similarly, we have rf = 20 and mf = 12 for the lower part. Totally, there are

y2 · 22rb · 2−2(n−rf ) = y2 · 24 quartets remaining for each guessed mb-bit key. The key recovery part is very
similar to that in Section 4.4, we give the brief description of it as follows (For generalization, we treat the
”1” in ∆X22

S and ∆X22
K as ”?”):



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 15

Table 6: Related-key Rectangle Attack of 24-round GIFT-64

∆P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

∆X0
S 0??? ?0?? 1?0? ?1?0 0??? ?0?? ??0? ???0 0??? ?0?? ??0? ???0 0??? ?0?? ??0? ???0

∆X0
P ???? ???? ???? ???? 11?? ???? ???? ???? ???? ???? ???? ???? 0000 0000 0000 0000

∆X0
K ???? ???? ???? ???? 11?? ???? ???? ???? ???? ???? ???? ???? 0000 0000 0000 0000

∆X1
S 000? ?000 0?00 00?0 0100 00?0 000? 1000 0?0? ?0?0 0?0? ?0?0 0000 0000 0000 0000

∆X1
P 0000 11?? ???? 0000 0000 0000 0000 0000 ???? 0000 ???? 0000 0000 0000 0000 0000

∆X1
K 0000 11?? ???? 0000 0000 0000 0000 0000 ???? 0000 ???? 0000 0000 0000 0000 0000

∆X2
S 0000 0100 0010 0000 0000 0000 0000 0000 0010 0000 1000 0000 0000 0000 0000 0000

∆X2
P 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000 0000 0000 0110 0000 0000 0000

∆X2
K 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000 0000 0000 0110 0000 0000 0000

.

.

. Distinguisher of 19-round GIFT-64

∆X21
K 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆X22
S 0000 ??11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆X22
P 0010 0000 0000 0000 0001 0000 0000 0000 ?000 0000 0000 0000 0?00 0000 0000 0000

∆X22
K 0010 0000 0000 0001 0001 0000 0000 0000 ?000 0000 0000 0000 0?00 0000 0000 0000

∆X23
S ???? 0000 0000 ???? ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000

∆X23
P ??00 0?00 0?00 0?00 0??0 00?0 00?0 00?0 00?? 000? 000? 000? ?00? ?000 ?000 ?000

∆X23
K ??00 0?00 0?00 0?00 0??0 00?0 00?0 00?0 00?? 000? 000? 000? ?00? ?000 ?000 ?000

1. The difference of ∆X23
S [60, 61, 62, 63] can be computed by the cipertext pair (C1, C3) and the difference

of ∆X22
K [60, 62, 63] = 0 is known. Thus we guess the 22 possible values of involved key bits in this

Sbox and partially decrypt cipertext pairs (C1, C3) and (C2, C4) and check whether the difference of
∆X22

K [60, 62, 63] is 0 or not. If yes, we keep the guessed key and the quartet, otherwise discard it. There
are about y2 ·24 ·22 ·2−6 = y2 combinations of the remaining quartets associated with the guessed 2-bit
keys, i.e. there remains about y2 ·2−2 quartets with 22 candidate values of the 2-bit involved keys each.

2. Conducting a similar process to all the active Sboxes in Round 23, there are about y2 ·2−4×4 = y2 ·2−16

combinations of the remaining quartets associated with the guessed keys,.
3. Partially decrypt all the remaining quartets with the obtained key bits in steps 1 and 2. The difference

of ∆X21
K [56, 57, 58, 59] can be obtained from the end of the distinguisher, thus guess the 22 possible

values of the key bits involved in this Sbox. For each guess, only 2−8 of the quartets remain i.e.
y2 · 2−16 · 22 · 2−8 = y2 · 2−22. Utilize the remaining quartets to count the mf = 12 key bits.

When the expected number of right quartets s = 4, we need to choose y =
√
s · 2n/2−rb/p̂q̂ = 212

structures of 246 plaintexts each, and the data complexity is 4M = 260 chosen plaintexts. 2mb ·3M = 291.58

table lookups are needed to prepare quartets. For each guessed mb-bit key, y2 ·24 ·22 one-round encryptions
are conducted which are equal to y2 · 24 · 22/24 ≈ 225.42 encryptions. If we choose the advantage h = 40,
2mb · 225.42 + 2128−48 ≈ 288 encryptions are needed to recover all the key bits, and the success probability
is 97.41%. Thus the time complexity is bounded by the 2mb · 3M = 291.58 table lookups. The memory
complexity is 5M + 2mf ≈ 260.32.

6 Conclusion

In this paper, we give a new model of the generalized related-key rectangle attack. Based on the new
model, we give improved attacks on both, round-reduced SKINNY-128-384 and GIFT-64. We also give
the first third party cryptanalysis on SKINNY AEAD M1, which is a candidate of the NIST Lightweight
Cryptography project.

– As one open problem, our model may be also applicable to more SKINNY-based or GIFT-based au-
thenticated encryption candidates of the ongoing NIST Lightweight Cryptography project, such as
SUNDAE-GIFT [5], TGIF [26], GIFT-COFB [6], Remus [27] and Romulus [28].

– Another open problem is to apply our model to evaluate the security of other block ciphers with linear
key schedules, such as Saturnin [19], Simon [18].

– For LOTUS-AEAD and LOCUS-AEAD [50], a Round 2 candidate of the NIST LWC, the designers state
that “the keys are computed by a predictable way in the mode and used with a fixed tweak. This implies
that related-key security of TweGIFT-64 matters in the related-key security of the entire construction.”.
Hence, it is relevant to study GIFT-64 against related-key attack. The attacks in our paper do not
cover the concrete impact on LOTUS-AEAD and LOCUS-AEAD. We would like to leave it as an open
problem.

Acknowledgments

This work is supported by the National Key Research and Development Program of China (No. 2017Y-
FA0303903), the National Natural Science Foundation of China (No. 61902207), the National Cryptography
Development Fund (No. MMJJ20180101, MMJJ20170121).



16 Boxin Zhao et al.

References

1. Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel, Siang Meng Sim, and Gaoli Wang.
Related-key impossible-differential attack on reduced-round skinny. In Applied Cryptography and Network Security -
15th International Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, pages 208–228, 2017.

2. Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M. Youssef. MILP modeling for (large) s-boxes
to optimize probability of differential characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–129, 2017.

3. Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over rings with zero divisors, nearly symmetric
even-mansour constructions with non-involutory central rounds, and search heuristics for low-latency s-boxes. IACR
Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

4. Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari, Toru Akishita, and Francesco
Regazzoni. Midori: A block cipher for low energy. In Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part II, pages 411–436, 2015.

5. Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, Elmar Tischhauser, and Yosuke
Todo. SUNDAE-GIFT. Submission to Round 1 of the NIST Lightweight Cryptography Standardization process (2019).

6. Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul Nandi, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT-COFB. Submission to Round 1 of the NIST Lightweight Cryptography
Standardization process (2019).

7. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling the serpent. In Advances in Cryp-
tology - EUROCRYPT 2001, International Conference on the Theory and Application of Cryptographic Techniques,
Innsbruck, Austria, May 6-10, 2001, Proceeding, pages 340–357, 2001.

8. Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and rectangle attacks. In Fast Software
Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised Papers, pages 1–16,
2002.

9. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle attacks. In Advances in Cryp-
tology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 507–525, 2005.

10. Eli Biham, Orr Dunkelman, and Nathan Keller. A related-key rectangle attack on the full KASUMI. In Advances
in Cryptology - ASIACRYPT 2005, 11th International Conference on the Theory and Application of Cryptology and
Information Security, Chennai, India, December 4-8, 2005, Proceedings, pages 443–461, 2005.

11. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich,
and Siang Meng Sim. The SKINNY family of block ciphers and its low-latency variant MANTIS. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part II, pages 123–153, 2016.

12. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich,
and Siang Meng Sim. SKINNY-AEAD and SKINNY-Hash v1.0. Submission to Round 1 of the NIST Lightweight
Cryptography Standardization process (2019).

13. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192 and AES-256. In Advances
in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, pages 1–18, 2009.

14. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
Yannick Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block cipher. In Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings,
pages 450–466, 2007.

15. Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. CRAFT: lightweight tweakable block
cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

16. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT: A
small present - towards reaching the limit of lightweight encryption. In Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 321–345,
2017.

17. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In Alfred Menezes and Scott A.
Vanstone, editors, Advances in Cryptology - CRYPTO 90, volume 537 of Lecture Notes in Computer Science, pages
2–21. Springer, 1991.

18. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The SIMON
and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

19. Anne Canteaut, Sébastien Duval, Gaëtan Leurent, Marıa Naya-Plasencia, Léo Perrin, Thomas Pornin, and André
Schrottenloher. Saturnin v1: a suite of lightweight symmetric algorithms for post-quantum security. Submission to
Round 1 of the NIST Lightweight Cryptography Standardization process (2019).

20. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang connectivity table: A new cryptanalysis
tool. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 683–
714, 2018.

21. The CAESAR Committee. CAESAR: Competition for authenticated encryption: Security, applicability, and robustness,
2014.

22. Lele Chen, Gaoli Wang, and Guoyan Zhang. MILP-based related-key rectangle attack and its application to GIFT,
Khudra, MIBS. Accepted by The Computer Journal.

23. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key attack on the KASUMI cryptosystem
used in GSM and 3g telephony. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 393–410, 2010.

24. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Information
Security and Cryptography. Springer, 2002.

25. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED block cipher. In Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October
1, 2011. Proceedings, pages 326–341, 2011.



Generalized Related-Key Rectangle Attacks on Block Ciphers with Linear Key Schedule 17

26. Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Ling Sun.
Thank Goodness It’s Friday (TGIF). Submission to Round 1 of the NIST Lightweight Cryptography Standardization
process (2019).

27. Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Remus v1. Submission to Round 1 of
the NIST Lightweight Cryptography Standardization process (2019).

28. Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Romulus v1. Submission to Round 1 of
the NIST Lightweight Cryptography Standardization process (2019).

29. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers: The TWEAKEY framework.
In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application of
Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, pages
274–288, 2014.

30. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Submission to caesar : Deoxys v1.41, October 2016.
31. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks against reduced-round MARS and

serpent. In Fast Software Encryption, 7th International Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000,
Proceedings, pages 75–93, 2000.

32. Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption modes. In Fast Software
Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected
Papers, pages 306–327, 2011.

33. Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY under related-tweakey settings (long
paper). IACR Trans. Symmetric Cryptol., 2017(3):37–72, 2017.

34. Yunwen Liu and Yu Sasaki. Related-key boomerang attacks on GIFT with automated trail search including bct effect.
Cryptology ePrint Archive, Report 2019/669, 2019.

35. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing the limits: A very compact
and a threshold implementation of AES. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings, pages 69–88, 2011.

36. Sean Murphy. The return of the cryptographic boomerang. IEEE Trans. Information Theory, 57(4):2517–2521, 2011.
37. National Institute of Standards and Technology (NIST). Lightweight cryptography (LWC) standardization process,

2019. https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates.
38. Yu Sasaki. Integer linear programming for three-subset meet-in-the-middle attacks: Application to GIFT. In Advances

in Information and Computer Security - 13th International Workshop on Security, IWSEC 2018, Sendai, Japan,
September 3-5, 2018, Proceedings, pages 227–243, 2018.

39. Ali Aydin Selçuk. On probability of success in linear and differential cryptanalysis. J. Cryptology, 21(1):131–147, 2008.
40. Siwei Sun, David Gerault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo, Kexin Qiao, and Lei Hu. Analysis of AES,

SKINNY, and others with constraint programming. IACR Trans. Symmetric Cryptol., 2017(1):281–306, 2017.
41. Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis of reduced round SKINNY block cipher.

IACR Trans. Symmetric Cryptol., 2018(3):124–162, 2018.
42. Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revisited. application to SKINNY and AES. IACR

Trans. Symmetric Cryptol., 2019(1):118–141, 2019.
43. Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu. Programming the demirci-selçuk meet-

in-the-middle attack with constraints. In Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference
on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, pages 3–34, 2018.

44. Yu Sasaki and Yosuke Todo. New impossible differential search tool from design and cryptanalysis aspects - revealing
structural properties of several ciphers. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part III, pages 185–215, 2017.

45. Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible differential cryptanalysis of reduced-round
SKINNY. In Progress in Cryptology - AFRICACRYPT 2017 - 9th International Conference on Cryptology in Africa,
Dakar, Senegal, May 24-26, 2017, Proceedings, pages 117–134, 2017.

46. David A. Wagner. The boomerang attack. In Fast Software Encryption, 6th International Workshop, FSE ’99, Rome,
Italy, March 24-26, 1999, Proceedings, pages 156–170, 1999.

47. Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds. application to AES variants and Deoxys.
IACR Trans. Symmetric Cryptol., 2019(1):142–169, 2019.

48. Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. MILP-based differential attack on round-reduced GIFT. In Topics
in Cryptology - CT-RSA 2019 - The Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA,
March 4-8, 2019, Proceedings, pages 372–390, 2019.

49. Huaifeng Chen, Rui Zong, and Xiaoyang Dong. Improved Differential Attacks on GIFT-64. To appear in ICICS 2019.
50. Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul Nandi and Yu Sasaki. INT-RUP

Secure Lightweight Parallel AE Modes. IACR Trans. Symmetric Cryptol. 2019(4):81–118, 2019.


