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Abstract. Leakage during the signing process, including partial key ex-
posure and partial (or complete) randomness leakage, may be devastating
for the security of digital signatures. In this work, we consider the secu-
rity of lattice-based Fiat-Shamir signatures in the presence of randomness
leakage. Based on a connection with the ILWE problem introduced by
Bootle et al. at Asiacrypt 2018, we show that the key recovery attack
with partial randomness leakage can be reduced to a variant of ILWE
(We call it FS-ILWE in this work). The ILWE problem is the problem
of recovering the secret vector s given polynomially many samples of the
form (a, 〈a, s〉+e) and is proven solvable if the error e is not superpolyno-
mially larger than the inner product 〈a, s〉, whereas in the FS-ILWE a is
a sparse vector with a fixed number of non-zero elements, which is either
1 or −1. With one nice probability property that the expectation and
covariance of any two coefficients of a are zeros, we show that FS-ILWE
can also be solved in polynomial time.

Consequently, many lattice-based Fiat-Shamir signatures can be totally
broken with only one bit leakage of randomness per signature. Our attack
has been validated by conducting a series of experiments on two efficient
NIST PQC submissions, Dilithium and qTESLA. The results indicate
that the secret key of Dilithium and qTESLA can be recovered within
seconds by running our method on an ordinary PC desktop.

Keywords: Randomness leakage attacks · Fiat-Shamir signature ·Dilithium
· qTESLA · ILWE · the least squares method

1 Introduction

Most cryptographic algorithms are designed under the assumption that all the
sensitive parameters are kept hidden. However, when a cryptographic algorithm
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is practically used, these parameters may be leaked to adversaries due to im-
plementation, communication or other reasons. Taking digital signatures as ex-
ample, leakage during the signing process, including partial key exposure and
partial (or complete) randomness leakage, may be devastating for their security.
For example, Heninger and Shacham [25] showed that the RSA secret key with
small public parameters can be efficiently recovered given 27% random bits. And
DSA whose key is 160-bit can be totally broken if only 3 least significant bits
(LSBs) of randomness are known [33]. In this work we focus on the security of
signatures in the presence of partial randomness leakage.

Howgrave-Graham and Smart [26] proposed the first partial randomness (i.e.
nonce) leakage attack on DSA by reducing it to the closet vector problem (CVP),
which can be solved using the Babai’s nearest plane algorithm [6] together with
the LLL lattice reduction algorithm [28]. However, their attack relied on several
heuristic assumptions. Later, Nguyen and Shparlinski [33] presented the first
provable attack on DSA with partial randomness leakage. More precisely, with
about log1/2 q LSBs or most significant bits (MSBs), the secret key of DSA can
be recovered in polynomial time. The main idea of their attack is mapping the
partial leakage attack on DSA to a Hidden Number Problem (HNP) introduced
in [13], which can be reduced to the shortest vector problem (SVP) and then
solved with the lattice reduction algorithms. Nguyen and Shparlinski showed
that their attack can apply to DSA-like signatures, including ECDSA [34] and
Schnorr’s signature [43].

Because of the similarity between DSA and Fiat-Shamir signatures, we won-
der whether the randomness leakage attack in [33] is applicable to the Fiat-
Shamir signatures [22] besides Schnorr’s signature whose signatures are in the
form of z = y + sc mod q. Recall that in HNP it is to recover the hidden num-
ber α given many known random t ∈ Fq and the l MSBs of αt mod q which
denote any rational u such that |αt mod q − u|q ≤ q/2l+1. Suppose that the l
LSBs of randomness y are leaked and y = a + 2lb. Obviously, the key recov-
ery attack of Fiat-Shamir signature given leakage a is then converted to a HNP
where t = 2−lc mod q and u = (2−l(a− z)− q/2l+1) mod q. Hence, Fiat-Shamir
signatures are vulnerable to such partial randomness leakage attacks.

In 2016, NIST announced a competition to develop standards for quantum-
safe public key primitives. In the post-quantum setting, lattice-based cryptogra-
phy is acknowledged the most promising candidate and has gained a lot of at-
tention. There are five lattice-based signatures submitted to NIST, two of which
follow the Fiat-Shamir paradigm: Dilithium [32] and qTESLA [10]. Specifically,
Dilithium avoids the NTRU lattice and discrete Gaussian sampling for the secu-
rity and the convenience of implementation, meanwhile, it still has high efficiency
and small sizes of public key and signature. And qTESLA is provably secure in
the Quantum Random Oracle Model (QROM). In contrast to the theoretical
security, the security of lattice-based Fiat-Shamir signatures in the presence of
randomness leakage is still open.

Now there is a natural question that whether partial randomness leakage
attacks on Fiat-Shamir signatures based on other mathematical structures, such
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as the attack in [33], can apply to lattice-based Fiat-Shamir signatures. The
answer is negative. The major reason is that the secret key of lattice-based Fiat-
Shamir signatures consists of one or more polynomials with small coefficients
and there is a big difference between polynomial multiplication and number
multiplication, making it hard to define a HNP over lattice.

1.1 Our Contributions

In this work, we present a new polynomial time key recovery attack on lattice-
based Fiat-Shamir signatures by leaking only one bit of randomness used in
the signing process. More precisely, the Fiat-Shamir signature is computed as
z = y + sc. Considering each coefficient of z, we have z = y+ 〈s, c̄〉 where z and
y are the corresponding coefficient of z and y, and 〈s, c̄〉 is the corresponding
coefficient of the polynomial multiplication sc and c̄ is a row of the rotation
matrix C of c. We show that if the (l + 1)-th bit of y is leaked, one can recover
the secret key of Fiat-Shamir signatures over lattice, where l is the leakage
bound satisfying Pr[|〈s, c̄〉| < 2l−1] > 99%. Our attack still works if leakage
occurs at any position between the (l+ 1)-th bit and the MSB of any coefficient
of randomness. However, in the case of leaking higher-order bit, one needs more
signatures to recover the secret key. Roughly speaking, almost four times as
many signatures theoretically are necessary if the leakage position is shifted to
left by one bit.

The main idea of our attack is reducing the key recovery attack with leakage
to the Fiat-Shamir integer learning with error (FS-ILWE) problem, which is a
variant of the ILWE problem [14]. The ILWE problem is the problem of recover-
ing the secret vector s given polynomially many samples of the form (a, 〈a, s〉+e)
and is proven solvable if the error e is not superpolynomially larger than the in-
ner product 〈a, s〉, whereas in the FS-ILWE a is a sparse vector with a fixed
number of non-zero elements, which is either 1 or −1. With the nice probability
property that the expectation and covariance of any two coefficients of a are
zero, we show that FS-ILWE can also be solved in polynomial time.

We choose Dilithium and qTESLA as two cases of study to verify our attack,
where the former is based on module lattice and the latter is based on ring.
Despite the underlying structure, their signatures are in the form of z = y + sc,
hence we can perform randomness leakage attacks on Dilithium and qTESLA
directly. Note that in Dilithium, because of the module lattice, the secret key is
a matrix and each column corresponds to a random n-dimensional polynomial
vector. Therefore, the attack on Dilithium can be reduced to an FS-ILWE prob-
lem whose dimension is as small as the degree of the underlying ring. From this
perspective, module lattice is more vulnerable to our attack than ring at the
same security level.

Also note that the secret key consists of two components: s1 and s2. However,
we can only recover s1 via our attack since the signature z is the proof knowledge
of s1 and the proof of knowledge of s2 is removed to reduce the signature size
in Dilithium and qTESLA. Generally, for most of the lattice-based Fiat-Shamir
signatures, such as qTESLA, s2 can be recovered with the public key t = As1 +
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s2 by solving a system of linear equations. However, since the public key is
compressed, this method fails in Dilithium. Fortunately, recent works [15,41]
proposed a signing algorithm to generate signatures only with the knowledge of
s1. In other words, recovering s1 is sufficient for existential forgery attacks on
Dilithium.

Our attack has been validated by conducting experiments on Dilithium and
qTESLA. There are three types of experiments. As discussed above, the leakage
bound l affects the success rate and the number of required signatures in our at-
tack. Hence, we first determine the suitable l for each parameter set of Dilithium
and qTESLA statistically. The results show that l for qTESLA is generally larger
than that for Dilithium. Then we perform leakage attacks on both signatures by
leaking the (l + 1)-th bit of any coefficient of randomness. It takes only several
seconds to recover the secret key of Dilithium on an ordinary desktop, while it
takes about hundreds of seconds for qTESLA. The results also support the con-
clusion that Dilithium is easier to attack than qTESLA in our case due to the
module lattice structure. Another interesting conclusion is that the difficulty of
our attack is opposite to the difficulty of lattice reduction when the dimension
n is fixed. For example, in Dilithium, the higher the security level claimed, the
easier our attack is. Finally, we conduct experiments on Dilithium to recover the
secret key with high-order leakage bit. The results indicate that if the leakage
position is shifted to left by one bit, roughly two to five times signatures are
required to recover the secret key.

1.2 Overview of Our Attack

Our attack stems from an observation that the Fiat-Shamir signatures over lat-
tice look like ILWE samples. Specially, in the lattice-based Fiat-Shamir signa-
ture, the signature is computed as z = y + cs. Take c̄ as the random vector a
and y as the error e, each coefficient of the signature z = y+ 〈s, c̄〉 seems a sam-
ple of the ILWE problem. As shown in [14], the ILWE problem can be solved
with high probability by the least squares method then rounding if the standard
deviation σe of the error distribution χe is not superpolynomially larger than
the standard deviation σa of χa. Generally speaking, the larger the ratio of σe
and σa, the more samples we need to recover s. However, c̄ is a sparse vector
whose non-coefficient is either 1 or −1, making σa very small. Worse still, in the
lattice-based Fiat-Shamir signatures, we generally choose a large y to mask the
secret key s, which further increases the difficulty of solving the ILWE problem.
Finally, the fatal reason why the idea does not work is that the lattice-based
Fiat-Shamir signatures are filtered by the rejection sampling technique, which
provides that z is independent of the secret key s statistically, and we cannot
infer any information of s from z.

We overcome the above two technique hurdles by throwing away the MSBs of
the randomness and partially leaking the randomness respectively, corresponding
to the first two steps of our attack. More specially, since y is much larger than
〈s, c̄〉, only the low-order bits of z contain information of s. Hence, in the first
step, we throw away the MSBs of y, z and only concentrate on their LSBs to
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reduce the error. In the second step, we establish the connection between the
signature z and the secret key s by leaking one bit of randomness, which is also
used to remove the module introduced in the first step. Assuming ‖sc‖∞ < 2l,
the FS-ILWE problem in our attack is given as follows: [z]2l±d·2l = [y]2l+〈s, c̄〉,
where a = c̄, e = [y]2l and b = [z]2l ± d · 2l.

[y]2l and [z]2l correspond to the l LSBs of y and z. Note that we need to leak
the (l+ 1)-th bit of y to judge whether the sum of [y]2l and 〈s, c̄〉 exceeds l bits.
Specifically, if the (l+1)-th bit of y and the (l+1)-th bit of z are the same, then
d = 0, otherwise d = 1. The remaining thing is determining the sign of d which
depends on the value of [z]2l in case of d = 1, i.e. determining the overflow is
caused by a carry or a borrow. If we choose l satisfying Pr[|〈s, c̄〉| < 2l−1] > 99%,
the probability of guessing b correctly is more that 99%. If we guess wrong,
extra error will be introduced. Hence, with the probability more than 99%,
the error term is exactly [y]2l . Thus, we obtain an FS-ILWE sample and key
recovery attack with leakage is reduced to an FS-ILWE problem where a has
special structure. We also show that FS-ILWE can be solved using least squares
regression in polynomial time in Section 3.3. The case of leaking the high-order
bit of randomness is similar and the only difference is the error distribution
which is [y]2t−1 instead and t is the leakage position between the (l + 1)-th bit
and the MSB of randomness.

1.3 Related Work

Leakage Attacks on (EC)DSA. The works [26,33,34] have shown that attacks
on DSA-like signature schemes with partial known randomness can be mapped
to a HNP problem, which can be reduced to CVP or SVP and solved by lattice
reduction techniques [6,28,44,17]. Based on the idea, a series of works estimated
the security of implementations of DSA and ECDSA in OpenSSL [16,1,2,9,45,3].
Almost all of them used the cache-based side-channel attacks to extract the
leaked information except [2], which used a remote timing attack to obtain the
MSBs of the ECDSA randomness. With the FLUSH+RELOAD attack [24,46],
one can recover the secret key of DSA [1,36,4] and ECDSA [16,9,45,3] by par-
tially leaking the randomness. And [29] reduced the number of required LSB of
randomness for 160-bit DSA key from 3 to 2 by proposing a new lattice reduction
technique.

Besides leakage, other information of randomness can also be utilized to
attack. [8] showed that one can recover the secret key of DSA if the randomness
is generated by Knuth’s linear congruential pseudorandom number generator.
And subsequent works also proposed lattice attacks on DSA and ECDSA with
the relation between randomness, such as randomness have a congruence relation
[11,39,40] or share some bits [21].
Leakage Attacks on Lattice-based Fiat-Shamir Signatures. Since lattice-
based cryptography has received widespread attention, a large number of schemes
and implementations have emerged. More recently, researchers start to investi-
gate the implementation security against leakage and fault attacks. [23] proposed
the first side-channel attack on the Bimodal Lattice Signature Scheme (BLISS)

5



[19], which follows the Fiat-Shamir paradigm. The target of their attack is the
Gaussian sampling algorithm used to generate the randomness polynomial and
the main idea is leaking almost the entire y using the FLUSH+RELOAD cache-
attack. With the signature z = y+sc, the secret key s can be recovered via basic
linear algebra or lattice reduction technique. Later, [38] extended the cache at-
tack to BLISS-B [18]. Another work of randomness leakage attack is [20], whose
attack target is also the Gaussian sampling algorithm. They leaked the entire
value of randomness y and hence the secret key using the branch tracing tech-
nique.

The main reason of randomness leakage is that the randomness is gener-
ated by a variable-time Gaussian sampling algorithm, which is vulnerable to
side-channel attacks. Aware of this, the later signatures such as Dilithium and
qTESLA employ the uniform distribution instead of Gaussian distribution to
avoid above side-channel attacks. Hence, Dilithium and qTESLA are secure
against these randomness leakage attacks because large randomness leakages
are no longer feasible. Our attack requires only one bit leakage per signature,
and one bit leakage is easier to obtain in practice. That is to say, our work
applies to lattice-based Fiat-Shamir signatures whose randomness follows both
Gaussian distribution and uniform distribution.

Besides the Gaussian sampling algorithm, [20] also considered two other leak-
age sources: the rejection sampling algorithm and the polynomial multiplication
s1c. The former can be used to obtain an exact quadratic function of the secret
key and a noisy linear function of the secret key using electromagnetic analysis
(EMA) or branch tracing. The latter can be used to recover the secret key s1
directly by using a traditional differential power analysis (DPA) or EMA. They
showed how to exploit the quadratic leakage to compute the secret key, however
the method can only apply to a small fraction (around 7%) of keys. [14] found
that the linear leakage function can be seen as an ILWE problem, which can be
solved by least squares regression, and the method applies to 100% of keys.

It is worth noting that although our attack is mapped to the FS-ILWE prob-
lem which is a variant of ILWE problem in the attack of [14], their attack needs
to obtain the noisy linear leakage by side-channel attacks on the rejection sam-
pling, while our attack is an abstract leakage attack and works as long as a
single specific bit of randomness per signature leaks during the use process of
lattice-based Fiat-Shamir signatures, without limiting the leakage methods and
leakage sources. Moreover, their attack cannot apply to Dilithium and qTESLA
because of the uniform distribution.

[41] adapted the side-channel attack on polynomial multiplication to Dilithium,
however, one can only recover s1. Since the public key of Dilithium is compressed,
the secret key s2 is still unknown. They proposed an alternate signing algorithm
with only s1.

In addition to leakage attacks, countermeasure such as shuffling on Gaussian
sampling [42] was proposed. However, [37] proposed an attack on the shuffling
countermeasure.
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Discussion about the Attack Model. To verify the reality of our attack
model, in Appendix F we provide experiments which describe how to get a single
specific bit of randomness in practice. Indeed, recent lattice-based Fiat-Shamir
signatures such as Dilithium and qTESLA employ the uniform distribution in-
stead of Gaussian distribution to generate randomness to avoid side-channel
attacks on Gaussian sampling, making it hard to get information during the
randomness generation process. However, our attack target can be any step that
involve the manipulation of randomness y, for example, the operation z = y+sc
in Step 7 of Algorithm 6. The experiments show that we can recover the required
leakage bit of randomness with probability 1. Since no complex methods and spe-
cial techniques are required in our experiments, we believe the assumption that
an adversary can recover a specific bit of y is realistic.

2 Preliminaries

In this section, we present some basic notations and definitions.

Notations. For x ∈ R, rounding the number x is denoted by dxc. We denote
column vectors and matrices in bold, respectively by bold lowercase (e.g. x) and
uppercase (e.g. A). The Euclidean norm of the vector x = (x0, x1, . . . , xn)T ∈ Rn
is denoted by ‖x‖2, and the infinity norm by ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).

For any random variableX, E[X] denotes the expectation ofX and Var(X) =
E[X2]− E[X]2 denotes the variance. We write X ∼ χ to denote that X follows
the distribution χ. If χ is a discrete distribution over some countable set S, then
for any s ∈ S, we denote by χ(s) the probability that a sample from χ equals to
s. In particular, if f : S → R is any function and X ∼ χ, we have:

E[f(s)] =
∑
s∈S

f(s) · χ(s).

For the rest of the paper, we will work in the ring R , Z[x]/(xN + 1) where

N is a power-of-two integer. For an element a =
∑N−1
i=0 aix

i ∈ R, it can also be
represented as a vector (a0, a1, . . . , aN−1). For two polynomials a,b, the inner

product is denoted by 〈a,b〉 =
∑d
i=0 aibi = aTb. The polynomial multiplication

is represented as ab and can also be denoted as matrix multiplication Ab or Ba
where A, B are the rotation matrices related to a and b. The rotation matrix
A of a is the following Toeplitz matrix:

A =


a0 a1 a2 · · · aN−1

−aN−1 a0 a1 · · · aN−2

...
...

...
. . .

...
−a1 −a2 −a3 · · · a0

 (1)

For a matrix A ∈ Rm×n, the operator norm ‖A‖opp of A with respect to the
p-norm is given by

‖A‖opp = sup
x∈Rn\0

‖Ax‖p
‖x‖p

= sup
‖x‖p=1

‖Ax‖p.
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For a ∈ Z and l ∈ N, [a]2l is the l least significant bits of a in (−2l, 2l) such
at [a]2l = a (mod 2l) when a ≥ 0 and [a]2l = (|a| (mod 2l)) when a < 0. We
extend the definition to vectors: for a vector v = (v1, . . . , vn), [v]2l denotes the
same length vector with entries [vi]2l .

2.1 Subgaussian Distribution

In this section, we recall the notion of subgaussian distributions in [14] and
collect some properties of subgaussian distributions.

Definition 1 (Subgaussian). A random variable X over R is said to be τ -
subgaussian for some τ if the following bound holds for all s ∈ R:

E[exp(sX)] ≤ exp(
τ2s2

2
).

Lemma 1. A τ -subgaussian random variable X satisfies:

E(X) = 0 and E(X2) ≤ τ2.

Lemma 2. Any distribution over R of mean zero and supported over a bound

interval [a, b] is (b−a)
2 -subgaussian.

Similar to Gaussian distributions, the tail of a subgaussian variable can be
bounded.

Lemma 3. Let X be a τ -subgaussian distribution. For any t > 0,

Pr[X > t] ≤ exp(− t2

2τ2
).

Besides, a linear combination of independent subgaussian random variables
is also subgaussian.

Lemma 4. Let X1, . . . , Xn be independent random variables such that Xi is τi-
subgaussian. For all µ1, . . . , µn ∈ R, the random variable X = µ1X1+· · ·+µnXn

is τ -subgaussian with:
τ2 = µ2

1τ
2
1 + · · ·+ µ2

nτ
2
n.

The definition of subgaussian distributions can be extended to vectors.

Definition 2. A random vector x ∈ Rn is called a τ -subgaussian random vec-
tor if for all vectors u ∈ Rn with ||u||2 = 1, the inner product 〈u,x〉 is a
τ -subgaussian random variable.

It is obviously that if X1, . . . , Xn are independent τ -subgaussian random
variables, then the random vector x = (X1, . . . , Xn) is τ -subgaussian, and vice
versa. A nice feature of subgaussian random vectors is that the image of a random
vector x under any linear transformation A ∈ Rm×n is also subgaussian. It
should be emphasized that Ax is still subgaussian even when the distribution of
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x is related to A, because every coefficient 〈ai,x〉 of Ax is subgaussian according
to Lemma 4, which holds as long as x1, . . . , xn are independent subgaussian
random variables, without the necessity of independence between ai and x3.

Lemma 5. Let x be a τ -subgaussian vector in Rn given A ∈ Rm×n. Then the
random vector y = Ax is τ ′-subgaussian where τ ′ = ‖AT ‖op2 · τ .

Besides, extending the tail property to higher dimensions, we have the fol-
lowing lemma:

Lemma 6. Let v be a τ -subgaussian random vector in Rn. Then:

Pr[‖v‖∞ > t] ≤ 2n · exp(− t2

2τ2
).

2.2 The Integer LWE Problem

A main tool of our attack is the ILWE problem, which is defined in [14] and is
computed over Z rather than Z/qZ.

Definition 3 (ILWE Distribution). For any vector s ∈ Zn and any two prob-
ability distribution χa, χe over Z, the ILWE distribution Ds,χa,χe associated with
those parameters is the probability distribution over Zn × Z defined as follows:
samples from Ds,χa,χe are of the form

(a, b) = (a, 〈a, s〉+ e)

where a← χna and e← χe.

Definition 4 (ILWE Problem). Given m samples {(ai, bi)}1≤i≤m from the
ILWE distribution Ds,χa,χe for some s ∈ Zn recover the vector s.

Let σe and σa be the standard deviation of the error distribution χe and the
coefficient distribution χa respectively. Bootle et al. [14] showed the ILWE prob-
lem with m samples can be solved in polynomial time using statistical learning
techniques when m ≥ Ω(σe/σa)2 and σe is not superpolynomially larger than
σa.

3 The Partial Randomness Leakage Attack

In the section, we present a polynomial time attack to recover the secret key of
Fiat-Shamir signatures by leaking the randomness used in the signing process.
In a Fiat-Shamir signature whose form is z = y + sc, the random oracle output
c and the signature z are known and the secret key s and the randomness y are
unknown. For each coefficient z of z, it is obtained by z = y + 〈s, c̄〉, where c̄ is

3 For completeness, we provide proofs of Lemma 4 and Lemma 5 in Appendix A,
which are almost the same as that in [14].
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a corresponding row of the rotation matrix C of c. A natural way to recover s
is leaking the whole y and solving a system of linear equations. In the following,
we show how to minimize the number of leakage bits of y. As a result, we can
recover the secret key s even if only one bit of y is leaked per signature.

There are two crucial issues to recover s by the least squares method. Firstly,
the distribution of signature is not related to the distribution of s, so we show
how to recover s with only one bit leakage in Section 3.1. Another obstacle
is our attack can be reduced to an FS-ILWE problem, which is different from
ILWE defined in [14], but we show FS-ILWE problem is also solvable with linear
regression in Section 3.3.

3.1 Description of Our Attack

The crux of our attack relies on two observations: the infinity norm of sc is
smaller than that of y so that sc only effects the low-order bits of the signature
z and the Fiat-Shamir signatures over lattice seem like ILWE samples. The
former shows that the high-order bits of y are not necessary for our attack
(corresponding to Section 3.1) and the latter allows us to throw away the low-
order bits to further reduce the number of required leakage bits (corresponding
to Section 3.1).

Step 1: Throw Away the Most Significant Bits Note that in the Fiat-
Shamir Signature scheme, y is used to mask the value of 〈s, c̄〉 and we always
pick a y in a range that is much larger than the range of 〈s, c̄〉, that is, only the
low-order bits of the signature z is related to the secret key s. Therefore, there
is no need to leak the whole y to recover 〈s, c̄〉 and only the least significant
bits of y are necessary. Taking Dilithium as an example, with the recommended
parameters whose quantum security level is 125-bit, ‖sc‖∞ is less than 6 bits 4.
In such case, we only need to leak the 6 least significant bits of y to recover s. It
should be noted that here we need to leak the extra seventh bit to recover the
exact value of 〈s, c̄〉.

Step 2: Throw Away the Least Significant Bits Another difference between
lattice-based Fiat-Shamir signature and Fiat-Shamir signatures based on other
mathematical structures is that the signature over lattice is computed without
modular reduction. Taking c̄ as the random vector a and y as the error e, each
coefficient of the Fiat-Shamir signature z = y + 〈s, c̄〉 looks like a sample of the
ILWE problem. As shown in [14], such a problem can be solved in polynomial
time using statistical learning technique. Combining with the first observation

4 In Dilithium, the original β is 8 bits so that ‖sc‖∞ ≤ β except 2−80 probability.
However, in practice most of sc is much smaller than that bound and we take 6 bits
as the real bound since ‖sc‖∞ ≤ 26 with 99% probability according to the statistical
result.
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above, we can reduce the leakage attack on the lattice-based Fiat-Shamir signa-
tures to an ILWE-like problem with relatively small errors and solve it using the
least squares method. Assuming ‖sc‖∞ < 2l, the signature can be rewritten as:

z = y + 〈s, c̄〉 (2)

⇒ z mod 2l = (y + 〈s, c̄〉) (mod 2l) = (y mod 2l + 〈s, c̄〉) (mod 2l)
(3)

⇒ [z]2l ± d · 2l = [y]2l + 〈s, c̄〉 (4)

where we let

a = c̄ and e = [y]2l and b = [z]2l ± d · 2l.

(3) follows from the fact ‖sc‖∞ < 2l and (4) follows from the leakage of y.
That is, without extra information of y, we cannot remove the modulus in (4)
and cannot reduce the attack to the ILWE-like problem. Hence, we need to leak
the (l + 1)-th bit of y to judge whether the sum of [y]2l and sc exceeds l bits.
Specifically, if the (l+1)-th bit of y and the (l+1)-th bit of z are the same, then
d = 0, otherwise d = 1.

Collecting multiple samples of the form (4), the problem of recovering the
secret s is thus an ILWE-like problem in which the random vector a is the
output of the random oracle with special structure and the error term e is not
independent of a and s due to the rejection sampling. The problem is called the
FS-ILWE problem in the rest of the paper. We will estimate the distribution of

error term, denoted by χ
(a,s)
e , in Section 3.1.

Step 3: Determine the Sign Caused by Overflow In addition, in the case
of overflow (d = 1), we need to determine whether it is caused by a carry or
a borrow – i.e. determine whether b = [z]2l + 2l (carry occurs) or b = [z]2l −
2l (borrow occurs). Our strategy is determining b based on the value of [z]2l .
Roughly speaking, if [z]2l ≥ 0, then [y]2l ≥ 0 and if [z]2l ≤ 0, then [y]2l ≤ 0.
Suppose |〈s, c̄〉| < 2l−1. When there is an overflow, there are three cases5:

– [z]2l > 0: b is bounded by: −2l−1 < b < 2l + 2l−1. That is, [z]2l ∈ (0, 2l−1)
then carry occurs; [z]2l ∈ (2l−1, 2l) then borrows occurs.

– [z]2l < 0: Similarly, b is bounded by: −2l − 2l−1 < b < 2l−1. That is, [z]2l ∈
(−2l,−2l−1) then carry occurs; [z]2l ∈ (−2l−1, 0) then borrows occurs.

– [z]2l = 0: z > 0, then carry occurs; z < 0, then borrow occurs.

Because both of a carry and a borrow are possible for some values of [z]2l ,
determining the value of [z]2l ± 2l will introduce extra errors, however, our
strategy is almost always correct if |〈s, c̄〉| < 2l−1. Hence, in order to guess
b correctly, Pr[|〈s, c̄〉| < 2l−1] ≈ 1 is a necessary condition and we choose l

5 When [z]2l = ±2l−1 and |〈s, c̄〉| < 2l−1, no overflow occurs.
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satisfying Pr[|〈s, c̄〉| < 2l−1] > 99% in actual experiments6. In general, when
we launch an attack, we firstly judge whether there is an overflow, and if so,
we determine the value of b according to the value of [z]2l : b = [z]2l + 2l

when [z]2l ∈ (−2l,−2l−1) ∪ (0, 2l−1) ∪ {0}z>0, and b = [z]2l − 2l when [z]2l ∈
(−2l−1, 0) ∪ (2l−1, 2l) ∪ {0}z<0. Here we heuristically assume that the guess of
the sign caused by overflow is always correct.

Step 4: Estimate the Distribution χ(a,s)
e of the Error Term We now turn

our attention to the error term e, which is written as e = [y]2l = [z − 〈s, c̄〉]2l .
Because of the rejection sampling technique, each coefficient z of signatures is
independent from the secret key s and obeys a public and fixed distribution,
denoted by χz, including the discrete Gaussian distribution and the uniform
distribution. To do this simply, we assume that z is a uniform distribution on
(−2γ , 2γ) ∩ Z, then y is a uniform distribution on (−2γ − 〈s, c̄〉, 2γ − 〈s, c̄〉) ∩ Z,

denoted by χ
(a,s)
e . Let the probability density function of y is py(x), then the

probability density function of e = [y]2l is

p(x) =



∑
ξ<0, ξ≡x mod 2l

py(ξ), x ∈ (−2l, 0) ∩ Z∑
ξ≡0 mod 2l

py(ξ), x = 0∑
ξ>0, ξ≡x mod 2l

py(ξ), x ∈ [0, 2l) ∩ Z

=



2γ−l

2γ+1 − 1
, x ∈ (−2l,−〈s, c̄〉] ∩ Z

2γ−l + 1

2γ+1 − 1
, x ∈ (−〈s, c̄〉, 0) ∩ Z

2γ−l+1

2γ+1 − 1
, x = 0

2γ−l

2γ+1 − 1
, x ∈ (0, 2l − 〈s, c̄〉) ∩ Z

2γ−l − 1

2γ+1 − 1
, x ∈ [2l − 〈s, c̄〉, 2l) ∩ Z

It is easy to work out E([y]2l) = − 2l−1
2γ+1−1 〈s, c̄〉 is close to 0, so we can

approximately regard [y]2l as subgaussian over a bounded interval (−2l, 2l).

Taken together, the leakage attack in the presence of leakage is reduced to
the FS-ILWE problem and we show it can be solved with O((nτe/h)2 log(n))
samples using the least squares regression in Section 3.3.

Up to now, we can recover the secret key of lattice-based Fiat-Shamir signa-
tures with only one bit leakage of the randomness per signature and the leakage
is necessary for our attack as shown in (4). Another reason we cannot recover
the secret key without leakage is that lattice-based Fiat-Shamir signatures z are
filtered by the rejection sampling, which provides that z are independent from
the secret key s. Therefore, to some extent, the rejection sampling technique
fundamentally eliminates the potential threat of statistical attacks like ours in
the leak-free setting. A detailed analysis of the attack without leakage can be
found in Appendix B.

6 It is worth noting that in step 1 we require that l satisfying Pr[|〈s, c̄〉| < 2l] > 99%,
and in step 2 the constraint condition of l is the probability of 〈s, c̄〉| < 2l−1 is larger
than 99%. The final constraint we use in the experiments is the intersection of two
conditions, i.e. Pr[|〈s, c̄〉| < 2l−1] > 99%.
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3.2 High-Order Bit Leakage

We have shown how to recover the secret key with the (l + 1)-th bit of y and
in this section we give a similar argument with leakage at other known position.
Suppose the leakage bit from the t-th bit of y where l + 1 ≤ t ≤ k and k is the
length of coefficients of y. Applying the leakage attack in section 3.1 to this case
directly, we can get the following FS-ILWE problem:

[z]2t−1 ± d · 2t−1 = [y]2t−1 + 〈s, c̄〉 (5)

where we let

a = c̄ and e = [y]2t−1 and b = [z]2t−1 ± d · 2t−1.

Compared with (4), the only difference is the error distribution in FS-ILWE.
The error distribution in (4) is an approximately subgaussian distribution over
(−2l, 2l) and in (5) it can also be approximated to a subgaussian distribution
but with larger bounds (−2t−1, 2t−1). Thus, we need more samples to compute
the secret key with the t-th leakage bit of randomness. Theoretically, whenever
the leakage location is shifted to left by one bit, then the subgaussian moment
of error τe doubles and almost four times as many as samples are necessary.

3.3 Solving the FS-ILWE Problem

In this section we would like to show how to solve FS-ILWE using the least
squares method, which is similar to that for solving ILWE.

First, we provide a definition of FS-ILWE. In FS-ILWE, the random vector
is one output of the random oracle (or hash function). Specifically, in Dilithium
or qTESLA, the output of the hash function is an n-dimensional vector and has
h coefficients that are either -1 or 1 with equal probability and the rest are 0.
Denote the output set by Bh and the definition of FS-ILWE is given blow.

Definition 5 (FS-ILWE Distribution). For any vector s ∈ Zn, the FS-ILWE
distribution D

s,Bh,χ
(a,s)
e

associated with those parameters is the probability dis-

tribution over Zn × Z defined as follows: samples from D
s,Bh,χ

(a,s)
e

are of the

form
(a, b) = (a, 〈a, s〉+ e)

where a← Bh and e← χ
(a,s)
e .

Definition 6 (FS-ILWE Problem). Given m samples {(ai, bi)}1≤i≤m from
the FS-ILWE distribution D

s,Bh,χ
(a,s)
e

for some s ∈ Zn recover the vector s.

Note that for simplicity, the distribution of the error term in this section is
subgaussian, but it is not exactly consistent with the real attack setting, in which

the distribution is χ
(a,s)
e . Hence, we need to approximate χ

(a,s)
e as subgaussian

(See Section 3.1 for details), introducing a heuristic assumption. In Appendix
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C we will provide a theoretical justification of why FS-ILWE whose error term

distribution is χ
(a,s)
e is solvable.

The FS-ILWE equation for s can be written in matrix form:

b = As + e (6)

where A ∈ Zm×n, e ∈ Zm is subgaussian.
The idea to solve s using the least squares method is to find an approximate

solution s̃ ∈ Rn of the noisy linear system (6) such that the squared Euclidean
norm ‖b−As̃‖22 is minimal. If we can establish the bound

‖s− s̃‖∞ < 1/2 (7)

then we can simply round s̃ coefficient by coefficient to get s = ds̃c = (ds̃1c, . . . , ds̃1c)
and the FS-ILWE problem is solved 7. In particular, when m is large, ATA will
be invertible and we can compute s̃ = (ATA)−1 ·ATb. Therefore, we have

s̃− s = (ATA)−1 ·ATe = Me (8)

where M is the matrix (ATA)−1 ·AT . Since e is a τe-subgaussian vector, s̃−s =
Me is also τ ′-subgaussian follows from Lemma 5 where

τ ′ = ‖AT ‖op2 · τe = τe

√
λmax(MMT ) = τe

√
λmax((ATA)−1AT ·A(ATA)−1)

= τe

√
λmax((ATA)−1) =

τe√
λmin(ATA)

.

Now it remains to bound the smallest eigenvalue λmin(ATA) so as to satisfy
the condition in (7). In the original ILWE, the coefficients of each row ai of A
follow a τ -subgaussian distribution and every coefficient of any of ai is inde-
pendent from all the others. When χa is a subgaussian distribution, the bound
can be derived from a lemma [27, Lemma 2] which is a tail inequality for the
smallest and largest eigenvalues of subgaussian random vectors. However, it no
longer holds in our leakage attack. In our FS-ILWE, every row c of A is sampled
from Bh but each row is independent of each other. Obviously, the coefficients
of c are not independent, however, c has the following good properties.

Lemma 7. Let c1, ..., cm be sampled from Bh independently, then they satisfy:

1. E[cic
T
i |c1, ..., ci−1] = E[cic

T
i ] =

h

n
I;

2. E[exp(αT ci)|c1, ..., ci−1] = E[exp(αT ci)] ≤ exp(
1

2
) for all α ∈ Rn with

‖α‖2 = 1, and ci is a 1-subgaussian random vector for all i = 1, ..,m.

7 The reason why FS-ILWE is solvable even when χ
(a,s)
e is not subgaussian is that the

additional error introduced by the distribution of e is much smaller than 1/2 and it
don’t affect the rounding at the end.
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Proof.

1. If we write ci = (ci1, ..., cin), in order to calculate E[cic
T
i ], we need to know

E[cijcij ] and E[cijcik](j 6= k). For the first expectation, we have:

E[cijcij ] = Pr[cij = 1] · 12 + Pr[cij = −1] · (−1)2 =
h

2n
+

h

2n
=

h

n

for all i = 1, ..,m and j = 1, .., n.
Although cij and cik(j 6= k) are not independent, fortunately, their covari-
ance is 0:

E[cijcik] = (Pr[cij = 1, cik = 1] + Pr[cij = −1, cik = −1])− (Pr[cij = 1, cik = −1]

+ Pr[cij = −1, cik = 1])

= (
h · (h− 1)

2n · 2(n− 1)
+

h · (h− 1)

2n · 2(n− 1)
)− (

h · (h− 1)

2n · 2(n− 1)
+

h · (h− 1)

2n · 2(n− 1)
) = 0

for all i = 1, ..,m and j, k = 1, ..n with j 6= k.
2. Because every vector ci from Bh has h non-zero coefficients, without loss of

generality, we assume that the first h coefficients of ci are non-zero, then
cij(1 ≤ j ≤ h) is a Rademacher random variable, and cij and cik(1 ≤ j, k ≤
h, j 6= k) are independent. If we write α = (α1, ..., αn), we have:

E[exp(α)Tci] ≤ E[exp(α1ci1 + ...+ αhcih)] ≤ E[exp(α1ci1)]...E[exp(αhcih)]

≤ exp(
α2
1

2
)...exp(

α2
h

2
) = exp(

α2
1

2
+ ...+

α2
h

2
) = exp(

1

2
)

for all i = 1, ..,m. The third inequality is followed that the Rademacher
random variable is a 1-subgaussian random variable.

In order to estimate the smallest eigenvalue of ATA, we adapt the lemma
[27, Lemma 2] to our analysis by specializing their statement to ε0 = 1/4 and
γ =

√
n/h.

Lemma 8. Let x1, . . . ,xm be random vectors in Rn such that,

E[xix
T
i |x1, . . . ,xi−1] = I and

E[exp(αTxi)|x1, . . . ,xi−1] ≤ exp(

√
n

2
√
h

) for all α ∈ Rn with ‖α‖2 = 1

for all i = 1, . . . ,m, almost surely. For any δ ∈ (0, 1),

Pr[λmax(
1

m

m∑
i=1

xix
T
i ) > 1+2εδ,m or λmin(

1

m

m∑
i=1

xix
T
i ) < 1−2εδ,m] ≤ δ (9)

where εδ,m := 2

√
n

h
· (
√

8(n log(9)+log(2/δ))
m + n log(9)+log(2/δ)

m ).
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If we write AT = (c1, ...cm), then ATA can be expressed by
m∑
i=1

cic
T
i . Com-

bining Lemma 7 and Lemma 8, we get the bound on the smallest eigenvalue of
ATA by replacing xi with

√
n/h · ci (1 ≤ i ≤ m).

Theorem 1. Let A be an m × n random matrix and every row ci(1 ≤ i ≤ m)
of it is sampled from Bh independently. There exist constants C1, C2 such that
for all β ∈ (0, 1) and η ≥ 1, if m ≥ n(C1n+ C2η)/(hβ2) then

Pr[λmax(ATA) > (1 + β) · mh
n

or λmin(ATA) < (1− β) · mh
n

] < 2−η

Furthermore, one can choose C1 = 144 log 9 and C2 = 288 log 2.

Proof. Let xi =
√
n/h · ci(1 ≤ i ≤ m). According to Lemma 7, we can easily

derive that xi meets the condition of Lemma 8. As
m∑
i=1

xix
T
i = (h/n)

m∑
i=1

cic
T
i =

(h/n)ATA, we plug the relation into equation (9):

Pr[λmax(

m∑
i=1

ATA) > (1+2εδ,m)·mh
n

or λmin(

m∑
i=1

ATA) < (1−2εδ,m)·mh
n

] ≤ δ

(10)
Let ρ = (n log(9) + log(2/δ))/m and δ = 2−η, we can simplify the expression

of εδ,m to 2
√

(nρ)/h(
√

8 +
√
ρ). If m ≥ 144n(n log(9) + log(21+η))/(hβ2), there

are
√

8 +
√
ρ ≤ 3, then we have:

2εδ,m ≤ 12
√
nρ/h ≤ β. (11)

Equation (10) (11) with δ = 2−η can derive our result.

Combining Theorem 1 and Lemma 6, we can bound the distance between the
least squares estimator s̃ and the actual solution s in the infinity norm to obtain
the inequality of the form (7) with very high probability. The formal theorem is
given below.

Theorem 2. Suppose that there exists a common constant τe such that for all

a, χ
(a,s)
e is a τe-subgaussian vector, and (A,As + e) is sampled from the FS-

ILWE distribution for some s ∈ Zn where rows of A are sampled from Bh
independently. There exist constants C1, C2 > 0 such that for all η ≥ 1, if

m ≥ 4n(C1n+ C2η)/h and m ≥ 32
nτ2e
h

log(2n)

then the least squares estimator s̃ = (ATA)−1 ·Ab satisfies ‖s̃− s‖ < 1/2, and
hence bs̃e = s, with probability at least 1− 1

2n − 2−η.

Proof. Applying Theorem 1 with β = 1/2 and the same constants C1, C2 as
introduced in the statement of that theorem, we obtain that for m ≥ 4n(C1n+
C2η)/h, we have

Pr[λmin(ATA) <
mh

2n
] < 2−η
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We have shown above that s − s̃ is a τ̃ -subgaussian random vector with τ̃ =

τe/
√
λmin(ATA). Applying Lemma 6 with t = 1/2, we have:

Pr[‖s− s̃‖∞ > 1/2] ≤ exp(log(2n)− mh

16nτ2e
)

Thus, if we assume that m ≥ 32
nτ2
e

h log(2n), it follows that:

Pr[‖s− s̃‖∞ > 1/2] ≤ exp(log(2n)− 2 log(2n)) =
1

2n
.

It is worth noting that the cost of solving FS-ILWE problem using the least
squares method equals to the complexity of computing (ATA)−1ATb and the
matrix A consisting of c is a sparse matrix, so the complexity of the problem is
at most O(h2 ·m+ n3). It can be very efficient in practice.

4 Two Cases of Study: Dilithium and qTESLA

Among five lattice-based signature schemes submitted to NIST, Dilithium and
qTESLA follow the Fiat-Shamir paradigm and both are promising. Due to their
structure, they are vulnerable to such partial randomness leakage attacks and
the reason is explained blow.

4.1 Attacks on Dilithium

The Dilithium scheme is built via the “Fiat-Shamir with abort” structure [30,31]
and includes several optimizations on top of the Bai-Galbraith scheme [7]. The
security of Dilithium is based on the hardness of Module-LWE and Module-
SIS problem, a flexible generalization of Ring-LWE and Ring-SIS. The signing
algorithm is given by Algorithm 3 and we defer the whole description of Dilithium
to Appendix D.

In Fiat-Shamir signature schemes, the random oracle used to compute the
challenge is implemented by a hash function. We require the entropy of the
challenge is as small as the security parameter. Hence, the challenge set can be
seen as a subset of the n-dimension ring R and satisfies the following equation

ChSet = {c ∈ R|‖c‖∞ = 1 and 2h
(
n
h

)
≥ 2λ}

where λ is the security parameter. In Dilithium, n = 256 and the challenge set
consists of 60 non-zero coefficients, denoted as B60.

Although the secret keys consist of s1 and s2, the signature z is only related
to s1 and the proof of knowledge of s2 is completely removed to significantly
decrease the signature size. Therefore, we cannot recover s2 via partial random-
ness leakage attack. Besides, due to the public key compression, we cannot even
recover s2 by the public key t = As1 + s2. But the works [15,41] show that just
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Algorithm 1 Sign(sk = (ρ, s1, s2, t), µ ∈M)

1: A ∼ Rk×lq := Sam(ρ)
2: t1 := Power2Roundq(t, d)
3: t0 := t− t1 · 2d
4: r← {0, 1}256
5: y ∼ Slγ1−1 := Sam(r)
6: w := Ay
7: w1 := HighBitsq(w, 2γ2)
8: c := H(ρ, t1,w1, µ)
9: z := y + cs1

10: (r1, r0) := Decomposeq(w − cs2, 2γ2)
11: if ‖z‖∞ ≥ γ1 − β or ‖r‖∞ ≥ γ2 − β or r1 6= w1 then
12: goto 4
13: end if
14: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
15: if ‖ct0‖∞ ≥ γ2 or the number of 1’s in h is greater than ω then
16: goto 4
17: end if
18: return σ = (z,h, c)

knowing s1 is sufficient for existential forgery attack, so it is not necessary to
recover s2 to forge valid signatures.

Obviously, recovering s1 in the presence of leaking (l + 1)-th bit of any co-
efficient of y is exactly an FS-ILWE problem. Consider, for instance, the rec-
ommended parameters in which Dilithium achieves 125 bits security against
quantum adversaries and 138 bits security against classical adversaries. In the
FS-ILWE problem we reduced to, a is the coefficient vector of a 256-degree poly-
nomial with exactly 196 zeros, and the bound l = 7 which implies ‖sc‖∞ ≤ 26 ex-
cept 1% and the distribution of e is approximated to subgaussian over a bounded
interval (−27, 27). What remains is to solve some 256-dimension FS-ILWE prob-
lems by the least squares method to recover s1. Note that Dilithium is a signature
based on MLWE, the secret key can be represented by a matrix (for example,
a 256 × 4 matrix in the recommended parameter set) and each column of it
is an independent vector. In order to recover the secret key, we need to solve
4 independent FS-ILWE problems, which can be computed in parallel, so the
time needed in this attack is the same as which in one 256-dimension FS-ILWE
problem, however, we need 4 bits leakages per signature to recover 4 polynomials
in the secret key s1. Experiments on other parameters are performed and the
detailed results are described in the experimental section.

4.2 Attacks on qTESLA

The qTESLA scheme is also built via the “Fiat-Shamir with aborts” structure
and can be seen as a variant of the Bai-Galbraith scheme with a tight security
reduction as well. The main difference between Dilithium and qTESLA is the
mathematical structure: Dilithium is based on the hardness of Module-LWE and
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Module-SIS problem, while qTESLA is based on the hardness of Ring-LWE in
Zq[x]/(xn + 1). We defer the description of qTESLA to Appendix E.

Our partial randomness leakage attack can be adapted to qTESLA directly.
Compared with Dilithium, attacks on qTESLA are even simpler because there is
only one polynomial in s due to the ring structure and we only need one bit per
signature to recover the secret key s1. Moreover, the public key of qTESLA is
not compressed, hence another component of the signing key e can be recovered
easily after s is known.

Besides, in a ring or module-lattice based Fiat-Shamir signature scheme, the
signature is z = y + sc and z,y, s, c are all polynomials, that is to say, we can
obtain at most n FS-ILWE samples z = y + 〈s, c̄〉 per signature by leaking one
bit of n coefficients of y. Obviously, if the required number of FS-ILWE samples
is determined, the number of signatures required in the case of one bit leakage is
n times that required in the case of n bits leakages. Hence, although our attack
in Section 3.1 describes how to recover the secret key with only one bit leakage
per signature, for efficiency, we instead leak more than one bit in actual attacks
on Dilithium and qTESLA. And we will show the number of FS-ILWE samples
required in two cases is almost equal in the experimental section.

5 Experimental Results

In the section, we present experimental results of partial randomness leakage
attack on Dilithium and qTESLA. Specially, we first describe key recovery at-
tacks on Dilithium and qTESLA by leaking the (l + 1)-bit of any coefficient of
randomness in Section 5.2, then taking Dilithium as an example, we show how
to perform such attack with leakage from other positions in Section 5.3.

description
I II III IV

weak medium recommended high

n dimension 256 256 256 256
q modulus 8,380,417 8,380,417 8,380,417 8,380,417
h weight of c 60 60 60 60

γ1 ‖yi‖∞ ≤ γ1 − 1
523,776 523,776 523,776 523,776
< 219 < 219 < 219 < 219

(k, l) module parameters (3, 2) (4, 3) (5, 4) (6, 5)
η ‖si‖∞ ≤ η 7 6 5 3
β ‖s1,2c‖∞ ≤ β 330 285 235 145

classical security 58 100 138 174
quantum security 53 91 125 158

Table 1. Parameters for Dilithium
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5.1 The Leakage Bound l in Dilithium and qTESLA

As discussed in Section 3.1, we need to determine the leakage bound l before
attacks. The parameter l is the bound of infinity norm of sc and is given in
the parameter sets of Dilithium and qTESLA actually. However, in order to
guarantee the probability of ‖sc‖∞ ≥ 2l is negligible, the given bound l is large.
In fact, we can lower l as long as it can bound most of ‖sc‖∞ in our attack. And
the smaller l is, the less signatures required to recover the secret key. Hence, we
study the probability of ‖sc‖∞ < 2l on different l statistically for Dilithium and
qTESLA to find a suitable l.

For Dilithium, Table 1 shows four parameter sets for different security levels.
For each set, we randomly choose 10, 000 signatures (corresponding to 2, 560, 000
coefficients of sc) and compute the probability of ‖sc‖∞ within the interval
(−2l, 2l) when l = 5, 6, 7, 8, 9 respectively. The results are displayed in Table
2. In our partial randomness leakage attack, we require that the probability of
‖sc‖∞ < 2l−1 is more than 99%. Based on this, the leakage bound l is set to
8, 8, 7, 7 for Dilithium-I, Dilithium-II, Dilithium-III and Dilithium-IV.

l = 5 l = 6 l = 7 l = 8 l = 9 leakage bound l

Dilithium-I 0.65127 0.94175 0.99988 1 1 8
Dilithium-II 0.72163 0.97151 0.99999 1 1 8
Dilithium-III 0.80157 0.99078 0.99999 1 1 7
Dilithium-IV 0.95885 0.99997 1 1 1 7

Table 2. The probability of ‖s1c‖∞ ≤ 2l in Dilithium

description
I II III IV V

qTESLA-I qTESLA-
III-speed

qTESLA-
III-size

qTESLA-
p-I

qTESLA-
p-III

n dimension 512 1,024 1,024 1,024 2,048
q modulus 4,205,569 8,404,993 4,206,593 485,978,113 1,129,725,953
h weight of c 30 48 48 25 40
B ‖yi‖∞ ≤ B 220 − 1 221 − 1 220 − 1 221 − 1 223 − 1
σ sk std. dev. 23.78 10.2 8.49 8.5 8.5
LS ‖sc‖∞ ≤ LS 1,586 1,233 910 554 901

classical security 104 178 188 132 247
quantum security 97 164 169 123 270

Table 3. Parameters for qTESLA

For qTESLA, the authors specify five parameter sets, which are displayed in
Table 3. The first three parameter sets, namely qTESLA-I, qTESLA-III-speed
and qTESLA-III-size, are chosen heuristically and the last two parameter sets,
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namely qTESLA-p-I and qTESLA-p-III, are chosen according to security reduc-
tion. Since the maximum infinity norm of sc in Table 3 is 1586, which is less
than 211, we compute the probability of ‖sc‖∞ < 2l when l = 6, 7, 8, 9, 10, 11 for
each set by choosing 10, 000 signatures (corresponding to 10, 240, 000 coefficients
of sc) randomly. From the statistical results in Table 4, the leakage bound l is
set to 10, 9, 9, 8, 9 respectively and is larger than l in Dilithium. Worse still, the
dimension of n is larger and the number of non-zero coefficients in c is less, lead-
ing that the attack on qTESLA is much harder than that on Dilithium. Hence,
in next section we only consider the qTESLA-II (corresponding to qTESLA-III-
speed) and qTESLA-III (corresponding to qTESLA-III-size) parameter sets for
the sake of time and memory, but our attack can apply to other parameter sets.

l = 6 l = 7 l = 8 l = 9 l = 10 l = 11 leakage bound l

qTESLA-I 0.39013 0.69467 0.96014 0.99996 1 1 10
qTESLA-II 0.62822 0.92709 0.9997 1 1 1 9
qTESLA-IIII 0.77561 0.98525 0.99999 1 1 1 9
qTESLA-IV 0.86942 0.99762 1 1 1 1 8
qTESLA-V 0.77011 0.984125 0.99999 1 1 1 9

Table 4. The probability of ‖s1c‖∞ ≤ 2l in qTESLA

5.2 Attacking Dilithium and qTESLA

Having determined the leakage bound l, we perform key recovery attacks on
Dilithium and qTESLA by leaking the (l + 1)-th bit of randomness used in
Dilithium and qTESLA. Our attack consists of three steps: generating signatures
with the (l + 1)-th bit leakages, then reducing to an FS-ILWE problem and
finally solving the FS-ILWE problem using the least squares method. We run
the Dilithium and qTESLA C codes submitted to NIST to obtain signatures
and leakage bits in the first step, then use methods presented in Section 3.1 to
obtain FS-ILWE samples. Experiments of the first two steps are conducted using
C/C++ languages on a single core of a Intel Core(TM) i7-4790 CPU at 3.6GHz.
The last step is essentially solving a linear system using the least squares method.
Due to the efficient matrix operation in Matlab, we carry out the last step using
Matlab R2014b on a desktop with 3.60GHz processor and 12GB memory.

Another point to note is that we leak more than one bit in actual attacks.
Take Dilithium-III as an example, we show the number of FS-ILWE samples
required in case of leaking one bit of randomness per signature is almost equal
to that in case of leaking one bit of randomness per coefficient. Fixing sk, we
measure the minimum value of m to solve the FS-ILWE problem and the results
are displayed in Table 5, which gives the minimum, lower quartile, interquartile
mean, upper quartile and maximum numbers of required samples in our 12 trials.
As can be seen from Table 5, the difference of interquartile mean is about 6.32%,
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meaning that the number of FS-ILWE samples in two cases is not much different.
Therefore, to reduce the time of generating signatures, we leak one bit of every
coefficient of the randomness polynomial y in follow-up experiments.

Number of leakage
bits per signature

Min LQ IQM UQ Max

256 849,664 1,011,584 1,342,080 1,453,184 1,716,224
1 1,055,232 1,152,640 1,432,576 1,524,608 1,583,616

DIF 19.48% 12.24% 6.32% 4.68% -8.37%

Table 5. Numbers of samples required to recover the secret key of Dilithium-III with
different number of leakage bits

Due to the special structure of c, our attack requires a large number of
FS-ILWE samples (i.e. signatures). In other words, our attack may run out of
memory because we need to solve a linear system with noise consisting of m
equations where m is mostly on the order of millions. Some tricks are available
to avoid the problem. Since c is a sparse polynomial with h coefficients ±1,
multiplication by c can be transformed into an iterated sum over those indices
corresponding to the ones, thus the complexity of computing CTC and CTb
is reduced from O(mn2) and O(mn) to O(mh2) and O(mh). Moreover, instead
of computing CTC and CTb directly, we use the block matrix strategy and
compute block by block to avoid memory overflow.

Now we turn to concrete experiments on Dilithium and qTESLA. For Dilithium,
we consider all parameter sets and for each set, we perform 12 trails. Our results
are displayed in Table 6. Note that n times the given number is the number
of FS-ILWE samples or the actual number of signatures required in the case
of leaking only one bit per signature. Not only that, the numbers in Table 6
is the minimum value of m required to recover all coefficients of the secret key
polynomial. However, in practice, it is not necessary to use so many signatures.
We can recover most of coefficients with fewer signatures and then recover the
entire secret key by brute force or other techniques. Due to space limitations,
there is no further discussion here.

Min LQ IQM UQ Max

Dilithium-I 10,240 13,191.5 16,066 17,081.5 22,543
Dilithium-II 10,046 11,945.5 14,367.5 16,109.5 17,838
Dilithium-III 3,319 3,951.5 5,242.5 5,676.5 6,704
Dilithium-IV 2,561 3,053 3,284 3,778 5,511

Table 6. Numbers of signatures required to recover the secret key of Dilithium (min-
imum, lower quartile, interquartile mean, upper quartile, maximum)
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Interesting enough, we conclude that the difficulty of our attack is opposite
to the difficulty of lattice reduction from Table 6. The higher the security level
claimed, the less FS-ILWE samples required and the easier our attack is. The
order of our attack on Dilithium is Dilithium-I > Dilithium-II > Dilithium-
III > Dilithium-IV and is consistent with the theoretical results. According to
Theorem 2,

m ≥ Cnτ
2
e

h
log n,

where n, h are the same for all parameter sets and τe is determined by the leakage
bound l. When the number of non-zeros of c is fixed, l is positively related to
the value of the secret key s. For Dilithium-I through Dilithium-IV, the secret
key is getting smaller and smaller. Thus, in our attack, Dilithium-I is the most
difficult and Dilithium-IV is the easiest.

In table 7, we present the running time for our attack on Dilithium. Since
generating signatures in the first step is not our business, we omit the time of
generating signatures here. Moreover, the running time of solving a linear system
consisting of n equations is constant if the dimension n is fixed and negligible 8

and we also omit it. The total time of recovering the secret key of Dilithium is in
seconds, making our attack rather practical. The most time-consuming operation
is computing CTC and CTb in the third step due to the large dimension m and
cover 99.97% of the running time.

Time for FS-ILWE
samples (ms)

Time for CTC and
CTb (s)

The total time (s)

Dilithium-I 3.95 17.08 17.084
Dilithium-II 3.51 15.32 15.324
Dilithium-III 1.20 5.54 5.541
Dilithium-IV 0.74 3.50 3.500

Table 7. Average running time to recover the secret key of Dilithium

Similarly, we perform our attack on qTESLA. For each parameter set, we
perform 12 trails. Results about the minimum numbers of required samples and
corresponding running time are displayed in Table 8 and 9. The total time of
recovering the secret key of qTESLA is within hundreds of seconds. Different
from Dilithium, we only consider two parameter sets qTESLA-II and qTESLA-
III. We notice that even though the claimed security levels of qTESLA-II and
qTESLA-III are higher than that of Dilithium, attacks on qTESLA are more
difficult, mainly because of the larger dimension n, the more sparse polynomial
c and even the larger secret key s. Besides, the sparsity of c is affected by
the dimension n. In general, we can choose a more sparse c when n is larger.
Therefore, we may conclude that at the same security level, module lattice is

8 Solving a linear system consisting of 256 and 1024 equations takes about 0.49 and
10.5 ms respectively using Matlab.
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more vulnerable to our attack than ring because the dimension of the underlying
ring of module lattice is generally smaller. The experimental results also verify
that.

Min LQ IQM UQ Max

qTESLA-II 175,119 199,354 261,871.5 277,540.5 315,051
qTESLA-III 150,254 161,704.5 174,078.5 234,399 327,166

Table 8. Numbers of signatures required to recover the secret key of qTESLA (mini-
mum, lower quartile, interquartile mean, upper quartile, maximum)

Time for FS-ILWE
samples (ms)

Time for CTC and
CTb (s)

The total time (s)

qTESLA-II 229.66 846.16 846.39
qTESLA-III 145.56 613.48 613.63

Table 9. Average running time to recover the secret key of qTESLA

In table 10, we provide numbers of required leakage bits and signatures re-
quired to attack DSA, ECDSA, Dilithium and qTESLA. And it can be seen that
lattice-based Fiat-Shamir signatures are currently easier to attack because less
signatures are required when leaking one bit of the randomness at the almost
same security level. In addition, attacks on DSA and ECDSA take hours, while
only a few seconds are required for Dilithium and qTESLA in our attacks.

Classical security Leakage bits Signatures Work

DSA 160 2 100 [29]
DSA 160 log 3 ≈ 1.58 222 [12]

ECDSA 160 1 233 [5]
Dilithium 174 1 220 our work
qTESLA 178 1 228 our work

Table 10. Numbers of leakage bits and signatures to recover the secret key of
(EC)DSA, Dilithium and qTESLA

5.3 Attacking Dilithium by Leaking High-Order Bits

Assume the length of coefficients of randomness y is k. Section 3.2 shows that
we can recover the secret key of lattice-based Fiat-Shamir signatures with one
leakage bit of any position between l + 1 and k of any coefficient of y. In this
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section, we perform attacks on Dilithium to show how to recover the secret
key with high-order leakage bits. For the sake of simplicity, we assume that the
leakage positions in all signatures are the same, but our attack applies to the case
where signatures leak at different but known positions. According to Table 2, for
four parameter sets of Dilithium, the leakage bound l is 7 or 8, hence, we measure
the minimum value of m required to recover the secret key for l = 7, ..., 11. Here
we do not consider larger l, because there is a positive correlation between m and
l and larger l requires much more signatures, more memory and longer running
time. Experimental results are displayed in Figure 1.

Fig. 1. Number of signatures in the presence of high-order bit leakage

The results in Figure 1 indicate that the value m of required samples for
four parameter sets are close when leakage happens at the same position. For
example, when l = 9, the number of samples required to recover the secret keys
of Dilithium-I, Dilithium-II, Dilithium-III and Dilithium-IV are 44018, 91493,
42791 and 42979 respectively. The results are consistent with the theoretical
results. Fix the dimension n and the number of non-zeros coefficients of c, m
is only affected by τe, which depends on the leakage bound l. Note that Figure
1 does not contain the result of l = 11 for Dilithium-IV because the result of
experimental example exceeds 1, 000, 000 we set in advance. Another conclusion
that can be drawn from Figure 1 is that when the leakage position is shifted left
by one, the number of signatures required is two to five times. Therefore, for
Dilithium where t = 19, we conjecture that the number of required signatures
with leaking the t-th bit is at most 106 × 58 ≈ 239 (or 247 in case of leaking
only one bit per signature), which is less than 264, the maximum number of
signatures that adversaries can obtain by NIST [35]. In other words, our attack is
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theoretically applicable to the case of leaking the highest order bit of y, however,
it is not feasible in practice due to memory and time limits.

6 Conclusion

In this work we present a polynomial time attack on lattice-based Fiat-Shamir
signatures with only one bit leakage per signature. We show that the key recovery
attack with randomness leakage can be reduced to the FS-ILWE problem, which
can be solved efficiently by the least squares method. We choose Dilithium and
qTESLA as two cases of study to verify our attack.

The leakage may occur at any position of randomness except the l LSBs
where l is the leakage bound satisfying the condition Pr[‖sc‖∞ < 2l−1] ≥ 99%.
In other words, our attack fails with low-order leakage bits. Although we believe
that low-order bits of randomness leak some information of the secret key, attacks
exploiting these leakage bits are still an open issue.

Our attack is applicable to most of lattice-based Fiat-Shamir signatures ex-
cept BLISS. To improve the success rate of the rejection sampling, BLISS use a
bimodal Gaussian distribution and the signature is z = y + (−1)bsc where b is
kept hidden. As a result, the linear system in the last step of our attack contains
s and −s which will cancel each other out. We expect to extend our attack to
make it applicable to all the Fiat-Shamir signatures over lattice including BLISS
in the future.
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A Proofs of Lemma 4 and Lemma 5

A.1 Proof of Lemma 4

Since Xi’s are independent τi-subgaussian variables, for all s ∈ R, we have:

E[exp(sX)] = E[exp(s(µ1X1 + · · ·+ µnXn))]

= E[exp(µ1sX1) . . . exp(µnsXn)] =

n∏
i=1

exp(µisXi)

≤
n∏
i=1

exp(
s2(µiτi)

2

2
) = exp(

s2τ2

2
)

with τ2 = µ2
1τ

2
1 + · · ·+ µ2

nτ
2
n are required.

A.2 Proof of Lemma 5

Fix a unit vector u0 ∈ Rm,

〈u0,y〉 = 〈ATu0,x〉 = µ〈u,x〉

where µ = ||ATu0||2, and u = 1
µATu0 is a unit vector of Rn. Since x is τ -

subgaussian, the inner product 〈u,x〉 is a τ -subgaussian variable. As a result,
〈u0,y〉 = µ〈u,x〉 is (|µ|τ)-subgaussian by Lemma 4. However, by definition of
the operator norm, |µ| ≤ ‖AT ‖op2 , and the result follows.
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B Attack without Leakage

Up to now, we can recover the secret key of lattice-based Fiat-Shamir signatures
with only one bit leakage of the randomness used in the signing algorithm per
signature. A natural question we may wonder is that whether such an attack is
still applicable without leakage. Or equivalently, can we recover the secret key
only with signatures? Unfortunately, the answer is no and detailed explanations
are given from two respects blow.

As we mentioned already, the leaked (l+ 1)-th bit of y is essential to remove
the modulus in (3) and in the absence of leakage, the attack can be reduced to
another LWE variant:

[z]2l = [y]2l + 〈s, c̄〉 (mod q) (12)

where we let

a = c̄ and e = [y]2l and b = [z]2l and q = 2l.

This type of LWE has the following properties:

– The modulus q is very small (only l bits and l = 7 or 8 for Dilithium);
– The error e has the same magnitude as the modulus q (e ∈ (−q, q));
– The dimension n may be small (n = 256 for Dilithium).

We will give a formal definition of the LWE variant with large errors (LLWE)
and show it is hard in the information-theoretic sense.

Definition 7 (LLWE). For any vector s ∈ Zn, the LLWE distribution over
Zn × Zp are of the form

(a, b) = (a, 〈a, s〉+ e (mod q))

where a← Bh, e← χ
(a,s)
e such that |〈a, s〉| < q .

It is obvious that given two vectors s, s′ ∈ Zn, the LLWE distributions Ds,Ds′

are the same if nothing is known about e, namely, it it impossible for adversaries
to distinguish Ds,Ds′ . Hence, the LLWE problem is hard in the information-
theoretic sense and our attack cannot extend to the leak-free setting.

Step back, another possible attack is reducing the whole signature to the
FS-ILWE problem:

z = y + 〈s, c̄〉 (13)

where we let
a = c̄ and e = y and b = z.

Since Fiat-Shamir signature over lattice is computed without modular reduc-
tion, the signature is exactly an FS-ILWE problem. However, we cannot recover
the secret key by solving such an FS-ILWE problem because signatures z are
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filtered by the rejection sampling, which provides that z are independent from
the secret key s. Therefore, to some extent, the rejection sampling techniques
fundamentally eliminates the potential threat of statistical attacks like ours in
the leak-free setting.

In general, lattice-based Fiat-Shamir signatures are secure against attacks
using statistical approaches and leakage of randomness is the necessary condition
to recover the secret key for this type attacks.

C Remove the Heuristic Assumptions

Totally speaking, our proof is established on two heuristic assumptions: the first
is assuming we can always guess carry or borrow correctly and the second is
treating the error term as subgaussian approximately. The first is easy to remove,
because we can simply find l so that Pr[‖sc‖∞ ≤ 2l−1] ≈ 100% except negligible
probability, which is not hard to satisfy.

The idea to remove the second assumption based on the fact that the expec-

tation of the error term is E([y]2l) = − 2l−1
2γ+1−1 〈s, c̄〉, which is very small and is

proportional to 〈s, c̄〉. Let e′ = e−E([y]2l), then E(e′) = 0 and e′ is subgaussian
obviously. Rewrite the signature as

b = [z]2l = 〈s, c̄〉+e = 〈s, c̄〉− 2l − 1

2γ+1 − 1
〈s, c̄〉+e+ 2l − 1

2γ+1 − 1
〈s, c̄〉 = 〈(1− 2l − 1

2γ+1 − 1
)s, c̄〉+e′

(14)

then b = Cs + e is equivalent to the form b = C(1 − 2l−1
2γ+1−1 )s + e′, where the

coefficient e′ of e′ satisfies the equation e′ = e+ 2l−1
2γ+1−1 〈s, c̄〉 thus subgaussian.

Let s′ = (1 − 2l−1
2γ+1−1 )s, thus the problem b = Cs′ + e′ is an FS-ILWE

problem whose error term distribution is subgaussian and can be solved by the
least squares method as shown in Section 3.3. If we can establish the bound

‖s′ − s̃‖∞ < 1/2− 2l−1
2γ+1−1‖s‖∞, then we can recover the secret key s = bs̃e. The

bound can be easily obtained by applying Lemma 6 with t′ = 1/2− 2l−1
2γ+1−1‖s‖∞

instead of t = 1/2 in Theorem 2. According to Lemma 6 and Theorem 1, if we
need m samples to recover s that satisfies ‖s̃ − s‖∞ < 1/2 with probability at
least 1− 1

2n − 2−η, then m′ = ( tt′ )
2m samples are enough to ensure ‖s̃− s′‖∞ <

1/2− 2l−1
2γ+1−1‖s‖∞ with the same probability.

In general, since 2l−1
2γ+1−1‖s‖∞ is too small 9, the FS-ILWE whose error term

distribution is χ
(a,s)
e can be solved by reducing it to an FS-ILWE with subgaus-

sian, in which we can recover s′ = (1− 2l−1
2γ+1−1 )s.

9 For example, in Dilithium with the recommended parameters, ‖s‖∞ ≤ 5 and
2l−1

2γ+1−1
‖s‖∞ ≤ 0.0006. Moreover, the number of required samples computing s′

is 0.24% more than that required computing s in Section 3.3.
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D Description of Dilithium

The Dilithium scheme is built via the “Fiat-Shamir with abort” structure and
includes several optimizations on top of the Bai-Galbraith scheme [7]. The se-
curity of Dilithium is based on the hardness of Module-LWE and Module-SIS
problem, a flexible generalization of Ring-LWE and Ring-SIS. The Dilithium
scheme is given by Algorithms 2-4.

The secret keys s1, s2 are generated by an extendable output function Sam,
a function on bit strings whose output can be extended to any desired length,
and have uniformly random coefficients in the range [−η, η]. The Power2Roundq
algorithm is used to partition each coefficient of the MLWE instance t into high-
order bits and low-order bits respectively. The public key includes a seed ρ used
to compute the matrix A by Sam and t1 associated to the dlog qe−d high-order
bits of t.

To sign a message µ, the signer firstly computes the randomness vector y
using the Sam algorithm, then computes the challenge c and finally computes
the signature candidate z. If all the checks in Line 11 and 15 pass, output the
signature z, otherwise the signing algorithm restarts until a signature is valid.
Since the public key is compressed, the signer needs to provide a “hint” for the
verifier to compute the challenge in the verification algorithm. The algorithm
MakeHintq is used to make such a hint and the algorithm UseHintq in the ver-
ifying algorithm shows how to use the hint to complete the verification. For
completeness, we also describe the verification algorithm in Algorithm 4.

Algorithm 2 KeyGen()

1: ρ, ρ′ ← {0, 1}256
2: A ∼ Rk×lq := Sam(ρ)
3: (s1, s2 ∼ Slη × Skη := Sam(ρ′)
4: t := As1 + s2
5: t1 := Power2Roundq(t, d)
6: return (vk = (ρ, t1), sk = (ρ, s1, s2, t))

E Description of qTESLA

The qTESLA scheme is also built via the “Fiat-Shamir with aborts” structure
and can be seen as a variant of the Bai-Galbraith scheme with a tight security
reduction as well. The main difference between Dilithium and qTESLA is the
mathematical structure: Dilithium is based on the hardness of Module-LWE
and Module-SIS problem and qTESLA is based on the hardness of Ring-LWE
in Zq[x]/(xn + 1). The simplified qTESLA scheme is given by Algorithm 5-710.

10 The qTESLA scheme submitted to NIST is deterministic and for simplicity here we
present the non-deterministic version with some minor modifications.
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Algorithm 3 Sign(sk = (ρ, s1, s2, t), µ ∈M)

1: A ∼ Rk×lq := Sam(ρ)
2: t1 := Power2Roundq(t, d)
3: t0 := t− t1 · 2d
4: r← {0, 1}256
5: y ∼ Slγ1−1 := Sam(r)
6: w := Ay
7: w1 := HighBitsq(w, 2γ2)
8: c := H(ρ, t1,w1, µ)
9: z := y + cs1

10: (r1, r0) := Decomposeq(w − cs2, 2γ2)
11: if ‖z‖∞ ≥ γ1 − β or ‖r‖∞ ≥ γ2 − β or r1 6= w1 then
12: goto 4
13: end if
14: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
15: if ‖ct0‖∞ ≥ γ2 or the number of 1’s in h is greater than ω then
16: goto 4
17: end if
18: return σ = (z,h, c)

Algorithm 4 Verify(vk = (ρ, t1), µ ∈M, σ = (z,h, c))

1: A ∼ Rk×lq := Sam(ρ)
2: w1 := UseHintq(h,Az− ct1 · 2d, 2γ2)
3: if c = H(ρ, t1,w1, µ) and ‖z‖∞ ≤ γ1 − β and the number of 1’s in h is less than ω

then
4: return 1
5: else
6: return 0
7: end if

Algorithm 5 KeyGen()

1: seeda ← {0, 1}256
2: a ∼ Rq := GenA(seeda)
3: while s and e do not fulfill certain criteria do
4: s ∼ Rq ← Dσ, e ∼ Rq ← Dσ
5: end while
6: t = as + e mod q
7: return (vk = (seeda, t), sk = (s, e, seeda)
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Algorithm 6 Sign(sk = (s, e, seeds), µ ∈M)

1: a ∼ Rq := GenA(seeda)
2: while Reject(z, v, c, s) do
3: seedy ← {0, 1}256
4: y ∼ Rq := GenY(seedy)
5: v := ay mod q
6: c := H(Round(v), µ)
7: z = y + sc
8: end while
9: return σ = (z, c)

Algorithm 7 Verify(vk = (seeda, t), µ ∈M, σ = (z, c))

1: a ∼ Rq := GenA(seeda)
2: w := az− tc
3: if c = H(Round(w), µ) then
4: return 1
5: else
6: return 0
7: end if

F Practical Experiments

In this section, we show how to come up with the required bit of randomness in
practice11.

F.1 A template Attack on Polynomial Addition

We describe practical experiments about how to get 1 bit information of y
through power leakages in this section. Our attack target is the signing algo-
rithm. A software platform is used to implement the sensitive operation related
to y (i.e. z = y + sc), and the power leakages of the devices are measured by
an oscilloscope (Agilent DSO9104A). The software platform is an 8051 micro-
controller (MCU) clocked at 11.0592MHz. An addition implementation runs on
it. The sampling rate is set to 20MSa/s. We measured the voltage drop over a
50Ω resistor in the GND path of MCU as the power consumption. For one trace,
there are 100,000 samples, which are around the sensitive operation. We have 2
groups of power traces, one is collected without filter and the other is collected
with a lower pass filter (BLP-90+).

First, we use T-test to detect the leakages for 8-th bit of y with 4,000 traces
gathered in each group. The leakages collected with a BLP get much more ob-
vious, and the leakages (with a lower pass filter) are shown in Fig 2.

11 Source codes are available at https://www.dropbox.com/sh/z4a3miy8lqvx46z/AAC
dtKbkCyTETWM4p202JWj9a?dl=0.
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Fig. 2. The leakages of 8-th bit (with a lower pass filter).

In practical attacking, we use Template Attack (TA, one of profiling attacks)
to recover the 8-th bit of y. Simply, in each group, we use lots of traces (no more
than 4000) to profile for bit = 0 and bit = 1, then use other 239 traces to verify
how many bits can be recovered correctly. The attack results are shown in Table
11.

Table 11. The results of TA aiming to recover 8-th bit of y (with 263 Points# of
interest used).

Setup Traces# for profiling Success Rate

no filter
600 48.50%
1800 53.5%
4000 43.50%

BLP filter
600 74.5%
1800 94.5%
4000 100%

As shown in Table 11, while 4000 traces (with BLP filter) are used to profile,
we can totally recover the 8-th bit in our setup. In fact, other bits of y can be
recovered similarly, which are shown in Table 13.

F.2 A Template Attack on Randomness Generation

In this section, we describe how to get 1 bit information of y targeting the
loading and moving process of y though power leakages. A software platform is
used to implement the randomness generation operation. The implementation
environment, acquisition equipment and parameters setting are the same as those
in Section F.1.
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Table 12. The results of TA on polynomial addition aiming to recover any bit of y.

i-th bit Traces# for profiling Points# of interest Success Rate

9 4000 414 100%

10 4000 180 100%

11 4000 391 100%

12 4000 524 100%

13 4000 315 100%

14 4000 508 100%

15 4000 370 100%

16 4000 416 100%

17 4000 409 100%

18 4000 367 100%

19 4000 513 100%

20 4000 70 100%

First, we use CPA to detect the leakages for 11-th, 17-th, 18-th and 19-th
bit of y with 4,500 traces gathered in each group. In practical attacking, we use
Template Attack (TA, one of profiling attacks) to recover 11-th, 17-th, 18-th and
19-th bit in y. Simply, we use lots of traces (no more than 4500) to profile for
bit = 0 and bit = 1, then use other 406 traces to verify whether we can achieve
the 100% Success Rate using one trace to recover these four bits. The attack
results are shown in Table 13.

Table 13. The results of TA on randomness generation aiming to recover any bit in y.

i-th bit trace# for profiling Points# of Interesting Success Rate

11 4500 75 100%

17 4500 31 100%

18 4500 49 100%

19 4500 42 100%

F.3 A Blind SCA on Polynomial Addition

In this section, we describe how to get 1 bit information of y without a profiling
step. A software platform is used to implement the sensitive operation related
to y (i.e. z = y + sc). The implementation environment, acquisition equipment
and parameters setting are the same as those in Section F.1.

First, we need to make the some assumptions which we claim is very usual
and realistic. We assume that the adversary knows the approximate Points of
Interesting (PoI) related to randomness y (since the characters of leakages can
be observed from each trace). Next, use a window to capture a part of traces
which include PoI, and launch a blind side-channel attack. Specifically, cluster
these parts into 2 groups (by K-means in this experiment), then one group maps
to bitx(y) = 0, and the other group maps to bitx(y) = 1, where bitx(y) denotes
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the x-th bit of y. And the adversary can guess arbitrary since it dose not affect
this attack (guess again if guessed wrong).

In practical attacking, we use blind SCA (a non-profiling attack) to recover
8-th bit and 11-th bit in y. Simply, we collected 2,000 traces to attack, and the
success rate is significantly affected by the size of window. The attack results are
shown in Table 14.

Table 14. The results of blind SCA aiming to recover 8-th bit and 11-th bit in y.

bit size of window Success Rate

8-th

50 97.05%
100 97.10%
150 96.15%
200 61.00%

11-th

50 86.75%
100 86.90%
150 86.95%
200 53.05%

As shown in Table 14, while 2000 traces are used to cluster and attack,
we can recover the 8-th bit and 11-th bit with probabilities close to 1, which
demonstrate that the randomness can be recovered without profiling SCAs.
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