
Optimized SIKE Round 2 on 64-bit ARM

Hwajeong Seo1, Amir Jalali2, and Reza Azarderakhsh2

IT Department, Hansung University, Seoul, South Korea, hwajeong84@gmail.com
Department of Computer and Electrical Engineering and Computer Science,

Florida Atlantic University, FL, USA,
{ajalali2016,razarderakhsh}@fau.edu

Abstract. In this work, we present the first highly-optimized imple-
mentation of Supersingular Isogeny Key Encapsulation (SIKE) submit-
ted to NIST’s second round of post quantum standardization process,
on 64-bit ARMv8 processors. To the best of our knowledge, this work
is the first optimized implementation of SIKE round 2 on 64-bit ARM
over SIKEp434 and SIKEp610. The proposed library is explicitly opti-
mized for these two security levels and provides constant-time implemen-
tation of the SIKE mechanism on ARMv8-powered embedded devices.
We adapt different optimization techniques to reduce the total number
of underlying arithmetic operations on the filed level. In particular, the
benchmark results on embedded processors equipped with ARM Cortex-
A53@1.536GHz show that the entire SIKE round 2 key encapsulation
mechanism takes only 84 ms at NIST’s security level 1. Considering
SIKE’s extremely small key size in comparison to other candidates, our
result implies that SIKE is one of the promising candidates for key en-
capsulation mechanism on embedded devices in the quantum era.

Keywords: Post-quantum cryptography, isogeny-based cryptography,
64-bit ARM processor, ARM assembly, key encapsulation mechanism

1 Introduction

Initiated by the National Institute of Standards and Technology (NIST), Post-
Quantum Cryptography (PQC) has been elevated to a standardization process
to solicit, evaluate, and standardize one or more quantum-resistant public-key
cryptographic algorithms [18]. To prepare for security concerns caused by quan-
tum computers, in 2016, NIST called for the cryptographic algorithms which
were assumed to be resistance against high-scale quantum computers. These
proposals provided key encapsulation mechanism (KEM) or digital signature al-
gorithms from different arithmetic structures, resulting in different characteris-
tics and parameters. Recently, NIST announced approved candidates for round 2
which are the most promising candidates in terms of security, performance, and
compatibility with current technology. For the key encapsulation mechanism,
only 17 candidates made it through to the second round for being evaluated and
analyzed from different perspectives.

Different PQC candidates are constructed on hard mathematical problems
which are assumed to be impossible to solve even for large-scale quantum com-
puters. These problems can be categorized into five main categories: code-based
cryptography, lattice-based cryptography, hash-based cryptography, multivariate
cryprography, and supersingular isogeny-based cryptography, see, for instance
[8].

Supersingular Isogeny Key Encapsulation (SIKE) mechanism is one of the
PQC candidates which is constructed on the hardness of solving isogeny maps
between supersingular elliptic curves. In fact, SIKE is the only candidate that
offers the quantum-resistance cryptographic construction over elliptic curves, re-
sulting in well-known structures in implementation perspective. The proposed
key encapsulation mechanism is derived from the original Jao-De Feo’s Diffie-
Hellman key-exchange and public-key encryption algorithms [15]. However, con-
structing cryptographic structures from hardness of supersingular isogeny graphs
was introduced by Charels-Lauter-Goren [7].

The first round SIKE submission [4] offered three different security levels
known as SIKEp503, SIKEp751, and SIKEp964. According to the best known
quantum attacks on solving supersingular isogeny problem by that time, the
proposed security levels met NIST’s level 1, 3, and 5 requirements, respectively.

However, recent studies on the cost of solving isogeny problem on quantum
computers by Adj et al. [1] revealed that the security assumptions for SIKE
was too conservative. In fact, a set of realistic models of quantum computation
on solving Computational Supersingular Isogeny (CSSI) problem in [1] suggests
that the Oorschot-Wiener golden collision search is the most powerful attack on
the CSSI problem, resulting in significant improvement on the SIKE’s classical
and quantum security levels.

Accordingly, the second round SIKE [3] offers a new set of security levels
which are more realistic and provide significant improvement on the key encap-
sulation performance. In particular, decreasing the bit-length of SIKE’s primes
translates to notable performance improvement, making this scheme suitable for
many potential applications on low-end and embedded devices.

In this work, we provide a full report on the highly-optimized implementation
of SIKE on 64-bit ARM processors over all the proposed security levels. In
particular, the reference optimized implementation of SIKE [3] on 64-bit ARM
only targets two security levels, i.e., SIKEp503 and SIKEp751. Therefore, in this
work, we address this shortcoming by providing the KEM full benchmarks on
different security levels which provide a reference for the performance analysis
of this scheme for the second round.

Our proposed library takes advantage of state-of-the-art engineering tech-
niques as well as low level assembly optimizations. We studied different ap-
proaches for finite field arithmetic implementation over SIKE’s new primes. Our
benchmark results offer significant improvement in performance compared to
portable implementation, suggesting the possible integration of this scheme on
mobile devices in the future.

Alice Bob
skA : mA, nA ∈R /`eAA skB : mB , nB ∈R /`eBB
φA := E/〈[mA]PA + [nA]QA〉 φB := E/〈[mB]PB + [nB]QB〉
pkA : φA(PB), φA(QB), EA pkB : φB(PA), φB(QA), EB

pkA−−→
pkB←−−

EAB := EBA :=
EB/〈[mA]φB(PA) + [nA]φB(QA)〉 EA/〈[mB]φA(PB) + [nB]φA(QB)〉
Shared secret: j(EAB) Shared secret: j(EBA)

Fig. 1: SIDH key exchange protocol.

2 Background

In this section, we briefly review the SIDH protocol and the required steps for
Alice and Bob to generate a shared secret. Furthermore, we describe the SIKE,
a post-quantum key encapsulation mechanism from isogenies of supersingular
elliptic curves which was submitted to NIST’s PQC standardization competition.
We refer the readers to [15, 5] for further details.

2.1 SIDH key exchange

In 2011, Jao and De Feo [15] proposed the SIDH, a quantum resistant key ex-
change protocol from isogenies of supersingular elliptic curves. Similar to classi-
cal Diffie-Hellman key exchange, SIDH protocol is constructed over some public
parameters which are agreed upon by communication parties prior to key ex-
change.

Public parameters Fix a prime p of the form p = `eAA · `
eB
B · f ± 1 where

`A and `B are small primes, eA and eB are positive integers, and f is a very
small cofactor. We define a based supersingular elliptic curve E over Fp2 with
cardinality #E = (`eAA · `

eB
B · f ∓ 1)2, and base points {PA, QA} and {PB , QB}

from the torsion subgroups E[`eAA] and E[`eBB] respectively, such that 〈PA, QA〉 =
E[`eAA] and 〈PB , QB〉 = E[`eBA].

Key exchange protocol Alice randomly chooses two integersmA, nA ∈ Z/`eAA Z,
not both divisible by `A as her secret key and computes an isogeny φA : E → EA

using kernel RA := 〈[mA]PA + [nA]QA〉. Alice also computes the image points
{φA(PB), φA(QB)} ⊂ EA by applying her secret isogeny φA to the public basis
PB and QB . She sends φA(PB), φA(QB) and EA to Bob as her public key. Bob
also selects random elements mB , nB ∈ Z/`eBB Z, not both divisible by `B and
computes a secret isogeny φB : E → EB from kernel RB := 〈[mB]PB +[nB]QB〉,
along with image points {φB(PA), φB(QA)} ⊂ EB . He sends his public key, i.e.,
φB(PA), φB(QA) and EB to Alice.

Alice Bob
Key generation:
pkA = [EA, φA(PB), φA(QB)]
s ∈R {0, 1}t

Encapsulation:
m ∈R {0, 1}t
r = H1(m ‖ pkA)
pkB(r) = [EB , φB(PA), φB(QA)]
j = j(EBA)
c = (c0, c1) = (pkB(r), H2(j)⊕m)
K = H3(m ‖ c)

(c0,c1)←−−−−
Decapsulation:
j = j(EAB)
m′ = c1 ⊕H2(j)
r′ = H1(m′ ‖ pkA)
If (pkB(r′) = c0)→ K = H3(m′ ‖ c)
If (pkB(r′) 6= c0)→ K = H3(s ‖ c)

Fig. 2: SIKE mechanism.

In the second round of key exchange, Alice uses Bob’s public key (φB(PA), φB(QA), EB)
and computes an isogeny φ′A : EB → EAB from kernel equal to 〈[mA]φB(PA) +
[nA]φB(QA)〉; Similarly, Bob computes an isogeny φ′B : EA → EBA having ker-
nel 〈[mB]φA(PB) + [nB]φA(QB)〉 using Alice’s public key. Since the common
j-invariant of EAB and EBA are equal, they use this value to form a secret
shared key. The entire SIDH key exchange protocol is illustrated in Figure 1.

2.2 SIKE mechanism

SIKE mechanism is constructed by applying a transformation of Hofheinz, Hövelmanns,
and Kiltz [12] to the supersingular isogeny Public Key Encryption (PKE) scheme
described in [15]. It is an actively secure key encapsulation mechanism (IND-
CCA KEM) which addresses the static key vulnerability of SIDH due to active
attacks in [11].

Public parameters Similar to SIDH, SIKE can be defined over a prime of the
form p = `eAA ·`

eB
B ·f±1. However, for efficiency reasons, `A = 2, `B = 3, and f = 1

are fixed, thus the SIKE prime has the form of p = 2eA · 3eB − 1. The starting
supersingular elliptic curve E0/Fp2 : y2 = x3 + x with cardinality equal to
(2eA ·3eB)2, along with base points 〈PA, QA〉 = E0[2eA] and 〈PB , QB〉 = E0[3eB]
are defined as public parameters.

Key encapsulation mechanism The key encapsulation mechanism can be
divided into three main operations: Alice’s key generation, Bob’s key encapsula-

tion, and Alice’s key decapsulation. We describe each operation in the following.
Figure 2 presents the entire key encapsulation mechanism in a nutshell.

Key generation. Alice randomly chooses an integer skA ∈ Z/2eAZ and by ap-
plying an isogeny φA : E0 → EA with kernel RA := 〈PA + [skA]QA〉 to the
base points {PB , QB}, computes her public key pkA = [EA, φA(PB), φA(QB)].
Moreover, she generates an t-bit1 random sequence s ∈R {0, 1}t.

Encapsulation. Bob generates an t-bit random message m ∈R {0, 1}t, concate-
nates it with Alice’s public key pkA and computes an eB-bit hash value r using
cSHAKE256 hash function H1, taking m ‖ pkA as the input. Using r, he applies
a secret isogeny φB : E0 → EB to the base points {PA, QA} and forms his
public key pkB(r) = [EB , φB(PA), φB(QA)]. Bob also computes the common
j-invariant of curve EBA by applying another isogeny φ′B : EA → EBA using
Alice’s public key. Bob forms a ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB(r), H2(j(EBA))⊕m),

where H2 is a cSHAKE256 hash with a custom length output and a defined initial-
ization parameter. Finally, Bob computes the shared secret as K = H3(m ‖ c)
and sends c to Alice.

Decapsulation. Upon receipt of c, Alice computes the common j-invariant of EAB

by applying her secret isogeny to EB . She computes m′ = c1⊕H2(j(EAB)) and
r′ = H1(m ‖ pkA). Finally, she validates Bob’s public key by computing pkB(r′)
and comparing it with c0. She generates the same shared secret K = H3(m′ ‖ c)
if the public key is valid, otherwise she outputs a random value K = H3(c ‖ s)
to be resistant against active attacks.

3 Target Architecture

ARMv8 Cortex-A, or simply ARMv8, is the latest generation of ARM architec-
tures targeted at the “application” profile. It includes the typical 32-bit archi-
tecture, called “AArch32”, and advanced 64-bit architecture named “AArch64”
with its associated instruction set “A64” [2]. AArch32 preserves backwards com-
patibility with ARMv7 and supports the so-called “A32” and “T2” instructions
sets, which correspond to the traditional 32-bit and Thumb instruction sets,
respectively. AArch64 comes equipped with 31 general purpose 64-bit registers
(i.e. X0∼X30) and one zero register (i.e. XZR), and an instruction set supporting
32-bit and 64-bit operations. The significant register expansion means that with
AArch64 the maximum register capacity is expanded to 1,984 bits (i.e. 31× 64,
a 4x increase with respect to ARMv7.).

ARMv8 processors started to dominate the smartphone market soon after
their first release in 2011, and nowadays they are widely used in various high-end

1 The value of t is defined by the implementation parameters.

smartphones (e.g. iPhone, Huawei Mate and Samsung Galaxy series). Since this
architecture is used primarily in embedded systems and smartphones, efficient
and compact implementations are of special interest.

ARMv8 processor supports powerful 64-bit wise unsigned integer multiplica-
tion instructions. Our implementation of modular multiplication uses the AArch64
architecture and makes extensive use of the following multiply instructions:

– MUL (unsigned multiplication, low part):
MUL X0, X1, X2 computes X0 ← (X1 × X2) mod 264.

– UMULH (unsigned multiplication, high part):
UMULH X0, X1, X2 computes X0 ← (X1 × X2)/264.

The two instructions above are required to compute a full 64-bit multiplica-
tion of the form 128-bit← 64×64-bit, namely, the MUL instruction computes the
lower 64-bit half of the product while UMULH computes the higher 64-bit half.

For the addition and subtraction operations, ADDS and SUBS instructions
ensure 64-bit wise results, respectively. The detailed descriptions are as follows:

– ADDS (unsigned addition):
ADDS X0, X1, X2 computes {CARRY,X0} ← (X1 + X2).

– SUB (unsigned subtraction):
SUBS X0, X1, X2 computes {BORROW,X0} ← (X1 − X2).

4 Optimized Field Arithmetic Implementation

There is a number of works in the literature that study the ARMv8 instructions
to implement multi-precision multiplication or the full Montgomery multiplica-
tion for “SIDH friendly” modulus [14, 13, 17]. In [13], Jalali et al. implemented
751-bit and 964-bit finite field multiplication. They utilized the Comba method
(i.e. column-wise multiplication) for both cases [9]. In particular, they used 2-
level Karatsuba for 964-bit finite field multiplication, which shows 23.9% per-
formance enhancements than conventional Comba method. In [17], Seo et al.
optimized the 503-bit finite field multiplication for SIKEp503. They also used
the Comba method with 2-level Karatsuba method to enhance the performance
of multiplication. Furthermore, they optimized the MAC (Multiplication ACcu-
mulation) routines to avoid the pipeline stalls.

Recently, two novel SIKE protocols (i.e. SIKEp434 and SIKEp610) for NIST
Post Quantum Cryptography competition were suggested, which meet NIST se-
curity level 1 and 3, respectively [3]. However, previous works do not show the
optimized results for both protocols. In this paper, we show the first practi-
cal implementations of SIKEp434 and SIKEp610 protocols on 64-bit ARMv8-A
processors. In order to achieve high performance, the arithmetic for SIKEp434
and SIKEp610 is optimized to utilize the ARMv8-A ability fully. To describe
the multi-precision arithmetic, we used following notations. Let A and B be
operands of length m bits each. Each operand is written as A = (A[n−1], ..., A[1],
A[0]) and B = (B[n − 1], ..., B[1], B[0]), where n = dm/we is the number

of words to represent operands, m is operand length, and w is the computer
word size (i.e. 64-bit). The addition result (C = A + B) is represented as
C = (C[n − 1], ..., C[1], C[0]). For the multiplication (C = A × B), the result
is represented as C = (C[2n− 1], ..., C[1], C[0]).

4.1 Finite field addition and subtraction

In the beginning, the finite field addition and subtraction operations need to
perform addition and subtraction operations, respectively. Afterward, the inter-
mediate results are reduced, when the carry or borrow bit is set. In order to
avoid the timing attack, both reduction routines are performed without condi-
tional statements (i.e. constant timing). Instead, we used the masked modular
reduction approach, which always perform regular routines, regardless of the
carry or borrow bit. When the carry or borrow bit is set, the mask value is set to
264−1. Otherwise, the mask value is set to 0. With the mask value, the modulus
is determined whether it is modulus or 0.

For 434-bit addition or subtraction operation, we utilized 14 general pur-
pose registers to store the operands (i.e. 2 × b434/64c) since each operand re-
quires 7 registers. In particular, two limbs of 434-bit modulus are 264 − 1 (i.e.
0xFFFFFFFFFFFFFFFF). We only set one limb to 264 − 1 and use it twice for
computations, which reduces one operand setting overheads.

For 610-bit addition or subtraction operation, we utilized 20 general purpose
registers to retain all operands (i.e. 2 × b610/64c) since each operand requires
10 registers. Similarly, three limbs of 610-bit modulus are set to 264 − 1 (i.e.
0xFFFFFFFFFFFFFFFF). This limb is used three times with only one memory
access, which reduces two operand settting overheads.

4.2 Multiplication

In previous works, they used the Comba method (i.e. column-wise method) to
improve the multi-precision multiplication. The Comba method performs the
partial products in column-wise, which ensures small number of registers for
maintaining the intermediate results. In Figure 3, the part of Multiplication
ACculmuation (MAC) routine in column-wise method for 64-bit ARMv8 pro-
cessors is described. The example performs the three partial products (A[i]×B[j],
A[i+1]×B[j−1], and A[i+2]×B[j−2]) and accumulates them to the interme-
diate results. In each MAC routine, two multiplication (MUL LOW and MUL HIGH)
and three addition operations (ACC0, ACC1, and ACC2) are required. For one
limb multiplication, we need three addition operations. For that reason, n-limb
multiplication requires 3× n2 addition operations.

In this work, we target the relatively shorter modulus (i.e. 434-bit) than pre-
vious works (i.e. 503-bit or 751-bit). We decide to use the row-wise multiplication,
which requires 2n + 2 registers (n + 1 for operands and n + 1 for intermediate
results), where n, m, and w are bm/wc, operand length, and word size, respec-
tively. Under 64-bit processor setting, the n is set to 7 for 434-bit (b434/64c).
Considering that ARMv8 supports 31 64-bit registers, the required number of

LOW (A[i] X B[j])

HIGH (A[i] X B[j])

LOW (A[i+1] X B[j-1)

HIGH (A[i+1] X B[j-1])

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

LOW (A[i+2] X B[j-2])

HIGH (A[i+2] X B[j-2])

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

C
o
m

p
u
ta

tio
n
 o

rd
e
r

Destination offset

Fig. 3: Part of column-wise multiplication for ARMv8

registers for 434-bit can be retained in the registers. In Figure 4, the part of MAC
routine in row-wise method for 64-bit ARMv8 processors is described. The ex-
ample performs the three partial products (A[i] × B[j], A[i] × B[j + 1], and
A[i]×B[j + 2]) and accumulates them to the intermediate results. The number
of addition for three partial products in Figure 4 are 8 (i.e. 2× (n+1) where n is
3.). For the n-limb multiplication, it requires 2×n× (n+1) addition operations.
The comparison of multiplication methods in terms of the number of addition
operations depending on the number of limb are given in Table 1. Compared
with the column-wise method (i.e. product-scanning), the row-wise method (i.e.
operand-scanning) requires less number of addition operations for accumula-
tion routines. For the 7-limb case (i.e. 434-bit), the row-wise method reduces
the number of addition operations by 35 times than the column-wise method.
The multiplication is performed in original row-wise multiplication rather than
row-wise multiplication with Karatsuba method. The Karatsuba method is also
working for 7-limb case but it generates a number of sub-routines to perform and
store the intermediate results, which requires additional operations and memory
accesses [16].

Table 1: Comparison of multiplication methods, in terms of the number of addition
operations depending on the number of limb.

Method 3 4 5 6 7

Operand Scanning 24 40 60 84 112

Product Scanning 27 48 75 108 147

For the 610-bit multiplication, the operands A = (A[9], . . . , A[0]) and B =
(B[9], . . . , B[0]) need 20 64-bit registers. Except the operands, we also need reg-
isters for intermediate results and temporal storage. Due to the limited number
of registers, we only maintain the half number of operands in the registers and
load the remaining operands on demand.

We first compute the lower 320-bit multiplication RL ← A[4 ∼ 0] ·B[4 ∼ 0])
using the row-wise method that requires 25 MUL, 25 UMULH and 52 addition in-
structions for accumulating the partial products. Second, we compute the higher
310-bit multiplication RH ← A[9 ∼ 5]·B[9 ∼ 5] similarly. Third, we compute the
subtractions and absolute values |A[4 ∼ 0]−A[9 ∼ 5]| and |B[4 ∼ 0]−B[9 ∼ 5]|
and proceed to the last 310-bit multiplication RM ← |A[4 ∼ 0]−A[9 ∼ 5]|·|B[4 ∼
0]−B[9 ∼ 5]|. Finally, we obtain the result by performing the accumulation step
RH ·2610+(RL+RH−RM) ·2310+RL. Since the multiplication uses all available
registers, 12 callee-saved registers (X19 ∼ X30) are stored into the stack. The
multiplication is also designed to reduce the pipeline stalls. The multiplication
and addition/subtraction operations use different instruction group. They can
hide each others costs. Based on the above observation, we engineer a multi-
precision multiplication to hide the addition costs into the multiplication. At
the lowest level, we implement multi-precision multiplication using the row-wise
method based on the following multiplication/addition instruction sequence:

...
MUL X7, X6, X2
ADCS X18, X18, X13
MUL X8, X6, X3
ADCS X19, X19, X14
MUL X9, X6, X4
ADCS X20, X20, X15
MUL X10, X6, X5
ADCS X21, X21, X16

...

We ensure that the destination of MUL instruction is not used for the source
of following ADCS instructions. This approach avoids the pipeline stalls. Second,
MUL and ADCS instructions are performed one by one to hide the each costs.
As will be shown in Section 5, the proposed implementation achieved the high
performance (see Table 2).

LOW (A[i] X B[j])

HIGH (A[i] X B[j])

LOW (A[i] X B[j+1])

LOW (A[i] X B[j+2])

HIGH (A[i] X B[j+1])

HIGH (A[i] X B[j+2])

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

ACCUMULTAION3

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

ACCUMULTAION3

C
o
m

p
u
ta

tio
n
 o

rd
e
r

Destination offset

Fig. 4: Part of row-wise multiplication for ARMv8

4.3 Reduction

In this section, we adapt the techniques described in previous sections to imple-
ment modular multiplication for the supersingular isogeny-based protocols SIDH
and SIKE. Specifically, we target the parameter sets based on the primes p434
and p610 [3].

Multi-precision modular multiplication is the most expensive operation for
the implementation of SIKE [15, 10]. In particular, Montgomery multiplication
for SIKE can be efficiently exploited and further simplified by taking advan-
tage of so-called “Montgomery-friendly” modulus. The advantage of using Mont-
gomery multiplication for “SIDH-friendly” primes was recently confirmed by Bos
and Friedberger [6], who studied and compared different approaches, including
Barrett reduction. Recent works by Seo et al also utilized the Montgomery mul-
tiplication for SIKEp503 protocols [17].

Based on the observation above, we choose the Montgomery multiplication
to implement SIDH-friendly modular arithmetic for SIKEp434 and SIKEp610
protocols. The approach reduces almost half of partial products since the lower
part is set to 0. In order to reduce the memory accesses, we keep as many results
as possible in the registers. Since the Montgomery multiplication performs the
partial products with modulus and quotient (Quotient is intermediate results
multiplied by constant m′), we maintained all quotients in the registers and

used them directly. The technique reduces the 2 × (n + 1) number of memory
accesses for n+ 1 load and n+ 1 store operations.

5 Performance Result

In this section, we evaluate the performance of the proposed algorithms for
64-bit ARMv8-A processors. All our implementations were written in assembly
language and complied with optimization level -O3.

We implemented the multi-precision multiplication algorithm described in
Section 4.2 and Montgomery reduction in Section 4.3. We integrated our imple-
mentation of the Montgomery multiplication for ARMv8-A into the SIKE round
2 library [3].

Table 2 summarizes the results of different software implementations of the
SIKEp434 and SIKEp610 arithmetic on ARMv8-A processor: a 1.536GHz ARM
Cortex-A53 processor. Since this is first work for SIKEp434 and SIKEp610 on
ARMv8-A processors, we compare the results with the SIKE round 2 reference
code. The unoptimized reference implementation is written in C using the SIKE
round 2 library [3]. In this case, the proposed arithmetic implementations show
much higher performance than reference work. In particular, finite field multipli-
cation and inversion operations show performance enhancements by 4.96x and
4.98x, respectively.

Table 3 summarizes the results of different software implementations of the
SIKEp434 and SIKEp610 protocols on ARMv8-A processor. Compared with
reference work, the proposed implementation is between 3.83 and 3.42 times
faster for the computation of the SIKE full protocols. Considering that the target
processor is 1.536 GHZ, the SIKEp434 and SIKEp610 requires only 0.084 and
0.30 seconds, respectively.

Compared with the other security levels, the performance depends on the
length of modulus. The SIKEp434 shows the highest performance and the SIKEp751
shows the lowest performance as we expected.

Table 2: Comparison of implementations of the SIKEp434 and SIKEp610 arithmetic on
ARMv8 Cortex-A53 based processors. Timings are reported in terms of clock cycles.

Implementation Language Protocol
Timings [cc]

Fp add Fp sub Fp mul Fp inv

SIKE R2 [3] C
SIKEp434

172 129 3,110 1,648,372

This work ASM 71 63 691 380,711

SIKE R2 [3] C
SIKEp610

257 187 6,599 4,800,694

This work ASM 100 91 1,329 963,064

Table 3: Comparison of implementations of the SIKE protocols on ARMv8 Cortex-A53
based processors. Timings are reported in terms of clock cycles.

Implementation Language Protocol
Timings [cc] Timings [cc× 106]

Fp mul KeyGen Encaps Decaps Total

SIKE R2 [3] C
SIKEp434

3,110 114 186 199 499

This work ASM 691 30 49 52 130

Seo et al. [17] ASM SIKEp503 849 38 63 67 168

SIKE R2 [3] C
SIKEp610

6,599 344 634 615 1,593

This work ASM 1,329 99 183 183 465

Seo et al. [17] ASM SIKEp751 2,450 164 265 284 713

6 Conclusion

This paper presented high-speed implementation of SIKE Round 2 on high-
end 64-bit ARMv8 Cortex-A53 processors. A combination of several optimiza-
tion methods yields very efficient modular multiplications for SIKEp434 and
SIKEp610 protocols that are shown, for example, to be approximately 4.96x
faster than the normal modular multiplication implementations for “SIDH-friendly”
modulus on a 64-bit ARMv8 Cortex-A53 processors. The optimized implementa-
tion, which push further the performance of post-quantum supersingular isogeny-
based protocols, are 3.42x faster than the previously implementations of SIDHp610
on the same processors. Furthermore, we integrated our fast modular arithmetic
implementations, compact prime SIDHp434, and optimal strategy for isogeny
computations into Microsoft’s SIDH library. A 128-bit full key-exchange exe-
cution over optimal prime SIDHp434 is performed in about 0.084 seconds on
a 1.536GHz ARMv8 Cortex-A53 processors, which shows the practicality of
isogeny based post-quantum cryptography over mobile devices.

References

1. G. Adj, D. Cervantes-Vázquez, J. Chi-Domı́nguez, A. Menezes, and F. Rodŕıguez-
Henŕıquez. On the cost of computing isogenies between supersingular elliptic
curves. In Selected Areas in Cryptography - SAC 2018 - 25th International Con-
ference, pages 322–343, 2018.

2. ARM Limited. ARM architecture reference manual ARMv8, for ARMv8-A archi-
tecture profile. https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_

arm.pdf, 2013–2017.

3. R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali, D. Jao,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev,
and D. Urbanik. Supersingular Isogeny Key Encapsulation – Submission to
the NIST’s post-quantum cryptography standardization process, round 2, 2019.
Available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-2-submissions/SIKE.zip.

4. R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali,
D. Jao, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes,
V. Soukharev, and D. Urbanik. Supersingular Isogeny Key Encapsula-
tion – Submission to the NIST’s post-quantum cryptography standardization
process, 2017. Available at https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip.
5. R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali,

D. Jao, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes,
V. Soukharev, and D. Urbanik. Supersingular Isogeny Key Encapsula-
tion – Submission to the NIST’s post-quantum cryptography standardization
process, 2017. Available at https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip.
6. J. W. Bos and S. Friedberger. Fast arithmetic modulo 2xpy±1. In IEEE Symposium

on Computer Arithmetic (ARITH’17), pages 148–155. IEEE, 2017.
7. D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions from

expander graphs. J. Cryptology, 22(1):93–113, 2009.
8. L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and

D. Smith-Tone. Report on post-quantum cryptography. US Department of Com-
merce, National Institute of Standards and Technology, 2016.

9. P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM systems journal,
29(4):526–538, 1990.

10. C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular
isogeny Diffie-Hellman. In M. Robshaw and J. Katz, editors, Advances in Cryptol-
ogy - CRYPTO 2016, volume 9814 of Lecture Notes in Computer Science, pages
572–601. Springer, 2016.

11. S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the security of supersin-
gular isogeny cryptosystems. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and
Information Security,, pages 63–91, 2016.

12. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the fujisaki-
okamoto transformation. In Theory of Cryptography - 15th International Confer-
ence, TCC 2017,, pages 341–371, 2017.

13. A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao. Supersingular isogeny
Diffie-Hellman key exchange on 64-bit ARM. IEEE Transactions on Dependable
and Secure Computing, 2017.

14. A. Jalali, R. Azarderakhsh, and M. Mozaffari-Kermani. Efficient post-quantum
undeniable signature on 64-bit ARM. In International Conference on Selected
Areas in Cryptography, pages 281–298. Springer, 2017.

15. D. Jao and L. D. Feo. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In B. Yang, editor, Post-Quantum Cryptography
(PQCrypto 2011), volume 7071 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2011.

16. P. L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE
Transactions on Computers, 54(3):362–369, 2005.

17. H. Seo, Z. Liu, P. Longa, and Z. Hu. SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 1–20, 2018.

18. The National Institute of Standards and Technology (NIST). Post-quantum
cryptography standardization, 2017–2018. https://csrc.nist.gov/projects/

post-quantum-cryptography/post-quantum-cryptography-standardization.

