
Verifying Solutions to LWE with Implications for Concrete Security

Palash Sarkar and Subhadip Singha
Applied Statistics Unit

Indian Statistical Institute
203, B.T.Road, Kolkata, India - 700108.

{palash, subha r}@isical.ac.in

June 19, 2019

Abstract

A key step in Regev’s (2009) reduction of the Discrete Gaussian Sampling (DGS) problem to that of solving
the Learning With Errors (LWE) problem is a statistical test required for verifying possible solutions to the
LWE problem. Regev showed that asymptotically, the success probability of this test is exponentially close to
1. In this work, we work out the concrete details of the success probability and its effect on the tightness gap of
the reduction. For lattice dimensions from 2 to 187149, the tightness gap is determined entirely by the inverse
of the success probability. The actual value of the tightness gap for such lattice dimensions is huge showing
that the reduction cannot be used for choosing parameters for practical cryptosystems.
Keywords: lattices, learning with errors, discrete gaussian sampling, statistical test, concrete
analysis.

1 Introduction

In a seminal work, Regev [10] introduced the learning with errors (LWE) problem and highlighted its role in
lattice-based cryptography. The major achievement of the work was to show a reduction from a worst case lattice
problem to the breaking of a cryptosystem. This worst-case to average-case reduction has been later claimed to
be a major theoretical advantage of cryptosystems based on lattices. The entire analysis in [10] was done in an
asymptotic setting where the lattice dimension n is allowed to go to infinity.

Suppose A is an algorithm which given access to an oracle O solves a problem P in time T with success
probability PS . Further, suppose O takes time T ′ and has success probability P ′S . Then the tightness gap of the
algorithm A is (T ·P ′S)/(T ′ ·PS). The reduction is said to be tight if the tightness gap is 1 (or small) and is said
to be loose if the tightness gap is ‘large’.

A later work [6] performed a concrete analysis of the reduction in [10] to determine whether it can be used to
choose parameters for practical cryptosystems. This required determining the tightness gap of the reduction in
concrete terms as a function of n. It turned out that the tightness gap can indeed be very large casting doubt on
the practical usefulness of the reduction in [10]. For example, for n = 1024, it was argued that the tightness gap
is about 2504 and so the worst-case to average-case reduction in [10] cannot be used to argue about the security
of cryptosystems with lattice dimension n = 1024.

The reduction in [10] is a cascade of three smaller reductions. The first reduction is from the Smallest
Independent Vector Problem (SIVP) to the problem of Discrete Gaussing Sampling (DGS). The second reduction
is from DGS to (search) LWE while the third reduction is from search-LWE to average case decisional LWE
(DLWEac). There is a further reduction from DLWEac to that of breaking the cryptosystem. We ignore this
reduction, since this depends on the actual cryptosystem.

1

The second reduction, i.e., the one from DGS to LWE is the main contribution of [10]. A key step in
this reduction consists of verifying solutions to LWE. This verification is done using a statistical test. It has
been argued in [10] that asymptotically the success probability of the statistical test is exponentially close to
1. The statistical test is used many times in the entire reduction and the success probability of the statistical
test determines the overall success probability of the complete reduction. We take a close look at the success
probability of the statistical test. Using the standard Hoeffding inequality, we determine an upper bound on the
error of the statistical test. This in turn leads to an expression for the success probability of the test and then
to the success of the entire reduction.

Considering concrete values of the lattice dimension provides very surprising results. For n from 2 to 187149,
the overall tightness gap is determined almost entirely by the success probability of the statistical test and the
number of oracle calls has a negligible effect on the tightness gap. The values of 1/PS for n = 2 and n = 187149
are about 22198 and 2254 respectively. Surprisingly, for n = 187150, the value of 1/PS is essentially 1 and remains
so for larger values of n. For n ≥ 187150, the tightness gap is given by the number of oracles calls.

The effect of the success probability of the statistical test on the tightness gap of the reduction in [10] was not
considered in the earlier concrete analysis [6]. Our analysis shows that for values of n of practical interest, the
tightness gap is determined almost entirely by the success probability of the statistical test. While the concrete
analysis [6] had pointed out that the tightness gap of the reduction in [10] can be quite large, it still held out
the possibility that by choosing larger values of n, the reduction in [10] can be used to obtain concrete security
guarantees. Our analysis, on the other hand, shows that the reduction in [10] cannot be used to obtain any
meaningful practical security guarantee for values of n up to 187149.

The ring-LWE (RLWE) problem was later considered in [9]. This work showed a worst-case to average-case
reduction which is analogous to the reduction in [10]. The reduction in [9] refers to the verification lemma used
by Regev [10]. So, our concrete analysis of the success probability of the statistical test to verify LWE solutions
should also apply to the reduction in [9].

The importance of LWE in the context of lattice based cryptography is underscored by the fact that a number
of submissions made to the ongoing NIST process for selecting a new public key standard base their security
on the LWE problem and several of its variants. LWE based proposals which are in the second round of the
NIST process are Frodo [2], Kyber [3], LAC [8], NewHope [1], Round5 [4] and Saber [7]. A recent work by
Bernstein [5] performs a comparative study of the provable security of these and other lattice based proposals.
While commenting on the tightness of reduction, Bernstein [5] comments that “the loss of tightness is gigantic”
and credits [6] for pointing this out. Our analysis of the reduction in [10] goes beyond that of [6] and shows that
for parameters of practical interest it is in fact meaningless.

2 Preliminaries

A full rank lattice L in Rn is the set of all integer linear combinations of n linearly independent vectors v1, . . . ,vn
in Rn. Following Regev [10], L will also denote the n × n matrix whose columns are v1, . . . ,vn. So, given
a = (a1, . . . , an) ∈ Zn, La denotes the lattice point v = a1v1 + · · · + anvn and L−1(v) denotes the integer
coefficient vector a corresponding to v.

The length of a vector is its Euclidean norm. For i ∈ {1, . . . , n}, λi(L) is the least real number r such that
L has i linearly independent vectors with the longest having length r. The dual of a lattice L is denoted as L∗

and is defined to be the set of all vectors y ∈ Rn such that 〈x,y〉 ∈ Z for all x ∈ L.
The normal distribution with mean µ and standard deviation σ will be denoted as N (µ, σ). For α ∈ (0, 1),

Ψα is the probability distribution obtained by sampling from N (0, α/
√

2π) and reducing the result modulo 1.
Let p ≥ 2 be an integer. Let χ be a probability distribution on Zp. Let n be a positive integer and fix

s ∈ Znp . The distribution As,χ on Zpn×Zp is defined as follows. Choose a uniformly at random from Znp ; e from Z
following χ and output (a, 〈a, s〉+e). Let φ be a probability density function on T = (0, 1). The distribution As,φ

2

is defined as follows. Choose a uniformly at random from Znp ; e from T following φ and output (a, 〈a, s〉/p+ e),
where the addition is performed modulo 1.

Fix a positive integer n and an integer p ≥ 2. The learning with errors problem LWEp,χ is the following. For
any s ∈ Znp , given samples from As,χ, it is required to output s. Similarly, for a probability density function φ
on T, the LWEp,φ problem is the following. For any s ∈ Znp , given samples from As,φ, it is required to output s.

For x ∈ Rn and s > 0, define ρs(x) = exp
(
−π||x||2/s2

)
. For a lattice L, define ρs(L) =

∑
x∈L ρs(x). The

discrete Gaussian distribution DL,s on a lattice L assigns to a vector v ∈ L the probability DL,s(v) = ρs(v)/ρs(L).
Given a lattice L and a real number r, the discrete Gaussian sampling problem DGSL,r is to obtain a sample
from DL,r.

For a lattice L and a real number ε > 0, the smoothing parameter ηε(L) is the smallest s such that ρ1/s(L
∗ \

{0}) ≤ ε.

3 From DGS to LWE

The following is a restatement of Theorem 3.1 of [10] which is the main result of [10].

Theorem 1. Let L be a lattice of dimension n, p ≥ 2 be an integer and α ∈ (0, 1) be a real number. Given an
oracle for LWEp,Ψα, it is possible to sample from DL,r where r ≥

√
2n · ηε(L)/α, αp > 2

√
n.

For r ≥
√

2n · ηε(L)/α, define ri = r · (αp/
√
n)i for i = 1, . . . , 3n.

The proof of the theorem is provided in [10] as a sequence of nested oracle calls. In the following, we rewrite
the oracle calls and the other computations required for the proof in [10] in an algorithmic form. The required
subroutines and data structures are as follows. The quantity c is a constant such that the LWE oracle is provided
with nc samples.

solveLWEp,Ψα(I): This is the oracle to solve LWEp,Ψα . The list I consists of nc samples from As,Ψβ for some
0 < β ≤ α. Note that the oracle is guaranteed to work correctly if β = α, otherwise it might return an
incorrect result.

verifyLWE(s′, I): The input I contains nc samples from As,Ψβ . This algorithm returns true if s = s′, otherwise
it returns false.

solveCVP(p)(L∗,L, z): Here L∗ is the dual lattice of L; L contains nc samples from DL,ri for some i ∈ {1, . . . , 3n};
z is within distance λ1(L)/2 of L∗. Returns the coefficient vector modulo p of the vector in L∗ which is
closest to z.

solveCVP(L∗,L, z): The inputs L∗,L and z are as in the case of solveCVP(p). Returns a point of L∗ which is
closest to z.

quantumSample(): Uses solveCVP(L∗,L, ·) as an oracle and some quantum computation to return a sample from
DL,ri−1 . The list L contains nc samples from DL,ri .

solveDGS(p, α, r): Uses the oracle solveLWEp,Ψα(·) to return a sample from DL,r where r ≥
√

2n · ηε(L)/α. Note
that the description of the algorithm solveDGS provides the proof of Theorem 1.

In the algorithm descriptions, we will make use of the following two sub-routines mentioned below. We will not
be needing the details of these procedures and so we do not describe these details. They can be found in [10].

1. bootstrap(L, r): Here L is a lattice and r >
√

2n · ηε(L)/α. Returns a list L containing nc independent
samples from DL,r3n where r3n = r · ((αp)/(

√
n))3n.

2. reconstruct(x): This is used in solveCVP to reconstruct the closest vector by first applying a nearest neigh-
bour algorithm and then retracing through the results returned by the repeated calls to solveCVP(p).

3

Algorithm 1 Algorithm to solve DGS using an LWE oracle.

1: function solveDGS(p, α)
2: L ← bootstrap(L, r);
3: for i← 3n down to 1 do
4: L′ ← {};
5: for j ← 1 to nc do
6: y← quantumSample() (using solveCVP(L∗,L, ·) as an oracle);
7: L′ ← L′ ∪ {y};
8: end for
9: L ← L′; ri−1 = ri · (

√
n)/(αp);

10: end for
11: return one element from L.
12: end function.

Algorithm 2 Algorithm to solve CVP.

1: function solveCVP(L∗,L, z)
2: z1 ← z;
3: for k ← 1 to n do
4: ak ← solveCVP(p)(L∗,L, zk);
5: zk+1 ← (zk − L∗ak)/p;
6: end for
7: s← reconstruct(zn+1);
8: return s.
9: end function.

4 Concrete Analysis

The number of times the oracle solveLWE is called is determined by the following factors.

1. The loop in solveDGS has 3n iterations. In the i-th iteration nc samples of DL,ri are used to generate nc

samples of DL,ri−1 . Generating each sample of DL,ri−1 requires a call to quantumSample which in turn
generates a call to solveCVP. So, the sub-routines quantumSample and solveCVP are both called a total of
3n · nc = 3nc+1 times.

2. The loop in solveCVP has n iterations and in each iteration, a call to solveCVP(p) is made. So, each call to
solveCVP generates n calls to solveCVP(p).

3. In solveCVP(p), the set Z contains about n2c values. So, the loop from Steps 9 to 21 makes about n2c+1

calls to solveLWE and to verifyLWE. So, each call to solveCVP(p) generates n2c+1 calls to solveLWE and to
verifyLWE.

Proposition 2. Algorithm solveDGS has the following properties.

1. The solveLWE oracle is called T = 3n3c+3 times.

2. Algorithm verifyLWE is also called T times.

3. A total of 3nc+1 quantum computations are required.

4

Algorithm 3 Algorithm to solve CVP(p).

1: function solveCVP(p)(L∗,L, z)
2: Z ← set of all integer multiples of n−2cα2 in the range (0, α2];
3: I ← {};
4: for v in L do
5: a← L−1v mod p;

6: e
$← N (0, α/(2

√
π));

7: I ← I ∪ {(a, 〈z,v〉/p+ e mod 1)};
8: end for
9: for γ in Z do

10: I ′ ← {};
11: for i← 1 to n do
12: for (a, e) ∈ I do

13: ε
$← Ψ√γ ;

14: I ′ ← I ′ ∪ {(a, e+ ε)};
15: end for
16: s′ ← solveLWEp,Ψα(I ′);
17: if verifyLWE(s′, I ′) returns true then
18: return s′;
19: end if
20: end for
21: end for
22: end function.

Algorithm 4 Algorithm to verify an LWE solution.

1: function verifyLWE(s′, I ′)
2: m← n;
3: Choose m pairs (a1, x1), . . . , (am, xm) from I ′;
4: w ← 0;
5: for i← 1 to m do
6: yi ← xi − 〈ai, s′〉/p;
7: w ← w + cos(2πyi);
8: end for
9: z ← w/m; t← 0.02;

10: if z > t then
11: return true
12: else
13: return false
14: end if
15: end function.

Remarks:

1. Regev [10] has shown that each quantum computation is on a state of n logR qubits where R ≥ 23nλn(L∗)
is an integer.

2. For verifyLWE, the settings of m = n in Step 2 and t = 0.02 in Step 9 are the values given by Regev [10].

5

Note that the set I ′ has cardinality nc and so m is at most nc.

Algorithm verifyLWE is essentially a test of hypothesis. In verifyLWE, the pairs in I ′ are of the form
(a, 〈a, s〉/p + e) where e follows Ψβ. The test statistic is the variable z. Let ξ0 be the distribution of z when
s = s′ and let µ0 be the corresponding mean of z; let ξ1 be the distribution of z when s 6= s′ and let µ1 be the
corresponding mean of z. The following have been proved by Regev [10].

• ξ0 = Ψα so that µ0 = exp(−πα2) ≥ 0.04 for α < 1. Note that µ0 > t = 0.02.

• µ1 = 0.

The computation performed by verifyLWE is a test of hypothesis between H0 : s = s′ versus H1 : s 6= s′.
Two types of errors are to be considered.

e0 = Pr[Type-1 error] = Pr[reject H0 when it is true] = Pr
z∼ξ0

[z ≤ t]; (1)

e1 = Pr[Type-2 error] = Pr[accept H0 when it is false] = Pr
z∼ξ1

[z > t]. (2)

A Type-1 error will result in the correct value of s′ being rejected and so the entire reduction will not succeed.
A Type-2 error will result in an incorrect value of s′ being accepted. This incorrect value of s′ will be passed on
to verifyCVP(p) and then on to verifyCVP resulting in an incorrect solution to the CVP problem. So, again, the
entire reduction will fail. So, it is required to ensure that both Type-1 and Type-2 errors are small.

For i = 1, . . . ,m, let vi = cos(2πyi). Then v1, . . . , vm take values in the interval [−1, 1]. Applying the
Hoeffding inequality (see Appendix A) to v1, . . . , vm and z = (v1 + · · · + vm)/m, provides the following upper
bounds on e0 and e1.

e0 = Pr
z∼ξ0

[z ≤ t] = Pr
z∼ξ0

[z − µ0 ≤ −(µ0 − t)] ≤ exp
(
−m(µ0 − t)2/2

)
; (3)

e1 = Pr
z∼ξ1

[z > t] = Pr
z∼ξ1

[z − µ1 > t− µ1] ≤ exp
(
−mt2/2

)
. (4)

If s′ = s, then the probability that verifyLWE makes an error is at most e0; if s′ 6= s, then the proba-
bility that verifyLWE makes an error is at most e1. So, the probability that verifyLWE makes an error is
at most max(e0, e1) and so the probability that verifyLWE is successful is at least (1 − max(e0, e1)) = (1 −
max(exp

(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)).

Proposition 2 shows that verifyLWE is called a total of 3n3c+3 times by solveDGS. The probability that all of
these calls are successful is given by

PS =
(
1−max(exp

(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)
)3n3c+3

. (5)

Again from Proposition 2, the number of calls to solveLWE made by solveDGS is T = 3n3c+3 and so the tightness
gap of the reduction from DGS to LWE is

G = T/PS = 3n3c+3 ·
(
1−max(exp

(
−m(µ0 − t)2/2

)
, exp

(
−mt2/2

)
)
)−3n3c+3

. (6)

For all α < 1, we have µ0 > 0.04. The value of t in Step 9 of verifyLWE is set to 0.02 and so t < µ0 − t for all
α < 1. Further, Step 2 sets m = n as has been done by Regev. So, for m = n and t = 0.02, (6) simplifies to the
following.

G = T/PS = 3n3c+3 · (1− exp (−n/5000)))−3n3c+3

. (7)

Setting c = 1, we have evaluated T , PS and G for various values of n.

6

1. The dependence of 1/PS on n is quite interesting. The value of 1/PS is about 22198 for n = 2 and quickly
becomes very high (SAGE [11] was unable to compute the values of 1/PS for a large range of values of n);
for n = 187149, the value of 1/PS is about 2254 . Then it sharply decreases to almost 1 for n = 187150.

2. The value of T increases with increasing n. Further, T ≈ 2106 for both n = 187149 and n = 187150.

3. For n ≤ 187149, G is determined primarily by 1/PS and the tightness gap G varies from about 7 · 22198 for
n = 2 to about 2106 · 2254 for n = 187149. This gap is huge. For n = 187150, the tightness gap G is about
2106 which is also quite large.

The parameter n is the dimension of the underlying lattice. The above concrete security analysis shows that for
lattices with dimension at most 187149, the tightness gap of the reduction is determined primarily by 1/PS and
this value is huge. For lattices of dimension at least 187150, the tightness gap of the reduction is determined by
T and 1/PS no longer plays a role. If one wishes to choose values of parameters based on the Regev’s theorem,
then one has to work with lattice dimension at least 187150. The practicality of such a construction is not clear.
Further, it is to be noted that the tightness gap for n ≥ 187150 is itself quite large.

From Proposition 2 and the remark following it, for c = 1 the number of quantum computations required is
3n2 where each computation is on at least (3n2 +n log λn(L∗)) bits. The cost of quantum computation increases
quadratically with n.

Remarks:

1. In Step 2 of verifyLWE, the choice of the number of samples m to be equal to n has been taken following
Regev [10]. As mentioned earlier, m ≤ nc and it is possible to take m = nc. The determination of the
concrete value of the tightness gap done above is for c = 1.

2. In Step 9 of verifyLWE, the choice of the value of the threshold t to be equal to 0.02 has been taken
following Regev [10]. The statistical test performed by verifyLWE is essentially a test for the means µ0 and
µ1 = 0 of the distributions ξ0 and ξ1 respectively. A natural value of the rejection threshold t is the choice
µ0/2 = exp(−πα2)/2. Then the expression for the tightness gap given by (6) depends on the value of α.
The resulting tightness gap increases with increase in the value of α. A higher value of α makes the LWE
problem more difficult but, also results in a worse tightness gap in the reduction from DGS to LWE. Regev
used t = 0.02 which results in the highest possible value of the tightness gap.

4.1 Comparison to Previous Concrete Analysis

The complete reduction by Regev [10] is from worst case SIVP to average case decisional LWE problem (DLWEac).
This reduction consists of three parts.

• SIVP to DGS with tightness gap 2n3 [6].

• DGS to LWE with tightness gap G given by (7). In the previous concrete analysis [6], the tightness gap for
the reduction from DGS to LWE was obtained as 3nc+3. The reason is that the loop over γ from Steps 9
to 21 in Algorithm solveCVP(p) was missed.

• LWE to DLWEac with tightness gap np · nd1+2d2+2 [6] for positive integers d1 and d2.

Our work does not change the tightness gap of the first and the third reductions. The main part of the entire
reduction is the second reduction. For this case, we have incorporated into the tightness gap the success prob-
ability of the statistical test required by the algorithm for verifying LWE solutions. This was not considered
in [6].

7

In [6], it was argued that for n = 1024, it is reasonable to take d1 = d2 = 12.8 and c = 1 resulting in the
tightness gap of the reduction from SIVP to DLWEac to be about 2504. Considering the tightness gap of the
reduction from DGS to LWE to be given by (7) for n = 1024, SAGE returns the value of 1/PS to be ‘+infinity’.
In fact, for 2 ≤ n ≤ 187149, the tightness gap is determined solely by 1/PS . For this range of n, the number of
oracle calls T is insignificant in comparison to 1/PS .

5 Conclusion

Our work highlights the role of success probability of a statistical test in determining the tightness gap of the
reduction from DGS to LWE. More generally, our work shows that whenever a statistical test is used in an
analysis, it is important to determine the success probability of the test for concrete values of the relevant
parameters.

References

[1] Erdem Alkim, Roberto Avanzi, Joppe Bos, Leo Ducas, Antonio de la Piedra, Thomas Poppelmann, Peter
Schwabe, Douglas Stebila, Martin R. Albrecht, Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson,
Guy Peer, and Nigel P. Smart. NewHope: algorithm specifications and supporting documentation. https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions, 2019.

[2] Erdem Alkim, Joppe Bos, Leo Ducas, Patrick Longa, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,
Christopher Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM: Learning With Errors key en-
capsulation. https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions,
2019.

[3] Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber: algorithm specifica-
tions and supporting documentation. https://csrc.nist.gov/projects/post-quantum-cryptography/

round-2-submissions, 2009.

[4] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thijs Laarhoven, Rachel Player,
Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, Jose-Luis Torre-Arce, and Zhenfei Zhang.
Round5: KEM and PKE based on (Ring) Learning With Rounding. https://csrc.nist.gov/projects/

post-quantum-cryptography/round-2-submissions, 2019.

[5] Daniel J. Bernstein. Comparing proofs of security for lattice-based encryption. Cryptology ePrint Archive,
Report 2019/691, 2019. https://eprint.iacr.org/2019/691.

[6] Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar. Another look at tightness II: prac-
tical issues in cryptography. In Raphael C.-W. Phan and Moti Yung, editors, Paradigms in Cryptology
- Mycrypt 2016. Malicious and Exploratory Cryptology - Second International Conference, Mycrypt 2016,
Kuala Lumpur, Malaysia, December 1-2, 2016, Revised Selected Papers, volume 10311 of Lecture Notes in
Computer Science, pages 21–55. Springer, 2016.

[7] Jan-Pieter DAnvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. SABER: Mod-LWR
based KEM (round 2 submission). https://csrc.nist.gov/projects/post-quantum-cryptography/

round-2-submissions, 2019.

8

[8] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang, Zhe Liu, Hao Yang,
Bao Li, and Kunpeng Wang. LAC: Lattice-based Cryptosystems. https://csrc.nist.gov/projects/

post-quantum-cryptography/round-2-submissions, 2019.

[9] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings.
J. ACM, 60(6):43:1–43:35, 2013.

[10] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):34:1–
34:40, 2009.

[11] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.5.1), 2019.
https://www.sagemath.org.

A Hoeffding Inequality

We briefly recall Hoeffding’s inequality for the sum of independent random variables.

Theorem 3 (Hoeffding Inequality). Let, X1, X2, . . . , Xλ be a finite sequence of independent random variables,
such that for all i = 1, . . . , λ, there exists real numbers ai, bi ∈ R, with ai < bi and ai ≤ Xi ≤ bi. Let X =

∑λ
i=1Xi.

Then for any positive t > 0,

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2

Dλ

)
and Pr[X − E[X] ≤ −t] ≤ exp

(
−2t2

Dλ

)
; (8)

where Dλ =

λ∑
i=1

(bi − ai)2.

9

