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Abstract. We present a post-quantum key agreement scheme that does not re-
quire distinguishing between the initiator and the responder. This scheme is based
on elliptic curve isogenies and can be viewed as a variant of the well-know SIDH
protocol. Then, we provide an isogeny-based password-authenticated key ex-
change protocol based on our scheme. A summary of security and computational
complexities are also presented. Finally, we present an efficient countermeasure
against a side-channel attack that applies to both static and ephemeral versions of
SIDH and our scheme.
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1 Introduction

Recently, NIST has started the first post-quantum cryptography standardization pro-
cess [12]. Cryptographers around the world have submitted in total 82 proposals and
69 were accepted for the first round, 26 of which were selected for the second round.
The research and cryptanalysis in this area has been drawing more and more researchers
from academia and industry. One goal of the competition is to find a quantum-safe alter-
native to today’s widely used key agreement schemes: DH and ECDH. There are many
different candidates in the competition, but all of them have one property in common
- they differ from DH-like schemes. The quantum-safe candidates for key establish-
ment are called Key Encapsulation Mechanisms (KEM) where one party generates a
shared secret, encrypts and transmits it to the other party. In such a case the user of the
KEM needs to know who initiates the exchange and who responds to it. A portion of
those KEMs are based on key agreement schemes, which all still have the property that
the initiator and the responder must be clearly distinguished. In DH-like schemes both
parties contribute to the shared secret and from the user perspective there is no differ-
ence between the initiator and the responder. This might seem like a small difference,
however, from an adoption and migration point of view, it will cause difficulties.

Among the NIST candidates, there is one that resembles DH-like schemes more
than the others: SIKE [10]. Although SIKE is a KEM, it is based on SIDH [9, 7] where
both parties contribute to the shared secret in an equal manner. However, even though



SIDH is the scheme that resembles DH-type schemes, it still requires to distinguish be-
tween the initiator and the responder. In this paper we improve upon SIDH and propose
one of the first post-quantum key agreement schemes, PQDH (Post-Quantum Diffie-
Hellman), that behaves exactly as DH-type schemes and thus allows an easier migration.
The only other known scheme that has this property is CSIDH (commutative SIDH) [5],
which is also based on supersingular isogenies, but conceptually different from SIDH.

Furthermore, we look at other use cases of key agreement schemes in the industry
where the NIST candidates do not offer a direct solution. Specifically, we looked at
password-authenticated key exchange (PAKE) schemes which are heavily used in the
payment industry. We demonstrate how PQDH can be used to obtain an efficient post-
quantum PAKE scheme.

As we move towards such systems, we need to be especially careful with regards to
side-channel attacks. Although side-channel attacks are a general concern, in payment
systems they are even a bigger threat. Recently, a fault attack [17] has been published
applicable to isogeny-based schemes, like SIDH and PQDH. In this paper, we demon-
strate an efficient countermeasure against these fault attacks, which can be applied not
only to PQDH but to all isogeny-based schemes.

The paper is structured as follows. In Section 2, we highlight our main contribu-
tions. In Section 3, we provide an overview about isogeny-based cryptography. In Sec-
tion 4 we present PQDH followed by post-quantum PAKE in Section 5. In Section 6
we discuss the side-channel attack countermeasure. The evaluation results are shown
in Section 7. We conclude in Section 8. A list of explicit algorithms can be found in
Appendix A.

2 Main Contributions

In this work, we present our three main contributions to this field. First, we demon-
strate an improved evolution of the SIDH scheme, which we named PQDH (Post-
Quantum Diffie-Hellman) and which can be used as a direct drop-in replacement for
the conventional Diffie-Hellman-type schemes. Second, we present a PAKE (password-
authenticated key exchange) scheme based on PQDH. Finally, we contribute an efficient
countermeasure against a side-channel fault-attack on isogeny-based schemes, which
applies to both static and ephemeral versions.

2.1 Post-Quantum Diffie-Hellman

SIDH is one of the most promising candidates for a quantum-resistant key agreement
schemes. We focus on the ephemeral version as the most frequently used version in
pracice, but it is possible to extend the results to the static version. We have found that
although the SIDH scheme resembles the flow of a Diffie-Hellman protocol, it lacks
compatibility with the existing IT infrastructure, which is a characteristic shared among
all post-quantum key agreement schemes submitted to the NIST PQC standardization.
The lack of compatibility is due to the fact that the computational actions of the ini-
tiator and the responder in a communication session differ from each other, making it
problematic to use SIDH with the existing cryptographic APIs, as we need to constantly
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distinguish between the two types of users. One option would be to send extra infor-
mation about the basis used or the user type. However, this is not an option as we still
would need to change the API and users are still performing different actions. We found
a way to overcome the obstacle of differentiating between initiator and responder and
will present a scheme, named PQDH, which is fully based on SIDH, but works with the
Diffie-Hellman API.

2.2 Password-Authenticated Key Exchange

Password-Authenticated Key Exchange (PAKE) is a protocol where parties establish
a common cryptographic key based on the knowledge of the common password. In
practice, it is a key agreement with an added password. The password should be com-
putationally infeasible to guess. The password is also used to mask the public key in-
formation sent over an insecure channel.

The first PAKE protocol was designed by Bellovin and Merritt in 1992 [1]. One
of its main advantages is that it allows the usage of low-entropy passwords. Today,
many protocols of this type exist. Most of them are based on either a multiplicative
group Z∗p or on a group of points of elliptic curves. There are only lattice-based and
isogeny-based schemes that are post-quantum PAKE-type protocols [8, 19] and [16].
We propose a PAKE protocol based on isogenies between supersingular elliptic curves.
It builds on top of PQDH and its speed characteristics is between SIDH and PQDH. The
first isogeny-based PAKE protocol was proposed by Taraskin et al. [16], which is based
on SIDH. The protocol presented in this paper is based on PQDH. Given that PQDH
truly resembles Diffie-Hellman-type schemes, building other protocols from it results
them to be less complex. The PQDH-based PAKE demonstrates that property well.
Our protocol is more efficient and less complex, however it does not provide forward
secrecy, while the SIDH-based one does. Hence, we propose a choice of isogeny-based
PAKE with trade-offs.

2.3 Fault Attack Countermeasure

A cryptographic scheme may be secure from the theoretical point of view, however,
there is more to look at to ensure full protection. The attacker could be listening, moni-
toring, and/or capturing radio frequency waves, electricity consumption or other emis-
sions or behaviour data of the computational device performing cryptographic opera-
tions. The obtained information and its analysis can be used to recover part of or the
entire secret key. These kinds of attacks are known as side-channel attacks. There are
different categories of such attacks, including simple side-channel attacks, differential
side-channel attacks, fault-attacks and others. If a protocol is vulnerable to such attacks,
then either software or hardware countermeasures need to be implemented. Given that
we are living in the era where software is expected to work on multiple platforms, the
software countermeasures are the preferred option to provide the desired flexibility.

Fault attacks are categorized as active attacks and occur if the attacker either mod-
ifies the input data for cryptographic computations or inserts some faults on purpose.
The attacker can then make use of the resulting computation with faults to recover some
private information.
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For isogeny-based schemes, one possible attack is a fault attack that enables to com-
pute an isogeny on a random point. The uniqueness of this attack is that it is currently
the only known side-channel and fault attack specific to isogeny-based cryptosystems
that could be applied to both static and ephemeral versions of the schemes, while all the
other known attacks apply only to static versions of the schemes. Thus, switching to an
ephemeral version will not help to totally prevent this attack. Hence, a countermeasure
for this attack is needed in any case. The attack has been discovered by Ti [17].

In general, a secret isogeny can be computed and return the resulting values only
for the other user’s basis points. Otherwise, if we know the isogeny value on any other
points, which lie outside the corresponding torsion subgroup, we can, with high prob-
ability, recover the secret isogeny. The attacker tries to get the user A to compute his
isogeny φA on points from E[`eA

A ]. This is done by providing a random point instead
of a proper point from E[`eB

B ]. The random point can be decomposed with respect to
all the basis, and the E[`eA

A ] related point can be isolated, using scalar multiplication of
order f · `eB

B . Having obtained this information, with high probability, the secret isogeny
can be recovered. Note that users A and B are generic here, thus, we can symmetrically
switch all A’s and B’s in our description.

2.4 Applications

As a key agreement scheme, PQDH has many possible applications. Today, most com-
monly used key agreements are Diffie-Hellman type schemes based either on a multi-
plicative group of integers modulo a prime or on an elliptic curve group (ECDH). The
exposure to side-channels leads to the need for countermeasures implemented in an
efficient way to avoid performance trade-offs.

One of the most natural applications of PAKE is establishing a common session
secret key for mutual authentication between a smartcard and a terminal with a keyboard
for PIN entry. One more important application is that it is now used in the IEEE 802.11
WLAN standard. There is a number of other applications of PAKE, including its usage
in client-server networks.

3 Background

3.1 Isogenies

We provide a brief review of the necessary background information on isogenies be-
tween elliptic curves. For further details on the mathematical foundations of isogenies,
we refer the reader to [9, 14].

Given two elliptic curves E1 and E2 over some finite field Fq of cardinality q, an
isogeny φ is an algebraic morphism from E1 to E2 of the form

φ(x, y) =

(
f1(x, y)
g1(x, y)

,
f2(x, y)
g2(x, y)

)
,

such that φ(∞) = ∞ (here f1, f2, g1, g2 are polynomials in two variables, and∞ denotes
the identity element on an elliptic curve). Isogeny is an algebraic morphism which is
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a group homomorphism. The degree of φ, denoted deg(φ), is its degree as an algebraic
morphism. Two elliptic curves are isogenous if there exists an isogeny between them.

Given an isogeny φ : E1 → E2 of degree n, there exists another isogeny φ̂ : E2 → E1
of the same degree n satisfying φ ◦ φ̂ = φ̂ ◦ φ = [n] (where [n] is the multiplication by n
map). The isogeny φ̂ is called the dual isogeny of φ.

For any natural number n, we define E[n] to be the n-torsion subgroup of E, namely
E[n] = {P ∈ E(F̄q) : nP = ∞}. Thus, E[n] is the kernel of the multiplication by n
map over the algebraic closure F̄q of Fq. It is important to note that the group E[n] is
isomorphic to (Z/nZ)2 as a group whenever n and q are relatively prime [14].

We define the endomorphism ring End(E) to be the set of all isogenies from ellip-
tic cuvre E to itself, defined over the algebraic closure F̄q of Fq. The endomorphism
ring is a ring under the operations of pointwise addition and functional composition. If
dimZ(End(E)) = 2, then we say that E is ordinary; otherwise dimZ(End(E)) = 4 and
we say that E is supersingular. Two curves, between which there exists an isogeny, are
either both ordinary or both supersingular. All elliptic curves used in this work are su-
persingular. The size of the kernel of that isogeny is equal to the degree of that isogeny
(as an algebraic map) [14, III.4.10(c)]. The kernel uniquely defines the isogeny up to
isomorphism. Methods for computing and evaluating isogenies are given in [4, 9, 11,
18]. We use the isogenies whose kernels are cyclic groups. Knowledge of the kernel, or
any single generator of the kernel, allows to perform efficient evaluation of the isogeny
(up to isomorphism). Conversely, the ability to evaluate the isogeny via a black box
allows for efficient determination of the kernel. Thus, in our application, the following
are equivalent:

· Knowledge of the isogeny,
· Knowledge of the kernel,
· Knowledge of any generator of the kernel.

3.2 Isogeny-Based Key Agreement

The term ECC (elliptic curve cryptography) typically refers to cryptographic primi-
tives and protocols whose security is based on the hardness of the discrete logarithm
problem on elliptic curves. This hardness assumption is invalid against quantum com-
puters [13]. Hence, traditional elliptic curve cryptography is not a viable foundation
for constructing quantum-resistant cryptosystems. As a result, alternative elliptic curve
cryptosystems based on hardness assumptions other than discrete logarithms have been
proposed for use in settings where quantum resistance is desired. One early proposal
by Stolbunov [15], based on isogenies between ordinary elliptic curves, was subse-
quently shown by Childs, Jao, and Soukharev [6] to offer only subexponential difficulty
against quantum computers. The algorithm has recently been further improved by Bon-
netain [2].

In response to these developments, Jao, Plût and De Feo [9] proposed a new col-
lection of quantum-resistant public-key cryptographic protocols for entity authentica-
tion, key exchange, and public-key cryptography, based on the difficulty of computing
isogenies between supersingular elliptic curves. We review here the most fundamental
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A B

Input: A, B, sID Input: B
mA, nA ∈R Z/`

eA
A Z mB, nB ∈R Z/`

eB
B Z

φA := E/〈[mA]PA + [nA]QA〉 φB := E/〈[mB]PB + [nB]QB〉
A,sID,φA(PB),φA(QB),EA
−−−−−−−−−−−−−−−−−→

B,sID,φB(PA),φB(QA),EB
←−−−−−−−−−−−−−−−−−

EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB]φA(PB)+[nB]φA(QB)〉

Output: j(EAB), sID Output: j(EBA), sID

Fig. 1: Key Agreement protocol using isogenies on supersingular curves.

protocol in the collection - key exchange protocol, which forms the main building block
for our proposed schemes.

Fix a prime p of the form
p = `eA

A `
eB
B · f ± 1,

where `A and `B are small primes, eA and eB are positive integers, and f is some (typi-
cally very small) cofactor. Then, fix a supersingular curve E defined over Fp2 , and bases
{PA,QA} and {PB,QB}which generate E[`eA

A ] and E[`eB
B ] respectively, so that 〈PA,QA〉 =

E[`eA
A ] and 〈PB,QB〉 = E[`eB

B ]. Alice chooses two random elements mA, nA ∈R Z/`
eA
A Z,

not both divisible by `A, and computes an isogeny φA : E → EA with kernel KA :=
〈[mA]PA + [nA]QA〉. Alice also computes the points {φA(PB), φA(QB)} ⊂ EA obtained
by applying her secret isogeny φA to the basis {PB,QB} for E[`eB

B ], which are called
auxiliary points, and sends these points to Bob together with EA. Similarly, Bob selects
random elements mB, nB ∈R Z/`

eB
B Z, not both divisible by `B, and computes an isogeny

φB : E → EB having kernel KB := 〈[mB]PB + [nB]QB〉, along with the auxiliary points
{φB(PA), φB(QA)}. Upon receipt of EB and φB(PA), φB(QA) ∈ EB from Bob, Alice com-
putes an isogeny φ′A : EB → EAB having kernel equal to 〈[mA]φB(PA) + [nA]φB(QA)〉;
Bob proceeds symetrically. Alice and Bob can then use the common j-invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) = E/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉

to form a secret shared key.
The protocol is presented in Figure 1. We denote by A and B the identifiers of Alice

and Bob, and use sID to denote the unique session identifier.
It is important to note that Alice and Bob operate on different bases, one set for

initiator and different one for responder. As a result, besides bases, different spaces
are selected for scalars. Hence, one must always distinguish between the two roles,
otherwise the protocol will fail.

Remark 1. Alice’s auxiliary points {φA(PB), φA(QB)} allow Bob (or any eavesdropper)
to compute Alice’s isogeny φA on any point in E[`eB

B ]. This ability is necessary in order
for the scheme to function, since Bob needs to compute φA(KB) as part of the scheme.
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However, Alice must never disclose φA(PA) or φA(QA) (or more generally any informa-
tion that allows an adversary to evaluate φA on E[`eA

A ]), since disclosing this information
would allow the adversary to solve a system of discrete logarithms in E[`eA

A ] (which are
easy since E[`eA

A ] has smooth order) to recover KA. The same applies for Bob. The side-
channel attack presented in [17] tries to force the user to compute their isogeny on own
basis points.

Remark 2. The textbook version of SIDH protocol assumes that the secret scalars are
m, n, not both divisible by `, where basis points P,Q are of order `e. In practice, follow-
ing the explanations in Section 4.2.1 of [9] and Section 4 of [7], we may assume m = 1
and compute the kernel point as P + [n]Q.

3.3 CSIDH

The only other post-quantum scheme, besides the one that we present in this paper, that
achieves the property that there is no need to distinguish between the initiator and the
responder is CSIDH (commutative SIDH) [5]. This scheme has similar principles as
SIDH, but works over Fp, which means that the resulting class group is commutative.
It is an interesting solution. One thing to note is that due to its commutativity, same
quantum subexponential attack applies as for the ordinary curves [6].The authors have
shown that the proposed scheme provides 64 quantum bit security. Recently, the scheme
was further studied in [3], where the authors show that it provides 35 bit of quantum
security. Hence, the scheme is worth looking into and continuing the development, but
one must be careful with security parameters and expect less efficiency, but at the same
time a “more commutative” scheme.

4 PQDH - Post-Quantum Diffie-Hellman

The operations performed by the initiator and the responder differ in the original SIDH
protocol. This can be inconvenient, as we want the key generation and key derivation
steps to be identical on both sides to provide a true drop-in replacement for Diffie-
Hellman-like protocols used today. In this section, we propose a protocol PQDH (Post-
Quantum Diffie-Hellman), the improved version of SIDH which resolves the initiator-
responder difference issue.

4.1 Our Protocol

The main idea of our protocol is to generate own (private, public) keypair using both
sets of bases. Then each user matches them with the opposite parameters of the other
user and computes two common values, which are then combined in a commutative
manner.

Key Generation: The user performs the following steps:

1. Randomly select nA ∈ Z`eA
A

and nB ∈ Z`eB
B

.
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2. Compute KA = PA + [nA]QA.
3. Compute KB = PB + [nB]QB.
4. Obtain EA using the kernel 〈KA〉 for the isogeny φA : E → EA = E/〈KA〉.
5. Obtain EB using the kernel 〈KB〉 for the isogeny φB : E → EB = E/〈KB〉.
6. Compute the images of the values PB and QB under φA, namely φA(PB) and φA(QB).
7. Compute the images of the values PA and QA under φB, namely φB(PA) and φB(QA).

The private key is: {nA, nB}. The public key is: {EA, EB, φA(PB), φA(QB), φB(PA), φB(QA)}.
The user either sends or publishes the public key.In practice, since we are in concen-
trating on the ephemeral version, we work in the context of sending public key.

Key Derivation: After obtaining the other user’s public key, {E1, E2, P00, P01, P10, P11},
the user performs the following steps to derive the common key:

1. Using their own private key value nA and the other user’s auxiliary points P10, P11,
computes KA2 = P10 + [nA]P11.

2. Using their own private key value nB and the other user’s auxiliary points P00, P01,
computes KB1 = P00 + [nB]P01.

3. Using KA2 as the generator point for the kernel, computes EA2 = E2/〈KA2〉.
4. Using KB1 as the generator point for the kernel, computes EB1 = E1/〈KB1〉.
5. Computes the j-invariants of the resulting curves: j1 = j(EA2) and j2 = j(EB1).
6. Combines j1 and j2 in a commutative manner to obtain j
7. Obtains a common key k = KDF( j).

Remark 3. For the step where the user combines j1 and j2 to obtain j, the method would
be predefined in the protocol. Two most practical approaches are either to add them (as
field elements) or to XOR them as binary elements (component by component).

Diagram We present the diagram of the protocol.

EA′B′ EB′ EAB′

EA′ E EA

EA′B EB EAB

Fig. 2: PQDH Diagram

In the diagram, the densely dotted edges represent the secret isogenies of one user
and the loosely dashed edges represent the secret isogenies of the other user. The red
curves are the common derived secret used for the common secret key. The yellow
edges and curves are possible to compute, but are not computed or used.
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Complexity The computational complexity of this protocol is about double compared
to SIDH, as each user is simultaneously operating on both bases. The same is true for
the overhead, we have exactly a double amount of data sent in comparison to SIDH.
The private key size is also doubled.

For the global parameters nothing is changed; they are exactly the same as in the
SIDH case. This property allows users to choose between SIDH or PQDH, operating
on the same set of parameters.

Security The security of the scheme relies exactly on the same assumptions as SIDH.
We can see that breaking the scheme is equivalent to breaking two instances of SIDH.
This means that the security of the scheme is about the same as of SIDH. In fact, the
complexity of breaking the scheme is actually two times the complexity of SIDH, mean-
ing that the same parameters yield us a scheme which has one extra bit of security
compared to SIDH. This extra bit applies to both conventional and quantum security.

5 Isogeny-Based PAKE

In this section, we present a password authenticated key exchange protocol based on
isogenies, namely a PQDH-based PAKE. The only other known isogeny-based PAKE
protocol is one by Taraskin et al. [16], which is based on SIDH. Our PAKE protocol is
based on PQDH and is easier to use in practice, but it has less security features. Hence, it
is an alternative, rather than an improvement. We will also provide complexity analysis
and brief security analysis.

5.1 Protocol

Let the parties be U1 and U2. Let E be the starting curve. Let pwd be the shared pass-
word. We also define hash function H to be a secure (pre-image and collision resistant)
hash function mapping to Z`eB

B
.

Key Generation: Each party Ui performs the following:
1. Selects random ni ∈ Z`eA

A
.

2. Computes KAi = PA + [ni]QA.
3. Computes φAi : E → EAi = E/〈KAi〉.
4. Evaluates φAi (PB) and φAi (QB).

As usual, EAi , Pi = φAi (PB) and Qi = φAi (QB) is the public key. At this point, the parties
exchange their public keys.

Key Derivation: On obtaining the other party’s (U1−i) public key, {EA1−i , P1−i,Q1−i},
the party Ui performs the following steps to derive the common key:

1. Computes np = H(pwd‖ j(EAi ) ⊕ j(EA1−i )).
2. Computes KAiB = φAi (PB) + [np]φAi (QB).
3. Computes EAiB = EAi/〈KAiB〉.
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4. Computes KA1−iB = φA1−i (PB) + [np]φA1−i (QB).
5. Computes EA1−iB = EA1−i/〈KA1−iB〉.
6. Evaluates j1 = j(EAiB) and j2 = j(EA1−iB).
7. Computes the session key k = KDF( j1 + j2).

Diagram We present the diagram of the protocol.

EA2B EB EA1B

EA2 E EA1

Fig. 3: Isogeny-Based PAKE Protocol

In this diagram, the densely dotted edges represent the isogenies computed by one
user and the loosely dashed edges represent the isogenies computed by the other user,
while the solid line is the isogeny based on the shared secret password. The red curves
are the common derived secret values used for the common secret key.

Complexity In this protocol, the parties exchange standard public keys. Thus, the over-
head is equal to the overhead of the original SIDH protocol. Looking at the computa-
tional complexity, SIDH requires performing two isogeny computations, while in the
given protocol it is done three times, meaning that its complexity is 1.5 times higher.
Comparing to the computational complexity of PQDH, our PAKE protocol’s complex-
ity is 3/4 of the former.

Security For the given scheme, we can consider obtaining of EA2B by the first user
and of EA1B by the second user as two separate events. Thus, each party uses a com-
mon known (secret to everyone else) isogeny based on the shared secret password and
other party’s public key. This means that they gain no extra information about each
other’s secret keys, identical to what happens in SIDH. Looking from an outside party’s
perspective, and given that the shared secret information (password, and isogeny com-
putations based on password) is never transmitted over a public channel, we can see
that external parties observe even less information than in the SIDH protocol, as only
`eA

A -isogenies evaluated on B-basis are transmitted, while in SIDH, one also sees `eB
B -

isogenies evaluated on A-basis.
Next, we need to observe the possibility of offline dictionary attacks for the PAKE

protocol. An offline dictionary attack occurs when an adversary observes and records
the communication between entities, and then tries every possible password to attempt
to guess which password was used. In order for the scheme to be secure, adversary
should not be able to distinguish whether the attempted password was the one used or
not. In the provided scheme, no public or private information about the shared secret
is transmitted. Moreover, the public information about users’ own keys that is being
exchanged, has no relationship to the shared secret and the results of the computation
are not displayed publicly. The adversary has no way to check if the guess was cor-
rect as he does not see information that would provides that possibility; no password
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related/involved information is transmitted and no information against which password
guessing can be checked is available to the adversary. Hence, we can see that the given
protocol is also secure against the offline dictionary attack.

We do note that this scheme was not intended to provide forward secrecy, compared
to isogeny-based PAKE protocol in [16]. This is an alternative, which is more efficient,
at the cost of forward secrecy.

Textbook Version There is a textbook version of the protocol for easier understanding
and seeing how it is related to the PQDH protocol. This scheme is not as efficient as
the one presented above. The key generation process is identical and the key derivation
process is as follows:

1. Compute np = H(pwd‖ j(EAi ) ⊕ j(EA1−i )).
2. Compute KB = PB + [np]QB.
3. Compute φB : E → EB = E/〈KB〉.
4. Evaluate φB(PA) and φB(QA).
5. Compute KAiB = φAi (PB) + [np]φAi (QB).
6. Compute EAiB = EAi/〈KAiB〉.
7. Compute KA1−iB = φA1−i (PB) + [np]φA1−i (QB).
8. Compute EA1−iB = EA1−i/〈KA1−iB〉.
9. Evaluate j1 = j(EAiB) and j2 = j(EA1−iB).

10. Compute the session key k = KDF( j1 + j2).

5.2 Adapting the PAKE Scheme for Devices with Computational Limitations

The presented PAKE scheme can be modified, if required by an application, to shift
more load on precomputations, thus deceasing the load of the actual computation during
the key establishment phase.

The scheme would be as follows.

Key Generation: Each party Ui performs the following:

1. Selects random ni ∈ Z`eA
A

.
2. Computes KAi = PA + [ni]QA.
3. Computes φAi : E → EAi = E/〈KAi〉.
4. Evaluates φAi (PB) and φAi (QB).

As usual, EAi , Pi = φAi (PB) and Qi = φAi (QB) is the public key.

Precomputation Phase: Each party Ui performs the following:

1. Computes np = H(pwd).
2. Computes KAiB = φAi (PB) + [np]φAi (QB).
3. Computes EAiB = EAi/〈KAiB〉.
4. Evaluates j1 = j(EAiB).

At this point, the parties exchange their public keys.
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Key Derivation: On obtaining the other party’s (U1−i) public key, {E1−i, P1−i,Q1−i},
the party Ui performs the following steps to derive the common key:

1. Computes KA1−iB = φA1−i (PB) + [np]φA1−i (QB).
2. Computes EA1−iB = E/〈KA1−iB〉.
3. Evaluates j2 = j(EA1−iB).
4. Computes the session key k = KDF( j1 + j2).

In this variant, we have removed the values of the j-invariants of the curves for ob-
taining np. This might make some formal proof techniques more involved. also there
should be an increased caution about the aspect of reusing some data, which becomes
possible in this adaptation of the scheme. This could be a preferred or an unwanted fea-
ture. Thus, this variant should be chosen only if it meets the criteria for the application
it is used for.

The diagram for this variant stays the same, as on the overall level, we are doing
almost the same operations, except that we are moving some of them to the precompu-
tational stage.

We will discuss complexity and security of this variant with respect to the first
variant.

Complexity The overhead complexity with respect to the first variant does not change,
as the parties are still exchanging the public keys of the same format. For the com-
putational complexity, because two of three isogeny computations are now being pre-
computed, we get a complexity of 1/3 of the first variant, or 1/2 of the original SIDH
protocol. Comparing to the computational complexity of PQDH, our PAKE protocol’s
complexity is 1/4 of the former.

Security We are still conceptually doing the same steps as the in the first variant,
except moving some of them, where possible, to the precomputation stage, and not
including j-invariants in the computation of np. Hence, we get the same security as for
the first variant, modulo a possibility for replay attacks, where applicable. As already
mentioned, since we have removed the values of the curves from the hash function
used for obtaining np, it might make some formal proof techniques more involved.
We recommend an easy way to overcome these issues is to use counters, i.e. np =

H(pwd‖counter), if such security property is required for the given computationally
limited device.

6 Efficient Countermeasure

The only known side-channel attack that applies to the ephemeral version of SIDH
and PQDH is the fault attack described in Section 2.3. A direct countermeasure to this
attack is to check the order of the other user’s basis points. Order checking computation,
although polynomial in running time, is expensive and could cost 100 percent running
time per point. Given that there are two points in the basis, we could have a cost of
200 percent. In this section, we propose a more efficient approach to providing such
countermeasure.
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6.1 Efficient Approach for SIDH

In the case of the SIDH protocol, we assume that we obtain or receive the other user’s
basis points P,Q whose expected order is `e.
Let φ be the current user’s secret isogeny; S be either P or φ(P); and T be either Q or
φ(Q) (note that this choice must match the choice for S ).

Remark 4. We recommend in this case to choose φ(P), φ(Q) as values of S ,T , respec-
tively. This would also prevent a fault-injection attack that could occur during the course
of computation itself.

Before we proceed, we prove the following claim.

Claim. Let S ,T ∈ E/Fp2 be non-identity points, where E is supersingular and p =

`e · `′e
′

· f ± 1 (where ` and `′ are small primes). If S + T ∈ E[`e], then either both S
and T are in E[`e] or both are in E \ E[`e].

Proof. We can express S = S 1 + S 2, such that S 1 ∈ E[`e] and S 2 ∈ E[`′e
′

f ]. Similarly,
we can express T = T1 + T2, such that T1 ∈ E[`e] and T2 ∈ E[`′e

′

f ]. Given the fact that
S + T ∈ E[`e] and so are S 1 and T1,

∞ = [`e](S + T ) = [`e](S 1 + S 2 + T1 + T2)
= [`e]S 1 + [`e]S 2 + [`e]T1 + [`e]T2

= [`e]S 2 + [`e]T2

= [`e](S 2 + T2).

It follows that
[`e](S 2 + T2) = ∞,

which means that S 2 + T2 ∈ E[`e]. At the same time S 2 + T2 ∈ E[`′e
′

f ]. Since E[`e] ∩
E[`′e

′

f ] = {∞}, we obtain that
S 2 + T2 = ∞.

Hence, either S 2 = T2 = ∞, in which case this means that S ,T ∈ E[`e] or S 2 =

−T2 , ∞, in which case this means that S ,T ∈ E \ E[`e]. �

The above claim shows that if the sum (or in fact a linear combination) of the two
points is checked, then we only need to check one of the two points in the case that their
sum verifies. This is an alternative to checking each point separately, as in the case of
someone trying to forge the basis points, we will be able to catch that faster, as most
likely S + T provided will not verify. Another application of this approach is that when
we are using Montgomery curves, we could already be provided with S ,T, S − T , in
which case we can choose to verify S − T and one of S or T .

Perform the following:

1. Compute R = S + T .
2. Compute O = [`e]R.
3. If the resulting value of O is point at infinity (∞), continue, otherwise abort the

session.
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4. Compute OS = [`e]S .
5. If the resulting value of OS is point at infinity (∞), continue, otherwise abort the

session.

Compared to the general countermeasure (computing the orders of points) approach,
this one is expected to be about 10 times faster, depending on the curve format.. We
avoid expensive computation of point order finding algorithm and instead perform one
special scalar multiplication. In practice, the value of ` is either 2 or 3. Given that our
scalar is in the form of `e, we only need to compute DOUBLE or TRIPLE elliptic
curve arithmetic operation e times. The results in Sec. 7.1 show that the cost of this
countermeasure is approximately 22-24 percent.

Step 2 of our approach is ensuring that R ∈ E[`e]. It is computationally more effi-
cient than finding the exact order. At the same time, this suffices for our purposes, as
the attack only works when we have some point in E \ E[`e] that is of order other than
`i for i ∈ {0, 1, . . . , e}.

6.2 Efficient Approach for PQDH

In this section, we will present the countermeasure against the described fault-attack for
the PQDH protocol.

We first describe how to properly perform a check of the order of the basis points
used for the kernel that is being used to compute the isogeny and the image curve.

Assume that the basis points used for computation of our isogeny are P,Q. The ex-
pected order of each point is `e. Let (m, n) be the private key (where m = 1 in practice).
Hence, the kernel point is K = [m]P + [n]Q. Our first observation is that we only need
to make sure that K is of order `e instead of just P and Q, as n is random each time and
hence chances of picking P′,Q′ of different order, but which would still result K of the
correct order are equivalent to guessing the actual private key. Also, we enforce that K
is not just an element of E[`e] to ensure that that our resulting isogeny is of full span
degree.

Throughout the execution of computing and evaluating our isogeny with kernel
K, we observe that we are computing and obtaining values of the following format
[`i]φ j(K), where φ j is and isogeny of degree ` j for some i’s and j’s in {0, . . . , e − 1}.

We also note that [`i]φ j(K) = φ j([`i]K). We choose such available value with the
highest value of i + j available. In practice, since we use isogenies with ` = 2, 3, we
could be either one or two steps away from i + j = e. Namely, we will be able to find
i + j = e − 2 or e − 1, depending if we are using a multiplication-based, isogeny-based,
or optimal strategy. These three strategies can be found described in detail in [9, 7]

If we are using a multiplication-based or an isogeny-based strategy, then we know
that in the process of the isogeny computation, we will obtain R = [`i]φ j(K) such that
i + j = e − 1. In this case, we perform the following:

1. Check that R , ∞, otherwise abort.
2. Compute F = [`]R.
3. If F = ∞, return ‘valid’, otherwise abort.
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For step 2, if ` = 2, perform a DOUBLE operation; if ` = 3, perform a TRIPLE
operation.

When we are using the optimal strategy, we might obtain R = [`i]φ j(K) such that
i + j = e − 2. In this case, we perform the following:

1. Compute F1 = [`]R.
2. Check that F1 , ∞, otherwise abort.
3. Compute F2 = [`]F1.
4. If F2 = ∞, return ‘valid’, otherwise abort.

For each of the steps 1 and 3, if ` = 2, perform a DOUBLE operation; if ` = 3,
perform a TRIPLE operation.

This approach implicitly checks and ensures that K is exactly of order `e.
The above approach can be applied to PQDH. We note that each user uses both

bases {PA,QA} and {PB,QB} to compute isogenies. Hence, while computing isogenies
with the corresponding kernels, the user can verify at the same time the correct order of
these points.

The cost of this countermeasure for PQDH is less than one percent. In practice,
each user needs to compute at most four extra DOUBLE operations and two TRIPLE
operations, which is negligible with respect to the entire computation.

As a result, the proposed countermeasure for this attack at nearly free cost of com-
putation. Though the likelihood of this side-channel attack being applied to PQDH is
lower than for SIDH, given that this attack still could happen, we should take advantage
of this almost free countermeasure, presented in this paper.

7 Implementation

We implemented PQDH and PAKE, including the fault-attack countermeasures. The
implementations are based on the optimized implementation of the SIKE submission
to the NIST post-quantum standardization process3 [10]. Our additions apply to both
the version in portable C, as well as to the ASM optimized versions for ARM and Intel
x86-64. The supported primes are:

· p503 = 2250 · 3159 − 1
· p751 = 2372 · 3239 − 1

.
The implementation uses Montgomery curves EA,B over Fq that satisfy the curve

equation By2 = x3 + Ax2 + x. Arithmetic on the elliptic curves is done efficiently using
projective coordinates. Isogeny computations are done using an optimal tree traversal
strategy as described in [10]. Multi-precision arithmetic is optimized using ARMv8 and
Intel x86-64 assembly.

Our additions and modifications are the following: PQDH is added as defined in
Algorithm 1, PAKE is added as defined in 2 and Algorithm 3, and is implemented in the
following variants:

3 https://github.com/Microsoft/PQCrypto-SIDH
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· PAKE: The efficient PAKE version as described in Section 5.
· PAKE-P: The PAKE version with precomputations for computationally limited de-

vices and for faster key derivation. Described in Section 5.2.
· PAKE-TB: The PAKE textbook version entirely based on PQDH, as described in

Section 5.
· PAKE-TB-P: The PAKE textbook version with precomputations for computation-

ally limited devices and for faster key derivation.

For a detailed specification of the underlying algorithms, we refer to the SIKE specifi-
cation ([10], Alg. 3-22). The detailed explicit algorithms for implementing the counter-
measures are defined in Appendix A.

Algorithm 1: PQDH = (PQDHGen, PQDHDer)

1 function PQDHGen
Input: ()
Output: (sk, pk)

2 (sk2, sk3)←R (K2,K3)
3 (pk2, pk3)←

(isogen2(sk2), isogen3(sk3))
4 return ((sk2, sk3), (pk2, pk3))

5 function PQDHDer
Input: (sk, pk) = ((sk2, sk3), (pk2, pk3))
Output: (K)

6 j2 ← isoex2(pk3, sk2)
7 j3 ← isoex3(pk2, sk3)
8 K ← j2 ⊕ j3

9 return K

7.1 Evaluation Results

The performance of PQDH, PAKE and the countermeasures was evaluated on an Intel
Core i7-8559U 2.7 GHz (Coffee Lake) CPU, on CentOS 7. Hyperthreading and Turbo
Boost were disabled as a standard practice. The software was compiled using GCC
version 4.8.5 with ”-O3” optimization level.

We denote the instantiations for the schemes as SIDHp503, SIDHp751, PQDHp503,
PQDHp751, PAKEp503, PAKEp751.

Table 1 shows the performance of SIDH, PQDH and PAKE. All schemes are eval-
uated using (a) no countermeasures, (b) the countermeasure from Sec. 6.1 is applied to
the KeyDer phase of all schemes, and (c) the countermeasure from Sec. 6.2 is applied
to PQDH.

Performance In absolute terms on our test platform, PQDH KeyGen is performed in 8
msec. and 22.3 msec. for P503 and P751, respectively. PQDH KeyGen in 6.7 msec. and
18.6 msec., respectively. PAKE KeyGen in 3.7 msec. and 10.4 msec., respectively, and
PAKE KeyDer in 7.4 msec and 20.7 msec., respectively.

The performance of PQDH KeyGen is equivalent to SIDH KeyGen A and SIDH KeyGen
B added up. The same holds for The PQDH KeyDer phase, with a performance of SIDH
KeyDer A and SIDH KeyDer B added up.
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Algorithm 2: Algorithms used for PAKE:
PAKE = (PAKEGen, PAKEDer)
PAKE-P = (PAKEGen, PAKEPrecomp, PakeDer-P)
PAKE-TB = (PAKEGen, PAKEDer-TB)
PAKE-TB-P = (PAKEGen, PAKEPrecomp-TB, PAKEDer-P)

1 function PAKEGen
Input: ()
Output: (sk, pk)

2 sk ←R K2

3 pk ← isogen2(sk)
4 return (sk, pk)

5 function PAKEDer
Input: (pk, pk′, pwd)
Output: (K)

6 np = pake common param(pk, pk′, pwd)
7 j2 ← isoex3(pk, np)
8 j′2 ← isoex3(pk′, np)
9 K ← j2 ⊕ j′2

10 return K

11 function PAKEPrecomp
Input: (pk, pwd)
Output: ( j2, np)

12 np ← H(pwd)
13 j2 ← isoex3(pk, np)
14 return ( j2, np)

15 function PAKEDer-P
Input: (np, pk′, j)
Output: (K)

16 j′2 ← isoex3(pk′, np)
17 K ← j ⊕ j′2
18 return K

19 function PAKEPrecomp-TB
Input: (sk, pwd)
Output: ( j3, np)

20 np ← H(pwd)
21 pk3 ← isogen3(np)
22 j3 ← isoex2(pk3, sk)
23 return ( j3, np)

24 function PAKEDer-TB
Input: (sk, pk, pk′, pwd)
Output: (K)

25 np = pake common param(pk, pk′, pwd)
26 pk′′ ← isogen3(np)
27 j← PQDHDer((sk, np), (pk, pk′′))
28 K ← j
29 return K

Algorithm 3: Establishing common parameters for PAKE

function pake common param
Input: Password pwd, public keys pk = (x1, x2, x3) ∈ (Fp2 )3, and

pk′ = (x′1, x
′
2, x
′
3) ∈ (Fp2 )3, eA

Output: A j-invariant j2
1 (A : C)← (get A(x1, x2, x3) : 1) // Alg. 10 in [10]

2 j← j inv(A,C) // Alg. 9 in [10]

3 (A′ : C′)← (get A(x′1, x
′
2, x
′
3) : 1) // Alg. 10 in [10]

4 j′ ← j inv(A′,C′) // Alg. 9 in [10]

5 np ← H(pwd|| j ⊕ j′) // H is, e.g. SHAKE256 with output length

eA bits

6 return np
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The PAKE KeyGen performance is equivalent to SIDH KeyGen A. This holds among
all PAKE variants. The PAKE KeyDer phase takes approx. 10% more cycles than the re-
spective phase in PQDH. It basically consists of the pake common param plus twice the
SIDH KeyDerB step.

All countermeasures are applied to the KeyDer phases. The first countermeasure
version shows an increase of cycles in the schemes of between 22% and 24%. Com-
pared to that, the second countermeasure version applied to PQDH and PAKE shows a
negligible overhead that lies within the measurement tolerance. It can be seen as a rare
case of a countermeasure without performance impact and applies therefore even for
very performance-constrained environments.

The evaluations of the four PAKE variants are depicted in Table 2. The KeyGen
steps of all variants are equivalent. The textbook version PAKE-TB KeyDer includes
one SIDH KeyDer B, one PQDH KeyDer, and one pake common param step which
leads to a performance-tradeoff of 45%-50% compared to PAKE. An advantage of the
PAKE-P version is that it halves the KeyDer complexity because it moves parts of its
computation to a Precomp phase. In practice, the ephemeral KeyGen and Precomp step
can be combined and performed offline, while the device is otherwise idling, thus min-
imizing the more time-critical KeyDer phase. The same can be said about the textbook
version with precomputation PAKE-TB-P, where two-thirds of the KeyDer phase can be
moved to the Precomp phase.

Key sizes The sizes of PQDH private and public key are double the size of the SIDH
keys. The PAKE keys are the same size and structure of the SIDH keys. Note that net
size of the 2-torsion private key of SIDHp751 and PAKEp751 is 372 bit and would fit in
47 bytes. To match the size of the 3-torsion keys, we zero-pad it to 48 bytes. All sizes
are depicted in Table 3.

8 Conclusion

Isogeny-based cryptography continues to be researched and developed. The schemes
are being optimized, more cryptanalysis is being performed, new variants of schemes
are being created for various applications, and new protocols are being designed. As
cryptography is an integral part of today’s IT infrastructure, we also need to find meth-
ods which allow an efficient migration to new schemes.

In this paper, we have presented PQDH, a variant of SIDH, which removes the re-
quirement to distinguish between the initiator and the responder. This scheme is not
only one of the first isogeny-based, but also one of the first quantum-resistant scheme
with such property. This will be very helpful in transitioning from conventional to post-
quantum cryptography. Also, we have shown a new isogeny-based PAKE protocol,
which provides efficiency at the cost of forward secrecy with respect to the PAKE pro-
tocol presented in [16], and thus provides more applicable options with possible trade-
offs. Finally, we have presented an efficient countermeasure against the side-channel
fault attack. The attack is applicable not only to the static version of SIDH and PQDH,
but also to the ephemeral one, which makes this countermeasure highly desirable.
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Scheme KeyGen A KeyGen B KeyDer A KeyDer B

No countermeasures
SIDHp503 10’165 11’302 8’284 9’513
SIDHp751 28’342 31’769 23’043 27’679
PQDHp503 21’466 17’779
PQDHp751 60’254 50’155
PAKEp503 10’049 19’496
PAKEp751 28’164 55’524

Efficient countermeasure for SIDH (Sec. 6.1)
SIDHp503 - 10’134 11’815
SIDHp751 - 28’566 34’444
PQDHp503 - 21’945
PQDHp751 - 62’187
PAKEp503 - 24’260
PAKEp751 - 68’735

Efficient countermeasure for PQDH (Sec. 6.2)
PQDHp503 - 18’060
PQDHp751 - 50’234

Table 1: Performance of SIDH, PQDH and PAKE, in thousands of cycles. Evaluation
of three versions: No countermeasures, optimal countermeasure for SIDH, and efficient
countermeasure for PQDH. On Core i7-8559U 2.7 GHz.
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18. Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B, 273:A238–
A241, 1971.

19. Jiang Zhang and Yu Yu. Two-Round PAKE from Approximate SPH and Instantiations from
Lattices. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASI-
ACRYPT 2017, pages 37–67, Cham, 2017. Springer International Publishing.

21



A Explicit algorithms

We provide a collection of explicit algorithms used for the fault-attack countermea-
sures: Differential addition xADD is used for the SIDH fault-attack countermeasure from
Sec. 6.1 is added as in Algorithm 4. The optimal countermeasures for SIDH from
Sec. 6.1 are integrated to isoex2 and isoex3. They are defined in Algorithms 7-8.
For the PQDH countermeasure from Sec. 6.2, the optimal tree traversal strategies for
computing isogenies are modified as defined in Algorithms 5-6.

Algorithm 4: Differential addition
function xADD

Input: P = (XP : 1), Q = (XQ : 1), PQ = (XQ−P : 1)
Output: (XP+Q : ZP+Q)

1 t0 ← XP + 1
2 t1 ← XP − 1
3 XP+Q ← XQ − 1
4 ZP+Q ← XQ + 1

5 t0 ← XP+Q · t0

6 t1 ← ZP+Q · t1

7 ZP+Q ← t0 − t1

8 XP+Q ← t0 + t1

9 ZP+Q ← Z2
P+Q

10 XP+Q ← X2
P+Q

11 ZP+Q ← XQ−P · ZP+Q

12 return (XP+Q : ZP+Q)
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Algorithm 5: Computing and evaluating a 2e-isogeny, with the countermea-
sure for PQDH

function 2 e iso pqdh
Static parameters: Integer e2 from the public parameters, a strategy

(s1, . . . , se2/2−1) ∈ (N+)e2/2−1

Input: Constants (A+
24 : C24) corresponding to a curve EA/C , (XS : ZS )

where S has exact order 2e2 on EA/C

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C

Output: (A+
24
′ : C′24) corresponding to the curve EA′/C′ = E/〈S 〉

Optional output: (X′1 : Z′1), (X′2 : Z′2) and (X′3 : Z′3) on EA′/C′

1 Initialize empty deque S
2 push

(
S, (e2/2, (XS : ZS ))

)
3 i← 1, j← 0
4 while S not empty do
5 (h, (X : Z))← pop(S)
6 if h = 1 then
7 if j = 0 then
8 (Xd : Zd)← xDBL

(
(X : Z), (A+

24 : C24)
)

// Alg.3 [10]

9 if Zd = 0 then
10 Error: Potential fault attack
11 (Xd : Zd)← xDBL

(
(Xd : Zd), (A+

24 : C24)
)

// Alg.3 [10]

12 if Zd , 0 then
13 Error: Potential fault attack
14

(
(A+

24 : C24), (K1,K2,K3)
)
← 4 iso curve ((X : Z)) // Alg.11 [10]

15 Initialize empty deque S′
16 while S not empty do
17 (h, (X : Z))← pull(S)
18 (X : Z)← 4 iso eval ((K1,K2,K3), (X : Z)) // Alg.12 [10]

19 push
(
S′, (h − 1, (X : Z))

)
20 S← S′
21 for (X j : Z j) in optional input do
22 (X j : Z j)← 4 iso eval

(
(K1,K2,K3), (X j : Z j)

)
// Alg.12 [10]

23 j← 1
24 else if 0 < si < h then
25 push

(
S, (h, (X : Z))

)
26 (X : Z)← xDBLe

(
(X : Z), (A+

24 : C24), 2 · si

)
// Alg.4 [10]

27 push
(
S, (h − si, (X : Z))

)
28 i← i + 1
29 else
30 Error: Invalid strategy

31 return (A+
24 : C24),

[
(X1 : Z1), (X2 : Z2), (X3 : Z3)

]
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Algorithm 6: Computing and evaluating a 3e-isogeny, with the countermea-
sure for PQDH

function 3 e iso pqdh
Static parameters: Integer e3 from the public parameters, a strategy

(s1, . . . , se3−1) ∈ (N+)e3−1

Input: Constants (A+
24 : A−24) corresponding to a curve EA/C , (XS : ZS )

where S has exact order 3e3 on EA/C

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C

Output: (A+
24
′ : A−24

′) corresponding to the curve EA′/C′ = E/〈S 〉
Optional output: (X′1 : Z′1), (X′2 : Z′2) and (X′3 : Z′3) on EA′/C′

1 Initialize empty deque S
2 push

(
S, (e3, (XS : ZS ))

)
3 i← 1, j← 0
4 while S not empty do
5 (h, (X : Z))← pop(S)
6 if h = 1 then
7 if j = 0 then
8 if Z = 0 then
9 Error: Potential fault attack

10 (Xd : Zd)← xTPL
(
(X : Z), (A+

24 : A−24)
)

// Alg. 6 [10]

11 if Zd , 0 then
12 Error: Potential fault attack
13

(
(A+

24 : A−24), (K1,K2)
)
← 3 iso curve ((X : Z)) // Alg. 13 [10]

14 Initialize empty deque S′
15 while S not empty do
16 (h, (X : Z))← pull(S)
17 (X : Z)← 3 iso eval ((K1,K2), (X : Z)) // Alg. 14 [10]

18 push
(
S′, (h − 1, (X : Z))

)
19 S← S′
20 for (X j : Z j) in optional input do
21 (X j : Z j)← 3 iso eval

(
(K1,K2), (X j : Z j)

)
// Alg. 14 [10]

22 j← 1
23 else if 0 < si < h then
24 push

(
S, (h, (X : Z))

)
25 (X : Z)← xTPLe

(
(X : Z), (A+

24 : A−24), si

)
// Alg. 7 [10]

26 push
(
S, (h − si, (X : Z))

)
27 i← i + 1
28 else
29 Error: invalid strategy

30 return (A+
24 : A−24),

[
(X1 : Z1), (X2 : Z2), (X3 : Z3)

]
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Algorithm 7: Establishing shared keys in the 2-torsion, with the fault-attack
countermeasure for SIDH.

function isoex2
Input: Secret key sk2 ∈ Z, public key pk3 = (x1, x2, x3) ∈ (Fp2 )3, and

parameter e2
Output: A j-invariant j2

1 (A : C)← (get A(x1, x2, x3) : 1) // Alg. 10 [10]

2 (A+
24 : C24)← (A + 2: 4)

3 Q← xADD(x1, x2, x3) // Alg. 4

4 Q← xDBLe(Q, (A+
24 : C24), e2 − 1) // Alg. 4 [10]

5 if ZQ = 0 then
6 Error: Potential fault attack
7 Q← xDBL(Q, (A+

24 : C24)) // Alg. 3 [10]

8 if ZQ , 0 then
9 Error: Potential fault attack

10 Q← xDBLe((x1 : 1), (A+
24 : C24), e2 − 1) // Alg. 4 [10]

11 if ZQ = 0 then
12 Error: Potential fault attack
13 Q← xDBL(Q, (A+

24 : C24)) // Alg. 3 [10]

14 if ZQ , 0 then
15 Error: Potential fault attack
16 (XS : ZS )← Ladder3pt(sk2, (x1, x2, x3), (A : C)) // Alg. 8 [10]

17 (A+
24 : C24)← 2 e iso

(
(A+

24 : C24), (XS : ZS )
)

// Alg. 15 [10]

18 (A : C)← (4A+
24 − 2C24 : C24)

19 j = j inv((A : C)) // Alg. 9 [10]

20 return j
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Algorithm 8: Establishing shared keys in the 3-torsion, with the fault-attack
countermeasure for SIDH

function isoex3
Input: Secret key sk3 ∈ Z, public key pk2 = (x1, x2, x3) ∈ (Fp2 )3, and

parameter e3
Output: A j-invariant j3

1 (A : C)← (get A(x1, x2, x3) : 1) // Alg. 10 [10]

2 (A+
24 : A−24)← (A + 2: A − 2)

3 Q← xADD(x1, x2, x3) // Alg. 4

4 Q← xTPLe(Q, (A+
24 : A−24), e3 − 1) // Alg. 7 [10]

5 if ZQ = 0 then
6 Error: Potential fault attack
7 Q← xTPL(Q, (A+

24 : A−24)) // Alg. 6 [10]

8 if ZQ , 0 then
9 Error: Potential fault attack

10 Q← xTPLe((x1 : 1), (A+
24 : A−24), e3 − 1) // Alg. 7 [10]

11 if ZQ = 0 then
12 Error: Potential fault attack
13 Q← xTPL(Q, (A+

24 : A−24)) // Alg. 6 [10]

14 if ZQ , 0 then
15 Error: Potential fault attack
16 (XS : ZS )← Ladder3pt(sk3, (x1, x2, x3), (A : C)) // Alg. 8 [10]

17 (A+
24 : A−24)← 3 e iso

(
(A+

24 : A24), (XS : ZS )
)

// Alg. 16 [10]

18 (A : C)← (2 · (A−24 + A+
24) : A+

24 − A−24)
19 j = j inv((A : C)) // Alg. 9 [10]

20 return j
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