
Noname manuscript No.
(will be inserted by the editor)

Scrutinizing the Tower Field Implementation of the
F28 Inverter – with Applications to AES, Camellia,
and SM4

Zihao Wei1,2,3 · Siwei Sun1,2,3 ∗ · Lei
Hu1,2,3 · Man Wei1,2,3 · Joan Boyar4 ·
René Peralta5

Received: date / Accepted: date

Abstract The tower field implementation of the F28 inverter is not only the key
technique for compact implementations of the S-boxes of several internationally
standardized block ciphers such as AES, Camellia, and SM4, but also the underly-
ing structure many side-channel attack resistant AES implementations rely on. In
this work, we conduct an exhaustive study of the tower field representations of the
F28 inverter with normal bases by applying several state-of-the-art combinatorial
logic minimization techniques. As a result, we achieve improved implementations
of the AES, Camellia and SM4 S-boxes in terms of area footprint. Surprisingly,
we are still able to improve the currently known most compact implementation of
the AES S-box from CHES 2018 by 5.5 GE, beating the record again (Excluding
this work, the latest improvement was proposed at CHES 2018, which achieves
11.75 GE improvement over the optimal implementation at the time). For Camel-
lia and SM4, the improvements are even more significant. The Verilog codes of our
implementations of the AES, Camellia and SM4 S-boxes are openly available.

Keywords Tower field · Inverter · S-box · AES · Camellia · SM4

1 Introduction

For encrypting and authenticating the largest part of the workload of today’s se-
cure communication, symmetric-key primitives are regarded as the crypto workhorse
(whereas public-key schemes are generally used for setting up the session keys).
In many cases, the components of symmetric-key schemes are built on operations
over finite fields. Since the symmetric-key cryptographic algorithms will eventu-
ally be implemented in software or hardware to play a role in the real world, it
is of great importance to investigate how to implement their common operations

* The corresponding author

1. State Key Laboratory of Information Security, Institute of Information Engineering, CAS
2. Data Assurance and Communication Security Research Center, CAS
3. School of Cyber Security, University of Chinese Academy of Sciences
4. Department of Mathematics and Computer Science, University of Southern Denmark
5. Information Technology Laboratory, NIST, USA

2 Zihao Wei1,2,3 et al.

efficiently [6,9,18,30]. For instance, due to the rapid development of lightweight
IoT devices, ongoing efforts have been made to obtain more compact ASIC im-
plementations of symmetric-key ciphers [4,5,17]. Just recently, the most compact
implementation of the MixColumns and the S-box of AES were reported at FSE
2018 [19] and CHES 2018 [26] respectively.

In this work, we focus on area-optimized implementations of the multiplicative
inverse operation (and its affine equivalences) over F28 . The AES S-box, which is
affine equivalent to the F28 inverter, is the strongest 8 × 8 S-box known so far
in terms of local security properties (i.e., non-linearity, differential uniformity, al-
gebraic degree, etc.). Several internationally standardized block ciphers, such as
Camellia and SM4, apply variants of the AES S-box in their designs, which are
all affine equivalent to the F28 inverter. Despite its desirable local cryptographic
properties, to implement the AES S-box in ASIC with small footprint is not a
trivial task. The naive approach that encodes the AES S-box as a look-up ta-
ble in a hardware description language and produces the actual circuit relying on
open-source or commercial CAD tools will certainly lead to unsatisfactory results
for many resource constrained applications. Today’s most compact ASIC imple-
mentations of the AES S-box are based on the tower field architecture, where the
operations over F22k are represented with operations over F2k recursively.

Moreover, several cost-effective threshold implementations of the AES S-box
with resistance against side-channel attacks are built on top of the tower field
architecture [24,8,12,7]. In threshold implementations, the most important design
consideration includes the security level, number of fresh random bits required, and
area consumption. Therefore, providing different implementations of the tower field
structure without increasing the circuit footprint potentially offers more flexible
area-randomness-security trade-off in threshold implementations.

Apart from these, breaking the AES S-box into several layers with the tower
field architecture allows registers to be inserted into the middle of the computa-
tion such that the critical path can be reduced, and therefore the frequency of the
system clock can be increased to boost the performance.

Related work. The tower field architecture was first proposed by Itoh and Tsujii
for computing multiplicative inverse in finite fields of characteristic two [16]. At
the beginning, it was applied in developing efficient implementations of public-
key cryptographic algorithms involving inverse operations over F2n [15,25]. Later,
after the development of the Advanced Encryption Standard (AES) – a block
cipher using an S-box affine equivalent to F28 multiplicative inverter [13], the
tower field architecture found applications in compact hardware implementations
of AES [27,29,23,32]. After a series of improvements, Canright [11,10] and Boyar et
al. [9,31] achieved the most compact implementations at the time, which has
become the de facto standard for compact implementations of the AES S-box.
Such tower field implementations of AES S-box were also intensively applied in
side-channel resistant implementations of AES to reduce resource consumption.
Recently Reyhani-Masoleh et al. [26] broke the record set by Canright and Boyar et
al., presenting so far the most compact ASIC implementation of the AES S-box,
which costs 182.25 GE under the STM 65nm CMOS technology.

Due to the strong local cryptographic properties of the AES S-box, several well
known block ciphers employ affine equivalences of the AES S-box as their S-boxes,

Title Suppressed Due to Excessive Length 3

including Camellia and SM4. Therefore, the technique of tower field implementa-
tion naturally applies to these ciphers [28,21,22,3,1].

In tower field implementations, a sequence of field extensions starting from F2

and ending at F28 of the type F2k ⊆ F
(2k)2l

is considered. At each level of the field

extension, an irreducible polynomial over F2k and a corresponding basis of F
(2k)2l

over F2k have to be specified. The irreducible polynomials and bases induce a basis
of F28 over F2. The tower field architecture is implemented over this new basis with
proper basis transformations to maintain the original field representation. There-
fore, the choices of the field extensions, the corresponding irreducible polynomials
and the bases determine the overall cost of the implementation. A summary of the
choices of existing work is given in Table 1 for AES, Camellia and SM4 respectively.

Table 1: Previous tower field implementations of the AES, Camellia and SM4 S-
boxes, where P means a polynomial basis is used, N means a normal basis is used,
and #Cases denotes the number of cases considered.

Cipher Source Tower field architecture and basis #Cases

AES

[27][32] F2
w4+w+1−−−−−−→ F24

y2+y+C1−−−−−−−→
P

F28 1

[29] F2
w2+w+1−−−−−−→
P

F22
z2+z+C2−−−−−−−→
P

F24
y2+y+C3−−−−−−−→
P

F28 1

[23] F2
w2+w+1−−−−−−→
P

F22
z2+z+C2−−−−−−−→
P

F24
y2+y+ν−−−−−−→
P

F28 64

[11] F2
w2+w+1−−−−−−→
P/N

F22
z2+z+N−−−−−−→
P/N

F24
y2+y+ν−−−−−−→
P/N

F28 432

[9] F2
w2+w+1−−−−−−→
N

F22
z2+z+C4−−−−−−−→
N

F24
y2+y+C5−−−−−−−→
N

F28 1

[26] F2
w4+w3+w2+w+1−−−−−−−−−−−−−→

N
F24

y2+y+ν−−−−−−→
N

F28 32

Camellia

[28] F2
w4+w+1−−−−−−→ F24

y2+y+C6−−−−−−−→
P

F28 1

[21]
F2

w4+w+1−−−−−−→
P/N

F24
y2+τy+ν−−−−−−−→
P/N

F28
13

F2
w2+w+1−−−−−−→
P/N

F22
z2+Tz+N−−−−−−−→
P/N

F24
y2+τy+ν−−−−−−−→
P/N

F28

SM4

[22] F2
w4+w+1−−−−−−→
P/N

F24
y2+C7y+C8−−−−−−−−−→
P/N

F28 4

[3] F2
w2+w+1−−−−−−→
P

F22
z2+z+C9−−−−−−−→
P

F24
y2+y+C10−−−−−−−−→

P
F28 1

[1] F2
w2+w+1−−−−−−→
N

F22
z2+z+N−−−−−−→
N

F24
y2+y+ν−−−−−−→
N

F28 16

Contributions. As shown in Table 1, only a part of the design space of tower
field implementation was explored by choosing irreducible polynomials of special
forms in previous work. In particular, previous work preferred a class of parameter
choices where the irreducible polynomials selected for the field extension F22 ⊆
F24 ⊆ F28 are of the form z2 + z + N and y2 + y + ν, and indeed the most
well known implementations of Canright’s and Boyar et al.’s schemes are in this
class [11,9]. Although some work considered other irreducible polynomials, no
systematic investigation was conducted [21]. The preference for this special class

4 Zihao Wei1,2,3 et al.

is reasonable, since with these choices of parameters, the implementations of some
subcomponents of the circuit are free. Despite this heuristic, there is no concrete
evidence that this configuration will result in optimal implementations. Therefore,
we exhaustively examine all possible tower field representations under normal bases
induced by irreducible polynomials (720 cases in total), and find several cases which
are never considered previously enjoy the most compact implementations. Along
the way, we do not only apply well-known logic minimization techniques from
Canright and Boyar et al., but also resort to several state-of-the-art combinatorial
logic minimization techniques [14,30,18] developed in recent years. As a result, we
beat the new record set by the work of Reyhani-Masoleh et al. [26] for compact
implementations of the AES S-box. Moreover, the implementations of the Camellia
and SM4 S-boxes are improved significantly, and we refer readers to Table 2 for
a summary of the results. Naturally, these results serve to achieve more compact
implementations of AES, Camellia and SM4, and potentially provide more flexible
security-randomness-area trade-offs for threshold implementations of these block
ciphers. The Verilog codes of our implementation of the AES, Camellia and SM4
S-boxes are provided in the Appendix.

Organization. In Section 2, we give a brief introduction of the mathematical
background of the tower field representations under different bases, as well as the
frequently-used logic gates for constructing digital circuits. Subsequently, we de-
scribe the details of the tower field implementation of the F28 inverter in Section 3.
In Section 4, we apply state-of-the-art logic minimization techniques to a list of
tower filed representations of the AES, Camellia and SM4 S-box under all possible
normal bases. As a result, we obtain so far the most compact implementations of
these S-boxes. We conclude the paper in Section 5 and propose possible future
work. The source codes of the optimized implementations for the S-boxes of AES,
Camellia and SM4 are provided in the Appendix.

2 Preliminaries

We first give a brief introduction of the tower field representation. Then we list a
set of gates together with their functionalities and areas. These gates will be used
to implement the circuits constructed in this paper, and the overall area of each
circuit will be computed accordingly.

Tower field representation. Let F2 = {0, 1} be the finite field of two elements. It
is well known that the field F2k with 2k elements can be induced by an irreducible
polynomial q(x) ∈ F2[x] with degree k, i.e., F2k

∼= F2[x]/(q(x)). Assuming that
X is a root of q(x) over F2k , then every element in F2k can be represented as an
F2-linear combination bk−1X

k−1 + · · · + b1X + b0 of [Xk−1, · · · , X,X0], which
is a polynomial basis of F2k over F2. To be concrete, we take k = 8, and we call
(b7, · · · , b0) the bit-vector representation of bk−1X

k−1 + · · ·+ b1X + b0 under the
basis [X7, · · · , X,X0].

Considering a sequence of field extensions F2 ⊆ F22 ⊆ F24 ⊆ F28 shown in
Fig. 1. Let r(y) ∈ F24 [y], s(z) ∈ F22 [z] and t(w) ∈ F2[w] be irreducible polynomials
over their respective fields, and let Y ∈ F28 , Z ∈ F24 and W ∈ F22 be roots of
r(y), s(z) and t(w) over the corresponding fields respectively. Then we obtain
a set of normal basis: [Y 16, Y] is a basis of F28 over F24 , [Z4, Z] is a basis of

Title Suppressed Due to Excessive Length 5

T
a
b

le
2
:

S
y
n
th

esized
R

esu
lts,

w
h

ere
th

e
fu

n
ctio

n
a
lities

o
f

so
m

e
u

n
co

m
m

o
n

g
a
tes

(e.g
.,
X
O
R
3
,
O
A
I
2
1
,
A
O
I
2
1

etc.)
a
re

d
escrib

ed
in

S
ectio

n
2
.

C
ip

h
er

S
o
u

rce
G

a
tes

u
sed

S
y
n
th

esis
R

esu
lts

X
O
R
/
X
N
O
R

X
O
R
3

N
A
N
D

A
N
D

N
A
N
D
3

N
O
R

N
O
T

O
A
I
2
1

A
O
I
2
1

O
A
I
3
2

S
M
I
C

1
3
0
n
m

S
M
I
C

6
5
n
m

S
T
M

6
5
n
m

N
a
n
g
a
t
e

4
5
n
m

A
E

S

[2
7
]

1
1
1

5
8

3
3
6
.3

3
3
3
6
.7

5
2
9
4
.5

0
2
9
9
.3

3
[2

9
]

1
0
0

3
6

2
8
1
.3

3
2
7
9
.0

0
2
4
5
.0

0
2
4
8
.0

0
[2

3
]

9
6

3
6

2
7
2
.0

0
2
7
0
.0

0
2
3
7
.0

0
2
4
0
.0

0
[1

1
]

8
0

3
4

6
2
2
6
.6

7
2
2
0
.0

0
2
0
0
.0

0
2
0
0
.0

0
[9

]
8
3

3
2

2
3
6
.3

3
2
3
4
.7

5
2
0
6
.0

0
2
0
8
.6

7

[3
1
]

8
1

3
2

2
3
1
.6

7
2
3
0
.2

5
2
0
2
.0

0
2
0
4
.6

7
8
1

3
2

2
2
1
.0

0
2
1
4
.2

5
1
9
4
.0

0
1
9
4
.0

0

[2
6
]

6
9

3
9

4
3

4
2
1
1
.0

0
2
0
5
.2

5
1
8
8
.0

0
1
8
8
.0

0
6
9

3
1

3
5

7
1

N
/
A

N
/
A

N
/
A

1
8
6
.0

0
6
3

3
2
7

7
4

4
N
/
A

N
/
A

1
8
2
.2

5
.0

0
N
/
A

O
u

rs
6
9

3
3

8
2
0
2
.0
0

1
9
6
.2
5

1
7
9
.0

0
1
7
9
.0
0

5
1

9
3
3

8
N
/
A

N
/
A

1
7
6
.7
5

N
/
A

C
a
m

ellia
[2

1
]

1
1
3

3
5

9
3
1
6
.3

3
3
1
3
.5

0
2
7
6
.5

0
2
7
8
.6

7
O

u
rs

6
8

3
3

8
1

2
0
0
.3
3

1
9
4
.7
5

1
7
7
.7
5

1
7
7
.6
7

S
M

4

[2
2
]

9
9

5
8

1
1

3
1
5
.6

7
3
1
8
.0

0
2
7
8
.7

5
2
8
2
.6

7
[3

]
1
5
7

6
3

4
5
0
.3

3
4
4
7
.7

5
3
9
2
.7

5
3
9
8
.0

0
[1

]
1
3
4

3
6

3
6
0
.6

7
3
5
5
.5

0
3
1
3
.0

0
3
1
6
.0

0
O

u
rs

6
6

3
2

9
1

1
9
5
.6
7

1
9
0
.2
5

1
7
3
.7
5

1
7
3
.6
7

6 Zihao Wei1,2,3 et al.

F2 F22 F24 F28
t(w) = w2 + w + 1

[W 2,W]

s(z) = z2 + Tz +N

[Z4, Z]

r(y) = y2 + τy + ν

[Y 16, Y]

q(x) ∈ F2[x]

[X7, X6, X5, X4, X3, X2, X, 1]

Fig. 1: The tower field structure

F24 over F22 , and [W 2,W] is a basis of F22 over F2. Therefore, for an element
b = b7X

7 + · · ·+ b1X + b0 ∈ F28 we have

b = γ1Y
16 + γ0Y, γ1, γ0 ∈ F24 ,

γ1 = Γ3Z
4 + Γ2Z, γ0 = Γ1Z

4 + Γ0Z, Γ3, Γ2, Γ1, Γ0 ∈ F22 ,

Γ3 = g7W
2 + g6W,Γ2 = g5W

2 + g4W,Γ1 = g3W
2 + g2W,Γ0 = g1W

2 + g0W,

gi ∈ F2, 0 ≤ i ≤ 7,

which implies b = b7X
7+· · ·+b1X+b0 = g7W

2Z4Y 16+g6WZ4Y 16+g5W
2ZY 16+

g4WZY 16 + g3W
2Z4Y + g2WZ4Y + g1W

2ZY + g0WZY . That is, b can be rep-
resented as (g7, · · · , g0) under the tower basis

T B = [W 2Z4Y 16,WZ4Y 16,W 2ZY 16,WZY 16,W 2Z4Y,WZ4Y,W 2ZY,WZY]

induced by W , Z and Y . We call (g7, · · · , g0) the bit-vector representation of b
under the tower basis. Assuming that the tower basis T B can be represented by
the original polynomial basis with a matrix Mt ∈ F8×8

2 as

T B = (X7, · · · , X0)Mt,

we have

(b7, · · · , b0)T = Mt · (g7, · · · , g0)T or (g7, · · · , g0)T = M−1
t · (b7, · · · , b0)T.

Therefore, we can change the representations by multiplying Mt or M−1
t , and we

call Mt the basis transformation matrix.
Considering the example from AES shown in Fig. 1, where q(x) is the Rijdael

polynomial x8+x4+x3+x+1, τ = X7+X5+X4+X3+X2+1, ν = X7+X6+X5,
T = X7 + X5 + X4 + X3 + X2 + 1, N = 1, W = X7 + X5 + X4 + X3 + X2,
Z = X6 +X4 and Y = X6 +X3. Then we have T B = (X7, · · · , X0) ·Mt, where

Mt =

1 1 1 0 0 0 0 0
1 0 0 1 0 1 1 0
1 0 1 1 0 1 0 1
0 1 0 0 0 1 0 1
0 0 0 0 0 1 0 0
1 0 1 1 1 1 1 1
0 1 1 1 0 1 1 1
1 0 1 1 1 1 0 1

.

Title Suppressed Due to Excessive Length 7

Frequently-used gates. The circuits of this paper are eventually synthesized
with the gates provided in common cell libraries. We list a set of frequently-used
gates in Table 3, where the area is measured in gate equivalence (GE), corresponding
to the area of a two-input drive-strength-one NAND gate.

Note that apart from those common gates (XOR, XNOR, AND, NAND, OR, NOR, NOT)
which are available in almost all CMOS technology libraries, we also list some
compound gates (XOR3, NAND3, OAI21, AOI21, OAI32).

The data of STM 65nm library is collected from Reyhani-Masoleh et al.’s pa-
per [26], while the others comes from library files and databooks. The cell in blank
of STM 65nm means the corresponding gate does not appear at [26], and the cell
labeled as N/A means the library does not support this kind of gate.

Table 3: Frequently-used gates in common CMOS technology libraries.

Gate
Area (GE)

SMIC 130nm SMIC 65nm STM 65nm Nangate 45nm

XOR: (a, b) 7→ a⊕ b 2.33 2.25 2 2
XNOR: (a, b) 7→ a� b 2.33 2.25 2 2

XOR3: (a, b, c) 7→ a⊕ b⊕ c 5.67 4.75 3.75 N/A

AND: (a, b) 7→ a · b 1.33 1.5 1.25 1.33

NAND: (a, b) 7→ a · b 1 1 1 1

NAND3: (a, b, c) 7→ a · b · c 1.33 1.25 1.25 1.33

OR: (a, b) 7→ a | b 1.33 1.5 1.25 1.33

NOR: (a, b) 7→ a | b 1 1 1 1

NOT: a 7→ a 0.66 0.75 0.75 0.66

OAI21: (a, b, c) 7→ (a | b) · c 1.67 1.5 1.33

AOI21: (a, b, c) 7→ (a · b) | c 1.67 1.5 1.33

OAI32: (a, b, c, d, e) 7→ (a | b | c) · (d | e) 2.33 N/A 2 N/A

3 Tower Field Implementation of the F28 Inverter

In this subsection, we give an introduction to the tower field implementation of
the F28 inverter. Please note that the derivation of these results can all be found
in Canright’s paper [11,10].

Consider the field extension F24 ⊆ F28 with an irreducible polynomial r(y) =
y2+τy+ν ∈ F24 [y]. Let Y ∈ F28 be a root of r(y). Then Y 16 and Y form a normal
basis, and every element G ∈ F28 can be represented as G = γ1Y

16 + γ0Y , where
γ1, γ0 ∈ F24 . Let G−1 = δ1Y

16 + δ0Y with δ1, δ0 ∈ F24 be the inverse of G. By
Solving the equation

G ·G−1 = (γ1Y
16 + γ0Y)(δ1Y

16 + δ0Y) = 1

for δ1 and δ0, we obtain

δ1 = [γ1γ0τ
2 + (γ1 + γ0)2ν]−1γ0

δ0 = [γ1γ0τ
2 + (γ1 + γ0)2ν]−1γ1.

8 Zihao Wei1,2,3 et al.

Therefore, given r(y) and the basis [Y 16, Y], we can compute G−1 = (δ1, δ0)
from G = (γ1, γ0) using operations over F24 , which is illustrated in Fig. 2, where
φ = γ1γ0τ

2 + (γ1 + γ0)2ν and λ = φ−1.

F24 square-

ν-scaler

F24

multiplier

constant
τ2

multiplier

G
8

γ1

γ0

4

4

F24

inverter

φ

F24

multiplier

F24

multiplier

λ

δ1

δ0

4

4

G−1
8

Fig. 2: The F28 inverter

Multiplication and Inverse over F24 Extend F22 to F24 with an irreducible
polynomial s(z) = z2 + Tz +N ∈ F22 [z], and let Z ∈ F24 be a root of s(z). Then
every element in F24 can be represented as an F22 -linear combination of the normal
basis [Z4, Z]. Let γ = Γ1Z

4 + Γ0Z, and λ = Λ1Z
4 + Λ0Z, where Γi, Λj ∈ F22 .

Then the multiplication of γ and λ can be calculated as

γλ = (Γ1Z
4 + Γ0Z)(Λ1Z

4 + Λ0Z)

= [Γ1Λ1T + (Γ1 + Γ0)(Λ1 + Λ0)NT 2]Z4+

[Γ0Λ0T + (Γ1 + Γ0)(Λ1 + Λ0)NT 2]Z,

(1)

which is illustrated in Figure 3.

γ

λ

4

Γ1

Γ0

2

2

4

Λ1

Λ0

2

2

F22

multiplier

F22

multiplier

F22

multiplier

constant
T

multiplier

constant
NT2

multiplier

constant
T

multiplier

2

2

γλ
4

Fig. 3: The F24 multiplier

Let φ = Φ1Z
4 + Φ0Z with Φi ∈ F22 . It can be shown that the inverse φ−1 of

φ is

[Φ1Φ0T
2 + (Φ1 + Φ0)2N]−1Φ0Z

4 + [Φ1Φ0T
2 + (Φ1 + Φ0)2N]−1Φ1Z, (2)

whose circuit is depicted in Figure 4.

Title Suppressed Due to Excessive Length 9

F22 square-

N-scaler

F22

multiplier

constant
T2

multiplier

φ
4

Φ1

Φ0

2

2

F22

inverter

F22

multiplier

F22

multiplier

2

2

φ−14

Fig. 4: The F24 inverter

Multiplication and Inverse over F22 . Consider the field extension F2 ⊆ F22

with irreducible polynomial t(w) = w2 + w + 1 ∈ F2[w] (the only irreducible
polynomial in F2[w]). Let W be a root of t(w) over F22 . Then every element
Γ ∈ F22 can be represented as an F2-linear combination Γ = u1W

2 + u0W of
the normal basis [W 2,W], with ui ∈ F2. Let ∆ = v1W

2 + v0W with vj ∈ F2 be
another element in F22 . The multiplication is given by

Γ∆ = (u1W
2 + u0W)(v1W

2 + v0W)

= [u1 · v1 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W 2+

[u0 · v0 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W,

(3)

whose implementation is shown in Figure 5. In addition, if Γ∆ = 1, it can be
shown that v1 = u0 and v0 = u1. That is, the F22 inverter can be implemented by
swapping the two 1-bit input signals, which is free.

Γ

∆

2

u1

u0

1

1

2

v1

v0

1

1

1

1

Γ∆
2

Fig. 5: The F22 multiplier

Remark. Finally, we would like to mention another two formulas which are useful
later:

Γ∆ ·W = (u1 · v1 ⊕ u0 · v0)W 2 + [u1 · v1 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W

Γ∆ ·W 2 = [u0 · v0 ⊕ (u1 ⊕ u0) · (v1 ⊕ v0)]W 2 + (u1 · v1 ⊕ u0 · v0)W.
(4)

According to Equation 4, the implementation cost of a multiplication followed with
a W (or W 2) scaler is the same as that of the multiplication Γ∆, which requires
4 XOR gates and 3 AND gates.

10 Zihao Wei1,2,3 et al.

4 Applications to the S-boxes of AES, Camellia, and SM4

The S-boxes of AES, Camellia, and SM4 are all affine equivalent to the F28 inverter,
which can be unified into the following form

S(b) = M2 · IqPB(M1 · b⊕ C1)⊕ C2, b ∈ F28 ,

where M1, M2 are 8× 8 matrices over F2, C1, C2 are constant column vectors in
F8
2, and IqPB : F8

2 → F8
2 is a function that maps the bit-vector representation of an

element in F28 to the representation of its inverse in F28 under a polynomial basis
of F28 over F2 induced by an irreducible polynomial q(x) ∈ F2[x]. We refer readers
to Table 4 for the concrete values of these parameters for AES, Camellia and SM4.

Table 4: The parameters of the S-boxes of AES, Camellia, and SM4, where a
hexadecimal number represents an irreducible polynomial in F2[x] (e.g., x8 +x4 +
x3 + x+ 1 is represented by 0x11B).

Cipher M1 C1 M2 C2 q(x)

AES

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0
0
0
0
0
0
0
0

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

0
1
1
0
0
0
1
1

0x11B

Camellia∗

0 0 1 0 1 0 0 1
1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1
0 1 1 0 0 0 0 1
1 1 1 0 1 1 0 0
0 1 0 1 0 1 0 1
0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 0

1
1
1
0
1
1
0
1

0 0 0 1 1 1 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 1 1 0
1 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0

0
1
1
0
1
1
1
0

0x169

SM4

1 1 0 1 0 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 0 1 0 0
0 1 1 1 1 0 1 0
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 0 1 0 0 1 1 1

1
1
0
1
0
0
1
1

1 1 0 1 0 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 0 1 0 0
0 1 1 1 1 0 1 0
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 0 1 0 0 1 1 1

1
1
0
1
0
0
1
1

0x1F5

∗ The description of the Camellia S-box in the original specification [2] is different from ours.
Readers could check the substitution table to confirm the equivalence.

However, it is difficult to implement the function IqPB directly with small circuit
footprint. Therefore, we first implement the function IT B : F8

2 → F8
2 which maps

the representation of an element in F28 to the representation of its inverse element
under the tower basis T B. According to the discussion of Section 2, we have

IqPB(b) = Mt · IT B(M−1
t · b).

Therefore, S(b) can be implemented in practice as

S(b) = M2Mt · IT B(M−1
t M1 · b⊕M−1

t C1)⊕ C2, b ∈ F8
2. (5)

Title Suppressed Due to Excessive Length 11

Our goal is to identify a proper tower basis such that the overall circuit foot-
print of the implementation of S(b) is minimized. Recalling the tower field archi-
tecture shown in Figure 1, the tower basis is completely determined by the three
irreducible polynomials r(y) = y2 + τy + ν ∈ F24 [y], s(z) = z2 + Tz +N ∈ F22 [z],
t(w) = w2 + w + 1 ∈ F2[w], and their roots Y , Z and W . Therefore, the 215 pos-
sible choices of τ , ν, T , N , Y , Z, and W form the overall design space1, in which
there are only 720 valid cases (we discard equivalent classes and non-irreducible
polynomials).

Concretely, there are six possibilities for (T,N) making s(z) irreducible, and
they are {(1,W), (1,W 2), (W, 1), (W,W), (W 2, 1), (W 2,W 2)}. For each possible
choice of (T,N), 120 cases of (τ, ν) can be identified such that r(y) is irreducible.
We can choose either one of the two roots for W , Z and Y because the other roots
are exactly W 2, Z4 and Y 16. So altogether there are 6 × 120 × 1 × 1 × 1 = 720
valid cases. We exhaust all these cases for AES, Camellia and SM4 and list the
optimal parameter choices in terms of compactness in Table 5.

Table 5: Optimal choices of parameters for AES, Camellia and SM4 in terms of
compactness. The parameters are given with their polynomial basis representations
(e.g., X7 +X5 +X4 +X3 +X2 is represented by 0xBC).

Cipher W T N Z τ ν Y

AES 0xBC 0xBC 0x01 0xB0 0xBD 0x5C 0xF4
Camellia 0x7E 0x7E 0x01 0x15 0x01 0x06 0x02

SM4 0x5C 0x5C 0x01 0x7A 0x77 0x27 0x66

According to Table 5, for the parameters of AES, we have the following rela-
tionship:

T = W,N = 1, τ = T · Z4 + T · Z, ν = 0 · Z4 + T 2 · Z. (6)

Similarly, for Camellia, we have T = W,N = 1, τ = T 2 ·Z4+T 2 ·Z, ν = T ·Z4+0·Z,
and for SM4, we have T = W,N = 1, τ = T 2 · Z4 + 1 · Z, ν = T · Z4 + T 2 · Z.
In what follows, we focus on the optimization of the AES S-box with the optimal
parameter we identified as an example. For Camellia, SM4 and other parameters,
the same procedure is performed.

4.1 Optimized Implementation of the F24 Multiplier, τ2 Multiplier, and the
Square-ν-scaler as a Whole

Before giving the optimized implementation, we unfold the circuits of the F24

multiplier, τ2 multiplier, and square-ν-scaler one by one without any optimiza-
tion. Based on these unfolded circuits, we reduce their areas by applying several
logic minimization techniques with necessary tweaks.

1There are 22 choices for T , 22 choices for N , 24 choices for τ , 24 choices for ν, and 2
choices for each of W , Z and Y whenever T,N, τ, ν are fixed.

12 Zihao Wei1,2,3 et al.

F24 Multiplier. By plugging Figure 5 into Figure 3, we obtain the gate-level
circuit of the F24 multiplier shown in Figure 6, which can also be derived by sub-
stituting Equation 3 and 4 into Equation 1.

1

1

1

1

1

1

1

1

γ1

γ0

4

4

1

1

1

1

γ1γ0
4

Fig. 6: F24 multiplier

τ2 multiplier. According to Table 5 and Equation 6, we have τ = TZ4 + TZ =
WZ4 +WZ and τ2 = Z4 + Z. Let α = (a3W

2 + a2W)Z4 + (a1W
2 + a0W)Z be

an arbitrary element in F24 . We have

ατ2 = [(a3 ⊕ a2)W 2 + a3W]Z4 + [(a1 ⊕ a0)W 2 + a1W]Z, (7)

leading to the gate-level circuit of the τ2 multiplier shown in Figure 7.

a3

a2

a1

a0

1

1

1

1

1

1

1

1

α
4

ατ 2
4

Fig. 7: τ2 multiplier

F24 square-ν-scaler. According to Table 5 and Equation 6, ν = W 2Z. Let α =
(a3W

2+a2W)Z4+(a1W
2+a0W)Z be an arbitrary element in F24 . Then α2ν can

be computed as α2ν = [(a3 + a1)W 2 + (a3 + a2 + a1 + a0)W]Z4 + [(a1 + a0)W 2 +
a0W]Z, whose gate-level circuit is shown in Figure 8.

Title Suppressed Due to Excessive Length 13

a3

a2

a1

a0

1

1

1

1

α
4

1

1

1

1

α2ν
4

Fig. 8: F24 square-ν-scaler

1

1

1

1

1

1

1

1

γ1

γ0

4

4

F24 multiplier τ2 multiplier

1

1

1

1

1

1

1

1

F24 square-ν-scaler

1

1

1

1

Fig. 9: A part of the F28 inverter (unoptimized)

Now, we can assemble the F24 multiplier, τ2 multiplier, and square-ν-scaler
to obtain a part of the F28 inverter according to Figure 2, which gives the circuit
shown in Figure 9. According to Equation 4, this circuit can be partially optimized
with some tweaks on the eight XOR gates appearing at the lower part of Figure 9,
leading to the circuit shown in Figure 10. Subsequently, by applying the formula

a · b⊕ a⊕ b = a | b (8)

we can transform the circuit shown in Figure 10 into the circuit presented in
Figure 11. According to Equation 8, at best, we can replace two XOR gates and

14 Zihao Wei1,2,3 et al.

1

1

1

1

1

1

1

1

γ1

γ0

4

4

1

2

3

4

γ1γ0τ
2

1

2

3

4

(γ1 + γ0)
2ν

1

1

1

1

Fig. 10: A part of the F28 inverter (partially optimized)

one AND gate by a single OR gate. This happens for the gates marked by number 3.
However, when some intermediate value of the computation a ·b⊕a⊕b is required,
we still need to keep some intermediate gates. For example, we can only replace
two XOR gates with one OR gate and keep the AND gate intact. Similarly, for the
gates marked with number 1 and number 2, we can only replace one XOR gates
with one OR gate. Finally, by applying the formulas a · b ⊕ c · d = a · b ⊕ c · d and
a · b⊕ c | d = a · b⊕ c | d, the AND gates and OR gates can be substituted by NAND

gates and NOR gates respectively.

4.2 Optimized Implementation of the F24 Inverter

Based on the selected parameters for AES (T = W and N = 1) given in Table 5
and Equation 6, Equation 2 can be simplified as

φ−1 = [Φ1Φ0W
2 + (Φ1 + Φ0)2]−1Φ0Z

4 + [Φ1Φ0W
2 + (Φ1 + Φ0)2]−1Φ1Z. (9)

Deviating from previous implementations [10,11,9], we regard the F24 inverter
as a 4× 4 S-box whose permutation table is determined by Equation 9:

[0x0, 0x8, 0x4, 0xC, 0x2, 0xF, 0x7, 0x6, 0x1, 0xD, 0xA, 0xE, 0x3, 0x9, 0xB, 0x5].

Title Suppressed Due to Excessive Length 15

1

1

1

1

1

1

1

1

γ1

γ0

4

4

1

1

1

1

Fig. 11: A part of the F28 inverter (optimized)

To obtain optimized implementations of this S-box, we consider two recently pro-
posed techniques. First, we employ Stoffelen’s SAT-based technique [30] to produce
a circuit of the 4× 4 S-box: (x3, x2, x1, x0) 7→ (y3, y2, y1, y0) with minimized gate
complexity, and the result is shown below:

t1 = x3 · x0 t2 = t1 | x2 t3 = x2 · x0
t4 = x1 ⊕ t3 t5 = x2 | t4 t6 = x1 · t4
t7 = x3 | t4 t8 = t7 · t2 t9 = t5 ⊕ t7
t10 = t9 � x3 (y0) t11 = t6 · t8 (y2) t12 = t8 · x1
t13 = x0 � t12 (y3) t14 = t1 · x2 t15 = t9 · t14 (y1),

which contains 4 XOR/XNOR gates, 1 AND gate, 7 NAND gates, 2 OR gates and 1
NOR gate.2. This circuit (referred as SAT) can be further optimized manually. Since

a·b = ā | b̄, we can change the AND gate in t8 to NOR gate, and negate its input signals
without changing the overall functionality of the circuit. This new circuit (referred
as SAT∗) contains 4 XOR/XNOR gates, 7 NAND gates and 4 NOR gates (modified signals

2It costs about 38 minutes to obtain this 15-gate circuit on a PC. But we cannot confirm
whether there is a 14-gate circuit, since we terminate the SAT solver after about two weeks’
computation

16 Zihao Wei1,2,3 et al.

are colored in red):

t1 = x3 · x0 t2 = t1 | x2 t3 = x2 · x0
t4 = x1 ⊕ t3 t5 = x2 | t4 t6 = x1 · t4
t7 = x3 | t4 t8 = t7 | t2 t9 = t5 � t7
t10 = t9 � x3 (y0) t11 = t6 · t8 (y2) t12 = t8 · x1
t13 = x0 � t12 (y3) t14 = t1 · x2 t15 = t9 · t14 (y1).

We also apply the LIGHTER [18] tool to the 4 × 4 S-box (the F24 inverter) for
four different technology libraries, which leads to the same circuit (referred as
LIGHTER) containing 7 XOR/XNOR gates, 4 NAND gates, 1 NAND3 gate, 1 NOR gate and
1 NOT gate shown in the following:

t1 = x2 ⊕ x3 t2 = t1 · x0 · x3 t3 = x1 � t2
t4 = t3 · t1 t5 = x0 ⊕ t4 t6 = x3 · t5
t7 = t1 ⊕ t6 t8 = t5 | t7 t9 = x3 ⊕ t8 (y0)

t10 = t9 · t3 t11 = t5 ⊕ t10 (y3) t12 = t7 (y1)

t13 = t11 · t12 t14 = t3 � t13 (y2).

A comparison of the above three circuits together with their synthesizing results
is given in Table 6 and Table 7, from which we can see that SAT∗ is always the
best, whose circuit is depicted in Figure 12.

x2

x3

x1

x0 t13 (y3)

t15 (y1)

t10 (y0)

t11 (y2)

Fig. 12: The optimized circuit for the F24 inverter (SAT*)

4.3 Optimized Implementation of the Two F24 Multipliers with 4-bit Common
Input

Observing Figure 2, the F28 inverter contains three F24 multipliers, from which
we can identify three pairs of F24 multipliers such that each pair shares a 4-bit

Title Suppressed Due to Excessive Length 17

Table 6: Gate counts for different implementations of F24 inverter, where the circuit
named Canright is the implementation of Equation 9 using the method in [10,11],
and the circuit named Boyar uses the method in [9].

Circuit
Gates used

XOR/XNOR AND NAND NAND3 OR NOR NOT

Canright 9 8 2

Boyar 9 6

Boyar* 9 6

SAT 4 1 7 2 1

SAT* 4 7 4

LIGHTER 7 4 1 1 1

Table 7: Synthesized results for different implementations of the F24 inverter

Circuit
Synthesis results

SMIC 130nm SMIC 65nm STM 65nm Nangate 45nm

Canright 30.97 30.25 28.00 28.00

Boyar 28.95 29.25 25.50 25.98

Boyar* 26.97 26.25 24.00 24.00

SAT 21.31 21.50 20.25 19.99

SAT* 20.32 20.00 19.00 19.00

LIGHTER 23.30 22.75 21.00 20.99

input signal: the leftmost F24 multiplier and the rightmost upper F24 multiplier,
the leftmost F24 multiplier and the rightmost lower F24 multiplier, and the two
rightmost F24 multipliers. It is shown in [11,10] that whenever two F24 multipliers
share a common 4-bit input signal, some XOR gates can be saved via signal reuse.

As an example, we unfold the two rightmost F24 multipliers in Figure 2 accord-
ing to Figure 6, and the schematic is shown in Figure 13. By observing Figure 13
carefully, we can spot some outputs of XOR gates which are computed twice in the
circuit [11,10] (labeled with same numbers in the figure). Therefore, for each pair
of F24 multipliers sharing a 4-bit input signal, we can remove 5 XOR gates by signal
reuse. Therefore, 3 pairs of F24 multipliers with shared input signals in total save
5× 3 = 15 XOR gates.

4.4 Optimized Implementation of the Input and Output Affine Parts

According to Equation 5, before going into the F28 inverter IT B(·), the 8-bit input
signal of the AES S-box first goes through an affine transformation

b 7→ g = M−1
t M1 · b⊕M−1

t C1,

which then spawns 18 1-bit signals (see Figure 11) subsequently fed into some
non-linear gates (NAND, NOR). The transformation from the 8 1-bit input signals to

18 Zihao Wei1,2,3 et al.

2

3

1

1

1

1

1

1

1

1

γ0

2

3

1

1

1

1

1

1

1

1

γ1

λ

4

4

4

1

4

5

1

4

5

1

1

1

1

1

1

1

1

Fig. 13: The two rightmost F24 multipliers with a shared 4-bit input

the 18 1-bit signals is affine, and can be represented as an 18× 8 matrix

U =

0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1
0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0
0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0
0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

T

,

with the constant

M−1
t C1 =

(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)T
.

By applying the SAT-based method for solving SLP (Shortest Linear Straight-
Line Program) [14], we obtain the optimal implementation of U , which costs 19

Title Suppressed Due to Excessive Length 19

XOR gates 3:

y17 = x0 (y17) t1 = x7 ⊕ x4 (y6) t2 = x3 ⊕ x1
t3 = x2 ⊕ t2 t4 = x6 ⊕ t3 (y7) t5 = x0 ⊕ t4 (y15)

t6 = x5 ⊕ t3 (y1) t7 = t5 ⊕ t6 (y14) t8 = x4 ⊕ t7 (y13)

t9 = t1 ⊕ t2 (y9) t10 = t1 ⊕ t8 (y11) t11 = x0 ⊕ t9 (y16)

t12 = x4 ⊕ x2 (y2) t13 = x1 ⊕ t7 (y10) t14 = x7 ⊕ x2 (y4)

t15 = t13 ⊕ t14 (y12) t16 = x7 ⊕ x1 (y0) t17 = t12 ⊕ t16 (y8)

t18 = t6 ⊕ t9 (y3) t19 = t7 ⊕ t11 (y5)

where xi’s are the input signals, ti’s are intermediate signals, and yi’s are output
signals.

Similarly, according to Equation 5, at the output end of the AES S-box, the
8-bit output of the two rightmost F24 multipliers (see Figure 2 and Figure 14) is
transformed by the affine mapping M2Mt(·)⊕C2 to recover the polynomial basis
representation. Observing Figure 14, the 8 input bits of the affine mapping (also
the output bits of the two F24 multipliers) are originated from the 18 output bits
of the NAND gates. Moreover, only XOR gates are involved to generate the 8 input
bits of the affine mapping from these 18 bits. Therefore, the mapping from the 18
output bits of the NAND gates to the 8 output bits of the S-box is affine, which can
be described by the following matrix

B =

0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1
0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0
0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1
1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 1 1
0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0

.

Observing Figure 14, there are two layers of XOR gates following the 18 NAND

gates. According these two layers of XOR gates, we decompose the whole output
affine transformation (from the 18 output bits of the 18 NAND gates to the 8 output
bits of the AES S-box) into two parts. The first part maps the 18 output bits of
the 18 NAND gates to the 12 output bits of the first layer of 12 XOR gates, which
can be implemented with in total 12 XOR gates as shown in Figure 14. The second
part maps the 12 output bits of the 12 XOR gates to the 8 output bits of the S-box,
and its matrix representation B′ is given in the following:

B′ =

0 1 0 1 0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1 1 0 1
0 0 0 1 0 1 0 0 1 1 1 1
0 0 0 1 0 1 1 0 0 0 1 0

, (10)

3It costs about 25 days on a PC to produce this result.

20 Zihao Wei1,2,3 et al.

1

1

1

1

1

1

1

1

γ0

1

1

1

1

1

1

1

1

λ

1

1

1

1

1

1

1

1

γ1

4

4

4

1

1

1

1

Fig. 14: The circuit for bottom part

Again, by applying the SAT based method for SLP [14] and taking C2 into account,
the affine transformation involving B′ and constant addition at the output end
can be realized as follows, requiring 17 XOR/XNOR gates 4:

t1 = x2 ⊕ x0 t2 = x10 ⊕ t1 t3 = x8 ⊕ t2 (y7)

t4 = x5 ⊕ x1 t5 = x5 ⊕ x3 t6 = x7 ⊕ t5
t7 = x8 ⊕ x6 t8 = x2 ⊕ t3 t9 = x4 ⊕ t8 (y4)

t10 = t1 ⊕ t5 t11 = x9 � t6 (y5) t12 = t4 � t7 (y0)

t13 = t3 ⊕ t6 t14 = x11 ⊕ t13 (y2) t15 = t1 � t9 (y6)

t16 = t10 ⊕ t12 (y1) t17 = t4 ⊕ t9 (y3)

4It costs about 30 days on a PC to produce this circuit.

Title Suppressed Due to Excessive Length 21

where xi’s are the input signals, ti’s are intermediate signals, and yi’s are output
signals.

4.5 Overall Implementation Results and Comparison

We synthesis the optimized implementations of the S-boxes (AES, Camellia, SM4)
using Synopsys Design Compiler 2014 (DC 2014) with four technology libraries,
and the synthesized results 5 together with their technology-independent gate
counts are listed in Table 2.

To make the full use of the libraries to save the circuit area, Reyhani-Masoleh
et. al.’s implementations [26] exploit certain compound gates in specific libraries
(e.g., XOR3, NAND3, OAI21, AOI21, OAI32), which are not universally available in
all technology libraries. For example, the optimal implementation offered by [26]
employs XOR3 and OAI32 gates, reaching 182.25 GE under the STM 65nm CMOS
technology.

According to the results shown in Table 2, our implementation requires only
179 GE, which beats the record set by [26] even without using any compound gates.
Moreover, when the area of one XOR3 gate is smaller than the area of two XOR gates
in underlying technology library, the compound gates XOR3 can be applied in our
design to take the place of some standard XOR gates. With this improvements, the
area of our implementation of the AES S-box can be further reduced to 176.75 GE.
For the S-boxes of Camellia and SM4, it can be seen from Table 2 that the im-
provements are even more obvious.

5 Conclusion

By applying state-of-the-art combinatorial logic minimization techniques to an
exhaustive list of tower field representations of the AES, Camellia, and SM4 S-
boxes with normal bases, we identify so far the most compact implementations
of these S-boxes. The results obtained in this work can be used in compact and
threshold implementations of AES, Camellia, and SM4. As a potential further
work, it is interesting to see how to apply similar techniques to obtain compact
implementations of combined S-box/inverse S-box designs for AES, Camellia, and
SM4. Moreover, this work only focus on minimizing the circuit area, it is of equal
importance to investigate how to reduce the depth of the circuit as in [26,20].

Acknowledgment. The work is supported by the National Key R&D Program
of China (Grant No. 2018YFB0804402), the Chinese Major Program of National
Cryptography Development Foundation (Grant No. MMJJ20180102), the National
Natural Science Foundation of China (61732021, 61802400, 61772519, 61802399),
and the Youth Innovation Promotion Association of Chinese Academy of Sciences.

5We do not have access to the STM 65nm technology library. However, the authors of [26]
provide sufficient area information for the gates involved in this particular library, based on
which we can extrapolate the results without any difficulty.

22 Zihao Wei1,2,3 et al.

References

1. Abbasi, I., Afzal, M.: A compact S-Box design for SMS4 block cipher. IACR Cryptology
ePrint Archive 2011, 522 (2011)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.:
Camellia: A 128-bit block cipher suitable for multiple platforms - design and analysis.
Lecture Notes in Computer Science pp. 39–56 (2000)

3. Bai, X., Xu, Y., Guo, L.: Securing SMS4 cipher against differential power analysis and its
VLSI implementation. In: IEEE Singapore International Conference on Communication
Systems, pp. 167–172 (2009)

4. Banik, S., Bogdanov, A., Minematsu, K.: Low-area hardware implementations of CLOC,
SILC and AES-OTR. In: 2016 IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2016, McLean, VA, USA, May 3-5, 2016, pp. 71–74 (2016)

5. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: A compact implementation of the
AES encryption/decryption core. In: Progress in Cryptology - INDOCRYPT 2016 - 17th
International Conference on Cryptology in India, Kolkata, India, December 11-14, 2016,
Proceedings, pp. 173–190 (2016)

6. Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in GF(2n) with applications
to MDS matrices. In: Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
I, pp. 625–653 (2016)

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold
implementation. In: Progress in Cryptology - AFRICACRYPT 2014 - 7th International
Conference on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings,
pp. 267–284 (2014)

8. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold imple-
mentations illustrated on AES. IEEE Trans. on CAD of Integrated Circuits and Systems
34(7), 1188–1200 (2015)

9. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applications to
cryptology. J. Cryptology 26(2), 280–312 (2013)

10. Canright, D.: A very compact Rijndael S-box. Tech. rep., Naval Postgraduate School
(2005). NPS-MA-05-001

11. Canright, D.: A very compact S-Box for AES. In: Cryptographic Hardware and Em-
bedded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, pp. 441–455 (2005)

12. Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking AES
with d + 1 shares in hardware. In: Cryptographic Hardware and Embedded Systems -
CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings, pp. 194–212 (2016)

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Stan-
dard. Information Security and Cryptography. Springer (2002)

14. Fuhs, C., Schneider-Kamp, P.: Synthesizing shortest linear straight-line programs over
GF(2) using SAT. In: Theory and Applications of Satisfiability Testing - SAT 2010, 13th
International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, pp.
71–84 (2010)

15. Guajardo, J., Paar, C.: Efficient algorithms for elliptic curve cryptosystems. In: Advances
in Cryptology - CRYPTO ’97, 17th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 1997, Proceedings, pp. 342–356 (1997)

16. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m))
using normal bases. Inf. Comput. 78(3), 171–177 (1988)

17. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: A generic technique for bit-serial
implementations of SPN-based primitives - applications to AES, PRESENT and SKINNY.
In: Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pp. 687–707 (2017)

18. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of lightweight
building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168 (2017)

19. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line programs
for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211 (2017)

20. Li, S., Sun, S., Li, C., Wei, Z., Hu, L.: Constructing low-latency involutory MDS matrices
with lightweight circuits. IACR Trans. Symmetric Cryptol. 2019(1), 84–117 (2019)

Title Suppressed Due to Excessive Length 23

21. Mart́ınez-Herrera, A.F., Mex-Perera, J.C., Nolazco-Flores, J.A.: Some representations of

the S-Box of Camellia in GF(((22)2)2). In: Cryptology and Network Security, 11th Interna-
tional Conference, CANS 2012, Darmstadt, Germany, December 12-14, 2012. Proceedings,
pp. 296–309 (2012)

22. Mart́ınez-Herrera, A.F., Mex-Perera, J.C., Nolazco-Flores, J.A.: Merging the Camellia,
SMS4 and AES S-Boxes in a single S-Box with composite bases. In: Information Security,
16th International Conference, ISC 2013, Dallas, Texas, USA, November 13-15, 2013,
Proceedings, pp. 209–217 (2013)

23. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of compact
hardware implementations for the Rijndael S-Box. In: Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA,
February 14-18, 2005, Proceedings, pp. 323–333 (2005)

24. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very
compact and a threshold implementation of AES. In: Advances in Cryptology - EURO-
CRYPT 2011 - 30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, pp. 69–88
(2011)

25. Paar, C., Soria-Rodriguez, P.: Fast arithmetic architectures for public-key algorithms over
Galois Fields GF((2n)m). In: Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, Konstanz, Ger-
many, May 11-15, 1997, Proceeding, pp. 363–378 (1997)

26. Reyhani-Masoleh, A., Taha, M.M.I., Ashmawy, D.: Smashing the implementation records
of AES s-box. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 298–336 (2018)

27. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient Rijndael
encryption implementation with composite field arithmetic. In: Cryptographic Hardware
and Embedded Systems - CHES 2001, Third International Workshop, Paris, France, May
14-16, 2001, Proceedings, Generators, pp. 171–184 (2001)

28. Satoh, A., Morioka, S.: Unified hardware architecture for 128-bit block ciphers AES and
Camellia. In: Cryptographic Hardware and Embedded Systems - CHES 2003, 5th Inter-
national Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, pp. 304–318
(2003)

29. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware archi-
tecture with S-Box optimization. In: Advances in Cryptology - ASIACRYPT 2001, 7th
International Conference on the Theory and Application of Cryptology and Information
Security, Gold Coast, Australia, December 9-13, 2001, Proceedings, pp. 239–254 (2001)

30. Stoffelen, K.: Optimizing S-Box implementations for several criteria using SAT solvers. In:
Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers, pp. 140–160 (2016)

31. Team, C.M.: http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
32. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES S-

Boxes. In: Topics in Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA
Conference, 2002, San Jose, CA, USA, February 18-22, 2002, Proceedings, pp. 67–78 (2002)

A Verilog Code for the AES S-box

/* The AES S-box */
module AES (b, Sb);

input [7:0] b;
output [7:0] Sb;
wire [7:0] g;
wire [9:0] m;
wire [3:0] p, l;
wire [17:0] e;

Input M1(b, g, m);
Top M2(g, m, p);
Middle M3(p, l);
Bottom M4(g, m, l, e);

http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

24 Zihao Wei1,2,3 et al.

Output M5(e, Sb);
endmodule

/* Gates implemented as modules to prevent
unintentional optimization of the DC */

module XOR (t, a, b);
output t;
input a, b;
xor(t, a, b);

endmodule

module XNOR (t, a, b);
output t;
input a, b;
xnor(t, a, b);

endmodule

module NAND (t, a, b);
output t;
input a, b;
nand(t, a, b);

endmodule

module NOR (t, a, b);
output t;
input a, b;
nor(t, a, b);

endmodule

/* input matrix */
module Input (b, g, m);

input [7:0] b;
output [7:0] g;
output [9:0] m;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15 , t16 , t17 , t18 , t19;

XOR m1(t1 , b[7], b[4]);
XOR m2(t2 , b[3], b[1]);
XOR m3(t3 , b[2], t2);
XOR m4(t4 , b[6], t3);
XOR m5(t5 , b[0], t4);
XOR m6(t6 , b[5], t3);
XOR m7(t7 , t5 , t6);
XOR m8(t8 , b[4], t7);
XOR m9(t9 , t1 , t2);
XOR m10(t10 , t1, t8);
XOR m11(t11 , b[0], t9);
XOR m12(t12 , b[4], b[2]);
XOR m13(t13 , b[1], t7);
XOR m14(t14 , b[7], b[2]);
XOR m15(t15 , t13 , t14);
XOR m16(t16 , b[7], b[1]);
XOR m17(t17 , t12 , t16);
XOR m18(t18 , t6, t9);
XOR m19(t19 , t7, t11);

assign g = {b[0], t11 , t5, t7, t8, t15 , t10 , t13};
assign m = {t9, t17 , t4 , t1 , t19 , t14 , t18 , t12 , t6, t16};

endmodule

Title Suppressed Due to Excessive Length 25

/* top part: GF (2^4) multiplier and GF (2^4) square -scaler */
module Top (g, m, p);

input [7:0] g;
input [9:0] m;
output [3:0] p;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 , t11 , t12 , t13 ,

t14 , t15 , t16 , t17 , t18 , t19 , t20 , t21 , t22 , t23 , t24;

NAND m1(t1 , g[6], g[2]);
NAND m2(t2 , m[9], m[8]);
NAND m3(t3 , g[7], g[3]);
XOR m4(t13 , t1, t2);
XOR m5(t14 , t3, t1);

NAND m6(t4 , m[7], m[6]);
NOR m7(t5 , m[7], m[6]);
NAND m8(t6 , m[3], m[2]);
NOR m9(t7 , m[3], m[2]);
NAND m10(t8 , m[5], m[4]);
XOR m11(t15 , t5, t6);
XOR m12(t16 , t8, t7);
XOR m13(t17 , t4, t6);
XOR m14(t18 , t8, t6);

NAND m15(t9 , g[4], g[0]);
NOR m16(t10 , m[1], m[0]);
NAND m17(t11 , g[5], g[1]);
NOR m18(t12 , g[4], g[0]);
XOR m19(t19 , t9, t10);
XOR m20(t20 , t11 , t12);

XOR m21(t21 , t13 , t15);
XOR m22(t22 , t14 , t16);
XOR m23(t23 , t19 , t17);
XOR m24(t24 , t20 , t18);

assign p[3] = t21;
assign p[2] = t22;
assign p[1] = t23;
assign p[0] = t24;

endmodule

/* middle part: GF(2^4) inverse */
module Middle (p, l);

input [3:0] p;
output [3:0] l;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15;

NAND m1(t1 , p[3], p[0]);
NOR m2(t2 , t1 , p[2]);
NAND m3(t3 , p[2], p[0]);
XOR m4(t4 , p[1], t3);
NOR m5(t5 , p[2], t4);
NAND m6(t6 , p[1], t4);
NOR m7(t7 , p[3], t4);
NOR m8(t8 , t7 , t2);
XNOR m9(t9 , t5 , t7);
XNOR m10(t10 , t9, p[3]);

26 Zihao Wei1,2,3 et al.

NAND m11(t11 , t6, t8);
NAND m12(t12 , t8, p[1]);
XNOR m13(t13 , p[0], t12);
NAND m14(t14 , t1, p[2]);
NAND m15(t15 , t9, t14);

assign l[3] = t13;
assign l[2] = t11;
assign l[1] = t15;
assign l[0] = t10;

endmodule

/* bottom part: GF(2^4) multipliers */
module Bottom (g, m, l, e);

input [7:0] g;
input [9:0] m;
input [3:0] l;
output [17:0] e;
wire k4, k3, k2, k1, k0;

XOR m1(k4 , l[3], l[2]);
XOR m2(k3 , l[3], l[1]);
XOR m3(k2 , l[2], l[0]);
XOR m4(k1 , k3 , k2);
XOR m5(k0 , l[1], l[0]);

NAND m6(e[17], g[2], l[2]);
NAND m7(e[16], g[3], l[3]);
NAND m8(e[15], m[8], k4);

NAND m9(e[14], m[2], k1);
NAND m10(e[13], m[4], k2);
NAND m11(e[12], m[6], k3);

NAND m12(e[11], g[0], l[0]);
NAND m13(e[10], g[1], l[1]);
NAND m14(e[9], m[0], k0);

NAND m15(e[8], g[6], l[2]);
NAND m16(e[7], g[7], l[3]);
NAND m17(e[6], m[9], k4);

NAND m18(e[5], m[3], k1);
NAND m19(e[4], m[5], k2);
NAND m20(e[3], m[7], k3);

NAND m21(e[2], g[4], l[0]);
NAND m22(e[1], g[5], l[1]);
NAND m23(e[0], m[1], k0);

endmodule

/* output matrix */
module Output (e, Sb);

input [17:0] e;
output [7:0] Sb;
wire E11 , E10 , E9 , E8 , E7, E6, E5, E4, E3 , E2 , E1, E0;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15 , t16 , t17;

XOR m1(E11 , e[17], e[16]);

Title Suppressed Due to Excessive Length 27

XOR m2(E10 , e[15], e[16]);
XOR m3(E9 , e[14], e[13]);
XOR m4(E8 , e[12], e[13]);
XOR m5(E7 , e[11], e[10]);
XOR m6(E6 , e[9], e[10]);
XOR m7(E5 , e[8], e[7]);
XOR m8(E4 , e[6], e[7]);
XOR m9(E3 , e[5], e[4]);
XOR m10(E2 , e[3], e[4]);
XOR m11(E1 , e[2], e[1]);
XOR m12(E0 , e[0], e[1]);

XOR m13(t1 , E2, E0);
XOR m14(t2 , E10 , t1);
XOR m15(t3 , E8, t2);
XOR m16(t4 , E5, E1);
XOR m17(t5 , E5, E3);
XOR m18(t6 , E7, t5);
XOR m19(t7 , E8, E6);
XOR m20(t8 , E2, t3);
XOR m21(t9 , E4, t8);
XOR m22(t10 , t1, t5);
XNOR m23(t11 , E9, t6);
XNOR m24(t12 , t4, t7);
XOR m25(t13 , t3, t6);
XOR m26(t14 , E11 , t13);
XNOR m27(t15 , t1, t9);
XOR m28(t16 , t10 , t12);
XOR m29(t17 , t4, t9);

assign Sb = {t3, t15 , t11 , t9, t17 , t14 , t16 , t12};
endmodule

28 Zihao Wei1,2,3 et al.

B Verilog Code for the Camellia S-box

/* The Camellia S-box */
module Camellia (b, Sb);

input [7:0] b;
output [7:0] Sb;
wire [7:0] g;
wire [9:0] m;
wire [3:0] p, l;
wire [17:0] e;

Input M1(b, g, m);
Top M2(g, m, p);
Middle M3(p, l);
Bottom M4(g, m, l, e);
Output M5(e, Sb);

endmodule

/* Gates implemented as modules to prevent
unintentional optimization of the DC */

module XOR (t, a, b);
output t;
input a, b;
xor(t, a, b);

endmodule

module XNOR (t, a, b);
output t;
input a, b;
xnor(t, a, b);

endmodule

module NAND (t, a, b);
output t;
input a, b;
nand(t, a, b);

endmodule

module NOR (t, a, b);
output t;
input a, b;
nor(t, a, b);

endmodule

/* input matrix */
module Input (b, g, m);

input [7:0] b;
output [7:0] g;
output [9:0] m;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15 , t16 , t17 , t18 , t19;

XNOR m1(t1 , b[6], b[3]);
XNOR m2(t2 , b[4], b[2]);
XOR m3(t3 , b[4], b[1]);
XOR m4(t4 , t1 , t3);
XOR m5(t5 , t2 , t4);
XOR m6(t6 , b[5], t2);
XNOR m7(t7 , b[0], t6);
XOR m8(t8 , b[7], b[0]);

Title Suppressed Due to Excessive Length 29

XOR m9(t9 , t1 , t8);
XOR m10(t10 , t5, t9);
XOR m11(t11 , b[1], t9);
XNOR m12(t12 , b[0], t11);
XOR m13(t13 , b[4], t11);
XNOR m14(t14 , b[2], t11);
XOR m15(t15 , b[6], b[5]);
XNOR m16(t16 , t9, t15);
XOR m17(t17 , t7, t16);
XNOR m18(t18 , b[1], t15);
XOR m19(t19 , t6, t18);

assign g = {t5, t4, t10 , t1 , t16 , t17 , t11 , t12};
assign m = {t2, t7, t9, t18 , t3, t19 , t13 , t6 , t14 , ~b[0]};

endmodule

/* top part: GF (2^4) multiplier and GF (2^4) square -scaler */
module Top (g, m, d);

input [7:0] g;
input [9:0] m;
output [3:0] d;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 , t11 , t12 , t13 ,

t14 , t15 , t16 , t17 , t18 , t19 , t20 , t21 , t22 , t23 , t24;

NAND m1(t1 , g[7], g[3]);
NOR m2(t2 , g[6], g[2]);
NOR m3(t3 , g[7], g[3]);
NAND m4(t4 , m[9], m[8]);
XOR m5(t13 , t1, t2);
XOR m6(t14 , t3, t4);

NAND m7(t5 , m[5], m[4]);
NAND m8(t6 , m[3], m[2]);
NAND m9(t7 , m[7], m[6]);
NOR m10(t8 , m[3], m[2]);
NOR m11(t9 , m[5], m[4]);
XOR m12(t15 , t5, t6);
XOR m13(t16 , t7, t5);
XOR m14(t17 , t5, t8);
XOR m15(t18 , t7, t9);

NAND m16(t10 , g[5], g[1]);
NAND m17(t11 , g[4], g[0]);
NAND m18(t12 , m[1], m[0]);
XOR m19(t19 , t10 , t11);
XOR m20(t20 , t10 , t12);

XOR m21(t21 , t13 , t15);
XOR m22(t22 , t14 , t16);
XOR m23(t23 , t19 , t17);
XOR m24(t24 , t20 , t18);

assign d[3] = t21;
assign d[2] = t22;
assign d[1] = t23;
assign d[0] = t24;

endmodule

/* middle part: GF(2^4) inverse */
module Middle (p, l);

30 Zihao Wei1,2,3 et al.

input [3:0] p;
output [3:0] l;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15;

NAND m1(t1 , p[3], p[0]);
NOR m2(t2 , t1 , p[2]);
NAND m3(t3 , p[2], p[0]);
XOR m4(t4 , p[1], t3);
NOR m5(t5 , p[2], t4);
NAND m6(t6 , p[1], t4);
NOR m7(t7 , p[3], t4);
NOR m8(t8 , t7 , t2);
XNOR m9(t9 , t5 , t7);
XNOR m10(t10 , t9, p[3]);
NAND m11(t11 , t6, t8);
NAND m12(t12 , t8, p[1]);
XNOR m13(t13 , p[0], t12);
NAND m14(t14 , t1, p[2]);
NAND m15(t15 , t9, t14);

assign l[3] = t13;
assign l[2] = t11;
assign l[1] = t15;
assign l[0] = t10;

endmodule

/* bottom part: GF(2^4) multipliers */
module Bottom (g, m, l, e);

input [7:0] g;
input [9:0] m;
input [3:0] l;
output [17:0] e;
wire k4, k3, k2, k1, k0;

XOR m1(k4 , l[3], l[2]);
XOR m2(k3 , l[3], l[1]);
XOR m3(k2 , l[2], l[0]);
XOR m4(k1 , k3 , k2);
XOR m5(k0 , l[1], l[0]);

NAND m6(e[17], g[2], l[2]);
NAND m7(e[16], g[3], l[3]);
NAND m8(e[15], m[8], k4);

NAND m9(e[14], m[2], k1);
NAND m10(e[13], m[4], k2);
NAND m11(e[12], m[6], k3);

NAND m12(e[11], g[0], l[0]);
NAND m13(e[10], g[1], l[1]);
NAND m14(e[9], m[0], k0);

NAND m15(e[8], g[6], l[2]);
NAND m16(e[7], g[7], l[3]);
NAND m17(e[6], m[9], k4);

NAND m18(e[5], m[3], k1);
NAND m19(e[4], m[5], k2);
NAND m20(e[3], m[7], k3);

Title Suppressed Due to Excessive Length 31

NAND m21(e[2], g[4], l[0]);
NAND m22(e[1], g[5], l[1]);
NAND m23(e[0], m[1], k0);

endmodule

/* output matrix */
module Output (e, Sb);

input [17:0] e;
output [7:0] Sb;
wire E11 , E10 , E9 , E8 , E7, E6, E5, E4, E3 , E2 , E1, E0;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15 , t16;

XOR m1(E11 , e[17], e[16]);
XOR m2(E10 , e[15], e[16]);
XOR m3(E9 , e[14], e[13]);
XOR m4(E8 , e[12], e[13]);
XOR m5(E7 , e[11], e[10]);
XOR m6(E6 , e[9], e[10]);
XOR m7(E5 , e[8], e[7]);
XOR m8(E4 , e[6], e[7]);
XOR m9(E3 , e[5], e[4]);
XOR m10(E2 , e[3], e[4]);
XOR m11(E1 , e[2], e[1]);
XOR m12(E0 , e[0], e[1]);

XNOR m13(t1 , E2, E0);
XNOR m14(t2 , E10 , t1);
XOR m15(t3 , E6, t2);
XOR m16(t4 , E11 , t3);
XOR m17(t5 , E9, t4);
XOR m18(t6 , E11 , E7);
XOR m19(t7 , E5, t6);
XNOR m20(t8 , E4, E0);
XNOR m21(t9 , t5, t8);
XOR m22(t10 , t2, t9);
XNOR m23(t11 , E1, t1);
XOR m24(t12 , t7, t9);
XNOR m25(t13 , E5, t11);
XNOR m26(t14 , E8, t10);
XNOR m27(t15 , E3, t12);
XOR m28(t16 , t7, t11);

assign Sb = {t3, t1, t15 , t5, t13 , t14 , t8 , t16};
endmodule

32 Zihao Wei1,2,3 et al.

C Verilog Code for the SM4 S-box

/* The SM4 S-box */
module SM4 (b, Sb);

input [7:0] b;
output [7:0] Sb;
wire [7:0] g;
wire [9:0] m;
wire [3:0] p, l;
wire [17:0] e;

Input M1(b, g, m);
Top M2(g, m, p);
Middle M3(p, l);
Bottom M4(g, m, l, e);
Output M5(e, Sb);

endmodule

/* Gates implemented as modules to prevent
unintentional optimization of the DC */

module XOR (t, a, b);
output t;
input a, b;
xor(t, a, b);

endmodule

module XNOR (t, a, b);
output t;
input a, b;
xnor(t, a, b);

endmodule

module NAND (t, a, b);
output t;
input a, b;
nand(t, a, b);

endmodule

module NOR (t, a, b);
output t;
input a, b;
nor(t, a, b);

endmodule

/* input matrix */
module Input (b, g, m);

input [7:0] b;
output [7:0] g;
output [9:0] m;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15 , t16 , t17;

XOR m1(t1 , b[7], b[5]);
XNOR m2(t2 , b[5], b[1]);
XNOR m3(t3 , b[0], t2);
XOR m4(t4 , b[6], b[2]);
XOR m5(t5 , b[3], t3);
XOR m6(t6 , b[4], t1);
XOR m7(t7 , b[1], t5);
XOR m8(t8 , b[1], t4);

Title Suppressed Due to Excessive Length 33

XOR m9(t9 , t6 , t8);
XOR m10(t10 , t6, t7);
XNOR m11(t11 , b[3], t1);
XNOR m12(t12 , b[6], t9);
XOR m13(t13 , t4, t10);
XOR m14(t14 , t2, t11);
XOR m15(t15 , t12 , t14);
XOR m16(t16 , t3, t12);
XOR m17(t17 , t11 , t16);

assign g = {t15 , t14 , ~b[0], t2 , t5 , t13 , t7, t10};
assign m = {t12 , t9, t17 , b[1], t11 , t4, t16 , t8, t3 , t6};

endmodule

/* top part: GF (2^4) multiplier and GF (2^4) square -scaler */
module Top (g, m, d);

input [7:0] g;
input [9:0] m;
output [3:0] d;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 , t11 , t12 , t13 ,

t14 , t15 , t16 , t17 , t18 , t19 , t20 , t21 , t22 , t23 , t24;

NAND m1(t1 , g[5], g[1]);
NAND m2(t2 , m[1], m[0]);
NAND m3(t3 , g[4], g[0]);
NAND m4(t4 , g[7], g[3]);
NAND m5(t5 , m[9], m[8]);
NOR m6(t6 , g[6], g[2]);
NOR m7(t7 , g[7], g[3]);
NOR m8(t8 , m[9], m[8]);
NOR m9(t9 , m[7], m[6]);
NAND m10(t10 , m[3], m[2]);
NAND m11(t11 , m[5], m[4]);
NOR m12(t12 , m[3], m[2]);

XOR m13(t13 , t1, t2);
XOR m14(t14 , t3, t2);
XOR m15(t15 , t4, t13);
XOR m16(t16 , t5, t14);
XOR m17(t17 , t9, t10);
XOR m18(t18 , t11 , t12);
XOR m19(t19 , t6, t15);
XOR m20(t20 , t7, t16);

XOR m21(t21 , t19 , t17);
XOR m22(t22 , t20 , t18);
XOR m23(t23 , t8, t15);
XOR m24(t24 , t6, t16);

assign d[3] = t21;
assign d[2] = t22;
assign d[1] = t23;
assign d[0] = t24;

endmodule

/* middle part: GF(2^4) inverse */
module Middle (p, l);

input [3:0] p;
output [3:0] l;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

34 Zihao Wei1,2,3 et al.

t11 , t12 , t13 , t14 , t15;

NAND m1(t1 , p[3], p[0]);
NOR m2(t2 , t1 , p[2]);
NAND m3(t3 , p[2], p[0]);
XOR m4(t4 , p[1], t3);
NOR m5(t5 , p[2], t4);
NAND m6(t6 , p[1], t4);
NOR m7(t7 , p[3], t4);
NOR m8(t8 , t7 , t2);
XNOR m9(t9 , t5 , t7);
XNOR m10(t10 , t9, p[3]);
NAND m11(t11 , t6, t8);
NAND m12(t12 , t8, p[1]);
XNOR m13(t13 , p[0], t12);
NAND m14(t14 , t1, p[2]);
NAND m15(t15 , t9, t14);

assign l[3] = t13;
assign l[2] = t11;
assign l[1] = t15;
assign l[0] = t10;

endmodule

/* bottom part: GF(2^4) multipliers */
module Bottom (g, m, l, e);

input [7:0] g;
input [9:0] m;
input [3:0] l;
output [17:0] e;
wire k4, k3, k2, k1, k0;

XOR m1(k4 , l[3], l[2]);
XOR m2(k3 , l[3], l[1]);
XOR m3(k2 , l[2], l[0]);
XOR m4(k1 , k3 , k2);
XOR m5(k0 , l[1], l[0]);

NAND m6(e[17], g[2], l[2]);
NAND m7(e[16], g[3], l[3]);
NAND m8(e[15], m[8], k4);

NAND m9(e[14], m[2], k1);
NAND m10(e[13], m[4], k2);
NAND m11(e[12], m[6], k3);

NAND m12(e[11], g[0], l[0]);
NAND m13(e[10], g[1], l[1]);
NAND m14(e[9], m[0], k0);

NAND m15(e[8], g[6], l[2]);
NAND m16(e[7], g[7], l[3]);
NAND m17(e[6], m[9], k4);

NAND m18(e[5], m[3], k1);
NAND m19(e[4], m[5], k2);
NAND m20(e[3], m[7], k3);

NAND m21(e[2], g[4], l[0]);
NAND m22(e[1], g[5], l[1]);

Title Suppressed Due to Excessive Length 35

NAND m23(e[0], m[1], k0);
endmodule

/* output matrix */
module Output (e, Sb);

input [17:0] e;
output [7:0] Sb;
wire E11 , E10 , E9 , E8 , E7, E6, E5, E4, E3 , E2 , E1, E0;
wire t1, t2, t3, t4, t5 , t6 , t7, t8, t9, t10 ,

t11 , t12 , t13 , t14 , t15 , t16;

XOR m1(E11 , e[17], e[16]);
XOR m2(E10 , e[15], e[16]);
XOR m3(E9 , e[14], e[13]);
XOR m4(E8 , e[12], e[13]);
XOR m5(E7 , e[11], e[10]);
XOR m6(E6 , e[9], e[10]);
XOR m7(E5 , e[8], e[7]);
XOR m8(E4 , e[6], e[7]);
XOR m9(E3 , e[5], e[4]);
XOR m10(E2 , e[3], e[4]);
XOR m11(E1 , e[2], e[1]);
XOR m12(E0 , e[0], e[1]);

XOR m13(t1 , E9, E7);
XOR m14(t2 , E1, t1);
XOR m15(t3 , E3, t2);
XOR m16(t4 , E5, E3);
XOR m17(t5 , E4, t4);
XOR m18(t6 , E4, E0);
XOR m19(t7 , E11 , E7);
XOR m20(t8 , t1, t4);
XOR m21(t9 , t1, t6);
XOR m22(t10 , E2, t5);
XOR m23(t11 , E10 , E8);
XNOR m24(t12 , t3, t11);
XOR m25(t13 , t10 , t12);
XNOR m26(t14 , t3, t7);
XNOR m27(t15 , E10 , E6);
XOR m28(t16 , t6, t14);

assign Sb = {t15 , t13 , t8, t14 , t11 , t9, t12 , t16};
endmodule

	Introduction
	Preliminaries
	Tower Field Implementation of the F28 Inverter
	Applications to the S-boxes of AES, Camellia, and SM4
	Optimized Implementation of the F24 Multiplier, 2 Multiplier, and the Square–scaler as a Whole
	Optimized Implementation of the F24 Inverter
	Optimized Implementation of the Two F24 Multipliers with 4-bit Common Input
	Optimized Implementation of the Input and Output Affine Parts
	Overall Implementation Results and Comparison

	Conclusion
	Verilog Code for the AES S-box
	Verilog Code for the Camellia S-box
	Verilog Code for the SM4 S-box

