
1

Privacy-Preserving Classification of Personal Text
Messages with Secure Multi-Party Computation:

An Application to Hate-Speech Detection
Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, Anderson C. A. Nascimento

Abstract—Classification of personal text messages has many
useful applications in surveillance, e-commerce, and mental
health care, to name a few. Giving applications access to personal
texts can easily lead to (un)intentional privacy violations. We
propose the first privacy-preserving solution for text classification
that is provably secure. Our method, which is based on Secure
Multiparty Computation (SMC), encompasses both feature ex-
traction from texts, and subsequent classification with logistic re-
gression and tree ensembles. We prove that when using our secure
text classification method, the application does not learn anything
about the text, and the author of the text does not learn anything
about the text classification model used by the application beyond
what is given by the classification result itself. We perform end-
to-end experiments with an application for detecting hate speech
against women and immigrants, demonstrating excellent runtime
results without loss of accuracy.

Index Terms—Text classification, privacy-preserving, secure
multiparty computation.

I. INTRODUCTION

The ability to elicit information through automated scanning
of personal texts has significant economic and societal value.
Machine learning (ML) models for classification of text such
as e-mails and SMS messages can be used to infer whether
the author is depressed [48], suicidal [44], a terrorist threat
[2], or whether the e-mail is a spam message [3], [52]. Other
valuable applications of text message classification include user
profiling for tailored advertising [34], detection of hate speech
[7], and detection of cyberbullying [54]. Some of the above are
integrated in parental control applications1 that monitor text
messages on the phones of children and alert their parents when
content related to drug use, sexting, suicide etc. is detected.
Regardless of the clear benefits, giving applications access to
one’s personal text messages and e-mails can easily lead to
(un)intentional privacy violations.

In this paper, we propose the first privacy-preserving (PP)
solution for text classification that is provably secure. To the
best of our knowledge, there are no existing Differential Privacy
(DP) or Secure Multiparty Computation (SMC) based solutions
for PP feature extraction and classification of unstructured

Devin Reich, Ariel Todoki, Martine De Cock, Anderson C. A. Nasci-
mento are with the School of Engineering and Technology, Uni-
versity of Washington Tacoma, Tacoma, WA 98402. Emails: {dre-
ich,atodoki,mdecock,andclay}@uw.edu

Rafael Dowsley is with the Faculty of Information Technology, Monash
University, Melbourne, Australia. Email: rafael.dowsley@monash.edu

Martine De Cock is a Guest Professor at Dept. of Applied Mathematics,
Computer Science, and Statistics, Ghent University

1https://www.bark.us/, https://kidbridge.com/, https://www.webwatcher.com/

texts; the only existing method is based on Homomorphic
Encryption (HE) and takes 19 minutes to classify a tweet [17]
while leaking information about the text being classified. In
our SMC based solution, there are two parties, nick-named
Alice and Bob (see Fig. 1). Bob has a trained ML model that
can automatically classify texts. Our secure text classification
protocol allows to classify a personal text written by Alice
with Bob’s ML model in such a way that Bob does not learn
anything about Alice’s text and Alice does not learn anything
about Bob’s model. Our solution relies on PP protocols for
feature extraction from text and PP machine learning model
scoring, which we propose in this paper.

We perform end-to-end experiments with an application for
PP detection of hate speech against women and immigrants
in text messages. In this use case, Bob has a trained logistic
regression (LR) or AdaBoost model that flags hateful texts
based on the occurrence of particular words. LR models on
word n-grams have been observed to perform comparably to
more complex CNN and LSTM model architectures for hate
speech detection [37]. Using our protocols, Bob can label
Alice’s texts as hateful or not without learning which words
occur in Alice’s texts, and Alice does not learn which words
are in Bob’s hate speech lexicon, nor how these words are
used in the classification process. Moreover, classification is
done in seconds, which is two orders of magnitude better than
the existing HE solution despite the fact we use over 20 times
more features and do not leak any information about Alice’s
text to the model owner (Bob). The solution based on HE leaks
which words in the text are present in Bob’s lexicon [17].

We build our protocols using a privacy-preserving machine
learning (PPML) framework based on SMC developed by
us.2 All the existing building blocks can be composed within
themselves or with new protocols added to the framework.
On top of existing building blocks, we also propose a novel
protocol for binary classification over binary input features
with an ensemble of decisions stumps. While some of our
building blocks have been previously proposed, the main
contribution of this work consists of the careful choice of
the ML techniques, feature engineering and algorithmic and
implementation optimizations to enable end-to-end practical PP
text classification . Additionally, we provide security definitions
and proofs for our proposed protocols.

A conference version of this work appeared at NeurIPS 2019
[49]. This full version contains the security analysis as well

2https://bitbucket.org/uwtppml

https://www.bark.us/
https://kidbridge.com/
https://www.webwatcher.com/


2

as a new more efficient implementation in Rust.

II. RELATED WORK

The interest in privacy-preserving machine learning (PPML)
has grown substantially over the last decade. The best-known
results in PPML are based on differential privacy (DP), a
technique that relies on adding noise to answers, to prevent
an adversary from learning information about any particular
individual in the dataset from revealed aggregate statistics [32].
While DP in an ML setting aims at protecting the privacy of
individuals in the training dataset, our focus is on protecting the
privacy of new user data that is classified with proprietary ML
models. To this end, we use Secure Multiparty Computation
(SMC) [18], a technique in cryptography that has successfully
been applied to various ML tasks with structured data (see
e.g. [15], [21], [23], [42] and references therein).

To the best of our knowledge there are no existing DP or
SMC based solutions for PP feature extraction and classification
of unstructured texts. Defenses against authorship attribution
attacks that fulfill DP in text classification have been proposed
[56]. These methods rely on distortion of term frequency
vectors and result in loss of accuracy. In this paper we address
a different challenge: we assume that Bob knows Alice, so no
authorship obfuscation is needed. Instead, we want to process
Alice’s text with Bob’s classifier, without Bob learning what
Alice wrote, and without accuracy loss. To the best of our
knowledge, Costantino et al. [17] were the first to propose PP
feature extraction from text. In their solution, which is based
on homomorphic encryption (HE), Bob learns which of his
lexicon’s words are present in Alice’s tweets, and classification
of a single tweet with a model with less than 20 features takes
19 minutes. Our solution does not leak any information about
Alice’s words to Bob, and classification is done in seconds,
even for a model with 500 features.

Below we present existing work that is related to some of
the building blocks we use in our PP text classification protocol
(see Section IV-A).

Private equality tests have been proposed in the literature
based on several different flavors [4]. They can be based on Yao
Gates, Homomorphic Encryption, and generic SMC [55]. In
our case, we have chosen a simple protocol that depends solely
on additions and multiplications over a binary field. While
different (and possibly more efficient) comparison protocols
could be used instead, they would either require additional
computational assumptions or present a marginal improvement
in performance for the parameters used here.

Our private feature extraction can be seen as a particular case
of private set intersection (PSI). PSI is the problem of securely
computing the intersection of two sets without leaking any
information except (possibly) the result, such as identifying the
intersection of the set of words in a user’s text message with the
hate speech lexicon used by the classifier. Several paradigms
have been proposed to realize PSI functionality, including a
Naive hashing solution, Server-aided PSI, and PSI based on
oblivious transfer extension. For a complete survey, we refer
to Pinkas et al. [47]. In our protocol for PP text classification,
we implement private feature extraction by a straightforward

Fig. 1. Roles of Alice and Bob in SMC based text classification

application of our equality test protocol. While more efficient
protocols could be obtained by using sophisticated hashing
techniques, we have decided to stick with our direct solution
since it has no probability of failure and works well for the
input sizes needed in our problem. For larger input sizes, a
more sophisticated protocol would be a better choice [47].

We use two protocols for the secure classification of feature
vectors: an existing protocol πLR for secure classification with
LR models [21]; and a novel secure AdaBoost classification
protocol. The logistic regression protocol uses solely additions
and multiplications over a finite field. The secure AdaBoost
classification protocol is an novel optimized protocol that uses
solely decision trees of depth one, binary features and a binary
output. All these characteristics were used in order to speed up
the resulting protocol. The final secure AdaBoost classification
protocol uses only two secure inner products and one secure
comparison.

Generic protocols for private scoring of machine learning
models have been proposed in [9]. The solutions proposed
in [9] cannot be used in our setting since they assume that
the features’ description are publicly known, and thus can be
computed locally by Alice and Bob. However, in our case, the
features themselves are part of the model and cannot be made
public.

Finally, we note that while we implemented our protocols
using our own framework for privacy-preserving machine
learning3, any other generic framework for SMC could be
also used in principle [50], [24], [43].

III. PRELIMINARIES

We consider honest-but-curious adversaries, as is common in
SMC based PPML (see e.g. [21], [23]). An honest-but-curious
adversary follows the instructions of the protocol, but tries
to gather additional information. Secure protocols prevent the
latter.

We perform SMC using additively secret shares to do
computations modulo an integer q. A value x is secret shared
over Zq = {0, 1, . . . , q − 1} between parties Alice and Bob
by picking xA, xB ∈ Zq uniformly at random subject to the
constraint that x = xA + xB mod q, and then revealing xA
to Alice and xB to Bob. We denote this secret sharing by
[[x]]q, which can be thought of as a shorthand for (xA, xB).
Secret-sharing based SMC works by first having the parties
split their respective inputs in secret shares and send some of

3https://bitbucket.org/uwtppml



3

these shares to each other. Naturally, these inputs have to be
mapped appropriately to Zq . Next, Alice and Bob represent the
function they want to compute securely as a circuit consisting of
addition and multiplication gates. Alice and Bob will perform
secure additions and multiplications, gate by gate, over the
shares until the desired outcome is obtained. The final result
can be recovered by combining the final shares, and disclosed
as intended, i.e. to one of the parties or to both. It is also
possible to keep the final result distributed over shares.

In SMC based text classification, as illustrated in Fig. 1,
Alice’s input is a personal text x and Bob’s input is an ML
model M for text classification. The function that they want
to compute securely is f(x,M) =M(x), i.e. the class label
of x when classified byM. To this end, Alice splits the text in
secret shares while Bob splits the ML model in secret shares.
Both parties engage in a protocol in which they send some
of the input shares to each other, do local computations on
the shares, and repeat this process in an iterative fashion over
shares of intermediate results (Step 1). At the end of the joint
computations, Alice sends her share of the computed class label
to Bob (Step 2), who combines it with his share to learn the
classification result (Step 3). As mentioned above, the protocol
for Step 1 involves representing the function f as a circuit of
addition and multiplication gates.

Given two secret sharings [[x]]q and [[y]]q, Alice and Bob
can locally compute in a straightforward way a secret sharing
[[z]]q corresponding to z = x + y or z = x − y by simply
adding/subtracting their local shares of x and y modulo q.
Given a constant c, they can also easily locally compute a
secret sharing [[z]]q corresponding to z = cx or z = x+ c: in
the former case Alice and Bob just multiply their local shares
of x by c; in the latter case Alice adds c to her share of x
while Bob keeps his original share. These local operations
will be denoted by [[z]]q ← [[x]]q + [[y]]q, [[z]]q ← [[x]]q − [[y]]q,
[[z]]q ← c[[x]]q and [[z]]q ← [[x]]q + c, respectively. To allow for
very efficient secure multiplication of values via operations on
their secret shares (denoted by [[z]]q ← [[x]]q[[y]]q), we use a
trusted initializer that pre-distributes correlated randomness to
the parties participating in the protocol before the start of Step
1 in Fig. 1. The initializer is not involved in any other part of
the execution and does not learn any data from the parties. This
can be straightforwardly extended to efficiently perform secure
multiplication of secret shared matrices. The protocol for secure
multiplication of secret shared matrices is denoted by πDMM

and for the special case of inner-product computation by πIP.
Details about the (matrix) multiplication protocol can be found
in [21]. We note that if a trusted initializer is not available
or desired, Alice and Bob can engage in pre-computations to
securely emulate the role of the trusted initializer, at the cost
of introducing computational assumptions in the protocol [21].

IV. SECURE TEXT CLASSIFICATION

Our general protocol for PP text classification relies on
several building blocks that are used together to accomplish
Step 1 in Fig. 1: a secure equality test, a secure comparison
test, private feature extraction, secure protocols for converting
between secret sharing modulo 2 and modulo q > 2, and

private classification protocols. Several of these building blocks
have been proposed in the past. However, to the best of our
knowledge, this is the very first time they are combined in order
to achieve efficient text classification with provable security.

We assume that Alice has a personal text message, and
that Bob has a LR or AdaBoost classifier that is trained on
unigrams and bigrams as features. Alice constructs the set
A = {a1, a2, . . . , am} of unigrams and bigrams occurring in
her message, and Bob constructs the set B = {b1, b2, . . . , bn}
of unigrams and bigrams that occur as features in his ML
model. We assume that all aj and bi are in the form of bit
strings. To achieve this, Alice and Bob convert each unigram
and bigram on their end to a number N using SHA 224 [46],
strictly for its ability to map the same inputs to the same
outputs in a pseudo-random manner. Next Alice and Bob map
each N on their end to a number between 0 and 2l − 1, i.e. a
bit string of length l, using a random function in the universal
hash family proposed by Carter and Wegman [13].4 In the
remainder we use the term “word” to refer to a unigram or
bigram, and we refer to the set B = {b1, b2, . . . , bn} as Bob’s
lexicon.

Below we outline the protocols for PP text classification. A
correctness and security analysis of the protocols is provided
in the next section. In the description of the protocols in this
paper, we assume that Bob needs to learn the result of the
classification, i.e. the class label, at the end of the computations.
It is important to note that the protocols described below can
be straightforwardly adjusted to a scenario where Alice instead
of Bob has to learn the class label, or even to a scenario where
neither Alice nor Bob should learn what the class label is and
instead it should be revealed to a third party or kept in a secret
sharing form. All these scenarios might be relevant use cases
of PP text classification, depending on the specific application
at hand.

A. Cryptographic building blocks
a) Secure Equality Test: At the start of the secure equality

test protocol, Alice and Bob have secret shares of two bit strings
x = x` . . . x1 and y = y` . . . y1 of length `. x corresponds to a
word from Alice’s message and y corresponds to a feature from
Bob’s model. The bit strings x and y are secret shared over
Z2. Alice and Bob follow the protocol to determine whether
x = y. The protocol πEQ outputs a secret sharing of 1 if x = y
and of 0 otherwise.

Protocol πEQ

• For i = 1, . . . , `, Alice and Bob locally compute
[[ri]]2 ← [[xi]]2 + [[yi]]2 + 1.

• Alice and Bob use secure multiplication to compute
a secret sharing of z = r1 · r2 · . . . · r`. If x = y, then
ri = 1 for all bit positions i, hence z = 1; otherwise
some ri = 0 and therefore z = 0. The result is the
secret sharing [[z]]2, which is the desired output of
the protocol.

4The hash function is defined as ((a ·N + b) mod p) mod 2l−1 where
p is a prime and a and b are random numbers less than p. In our experiments,
p = 1, 301, 081, a = 972, and b = 52, 097.



4

This protocol for equality test is folklore in the field of SMC.
The `− 1 multiplications can be organized in as binary tree
with the result of the multiplication at the root of the tree.
In this way, the presented protocol has log(`) rounds. While
there are equality test protocols that have a constant number of
rounds, the constant is prohibitively large for the parameters
used in our implementation.

b) Secure Feature Vector Extraction: At the start of
the feature extraction protocol πFE, Alice has a set A =
{a1, a2, . . . , am} and Bob has a set B = {b1, b2, . . . , bn}. A
is a set of bit strings that represent Alice’s text, and B is a set
of bit strings that represent Bob’s lexicon. Bob would like to
extract words from Alice’s text that appear in his lexicon. At
the end of the protocol, Alice and Bob have secret shares of a
binary feature vector x which represents what words in Bob’s
lexicon appear in Alice’s text. The binary feature vector x of
length n is defined as

xi =

{
1 if bi ∈ A
0 otherwise (1)

Protocol πFE

• Alice and Bob secret share each aj (j = 1, . . . ,m)
and each bi (i = 1, . . . , n) with each other.

• For i = 1 . . . n:
– For j = 1 . . .m, Alice and Bob run the secure

equality test protocol πEQ to compute secret shares
xij = 1 if aj = bi; xij = 0 otherwise.

– Alice and Bob locally compute the secret share
[[xi]]2 ←

∑m
j=1[[xij ]]2.

The secure feature vector extraction can be seen as a private
set intersection where the intersection is not revealed but shared
[14], [33]. Our solution πFE is tailored to be used within
our PPML framework (it uses only binary operations, it is
secret sharing based, and is based on pre-distributed binary
multiplications). In principle, other protocols could be used
here. The efficiency of our protocol can be improved by using
hashing techniques [47] at the cost of introducing a small
probability of error. The improvements due to hashing are
asymptotic and for the parameters used in our fastest running
protocol these improvements were not noticeable. Thus, we
restricted ourselves to the original protocol without hashing
and without any probability of failure.

c) Secure Comparison Test: In our privacy-preserving
AdaBoost classifier we will use a secure comparison protocol
as a building block. At the start of the secure comparison test
protocol, Alice and Bob have secret shares over Z2 of two
bit strings x = x` . . . x1 and y = y` . . . y1 of length `. They
run the secure comparison protocol πDC of Garay et al. [36]
with secret sharings over Z2 and obtain a secret sharing of 1
if x ≥ y and of 0 otherwise.

d) Secure Conversion between Zq and Z2: Some of our
building blocks perform computations using secret shares over
Z2 (secure equality test, comparison and feature extraction),
while the secure inner product works over Zq for q > 2. In
order to be able to integrate these building blocks we need:

(1) A secure bit-decomposition protocol for secure conversion
from Zq to Z2. Alice and Bob have as input a secret sharing
[[x]]q and without learning any information about x they should
obtain as output secret sharings [[xi]]2, where x` · · ·x1 is the
binary representation of x. We use the secure bit-decomposition
protocol πdecomp from De Cock et al. [21]; (2) A protocol for
secure conversion from Z2 to Zq: Alice and Bob have as an
input a secret sharing [[x]]2 of a bit x and need to obtain a
secret sharing [[x]]q of the binary value over a larger field Zq

without learning any information about x. To this end, we use
protocol π2toQ.

Protocol π2toQ

• For the input [[x]]2, let xA ∈ {0, 1} denote Alice’s
share and xB ∈ {0, 1} denote Bob’s share.

• Alice creates a secret sharing [[xA]]q by picking
uniformly random shares that sum to xA and delivers
Bob’s share to him, and Bob proceeds similarly to
create [[xB ]]q .

• Alice and Bob compute [[y]]q ← [[xA]]q[[xB ]]q .
• The output is computed as [[z]]q ← [[xA]]q +[[xB ]]q−
2[[y]]q .

e) Secure Logistic Regression (LR) Classification: At the
start of the secure LR classification protocol, Bob has a trained
LR model M that requires a feature vector x of length n as
its input, and produces a label M(x) as its output. Alice and
Bob have secret shares of the feature vector x which represents
what words in Bob’s lexicon appear in Alice’s text. At the end
of the protocol, Bob gets the result of the classification M(x).
We use an existing protocol πLR for secure classification with
LR models [21].5

f) Secure AdaBoost Classification: The setting is the
same as above, but the model M is an AdaBoost ensemble
of decision stumps instead of a LR model. While efficient
solutions for secure classification with tree ensembles were
previously known [35], we can take advantage of specific facts
about our use case to obtain a more efficient protocol πAB. In
more detail, in our use case: (1) all the decision trees have
depth 1 (i.e., decision stumps); (2) each feature xi is binary
and therefore when it is used in a decision node, the left and
right children correspond exactly to xi = 0 and xi = 1; (3) the
output class is binary; (4) the feature values were extracted in
a PP way and are secret shared so that no party alone knows
their values. We can use the above facts in order to perform
the AdaBoost classification by computing two inner products
and then comparing their values.

5In our case the result of the classification is disclosed to Bob (the party that
owns the model) instead of Alice (who has the original input to be classified)
as in [21], however it is trivial to modify their protocol so that the final secret
share is open towards Bob instead of Alice. Note also that in our case, the
feature vector that is used for the classification is already secret shared between
Alice and Bob, while in their protocol Alice holds the feature vector, which
is then secret shared in the first step of the protocol. This modification is also
trivial and does not affect the security of the protocol.



5

x1

0 : y1,1
1 : z1,1

0 : y1,0
1 : z1,0

x1 = 0 x1 = 1
...

xi

0 : yi,1
1 : zi,1

0 : yi,0
1 : zi,0

xi = 0 xi = 1
...

xn

0 : yn,1
1 : zn,1

0 : yn,0
1 : zn,0

xn = 0 xn = 1

Fig. 2. Ensemble of decision stumps. Each root corresponds to a feature xi. The leaves contain weights yi,k for the votes for class label 0 and weights zi,k
for the votes for class label 1.

Protocol πAB

• Alice and Bob hold secret sharings [[xi]]q of each
of the n binary features xi. Bob holds the trained
AdaBoost model which consists of two weighted
probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1)
and z = (z1,0, z1,1, . . . , zn,0, zn,1). For the i-th
decision stump: yi,k is the weighted probability (i.e.,
a probability multiplied by the weight of the i-th
decision stump) that the model assigns to the output
class being 0 if xi = k, and zi,k is defined similarly
for the output class 1 (see Fig. 2).

• Bob secret shares the elements of y and z, and Alice
and Bob locally compute secret sharings [[w]]q of the
vector w = (1− x1, x1, 1− x2, x2, . . . , 1− xn, xn).

• Using the secure inner product protocol πIP, Alice
and Bob compute secret sharings of the inner product
p0 between y and w, and of the inner product p1
between z and w. p0 and p1 are the aggregated votes
for class label 0 and 1 respectively.

• Alice and Bob use πdecomp to compute bitwise secret
sharings of p0 and p1 over Z2.

• Alice and Bob use πDC to compare p1 and p0, getting
as output a secret sharing of the output class c, which
is then open towards Bob.

To the best of our knowledge, this is the most efficient
provably secure protocol for binary classification over binary
input features with an ensemble of decisions stumps.

B. Privacy-preserving classification of personal text messages

We now present our novel protocols for PP text classifica-
tion. They result from combining the cryptographic building
blocks we introduced previously. The PP protocol πTC−LR for
classifying the text using a logistic regression model works as
follows:

Protocol πTC−LR

• Alice and Bob execute the secure feature extraction
protocol πFE with input sets A and B in order to
obtain secret shares JxiK2 of the feature vector x.

• They run the protocol π2toQ to obtain shares JxiKq

over Zq .
• Alice and Bob run the secure logistic regression

classification protocol πLR in order to get the result
of the classification. The LR model M is given as
input to πLR by Bob, and the secret shared feature
vector x by both of them. Bob gets the result of the

classification M(x).

The privacy-preserving protocol πTC−AB for classifying the
text using AdaBoost works as follows:

Protocol πTC−AB

• Alice and Bob execute the secure feature extraction
protocol πFE with input sets A and B in order to
obtain the secret shares JxiK2 of the feature vector
x.

• They run the protocol π2toQ to obtain shares JxiKq

over Zq .
• Alice and Bob run the secure AdaBoost classification

protocol πAB to obtain the result of the classification.
The secret shared feature vector x is given as input
to πAB by both of them, and the two weighted
probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1)
and z = (z1,0, z1,1, . . . , zn,0, zn,1) that constitute the
model are specified by Bob. Bob gets the output class
c.

V. CORRECTNESS AND SECURITY ANALYSIS OF
PROTOCOLS

A. Security Model

The gold standard model for proving the security of cryp-
tographic protocols nowadays is the Universal Composability
(UC) framework [10] and it is the security model that we use
in this work. Protocols that are proven UC-secure enjoy strong
securities guarantees and can be arbitrary composed without
compromising the security. In short, it is the most adequate
model to use when the protocols need to be executed in complex
environments such as the Internet, and it additionally allows
a modular design of bigger protocols. In this work protocols
with two parties, Alice and Bob, are considered and in the
following we present an overview of the UC framework for
this setting. We refer interested readers to the book of Cramer
et al. [18] for more details and the most general definitions.

Apart from the protocol participants, Alice and Bob, there
are also an adversary A, an ideal world adversary S (also
known as the simulator) and an environment Z (which captures
everything that happens outside of the instance of the protocol
that is being analyzed, and therefore is the one giving the inputs
and getting the outputs from the protocol). All these entities
are assumed to be interactive Turing machines. The network
is assumed to be under adversarial control and therefore A
is the one that delivers the messages between Alice and Bob.



6

In addition to controlling the network scheduling, A can also
corrupt Alice or Bob, in which case he gains the total control
over the corrupted party and learn its complete state. For
defining the security of the protocol, an ideal functionality F
is defined, which captures the idealized version of what the
protocol is supposed to achieve and communicates directly with
Alice and Bob to receive the inputs and delivering the outputs
of the protocol (in the ideal world, that is all that Alice and
Bob do). Then to prove the security of the protocol π, we show
that for every possible adversary A there exists a simulator
S such that no environment Z can distinguish between a real
world execution with Alice, Bob and the adversary A running
the protocol π and the ideal world execution with the ideal
functionality F , the simulator S and the dummy version of
Alice and Bob that just forward the inputs and outputs between
F and S. Formally:

Definition 5.1 ([10]): A protocol π UC-realizes an ideal
functionality F if, for every possible adversary A, there exists
a simulator S such that, for every possible environment Z ,
the view of the environment Z in the real world execution
with A, Alice and Bob executing the protocol π (with security
parameter λ) is computationally indistinguishable from the
view of Z in the ideal world execution with the functionality
F , the simulator S and the dummy Alice and Bob, where the
probability distribution is taken over the randomness used by
all entities.

Adversarial Model: We consider honest-but-curious ad-
versaries. Honest-but-curious adversaries follow the protocol
instructions correctly, but try to learn additional information. We
only consider static adversaries, for which the set of corrupted
parties is chosen before the start of the protocol execution and
does not change. A version of the UC theorem for the case
of honest-but-curious adversaries is given in Theorem 4.20 of
Cramer et al. [18].

Setup Assumption: It is a well-known fact that secure two-
party computation (and also secure multi-party computation)
can only achieve UC-security using a setup assumption [11],
[12]. Multiple setup assumptions were used previously to
achieve UC-security for secure computation protocols, includ-
ing: the availability of a common reference string [11], [12],
[45], the availability of a public-key infrastructure [5], the
random oracle model [38], [6], the existence of noisy channels
between the parties [27], [31], and the availability of signature
cards [39] or tamper-proof hardware [41], [25], [28]. In this
work the commodity-based model [8] is used as the setup
assumption. 6 In this model there exists a trusted initializer that
pre-distributed correlated randomness to Alice and Bob during
a setup phase. This setup phase is run before the protocol
execution (and in fact can be performed even before Alice and
Bob get to know their inputs), and the trusted initializer does
not participate in any other point of the protocol. The trusted
initializer is modeled by the ideal functionality FDTI .

6The commodity-based model was used in many other works, e.g., [51],
[30], [29], [40], [53], [22], [19], [20], [35], [21], [1], [16].

Functionality FDTI

FDTI is parametrized by an algorithm D. Upon initial-
ization run (DA, DB)

$← D and deliver DA to Alice
and DB to Bob.

Simplifications: The simulation strategy in our proofs is
in fact very simple: all the computations are performed using
secret sharings and all the protocol messages look uniformly
random from the point of view of the receiver, with the single
exception of the openings of the secret sharings. Nevertheless,
the messages that open a secret sharing can be straightforwardly
simulated using the outputs of the respective functionalities.
In the ideal world, the simulator S has the leverage of being
the one responsible for simulating all the ideal functionalities
other than the one whose security is being analyzed (including
the trusted initializer functionality FDTI ), and he can easily use
this fact to perform a perfect simulation. For this reason the
real and ideal world are indistinguishable for any environment
Z and achieve perfect security.

The messages of the ideal functionalities are formally public
delayed outputs, i.e., first the simulator is asked whether it
allows the message to be delivered (this is due to the fact
that in the real world the adversary controls the scheduling
of the network), and the message is only delivered when S
agrees. And formally, every instance has a session identification.
We omit those information from descriptions for the sake of
readability.

Security of the Building Blocks: The protocol for secure
distributed matrix multiplication πDMM UC-realizes the dis-
tributed matrix multiplication functionality FDMM [26], [21].

Functionality FDMM

FDMM is executed with Alice and Bob is parametrized
by the size q of the ring and the dimensions (i, j) and
(j, k) of the matrices.

Input: Upon receiving a message from Alice/Bob
with her/his shares of JXKq and JY Kq , verify if the
share of X is in Zi×j

q and the share of Y is in Zj×k
q .

If it is not, abort. Otherwise, record the shares, ignore
any subsequent message from that party and inform
the other party about the receipt.

Output: Upon receipt of the inputs from both Alice and
Bob, reconstruct X and Y from the shares, compute
Z = XY and create a secret sharing JZK

q
. Before

the deliver of the output shares, a corrupt party fix
its share of the output to any constant value. In both
cases the shares of the uncorrupted parties are then
created by picking uniformly random values subject to
the correctness constraint.

The protocol for secure comparison πDC UC-realizes the
functionality FDC [36], [21].



7

Functionality FDC

FDC is parametrized by the bit-length ` of the values
being compared.

Input: Upon receiving a message from Alice/Bob with
her/his shares of JxiK2

and JyiK2
for all i ∈ {1, . . . , `},

record the shares, ignore any subsequent messages
from that party and inform the other party about the
receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct x and y from the bitwise shares. If x ≥ y,
then create and distribute to Alice and Bob the secret
sharing J1K

2
; otherwise the secret sharing J0K

2
. Before

the deliver of the output shares, a corrupt party fix
its share of the output to any constant value. In both
cases the shares of the uncorrupted parties are then
created by picking uniformly random values subject to
the correctness constraint.

The protocol for secure bit-decomposition πdecomp UC-
realizes the functionality Fdecomp [21].

Functionality Fdecomp

Fdecomp is parametrized by the bit-length ` of the value
x being converted from an additive secret sharing JxKq

in Zq to additive bitwise secret sharings JxiK2 in Z2

such that x = x` · · ·x1.

Input: Upon receiving a message from Alice or Bob
with her/his share of JxKq , record the share, ignore
any subsequent messages from that party and inform
the other party about the receipt.

Output: Upon receipt of both shares, reconstruct x,
compute its bitwise representation x` · · ·x1, and for
i ∈ {1, . . . , `} distribute new secret sharings JxiK2 of
the bit xi. Before the output deliver, the corrupt party
fix its shares of the outputs to any constant values.
The shares of the uncorrupted parties are then created
by picking uniformly random values subject to the
correctness constraints.

The LR classification protocol πLR UC-realizes the function-
ality FLR [21].

Functionality FLR

FLR computes the classification according to a logistic
regression model with the threshold value set to 0.5.
The input feature vector x is secret shared between
Alice and Bob.

Input: Upon receiving the weight vector w, the
intercept value b and his shares JxiKq

of the elements
of x from Bob, or her shares JxiKq of the elements

of x from Alice, store the information, ignore any
subsequent message from that party, and inform the
other party about the receipt.

Output: Upon getting the inputs from both parties,
reconstruct the feature vector x, compute the value
sign (〈x,w〉+ b) and output it to Bob as the class
prediction.

We now show that the equality test protocol πEQ UC-realizes
functionality FEQ.

Functionality FEQ

FEQ is parametrized by the bit-length ` of the values
being compared.

Input: Upon receiving a message from Alice/Bob with
her/his shares of JxiK2

and JyiK2
for all i ∈ {1, . . . , `},

record the shares, ignore any subsequent messages
from that party and inform the other party about the
receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct x and y from the bitwise shares. If x = y,
then create and distribute to Alice and Bob the secret
sharing J1K2 ; otherwise the secret sharing J0K2 . Before
the deliver of the output shares, a corrupt party fix
its share of the output to any constant value. In both
cases the shares of the uncorrupted parties are then
created by picking uniformly random values subject to
the correctness constraint.

The correctness of the equality test protocol πEQ follows
from the fact that in the case that x = y, then all ri’s will be
equal to 1 and therefore z =

∏
i ri will also be 1. If x 6= y, then

for at least one value i, we have that ri = 0, and therefore z = 0.
For the simulation, S executes an internal copy of A interacting
with an instance of πEQ in which the uncorrupted parties use
dummy inputs. Note that all the messages that A receives
look uniformly random to him. Since the share multiplication
protocol is substituted by FDMM using the UC composition
theorem, and S is the one responsible for simulating FDMM in
the ideal world, S can leverage this fact in order to extract the
share that any corrupted party have of the value xi+yi, let the
extracted value of the corrupted party be denoted by vi,C . The
simulator then pick random values xi,C , yi,C ∈ {0, 1} such
that xi,C+yi,C = vi,C mod 2 and submit these values to FEQ

as being the shares of the corrupted party for xi and yi (note
that the result of FEQ only depends on the values of xi + yi
mod 2). S is also able to fix the output share of the corrupted
party in FEQ so that it matches the one in the instance of
πEQ. This is a perfect simulation strategy, no environment Z
can distinguish the ideal and real worlds and therefore πEQ
UC-realizes FEQ.

Next, we prove that the secure feature extraction protocol
πFE UC-realizes functionality FFE.



8

Functionality FFE

FFE is parametrized by the sizes m of Alice’s set
and n of Bob’s set, and the bit-length ` of the elements.

Input: Upon receiving a message from Alice with
her set A = {a1, a2, . . . , am} or from Bob with his
set B = {b1, b2, . . . , bn}, record the set, ignore any
subsequent messages from that party and inform the
other party about the receipt.

Output: Upon receipt of the inputs from both parties,
define the binary feature vector x of length n by setting
each element xi to 1 if bi ∈ A, and to 0 otherwise.
Then create and distribute to Alice and Bob the secret
sharings JxiK2

. Before the deliver of the output shares,
a corrupt party fix its share of the output to any constant
value. In both cases the shares of the uncorrupted parties
are then created by picking uniformly random values
subject to the correctness constraint.

The correctness of the secure feature extraction protocol
πFE follows directly from the fact that each xij is equal to 1
if, and only if, aj = bi, and therefore xi =

∑
j xij is equal

to 1 if, and only if, bi is equal to some element of A. In the
ideal world, the simulator S runs internally a copy of A and
an execution of πFE with dummy inputs for the uncorrupted
parties. All the messages from the uncorrupted parties look
uniformly random from A’s point of view, and therefore the
simulation is perfect. S uses the leverage of being responsible
for simulating FEQ (πEQ is substituted by FEQ using the UC
composition theorem) in order to extract the inputs of any
corrupted party and forward it to FFE. No environment Z can
distinguish the ideal world from the real one, and thus πFE
UC-realizes FFE.

The conversion protocol π2toQ UC-realizes functionality
F2toQ.

Functionality F2toQ

F2toQ is parametrized by the size of the field q.

Input: Upon receiving a message from Alice/Bob
with her/his share of JxK2 , record the share, ignore
any subsequent messages from that party and inform
the other party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct x, then create and distribute to Alice and
Bob the secret sharing JxKq . Before the deliver of
the output shares, a corrupt party fix its share of the
output to any constant value. In both cases the shares
of the uncorrupted parties are then created by picking
uniformly random values subject to the correctness
constraint.

In the case of the conversion protocol π2toQ the correctness
of the protocol execution follows straightforwardly: since

x = xa + xB mod 2, then z = xA + xB − 2xAxB is
such that z = x for all possible values xA, xB ∈ {0, 1}.
As for the security, the simulator S runs internally a copy
of the adversary A and simulates to him an execution of
the protocol π2toQ using dummy inputs for the uncorrupted
parties. As all the messages from the uncorrupted parties look
uniformly random from the adversary point of view, and so
the simulation is perfect. The simulator can use the fact that
it is the one simulating the multiplication functionality FDMM

(the secret sharing multiplication is substituted by FDMM using
the UC composition theorem) in order to extract the share of
any corrupted party and fix the input to/output from F2toQ

appropriately, so that no environment Z can distinguish the
real and ideal worlds. Hence π2toQ UC-realizes F2toQ.

Finally, the AdaBoost classification protocol πAB UC-realizes
functionality FAB.

Functionality FAB

FAB computes the classification according to AdaBoost
with multiple decision stumps. All the features are
binary and the output class is also binary. The
input feature vector x is secret shared between
Alice and Bob. The model specified by Bob can
be expressed in a simplified way by two weighted
probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1)
and z = (z1,0, z1,1, . . . , zn,0, zn,1). For the i-th
decision stump: yi,k is the weighted probability (i.e.,
a probability multiplied by the weight of the i-th
decision stump) that the model assigns to the output
class being 0 if xi = k, and zi,k is defined similarly
for the output class 1.

Input: Upon receiving the vectors y and z and his
shares JxiKq

of the elements of the feature vector
x from Bob, or her shares JxiKq

of the elements
of x from Alice, store the information, ignore any
subsequent message from that party, and inform the
other party about the receipt.

Output: Upon getting the inputs from both parties,
reconstruct the feature vector x and let w = (1 −
x1, x1, 1− x2, x2, . . . , 1− xn, xn). If 〈w, z〉 ≥ 〈w, y〉,
output the class prediction 1 to Bob; otherwise output
0.

The AdaBoost classification protocol πAB is trivially correct
for the case of binary features and output class, and decision
stumps. In the simulation, S runs an internal copy of A
interacting with a simulated instance of πAB that uses dummy
inputs for the uncorrupted parties. πIP is substituted by FDMM

using the UC composition theorem. S uses the leverage of
simulating FDMM in order to extract the shares of the feature
vector belonging to a corrupted party, as well as the weighted
probability vectors y and z if Bob is corrupted. S can then give
these extracted inputs to FAB. No environment can distinguish
the real and ideal worlds since the simulation is perfect, and
thus πAB UC-realizes FAB.



9

Security of the Privacy-Preserving Text Classification
Solutions: The text classification protocol πTC−LR UC-realizes
functionality FTC−LR.

Functionality FTC−LR

FTC−LR computes the privacy-preserving text
classification according to a logistic regression model
with the threshold value set to 0.5. It is parametrized
by the sizes m of Alice’s set and n of Bob’s set, and
the bit-length ` of the elements.

Input: Upon receiving a message from Alice with
her set A = {a1, a2, . . . , am} or from Bob with his
set B = {b1, b2, . . . , bn}, the weight vector w and
the intercept value b, record the values, ignore any
subsequent messages from that party and inform the
other party about the receipt.

Output: Upon getting the inputs from both parties,
define the feature vector x of length n as follows:
xi = 1 if bi ∈ A; and xi = 0 otherwise. Compute
the value sign (〈x,w〉+ b) and output it to Bob as the
class prediction.

The protocol πTC−LR simply executes sequentially the proto-
cols πFE, π2toQ and πLR. Given that these protocols UC-realize
FFE, F2toQ and FLR, respectively, they can be substituted by
the functionalities using the UC composition theorem. Note
that the sequential composition of those functionalities trivially
perform the same computation as FTC−LR, and no information
other than the output of the classification is revealed (all the
intermediate values are kept as secret sharings). In the ideal
world S simulates an internal copy of the adversary A running
πTC−LR and using dummy inputs for the uncorrupted parties.
The simulator S can easily extract all the information (from
the corrupted parties) that it needs to provide to FTC−LR by
using the leverage of being responsible for simulating FFE,
F2toQ and FLR in the ideal world. Therefore no environment
Z can distinguish the real world from the ideal world, and
πTC−LR UC-realizes FTC−LR.

And the text classification protocol πTC−AB UC-realizes
functionality FTC−AB.

Functionality FTC−AB

FTC−AB computes the privacy-preserving text
classification according to AdaBoost with multiple
decision stumps. It is parametrized by the sizes m of
Alice’s set and n of Bob’s set, and the bit-length ` of
the elements. All the features are binary and the output
class is also binary. The model specified by Bob can
be expressed in a simplified way by two weighted
probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1)
and z = (z1,0, z1,1, . . . , zn,0, zn,1). For the i-th
decision stump: yi,k is the weighted probability (i.e.,
a probability multiplied by the weight of the i-th
decision stump) that the model assigns to the output

class being 0 if the feature xi = k, and zi,k is defined
similarly for the output class 1.

Input: Upon receiving a message from Alice with
her set A = {a1, a2, . . . , am} or from Bob with his
set B = {b1, b2, . . . , bn}, y and z, record the values,
ignore any subsequent messages from that party and
inform the other party about the receipt.

Output: Upon getting the inputs from both parties,
define the feature vector x of length n as follows:
xi = 1 if bi ∈ A; and xi = 0 otherwise. Let w = (1−
x1, x1, 1− x2, x2, . . . , 1− xn, xn). If 〈w, z〉 ≥ 〈w, y〉,
output the class prediction 1 to Bob; otherwise output
0.

Similarly to the above case, the protocol πTC−AB just runs
sequentially the protocols πFE, π2toQ and πAB, that can be
substituted by FFE, F2toQ and FAB using the UC composition
theorem. The result of the computation is trivially the same as
in FTC−AB, and no additional information is revealed. S runs
internally a copy of A interacting with a simulated instance of
πTC−AB (using dummy inputs for the uncorrupted parties) and
can easily extract from the corrupted parties all the information
that it must provide to FTC−AB by using the leverage of being
responsible for simulating FFE, F2toQ and FAB in the ideal
world. No environment Z can distinguish the real and ideal
worlds, and therefore πTC−AB UC-realizes FTC−AB.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed protocols in a use case for the
detection of hate speech in short text messages, using data
from [7]. The corpus consists of 10,000 tweets, 60% of which
are annotated as hate speech against women or immigrants.
We convert all characters to lowercase, and turn each tweet
into a set of word unigrams and bigrams. There are 29,853
distinct unigrams and 93,629 distinct bigrams in the dataset,
making for a total of 123,482 features.

We implemented the protocols from Section IV in both Java
and Rust using the respective versions of Lynx (Java-Lynx and
Rust-Lynx).7 Accuracy results for a variety of models trained to
classify a tweet as hate speech vs. non-hate speech are presented
in Tables I and II. The models are evaluated using 5-fold cross-
validation over the entire corpus of 10,000 tweets. The top
rows in Tables I and II correspond to tree ensemble models
consisting of 50, 200, and 500 decision stumps respectively; the
root of each stump corresponds to a feature. The bottom rows
contain results for an LR model trained on 50, 200, and 500
features (preselected based on information gain), and an LR
model trained on all features. We ran experiments for feature
sets consisting of unigrams and bigrams, as well as for feature
sets consisting of unigrams only, observing that the inclusion
of bigrams leads to a small improvement in accuracy. Note that
designing a model to obtain the highest possible accuracy is

7https://bitbucket.org/uwtppml



10

TABLE I
ACCURACY (ACC) RESULTS USING 5-FOLD CROSS-VALIDATION OVER THE CORPUS OF 10,000 TWEETS. TOTAL TIME (TOT) NEEDED TO SECURELY

CLASSIFY A TEXT WITH OUR JAVA FRAMEWORK, BROKEN DOWN IN TIME NEEDED FOR FEATURE VECTOR EXTRACTION (EXTR) AND TIME FOR FEATURE
VECTOR CLASSIFICATION (CLASS).

Java-Lynx Unigrams Unigrams+Bigrams
Acc Time (in sec) Acc Time (in sec)

Extr Class Tot Extr Class Tot
Ada; 50 trees; depth 1 71.6% 0.8 6.4 7.2 73.3% 1.5 6.6 8.1
Ada; 200 trees; depth 1 73.0% 2.8 6.4 9.2 74.2% 9.4 6.6 16.0
Ada; 500 trees; depth 1 73.9% 6.6 6.7 13.3 74.4% 21.6 6.7 28.3
Logistic regression (50 feat.) 72.4% 0.8 3.7 4.5 73.8% 1.5 3.8 5.3
Logistic regression (200 feat.) 73.3% 2.8 3.7 6.5 73.7% 9.4 3.8 13.2
Logistic regression (500 feat.) 73.4% 6.6 3.8 10.4 74.2% 21.6 4.1 25.7

TABLE II
ACCURACY (ACC) RESULTS USING 5-FOLD CROSS-VALIDATION OVER THE CORPUS OF 10,000 TWEETS. TOTAL TIME (TOT) NEEDED TO SECURELY

CLASSIFY A TEXT WITH OUR RUST FRAMEWORK, BROKEN DOWN IN TIME NEEDED FOR FEATURE VECTOR EXTRACTION (EXTR) AND TIME FOR FEATURE
VECTOR CLASSIFICATION (CLASS).

Rust-Lynx Unigrams Unigrams+Bigrams
Acc Time (in sec) Acc Time (in sec)

Extr Class Tot Extr Class Tot
Ada; 50 trees; depth 1 71.6% 0.925 0.062 0.987 73.3% 2.583 0.064 2.647
Ada; 200 trees; depth 1 73.0% 3.652 0.062 3.714 74.2% 9.915 0.062 9.977
Ada; 500 trees; depth 1 73.9% 9.227 0.066 9.293 74.4% 25.685 0.066 25.751
Logistic regression (50 feat.) 72.4% 0.915 0.038 0.953 73.8% 2.583 0.041 2.624
Logistic regression (200 feat.) 73.3% 3.652 0.039 3.691 73.7% 9.915 0.042 9.957
Logistic regression (500 feat.) 73.4% 9.227 0.041 9.268 74.2% 25.685 0.041 25.726

not the focus of this paper. Instead, our goal is to demonstrate
that PP text classification based on SMC is feasible in practice.

We ran experiments on AWS c5.9xlarge machines with 36
vCPUs, 72.0 GiB Memory. Each of the parties ran on separate
machines (connected with a Gigabit Ethernet network), which
means that the results in Table I and II cover communication
time in addition to computation time. Each runtime experiment
was repeated 3 times and average results are reported. In Table
I and II we report the time (in sec) needed for converting
a tweet into a feature vector (Extr), for classification of the
feature vector (Class), and for the overall process (Tot). Our
results showed that for all hyper-parameter choices of the
models, our Rust-Lynx implementation outperforms the Java-
Lynx implementation, with the exception of the case of logistic
regression using unigrams and bigrams with 500 features, where
the performance of both were similar.

A. Analysis

The best running times were obtained using unigrams, 50
features and logistic regression (4.5s in Java-Lynx and 0.953s in
Rust-Lynx) with an accuracy of 72.4%. The highest accuracy
(74.4%) was obtained by using unigram and bigrams, 500
features and AdaBoost with a running time equal to 28.3s in
Java-Lynx and 25.751s in Rust-Lynx. From these results, it is
clear that feature engineering plays a major role in optimizing
privacy-preserving machine learning solutions based on SMC.
We managed to reduce the running time from 5,396.8s (logistic
regression, unigram and bigrams, all 123,482 features being
used) to 2.624s (logistic regression, unigrams and bigrams,
50 features in Rust-Lynx) without any loss in accuracy and

to 0.935s (logistic regression, unigrams only, 50 features in
Rust-Lynx) with a small loss.

B. Optimizing the computational and communication complex-
ities

The feature extraction protocol requires n · m secure
equality tests of bit strings. The equality test relies on secure
multiplication, which is the more expensive operation. To
reduce the number of required equality tests, Alice and Bob
can each first map their bit strings to p buckets A1, A2, . . . , Ap

and B1, B2, . . . , Bp respectively, so that bit strings from each
Ai need to only be compared with bit strings from Bi. Each
bit string aj and bi is hashed and the first t bits of the hash
output are used to define the bucket number corresponding to
that bit string, using a total of p = 2t buckets. In order not to
leak how many elements are mapped to each bucket (which
can leak some information about the probability distribution of
the elements, as the hash function is known by everyone), each
bucket has a fixed number of elements (s1 for Bob’s buckets
and s2 for Alice’s buckets) and the empty spots in the buckets
are filled up with dummy elements. The feature extraction
protocol now requires p · s1 · s2 equality tests, which can be
substantially smaller than n ·m. When using bucketization, the
feature vector of length n from (1) is expanded to a feature
vector of length p · s1, containing the original n features as
well as the p · s1 − n dummy features that Bob created to fill
up his buckets. These dummy features do not have any effect
on the accuracy of the classification because Bob’s model does
not take them into account: the trees with dummy features in
an AdaBoost model have 0 weight for both class labels, and



11

the dummy features’ coefficients in an LR model are always
0.

The size of the buckets has to be chosen sufficiently large
to avoid overflow. The choice depends directly on the number
p = 2t of buckets (which is kept constant for Alice and Bob)
and the number of elements to be placed in the buckets, i.e. n
elements on Bob’s side and m elements on Alice’s side. While
for hash functions coming from a 2-universal family of hash
functions the computation of these probabilities is relatively
straightforward, the same is not true for more complicated hash
functions [47]. In that case, numerical simulations are needed
in order to bound the required probability.

The effect of using buckets is more significant for large
values of n and m. In our case, after performing feature
engineering for reducing the number of elements in each set,
in the best case, we end up with inputs for which there is no
significant difference between the original protocol (without
buckets) and the protocol that uses buckets. If the performance
of these two cases is comparable, one is better off using the
version without buckets, since there will be no probability of
information being leaked due to bucket overflow.

Another way we could possibly improve the communication
and computation complexities of the protocol is by reducing
the number of bits used to represent each feature albeit at
the cost of increasing the probability of collisions (different
features being mapped into the same bit strings). We used 13
bits for representing unigrams and 17 bits for representing
unigrams and bigrams. We did not observe any collisions.

Finally, we note that if the protocol is to be deployed over
a wide area network, rather than a local area network, Yao
garbled circuits would become a preferable choice for the round
intensive parts of our solution (such as in the private feature
extraction part).

VII. CONCLUSION

In this paper we have presented the first provably secure
method for privacy-preserving (PP) classification of unstruc-
tured text. We have provided an analysis of the correctness and
security of solution. As a side result, we also present a novel
protocol for binary classification over binary input features with
an ensemble of decisions stumps. An implementation of the
protocols in Java, run on AWS machines, allowed us to classify
text messages securely within seconds. It is important to note
that this run time (1) includes both secure feature extraction
and secure classification of the extracted feature vector; (2)
includes both computation and communication costs, as the
parties involved in the protocol were run on separate machines;
(3) is two orders of magnitude better than the only other existing
solution, which is based on HE. Our results show that in order
to make PP text classification practical, one needs to pay close
attention not only to the underlying cryptographic protocols
but also to the underlying ML algorithms. ML algorithms that
would be a clear choice when used in the clear might not be
useful at all when transferred to the SMC domain. One has to
optimize these ML algorithms having in mind their use within
SMC protocols. Our results provide the first evidence that
provably secure PP text classification is feasible in practice.

REFERENCES

[1] Anisha Agarwal, Rafael Dowsley, Nicholas D. McKinney, Dongrui Wu,
Chin-Teng Lin, Martine De Cock, and Anderson C. A. Nascimento.
Protecting privacy of users in brain-computer interface applications.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
27(8):1546–1555, Aug 2019.

[2] Peter Ray Allison. Tracking terrorists online might invade your
privacy. BBC, http://www.bbc.com/future/story/20170808-tracking-
terrorists-online-might-invade-your-privacy, 2017.

[3] Tiago A. Almeida, José María G. Hidalgo, and Akebo Yamakami.
Contributions to the study of SMS spam filtering: new collection and
results. In Proc. of the 11th ACM Symposium on Document Engineering,
pages 259–262, 2011.

[4] Nuttapong Attrapadung, Goichiro Hanaoka, Shinsaku Kiyomoto, Tomoaki
Mimoto, and Jacob CN Schuldt. A taxonomy of secure two-party
comparison protocols and efficient constructions. In 15th Annual
Conference on Privacy, Security and Trust (PST), 2017.

[5] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass.
Universally composable protocols with relaxed set-up assumptions. In
45th Annual Symposium on Foundations of Computer Science, pages
186–195, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press.

[6] Paulo S. L. M. Barreto, Bernardo David, Rafael Dowsley, Kirill Morozov,
and Anderson C. A. Nascimento. A framework for efficient adaptively
secure composable oblivious transfer in the ROM. Cryptology ePrint
Archive, Report 2017/993, 2017. http://eprint.iacr.org/2017/993.

[7] Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana
Patti, Francisco Rangel, Paolo Rosso, and Manuela Sanguinetti. Semeval-
2019 Task 5: Multilingual detection of hate speech against immigrants
and women in Twitter. In Proc. of the 13th International Workshop on
Semantic Evaluation (SemEval-2019). ACL, 2019.

[8] Donald Beaver. Commodity-based cryptography (extended abstract). In
29th Annual ACM Symposium on Theory of Computing, pages 446–455,
El Paso, TX, USA, May 4–6, 1997. ACM Press.

[9] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser.
Machine learning classification over encrypted data. In NDSS, volume
4324, page 4325, 2015.

[10] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations of
Computer Science, pages 136–145, Las Vegas, NV, USA, October 14–17,
2001. IEEE Computer Society Press.

[11] Ran Canetti and Marc Fischlin. Universally composable commitments.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 19–40, Santa Barbara,
CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[12] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
34th Annual ACM Symposium on Theory of Computing, pages 494–503,
Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

[13] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash
functions. Journal of Computer and System Sciences, 18(2):143–154,
1979.

[14] Michele Ciampi and Claudio Orlandi. Combining private set-intersection
with secure two-party computation. In Dario Catalano and Roberto De
Prisco, editors, SCN 18: 11th International Conference on Security in
Communication Networks, volume 11035 of Lecture Notes in Computer
Science, pages 464–482, Amalfi, Italy, September 5–7, 2018. Springer,
Heidelberg, Germany.

[15] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and
Michael Y. Zhu. Tools for privacy preserving distributed data mining.
ACM SIGKDD Explorations Newsletter, 4(2):28–34, 2002.

[16] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, Davis
Railsback, Jianwei Shen, and Ariel Todoki. High performance logistic
regression for privacy-preserving genome analysis. IACR Cryptol. ePrint
Arch., 2020:171, 2020.

[17] Gianpiero Costantino, Antonio La Marra, Fabio Martinelli, Andrea
Saracino, and Mina Sheikhalishahi. Privacy-preserving text mining as a
service. In 2017 IEEE Symposium on Computers and Communications
(ISCC), pages 890–897, 2017.

[18] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure
Multiparty Computation and Secret Sharing. Cambridge University
Press, 2015.

[19] Bernardo David, Rafael Dowsley, Raj Katti, and Anderson CA Nasci-
mento. Efficient unconditionally secure comparison and privacy preserv-
ing machine learning classification protocols. In International Conference
on Provable Security, pages 354–367. Springer, 2015.

http://eprint.iacr.org/2017/993


12

[20] Bernardo David, Rafael Dowsley, Jeroen van de Graaf, Davidson Marques,
Anderson C. A. Nascimento, and Adriana C. B. Pinto. Unconditionally
secure, universally composable privacy preserving linear algebra. IEEE
Transactions on Information Forensics and Security, 11(1):59–73, 2016.

[21] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson
Nascimento, Wing-Sea Poon, and Stacey Truex. Efficient and private
scoring of decision trees, support vector machines and logistic regression
models based on pre-computation. IEEE Transactions on Dependable
and Secure Computing, 16(2):217–230, 2019.

[22] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, and
Stacey C. Newman. Fast, privacy preserving linear regression over
distributed datasets based on pre-distributed data. In 8th ACM Workshop
on Artificial Intelligence and Security (AISec), pages 3–14, 2015.

[23] Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, and Harm
op den Akker. Practical secure decision tree learning in a teletreatment
application. In International Conference on Financial Cryptography and
Data Security, pages 179–194. Springer, 2014.

[24] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a
framework for efficient mixed-protocol secure two-party computation.
In NDSS, 2015.

[25] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Uncondi-
tional and composable security using a single stateful tamper-proof
hardware token. In Yuval Ishai, editor, TCC 2011: 8th Theory of
Cryptography Conference, volume 6597 of Lecture Notes in Computer
Science, pages 164–181, Providence, RI, USA, March 28–30, 2011.
Springer, Heidelberg, Germany.

[26] Rafael Dowsley. Cryptography Based on Correlated Data: Foundations
and Practice. PhD thesis, Karlsruhe Institute of Technology, Germany,
2016.

[27] Rafael Dowsley, Jörn Müller-Quade, and Anderson C. A. Nascimento.
On the possibility of universally composable commitments based on
noisy channels. In SBSEG 2008, pages 103–114, Gramado, Brazil,
September 1–5, 2008.

[28] Rafael Dowsley, Jörn Müller-Quade, and Tobias Nilges. Weakening the
isolation assumption of tamper-proof hardware tokens. In Anja Lehmann
and Stefan Wolf, editors, ICITS 15: 8th International Conference
on Information Theoretic Security, volume 9063 of Lecture Notes in
Computer Science, pages 197–213, Lugano, Switzerland, May 2–5, 2015.
Springer, Heidelberg, Germany.

[29] Rafael Dowsley, Jörn Müller-Quade, Akira Otsuka, Goichiro Hanaoka,
Hideki Imai, and Anderson C. A. Nascimento. Universally composable
and statistically secure verifiable secret sharing scheme based on pre-
distributed data. IEICE Transactions, 94-A(2):725–734, 2011.

[30] Rafael Dowsley, Jeroen Van De Graaf, Davidson Marques, and Ander-
son CA Nascimento. A two-party protocol with trusted initializer for
computing the inner product. In International Workshop on Information
Security Applications, pages 337–350. Springer, 2010.

[31] Rafael Dowsley, Jeroen van de Graaf, Jörn Müller-Quade, and Anderson
C. A. Nascimento. On the composability of statistically secure bit
commitments. Journal of Internet Technology, 14(3):509–516, 2013.

[32] Cynthia Dwork. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation, pages
1–19. Springer, 2008.

[33] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private
set intersection with linear communication from general assumptions.
Cryptology ePrint Archive, Report 2018/238, 2018. https://eprint.iacr.
org/2018/238.

[34] Golnoosh Farnadi, Geetha Sitaraman, Shanu Sushmita, Fabio Celli,
Michal Kosinski, David Stillwell, Sergio Davalos, Marie-Francine Moens,
and Martine De Cock. Computational personality recognition in social
media. User Modeling and User-Adapted Interaction, 26(2-3):109–142,
2016.

[35] Kyle Fritchman, Keerthanaa Saminathan, Rafael Dowsley, Tyler Hughes,
Martine De Cock, Anderson Nascimento, and Ankur Teredesai. Privacy-
preserving scoring of tree ensembles: A novel framework for AI in
healthcare. In Proc. of 2018 IEEE International Conference on Big Data,
pages 2412–2421, 2018.

[36] Juan A. Garay, Berry Schoenmakers, and José Villegas. Practical and
secure solutions for integer comparison. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, PKC 2007: 10th International Conference on
Theory and Practice of Public Key Cryptography, volume 4450 of Lecture
Notes in Computer Science, pages 330–342, Beijing, China, April 16–20,
2007. Springer, Heidelberg, Germany.

[37] Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, and N. Asokan.
All you need is “love”: Evading hate-speech detection. In Proc. of the
11th ACM Workshop on Artificial Intelligence and Security (AISec), 2018.

[38] Dennis Hofheinz and Jörn Müller-Quade. Universally composable
commitments using random oracles. In Moni Naor, editor, TCC 2004: 1st
Theory of Cryptography Conference, volume 2951 of Lecture Notes in
Computer Science, pages 58–76, Cambridge, MA, USA, February 19–21,
2004. Springer, Heidelberg, Germany.

[39] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Universally
composable zero-knowledge arguments and commitments from signature
cards. In MoraviaCrypt 2005, 2005.

[40] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and
Anat Paskin-Cherniavsky. On the power of correlated randomness in
secure computation. In Theory of Cryptography, pages 600–620. Springer,
2013.

[41] Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In Moni Naor, editor, Advances in Cryptology –
EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science,
pages 115–128, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg,
Germany.

[42] Selim V Kaya, Thomas B Pedersen, Erkay Savaş, and Yücel Saygıỳn.
Efficient privacy preserving distributed clustering based on secret sharing.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 280–291. Springer, 2007.

[43] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 19–38. IEEE, 2017.

[44] Bridianne O’Dea, Stephen Wan, Philip J. Batterham, Alison L. Calear,
Cecile Paris, and Helen Christensen. Detecting suicidality on Twitter.
Internet Interventions, 2(2):183–188, 2015.

[45] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 554–571, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Heidelberg, Germany.

[46] Wouter Penard and Tim van Werkhoven. On the secure hash algorithm
family. In Cryptography in Context, pages 1–18. 2008.

[47] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private
set intersection based on OT extension. ACM Transactions on Privacy
and Security (TOPS), 21(2):7, 2018.

[48] Andrew G. Reece, Andrew J. Reagan, Katharina L.M. Lix, Peter Sheridan
Dodds, Christopher M. Danforth, and Ellen J. Langer. Forecasting the
onset and course of mental illness with Twitter data. Scientific Reports,
7(1):13006, 2017.

[49] Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, and
Anderson C. A. Nascimento. Privacy-preserving classification of personal
text messages with secure multi-party computation. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Edward A.
Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32, NeurIPS 2019, 8-14 December 2019, Vancouver,
BC, Canada, pages 3752–3764, 2019.

[50] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applications.
In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pages 707–721. ACM, 2018.

[51] Ronald L. Rivest. Unconditionally secure commitment and oblivious
transfer schemes using private channels and a trusted initializer. Preprint
available at http://people.csail.mit.edu/rivest/Rivest- commitment.pdf,
1999.

[52] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz.
A Bayesian approach to filtering junk e-mail. In Learning for Text
Categorization: Papers from the 1998 Workshop, volume 62, pages 98–
105, 1998.

[53] Rafael Tonicelli, Anderson C. A. Nascimento, Rafael Dowsley, Jörn
Müller-Quade, Hideki Imai, Goichiro Hanaoka, and Akira Otsuka.
Information-theoretically secure oblivious polynomial evaluation in the
commodity-based model. International Journal of Information Security,
14(1):73–84, 2015.

[54] Cynthia Van Hee, Gilles Jacobs, Chris Emmery, Bart Desmet, Els Lefever,
Ben Verhoeven, Guy De Pauw, Walter Daelemans, and Véronique Hoste.
Automatic detection of cyberbullying in social media text. PloS one,
13(10):e0203794, 2018.

[55] Thijs Veugen, Frank Blom, Sebastiaan JA de Hoogh, and Zekeriya Erkin.
Secure comparison protocols in the semi-honest model. IEEE Journal
of Selected Topics in Signal Processing, 9(7):1217–1228, 2015.

[56] Benjamin Weggenmann and Florian Kerschbaum. SynTF: Synthetic and
differentially private term frequency vectors for privacy-preserving text
mining. In 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, pages 305–314, 2018.

https://eprint.iacr.org/2018/238
https://eprint.iacr.org/2018/238

	Introduction
	Related work
	Preliminaries
	Secure text classification
	Cryptographic building blocks
	Privacy-preserving classification of personal text messages

	Correctness and Security Analysis of Protocols
	Security Model

	Experimental results
	Analysis
	Optimizing the computational and communication complexities

	Conclusion
	References

