
Efficient Perfectly Sound One-message
Zero-Knowledge Proofs via Oracle-aided

Simulation

Vincenzo Iovino1

1University of Luxembourg,
vinciovino@gmail.com

Abstract. In this paper we put forth new one-message proof systems for
several practical applications, like proving that an El Gamal ciphertext
(over a multiplicative group) decrypts to a given value and correctness of
a shuffle. Our proof systems are not based on any setup/trust assumption
like the RO or the common reference string model and are perfectly sound,
that is they are written proofs in the sense of mathematics.
Our proof systems satisfy a generalization of zero-knowledge (ZK) that
we call harmless zero-knowledge (HZK). The simulator of an O-HZK
proof for a relation over a language L is given the additional capability
of invoking an oracle O relative to which L is hard to decide. That is, the
proof does not leak any knowledge that an adversary might not compute
by itself interacting with an oracle O that does not help to decide the
language.
Unlike ZK, non-interactivity and perfect soundness do not contradict
HZK and HZK can replace ZK in any application in which, basically, the
computational assumptions used in the application hold even against
adversaries with access to O. An O-HZK proof is WH, assuming some
computational problem to be hard for adversaries with access to O, and
strong-WI when quantifying over distributions that are indistinguishable
by adversaries with access to O.
We provide a specific oracle DHInvO that is enough powerful to make
our main proof systems DHInvO-HZK but not trivial: indeed, we show
concrete and practical cryptographic protocols that can be proven secure
employing a DHInvO-HZK proof in the reduction and that are instead
not achievable using traditional ZK (unless assuming a CRS/RO).
Efficient one-message proof systems with perfect soundness were only
known for relations over bilinear groups and were proven only witness
indistinguishable.
As byproduct, we also obtain a perfectly sound non-interactive ZAP and
HZK proof for NP from a number-theoretic assumption over multiplica-
tive groups of hidden order.

Keywords: zero-knowledge, NIZK, RSA, ZAP.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Our Results and Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Overview of our main proof system . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Standard NIZKA for correctness of El Gamal decryption . . 9
1.2.2 Our new non-interactive proof system . . . . . . . . . . . . . . . . . . 10
1.2.3 Proof of correct decryption and its applications . . . . . . . . . . 14

1.3 Harmless Zero-Knowledge Proof of Knowledge . . . . . . . . . . . . . . . . 16
1.3.1 Harmless ZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 HZK of our main proof system. . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Harmless proof of knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 O-HZK ⇐⇒ O-function hiding → witness hiding . . . . . . . . 21
1.3.5 The impact of the oracle leakage in applications. . . . . . . . . . 23
1.3.6 On trivial and efficient oracles . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.7 Undeniability of our proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.8 Applications and how to use HZK proofs . . . . . . . . . . . . . . . . 28
1.3.9 O-strong witness indistinguishability . . . . . . . . . . . . . . . . . . . 30

1.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.1 Verifiable shuffle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.2 OR proofs from verifiable shuffle . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.3 Polynomial statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.4 ZAP and computational HZK proof for NP relations . . . . . . 38

1.5 Related Work and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1 Number-theoretic facts and definitions. . . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Proof systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Interactive and NI proof systems . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.2 O-HZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.3 Hard relations and O-HPoK . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.4 O-WI and O-WH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.5 O-strong-WI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2.6 O-FH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3 Multiplicative groups of hidden order . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.1 El Gamal over groups of hidden order . . . . . . . . . . . . . . . . . . 64
2.3.2 Our relations RDDH and RSG . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.3 Our main oracle DHInvO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.4 Hardness assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Our HZKPoK proofs for subgroup membership and DH tuples . . . . . . . 68
3.1 HZKPoK for RSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 HZKPoK for RDDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



1 Introduction

Mathematical proofs vs interactive proofs. Zero-knowledge (ZK) proofs [GMR89,GMW91]
represent one of the most important concepts in computer science and turned
out to be one of the key ingredients in modern cryptographic protocol design.
Unlike traditional mathematical proofs, ZK proofs require interaction and allow
the prover to cheat the verifier with a a non-zero probability of error.

Non-interactive proofs. Since the discovery of ZK proofs, the importance of re-
moving interaction led to the introduction of non-interactive (NI) zero-knowledge
(NIZK) systems [DMP88]. NIZKs have been extensively studied for about 30
years [BFM88,DMP88,FLS90,RS92,Gol01,DDO+01]. Indeed, the concept of prov-
ing a statement in just one round without leaking any information has been
intriguing for theoreticians and extremely useful as building block for designers
of cryptographic protocols.

Truly non-interactive ZK proofs for non-BPP languages are provably impos-
sible to achieve [Gol01], so the initial constructions for NIZKs worked in the
common reference string (CRS) model [DMP88] and because of various limi-
tations (e.g., the need of NP-reductions, the non-reusability of the CRS, the
expensive computations) their impact was mainly in the theoretical foundations
of cryptography. In the CRS model, the party who generates the CRS has to be
trusted. Indeed, such party might either setup the CRS in a malicious way for
which the soundness does not hold or hand a trapdoor to a prover who can use
the trapdoor to prove false theorems.

Proofs vs arguments. The gap between NIZK proof (NIZKP) systems and NIZK
argument (NIZKA) systems consists in a different soundness requirement. The
soundness property aims to prevent a dishonest prover from convincing the veri-
fier about the veracity of a false statement. The powerful concept of a NIZK proof
requires the soundness guarantee to be unconditional, therefore the adversarial
prover can be unbounded. Instead, the notion of a NIZK argument [BCC88] has
a significantly weaker soundness guarantee since it applies to efficient adversarial
provers only.1.

The bridge between theory and practice: the Fiat-Shamir (FS) transform. The
traditional power of the simulator in a NIZK proof/argument system consists in
programming the common reference string (CRS). A popular alternative to the
CRS model is the Random Oracle (RO) model [BR93]. The RO model assumes
the availability of a perfect random function to all parties. One of the most
successful applications of the RO model in cryptography is the FS transform
that allows to obtain very efficient NIZK arguments [FS87]. The simulator of

1 In literature this difference is often overlooked. Despite this subtle difference, for
simplicity we will call proof the string generated by the prover, irrespective of whether
the prover be part of a proof or an argument system. We will however be precise on
using the words “proof system” and “argument system”.

3



such a NIZK argument programs the RO (i.e., the simulator replaces at least in
part the RO in answering to RO queries of the adversary).

In concrete implementations of this transform, prover and verifier replace the
RO by some “secure” hash function (e.g., SHA-3 [BDPA11]). NIZK arguments
in the RO model obtained via the FS transform are orders of magnitude more
efficient than the most efficient NIZK arguments in the CRS model [GS08].

Even if the RO methodology has been shown to be controversial already
in [CGH98] and further negative results were published next [DNRS99,Bar01,GK03,Kal06]
[BLV03,DRV12,BDSG+13,GOSV14,KRR16], NIZK arguments via the FS trans-
form are widely used in concrete cryptographic protocols (e.g., in the popular
Helios voting system [Adi08]). We remark that one could also consider a hy-
brid notion where the adversarial prover can be unbounded except that it can
query the random oracle a polynomial number of times only. We stress that in
this paper, when analyzing FS-derived NIZKs, we consider a truly unbounded
adversarial prover. This difference can be crucial in applications.

The importance of unconditional soundness. In e-voting privacy cannot be achieved
unconditionally unless losing universal verifiability or unless all the voters actu-
ally vote [CMFP+10]. There is instead no barrier to attain unconditional uni-
versal verifiability and the soundness guarantee of a ZK proof/argument used
in an e-voting scheme impinges on the quality of the universal verifiability: an
adversary that can break the soundness condition can subvert the result of the
election.

In the context of proofs of solvency for cryptocurrencies [DBB+15,BBB+18]
and similar applications, the soundness of the proof/argument system is signif-
icantly more important than the ZK property: the privacy of the transaction is
expendable but breaking the soundness of the proof system gives the possibility
of generating arbitrary coins blasting away the whole digital economy. The proof
systems we will propose are unconditionally sound but are not short, so cannot
be used in most of the applications of confidential transactions. Moreover, under
widely accepted complexity assumptions, no proof system with short communi-
cation may exist [GH98]. Despite this, the new ideas we will introduce may open
up the possibility of removing CRSs/ROs from the design of proofs for this kind
of applications.

Problem statement. The FS transform induces a significant soundness loss.
Indeed it receives as input a constant-round public-coin honest-verifier zero-
knowledge (HVZK) proof system and outputs a NIZK argument system. This is a
step back compared to the known NIZK proofs in the CRS model [BFM88,FLS90]
[GOS12,GS08].

Of course if one is interested in a NIZK proof system in the RO model there is
a trivial approach: just evaluate the RO on input the instance x to get a random
string that can be used to compute a NIZK proof in the common reference
string model (e.g., [FLS90]). However the trivial approach is very unsatisfying
for the following two reasons: 1) it requires expensive computations (sometimes
including an NP reduction) that make the NIZK proof completely impractical,

4



and 2) it requires some complexity assumptions (e.g., trapdoor permutations
in [FLS90]) therefore additionally incurring a significant security loss in the
zero-knowledge guarantee.

For languages relative to bilinear groups the situation is better and we have
NIZK proof systems and non-interactive ZAPs [DN00] with perfect soundness
[GOS06b,GS08]. However, bilinear groups are less efficient and their security
is less studied than other number-theoretic problems and the security of ZAPs
is limited to witness indistinguishability (WI) that, for instance, is a vacuous
guarantee for single witness relations as it is the case for the relation of valid
DH tuples. Furthermore, even for non-single witness relations WI poses several
threats and issues in several scenarios (see, e.g., discussion on verifiable functional
encryption in Section 1.3.8).

These limitations of the FS-transform, of the above trivial approach, of ZK
proofs in general (non-zero soundness error and non-interactivity inherently
based on trust assumptions), and of weaker WI proofs, motivate the main ques-
tions of this work.

Practical open question: is there any efficient non-interactive proof system
(i.e., soundness is guaranteed also against unbounded adversarial provers) for
practical languages not related to bilinear groups that can be used in relevant
cryptographic applications and satisfies a meaningful notion of privacy?

Theoretical open question: is there any achievable, non-trivial, useful
and usable variant of ZK that is compatible with perfect soundness and true
non-interactivity?

Later, we will answer positively these questions in a very strong sense by pre-
senting completely non-interactive proof systems both for practical applications
and general statements satisfying perfect soundness, not based on any trusted
parameter and enjoying a close variant of ZK. Our proofs are in particular proper
mathematical proofs.

The FS transform internals. Before digging in our results, we will first discuss
the limitations of the FS transform, the most known technique to construct
efficient NIZKAs, and review its internals.

Formal definitions of NIZK proofs and arguments of knowledge in the RO
model through the FS transform have been investigated in several papers [FKMV12]
[BPW12,BFW15]. For simplicity here we will now discuss the specific case of a
3-round public-coin HVZK proof system 3HVZK = (P,V) where the decision of
the verifier is deterministic. However our discussion can be generalized to any
constant-round public-coin HVZK argument system.
P sends a first message a to V, also called the commitment. Then V sends

back a random challenge c. Finally P outputs the final message z, the answer
to c. The triple (a, c, z) is called the transcript of an execution of 3HVZK for
an instance x and V takes deterministically the decision of accepting or not the
transcript.

The FS transform constructs NIZK = (NIZK.Prove,NIZK.Verify) as follows.
NIZK.Prove computes a precisely as P, but then the challenge c of V is replaced

5



by the output of the RO on input the statement x and a, i.e., c = H(x, a).2

Finally NIZK.Prove computes z precisely as P would compute it.
NIZK is only computationally sound (i.e., it is an argument system) in the

random oracle model. Indeed one can easily see that computing with non-
negligible probability an accepting transcript for a false statement when the
adversarial prover runs in polynomial time, implies that the challenge is the out-
put of one out of a polynomially bounded number of evaluations of the RO, and
this can be translated to proving with non-negligible probability a false state-
ment to V. Soundness can not be claimed when instead the adversarial prover is
unbounded and can therefore make an unbounded number of queries to the RO.

If 3HVZK is also HVZK, then the resulting NIZK argument system is ad-
ditionally a computational ZK argument system. Indeed the ZK simulator can
program the queries therefore being able to produce a simulated proof using the
HVZK simulator that is computationally indistinguishable from the a real proof.

If 3HVZK satisfies special soundness (i.e., there is a deterministic efficient
extractor that from 2 different accepting transcripts for the same statement with
the same first message outputs a witness), then the resulting NIZK argument
system additionally enjoys witness extraction but limited to PPT adversarial
provers. Known variations [Pas03a,Fis05,FKMV12] of the FS transform produce
NIZK argument systems that suffer of the same limitation of witness extraction
with respect to PPT provers. We also stress that, to our knowledge, all previous
variants of the FS transform (e.g., the ones of Pass [Pas03a] and Fischlin [Fis05])
only attain computational soundness (i.e., there is no security guarantee against
an unbounded adversarial prover that as such can have unlimited access to the
random oracle). Moreover, to our knowledge, previous works on NIZK argument
systems in the RO model only attained extraction (i.e., the proof of knowledge
property) against bounded adversaries.

The soundness degradation of the FS transform. Suppose that the underlying
interactive protocol has the following properties. The space of prover commit-
ments has cardinality ≥ 2b(λ), the verifier’s challenges have length k(λ), the
soundness error is 2−k(λ), with k(λ) ∈ ω(log(λ)), b(λ) ≥ λ + k(λ) and λ being
the security parameter, and the prover computes the answer z deterministically
based on (a, c). Suppose further that for each x /∈ L and each commitment a,
there exists at least one challenge c such that (a, c, z) is an accepted transcript.
(A natural Σ-protocol satisfying the above requirements will be shown soon.
The latter hypothesis can be also seen to hold assuming that for each x /∈ L, the
soundness error is non-zero.)

Fix an x /∈ L and consider the following unbounded prover NIZK.Prove? that
aims to compute an accepting proof for x. NIZK.Prove? searches over all pairs
of commitments and challenges (ac, c) such that the above property holds (i.e.,
(ac, c, z) is an accepting tuple, where z is the deterministic answer of the prover

2 When the challenge c is computed as H(a), the FS transform offers weaker security
guarantees (see [BPW12,CPS+16]). In this overview of the FS transform, we will
consider the strong FS transform.

6



to (ac, c)) and RO maps (x, ac) into c; if NIZK.Prove? can find a pair (ac, c) that
verifies such conditions, it outputs (ac, c, z) as its proof, otherwise outputs some
error ⊥.

For each commitment and challenge pair (ac, c) the probability that the RO
maps (x, ac) into c such that (ac, c, z) is an accepted transcript is, by hypothesis,
≥ 2−k(λ). Thus, since there are 2b(λ) ≥ 2λ+k(λ) commitments, NIZK.Prove? fails

in proving the false statement x with probability < (1− 1
2k(λ)

)2
λ+k(λ)

. Therefore,

NIZK.Prove? succeeds with probability ≥ 1− (1− 1
2k(λ)

)2
k(λ)·2λ ≈ 1− ( 1

e )2
λ

.3

This example shows that an unbounded prover can break the soundness of
the FS transform applied to some particular proof system satisfying the above
requirements. This is not an artificial counter-example as such requirements are
satisfied by very natural proof systems like the ones of [CP93,CDS94].

Example. Consider for instance the protocol of Chaum and Pedersen [CP93] for
proving that a tuple (g, h, u, v) of 4 group elements, in a group of prime order q,
is a Diffie-Hellman (DH) tuple.

The prover chooses a random r ← Zq, where q is the order of the group, and

sends the commitment a
4
= gr, b

4
= hr. The verifier sends a random challenge

c ← Zq. The prover sends back deterministically z
4
= r + c · w mod q and the

verifier accepts iff gz = a · uc and hz = b · vc.
Let λ be the security parameter and k(λ)

4
= λ equal the length of the group

elements. Then, challenges have length k(λ), commitments have length 2 · k(λ)
and k(λ) is also the soundness error. By using the simulator (of the special
HVZK), it is easy to see that for each false statement x /∈ L and for each
challenge c, there exists (a, z) such that (a, c, z) is an accepted transcript for x.
Thus, the Chaum and Pedersen’s protocol satisfies the above requirements and
the soundness can be broken in time ≈ 2k(λ).

Ineffectiveness of parallel repetition. A natural approach to adjust the FS trans-
form in order to circumventing the above attack would be to execute p instances
of the protocol in parallel and computing each challenge ci, for i = 1, . . . , p, as
RO(x||ai||i). Unluckily, this strategy does not improve the situation. In fact,
while the number of possible challenges increases (each challenge now consists of
k · p bits) the number of possible commitments also increases. A simple analysis
shows that an attack similar to the previous one can be applied to such variant
of the FS transform as well. Observe also that the previous attack can be viewed
as a special case for p(λ) = 1.

In fact, consider a false statement x and an unbounded prover NIZK.Prove?

similar to before aiming at computing an accepting proof for x. By the previous
analysis on the protocol without repetitions (that can be seen as a special case for
p(λ) = 1) and since the p(λ) executions are independent, NIZK.Prove? succeeds

with probability
(

1− ( 1
e )2

λ
)p(λ)

that is overwhelming in λ.

3 This follows from the fact that limλ→∞ 2k(λ) = ∞ and thus limλ→∞(1 −
1

2k(λ)
)−2k(λ) = e.

7



It is fundamental for the previous analysis to hold that the space of com-
mitments be much bigger than the challenge space, as it is indeed the case in
general for natural Σ-protocols for relations in which deciding membership is
non-trivial. In fact, if for instance the challenge and commitment spaces had the
same cardinality, the lower-bound on the winning probability of the previous

prover would just be
(
1− 1

e

)p(λ)
, a negligible function.

Moreover, it is very easy to observe that any ZK proof system, even for the
RO model, cannot satisfy perfect soundness.

1.1 Our Results and Roadmap

The main result of this work is a positive answer to the above open questions: we
construct new efficient perfectly sound one-message proof systems for practical
languages satisfying a variant of zero-knowledge that we call harmless zero-
knowledge (HZK). We provide an overview of HZK in Section 1.3 and in Section
2 we recall standard definitions and provide formal definitions for harmless ZK
proof of knowledge systems. In Sections 2.2.4, 2.2.5 and 2.2.6 (sketch in Section
1.3.4) we present relations of our new notion to related ones.

In Section 3 (overview in Section 1.2) we present our new proof system for
proving that an El Gamal ciphertext decrypts to a given value, for an El Gamal
encryption scheme instantiated over a group of hidden order (more details in
Sections 1.2 and 2). In Section 1.4.1 we show a variant of our proof system for
proving correctness of a shuffle of El Gamal ciphertexts (instantiated over the
same group).

In Section 1.4.2 we build OR proofs from proofs of correct shuffle, and in
Section 1.4.3 we construct direct proofs for polynomial statements.

All our proof systems enjoy perfect soundness, are non-interactive and do not
assume any trust assumptions like the Common Reference String (CRS) model
or the RO model and do not assume any bound on the space of the verifier.

If the group parameter on which DH tuples are based is seen as a common
parameter and is made public (though we do not require it to be setup in a
trusted way), our proof for DH tuples also satisfies the standard definition of
perfect extraction [GOS12] and additionally enjoys what we call harmless proof
of knowledge (see Sections 1.3 and 2).

In Section 1.4.4 we construct a one-message perfectly sound WI proof (ZAP)
for Boolean circuit satisfiability from a number-theoretic assumption related to
DH over groups of hidden order. Our ZAP is also computational HZK and we
sketch that, using know complexity leveraging arguments and techniques, it can
be tweaked to be quasi-polynomial time simulatable.

Our proof systems are sufficient to construct an e-voting scheme in which
authorities have zero probability of subverting the result of the election. This
application and an application to verifiable functional encryption are presented
in Sections 1.2.3 and 1.3.8.

In Section 1.5 we survey the known literature in the field and compare our
results to it.

8



1.2 Overview of our main proof system

Before describing our new proof system, we recall the standard NIZK argument
in the programmable RO model for proving correct decryption of an El Gamal
ciphertext due to Chaum and Pedersen [CP93].

1.2.1 Standard NIZKA for correctness of El Gamal decryption Con-
sider an (exponential) El Gamal ciphertext for public key pk = gw and message
m: (a = gr, b = pkr · gm), with g known generator of a group of prime order p
(e.g., the group of quadratic residues modulo a prime q such that q = 2p+ 1 for
a prime p). To prove that this ciphertext decrypts to m without revealing any
information on the secret-key w, one can prove that the following tuple is DH:

(g, h
4
= a, u

4
= pk = gw, v

4
= b/gm = hw). Therefore, the problem of proving that

an El Gamal ciphertext decrypts to some message boils down to proving that a
tuple (g, h, u, v) is DH.

The standard Chaum-Pedersen’s interactive proof for DH tuples [CP93] is
the following. Let (g, h, u, v) be a DH tuple with witness w, i.e., u = gw, v = hw

for some w ∈ Zp. The prover knows the witness but the verifier does not and
both the prover and the verifier share the common input (g, h, u, v).

– The prover sends a = gr, b = hr to the verifier.
– The verifier sends a challenge e← Zp.
– The prover sends back z = r + e · w mod p.
– The verifier accepts iff gz = a · ue, hz = b · ve.

Let us analyze the soundness. Let g, h, u, v be a non-DH tuple, that is g, h, u =
gw1 , v = hw2 for w1 6= w2 mod p. Let a = gr1 , b = hr2 for some r1, r2 ∈ Zp (the
first message of the prover can be possibly ill-formed when r1 6= r2 mod p).

If the verifier accepts, the equations checked by the verifier imply that 1)
z = r1 + e · w1 mod p and z = r2 + e · w2 mod p. Subtracting the equations
together, it holds that r1 − r2 = e · (w1 −w2) mod p. This means that for each
w1, w2, r1, r2 there is exactly one value e (i.e., e = (w1 − w2)/(e1 − e2) mod p)
that satisfies the equations, and thus if e is randomly chosen the probability that
the verifier accepts the false statement is 1

p , a quantity negligible in |p|.
The proof is made non-interactive via the FS transform, i.e., computing e =

RO((g, h, u, v), a, b). As we analyzed before, applying the FS transform we lose
statistical soundness. For completeness, we sketch again the argument. Fix a false
statement (g, h, u, v). The unbounded prover can search over all values a = gr1

and b = gr2 until it finds a pair (a, b) such that RO(g, h, u, v, a, b) equals the only
value e that satisfies the equation e = (w1 −w2)/(e1 − e2) mod p. As there are

22k possible pairs (a, b) and 2k possible values of e, with k
4
= |p|, an unbounded

prover succeeds with overwhelming probability in proving any false statement.
Moreover, in practice one chooses a fixed hash function and in this case nothing
can be said about the security: it might be that the hash function maps a false
statement and a pair (a, b) into the only one “bad” e that satisfies the equations
checked by the verifier.

9



In the following, we will propose a new proof system that both removes the
use of the hash function (and thus it is not based on the RO heuristic or any
other trust assumption or limitation) and achieves perfect soundness. Recall
that perfect soundness cannot be attained even in the interactive case for ZK
proofs. This system will also serve as base to build a proof system for general
NP statements (see Section 1.4.4).

1.2.2 Our new non-interactive proof system Observe that in the above
proof the prover can cheat only when r1 6= r2 mod p. To prevent such possibility
of cheating, one could require the prover to send the value r in the clear in the

first round but this is insecure as the prover also sends the value z
4
= r + e · w

mod p in the last round. Sending instead a
4
= gz and b

4
= hz would not reveal z

and would still allow the verifier to check the equations. In this case the verifier
would need to additionally verify the well-formedness of the pair (a, b), i.e., that
a = gr, b = gr, for some r ∈ Zp. Apparently, a way of proving (a, b) to be well-
formed seems as difficult as proving a tuple to be DH. However, we will show
that this can be done working in groups of hidden order.

Switching to groups of hidden order. Let us analyze the following completely non-
interactive proof system (in particular, the verifier does not longer need to send
any challenge to the prover). Let N be a Blum integer and consider the group of
quadratic residues modulo N . In this group, we can construct an El Gamal-like
encryption scheme (see Def. 24). Both the prover and the verifier share the tuple
(g, h, u, v) and the modulus N . The order of the group of quadratic residues

modulo N is hidden and equals m
4
= φ(N)/4.

The aim of the prover is to convince the verifier that the tuple (g, h, u, v) is
DH for witness w ∈ Zφ(N). In Section 1.2.3, we will show that our proof can be
used to prove that a ciphertext ct = (ct1, ct2) for public key pk decrypts to g0.

Our first version of the proof system NIDDH assumes u (resp. v) to be in the
same subgroup generated by g (resp. h) and we will subsequently show another
proof system NISG that will be used in the final version of NIDDH to remove
this restriction. However, we stress that in the analysis of NIDDH and NISG we
will never assume N to be well-formed.

To the aim of highlighting potential attacks, we will first present a NI proof
system subject to an attack and we will later show how to patch it.

A first attempt. The prover of NIDDH (in its first insecure version), on in-
put a DH tuple (g, h, u, v) and a factorization of N , sends the following (non-
interactive) proof:

r,X
4
= gz, Y

4
= hz, z′

4
= z−1 mod φ(N),

with r ← Z?φ(N) and z
4
= r + w mod φ(N) subject to the following constraints:

z ∈ Z?φ(N) and z′ prime number. (The reason for z′ to be prime will be explained
later when we will also propose a change in the proof. We stress that we require

10



z to be in Z?φ(N), that is the prover has to find randomness r such that r +

w mod φ(N) satisfies the constraint; it is easy to design an algorithm that
computes values satisfying such constraints w.v.h.p.) Note that, notwithstanding
the group is of ”hidden order“, the prover can compute z−1 mod φ(N) from the
factorization of N , that is the order of the group is hidden to the verifier but
not to the prover.

The verifier of NIDDH is given N and the tuple (but not the factorization).
The verifier accepts the proof if and only if z′ is a prime number and all the
following equalities hold:

Xz′ = g, Y z
′

= h,X = gr · u, Y = hr · v.

The idea is that z′ should allow to verify that X and Y are such that
dloggX = dloghX, i.e., X = gz, Y = hz for some z < φ(N). Then, the sound-
ness would follow from the observations highlighted above. However, the checks
are not sufficient to guarantee soundness and we actually need some modifica-
tions as explained next.

A potential issue, how to fix it and soundness analysis of our first attempt. Notice
that the soundness of the previous proof relies on the fact that z′ should allow to
check the well-formedness of the pair (X,Y ), i.e., check that X = gt, Y = ht for
some non-negative integer t < φ(N). However, it might be that Xz′ = g, Y z

′
=

h but dloggX 6= dloghY .4 Thus, the previous checks are not sufficient. We
guarantee this case cannot occur as follows.

Observe that if z′ has no common factors with φ(N) and Xz′ = g, Y z
′

= h,
then X = gt, Y = ht for some integer t < φ(N). This can be seen by setting

t
4
= z′

−1
mod φ(N). So, let us analyze the soundness supposing z′ to be co-prime

with φ(N). Recall that we are assuming u (resp. v) to be in the same subgroup
generated by g (resp. h). We will later show how to remove this restriction. Let
us assume for simplicity ord(g) = ord(h) (see the general case in Theorem 14)

and let k
4
= ord(g) = ord(h). The verifier of NIDDH checks that X = gr · u and

Y = hr · v. By hypothesis, u = gw1 and v = hw2 for some w1, w2 < k. Letting

t
4
= z′−1 mod φ(N) and taking the discrete logs, resp. in base g and h, we have

that t mod k = r + w1 mod k and t mod k = r + w2 mod k. So, we have
w1 = w2 mod k, for some k < φ(N). Therefore, there exists w < φ(N) such
that u = gw and v = hw, as it was to prove.

Therefore, what is left to guarantee soundness is to enforce z′ to be co-prime
with φ(N). This can be done as follows. The prover repeats the basic NIDDH
protocol in parallel a sufficient number of times s setting in the i-th execution,
for i = 1, . . . , s, the value z′i to be prime and setting all zi’s to be different.
If a dishonest prover could set for each i ∈ [s] the value z′i to have a common
factor with φ(N), we would have a contradiction. Indeed, it is not possible for
all z′i’s to have a factor in common with the order of the group Z?N assuming s

4 For example, if N = 35, g = 8, X = 2, we have that X3 = g but dloggX does not
exist, that is there is no x such that 8x = 2 mod 35.

11



to be greater or equal than the maximum possible number of factors of φ(N).
See details in Theorem 14.

Observe that the soundness of NIDDH, as described so far, does not to rely on
the well-formedness of the modulus N : whatever the modulus N is, the prover
cannot cheat.

Proof of knowledge with perfect extraction. Our proof system NIDDH (in its first
insecure version) has perfect extraction according to the standard definition
[GOS12]. The common reference string (that has not to be trusted in our case)
can be set to the modulus N . The extractor computes the modulo N with
knowledge of the factorization, and thus of the hidden order φ(N). Given a
proof accepted by the verifier and φ(N), the prover inverts z′ = z−1 = (r+w)−1

mod φ(N) to compute z = r+w mod φ(N) and subtracts from it r mod φ(N)
to compute w, the witness.

So the NI satisfies perfect extraction assuming a common parameter (the
modulus N) is set and made public at the beginning of the protocol. On the other
hand, NIZKAs obtained via FS transform suffers annoying rewinding issues. We
will later show that our proofs systems additionally enjoy a generalization of
proof of knowledge to a purely non-interactive setting.

Guaranteeing that u belong to the subgroup generated by g. The previous proof
of knowledge system NIDDH (in its first insecure version) can be simplified to
a Schnorr-like non-interactive proof of knowledge system NISG to prove that an
element u belongs to the subgroup generated by g, i.e., that u = gw for some
w < φ(N). (This proof of knowledge system is still subject to the linear attacks
we will describe next but later we will show a patch against them that applies
both to NIDDH and NISG.)

Consider the following proof of knowledge system NISG. The prover sends

r, z′
4
= z−1 mod φ(N), with z

4
= r+w mod φ(N) ∈ Z?φ(N) and z′ prime number.

Let H
4
= gr · u. The verifier checks that 1) Hz′ = g.

The soundness should follow from the fact that, for each Y and X both
6= 1 and for each number z′ co-prime with φ(N), if Y z

′
= X then Y belongs

to the subgroup generated by X. This can be proven as follows. Let t
4
= z′

−1

mod φ(N), then Xt = Y and thus Y belongs to the subgroup generated by X
(note that the inverse of z′ exists as z′ if is co-prime with φ(N)). Guaranteeing
z′ to be co-prime with φ(N) can be done as shown above with the trick of the
repetitions. For simplicity, henceforth we assume z′ to be co-prime with φ(N).

The check 1) implies that H = gt for some t ∈ Zφ(N) and thus u = H ·g−r =
gt−r, that is u is in the subgroup generated by g as well.

Previously, we assumed NIDDH to work under the hypothesis of u (resp.
v) being in the same subgroup generated by g (resp. h). To remove such a
restriction, we require the prover of NIDDH to first invoke the prover of NISG to
prove u (resp. v) to be in the same subgroup generated by g (resp. h).

12



A linear attack against our first attempts of NIDDH and NISG. Hereafter, for
simplicity we are not considering the aforementioned modification to NIDDH
that introduces parallel repetitions and invokes NISG as sub-protocol. Recall

that in NIDDH, r
4
= z − w mod φ(N). Let s

4
= z−1 mod φ(N). The verifier

can multiply (over the integers) s by r to get 1 + s · w mod φ(N) and in turn,
subtracting 1 (over the integers), can get s · w mod φ(N). Given another pair
of group elements gt and ht, an attacker can power gt to s · w mod φ(N) and
ht to s to check that the tuple (g, h, gt, ht) is DH for witness w, a destructive
attack.

Potential attacks on multiple proofs. Given two proofs, it is possible to get a
multiple of the order of the group, from which it is possible to factorize. Indeed,
suppose to have two proofs for the same witness. That is, suppose we have
z1 = r1 +w mod φ(N) and z2 = r2 +w mod φ(N). Combining them together
we obtain z1 − z2 = r1 − r2 mod φ(N). Multiplying over the integers this value
by z′1 = (r1 + w)−1 mod φ(N), we have z′1 · (r1 − r2) = 1− z2 · z′1 mod φ(N).
Subtracting over the integers by 1 and multiplying over the integers by z′2 we
finally obtain that z′2(z′1 · (r1 − r2)− 1) = z′1 mod φ(N).

Therefore, z′2 · (z′1 · (r1− r2)− 1)− z′1 is a multiple of φ(N) and, by standard
techniques, the hidden order φ(N) can be computed.

Defense against linear attacks and how to patch NIDDH and NISG. We now show
how to counter the previous attacks. Yet, for simplicity we are not considering
the modification to NIDDH and NISG that introduces parallel repetitions and the
need for NIDDH to invoke NISG as sub-protocol. The insecurity of the NI proof
of knowledge systems NIDDH and NISG, as presented so far, comes from the fact
that the proof contains the value r in the clear. Such value can be multiplied by
z′ to get a value of the form z′ · w mod φ(N), a fatal attack.

To overcome this attack, we require the prover to send the pair a
4
= gr, b

4
= hr

as in the original Chaum-Pedersen’s proof. In addition the prover has to send
the value r−1 mod φ(N) that can be used by the verifier to check the well-
formedness of the pair (a, b) (all previous considerations and the need for parallel
repetition apply in this case as well). In this case the prover of NIDDH (similar
consideration holds for NISG) does not need to transmit gz and hz as they can
be derived from gr, hr and u, v. The previous soundness analysis stays roughly
unchanged. The perfect extraction still holds: from the factorization of N and
r−1 mod φ(N), the value r and thus w can be computed.

Why is working in a group of hidden order not a trust assumption? One could
naively think that working in a group of hidden order is a trust assumption. A
trust assumption for proof systems requires a parameter to be chosen correctly
and that the generator of the parameter is a trusted party who cannot collude
with the adversaries against the proof system. If this is not the case (if the pa-
rameters are not correctly chosen or the generator colludes with the adversary),
the security may not hold.

13



In our proof, whatever parameter is adversarially chosen, no proof for a false
statement can be generated. That is, even if N and the group is setup in an
incorrect way, no proof for a false statement can be produced. Notice that the
prover must not convince the verifier that the group has the right form. Indeed,
there exists no proof for a false statement at all, so the possibility of cheating is
null.

What about privacy? If a parameter is ill-formed, can a proof leak information
about the witness to the statement to prove? The answer is positive but this is
inherent in proof systems. For any proof system, the prover could compute the
proof in an ill-formed way (e.g., choosing the randomness not uniformly) so
that the proof leaks knowledge. Moreover, the prover can ever collude with an
adversary to give the adversary a witness to the statement to prove. Therefore,
for any reasonable notion of privacy for proof systems, the randomness used to
compute a proof has to be computed in a trusted way, and our proofs are not
an exception.

What privacy? The so modified proof systems seems to withstand the afore-
mentioned linear attacks: given r−1 mod φ(N) and (r + w)−1 mod φ(N), the
attacker cannot seemingly form a multiple of the witness. This patch also ap-
pears to protect against the attacks on multiple proofs. Does the overall proof
systems NIDDH and NISG satisfy a reasonable notion of “privacy” and what kind
of security is it attained? This question will be discussed in depth in Section 1.3.

The overall detailed constructions and analysis for NIDDH and NISG are
presented in Section 3.

1.2.3 Proof of correct decryption and its applications In Section 1.3.8
we will show that (actually, we will analyze a more general case) no PPT ad-
versary can win with non-negligible probability in the following game against a
challenger C. The challenger C selects a random bit b, computes a well-formed

DH tuple T
4
= (, g, h, u, v) over Z?N and gives the adversary two tuples (T b0 .T

b
1 ),

with T b0
4
= (g, h, u.v · g1) and T b1

4
= (g, h, u, v · g−1), and additionally a NIDDH

proof that T is a well-formed DH tuple. The adversary outputs a bit b′ and wins
iff b = b′. Note that this is a non-trivial problem. To our knowledge, it was not
know how to prove that no PPT adversary can win with non-negligible probabil-
ity in the previous game instantiated with any other (completely) non-interactive
proof (unless assuming trusted parameters.

The proof system NIDDH for DH tuples can be also used to prove that a
ciphertext ct = (ct1, ct2) for public key pk decrypts to g0 as follows. Observe first
that if ct1 belongs to the subgroup generated by g, then the tuple (g, ct1, pk, ct2)
is DH if and only if ct decrypts to g0 = 1. However, ct1 might not be in the group
generated by g and in this case it might occur that ct2 = ctw1

1 ·gm1 = ctw2
1 ·gm2 for

integers w1, w2,m1,m2 such that w1 6= w2 mod ord(ct1), w1 = w2 mod ord(g)
and m1 6= m2 mod ord(g). However, if N is generated properly as described in
Section 2.1, QRN is cyclic and g can be set to be a generator of QRN . In this
case (i.e, assuming (N, g) to be generated correctly) the issue can be overcome

14



by having the decryption performed on (ct21, ct22) with respect to public key pk2;
indeed, ct21 belongs to QRN , so in this case it is generated by g (we assume g to
be generated correctly as a generator of QRN ).

An alternative that does not require introducing trusted parameters would be
for the encryptor to provide another ciphertext (beyond (ct1, ct2)) encrypting the
randomness used in ct1 so as to allow the authority to recover such randomness
needed to compute the proof. We conjecture the resulting cryptosystem to be
IND-CPA secure. As the change in the encryption scheme makes the analysis
slightly more complicated, we skip the details.

Therefore, for the application to e-voting we have either to assume the pa-
rameters (N, g) to be generated in a trusted way or we have to use our proof
system for NP of Section 1.4.4 to prove ct1 to belong to the subgroup generated
by g5 or we have to use the above trick to recover the randomness.

Notice that if we use our proof system for NP or we use NIDDH with correctly
generated parameters (or we use the alternative solution we sketched above), no
unbounded authority may have a non-zero probability of subverting the election
result when using our proofs. In contrast, if an authority were aware of trapdoor
in a hash function used to instantiate known RO-based NIZKs, it could easily
subvert the result of an election in, e.g., the Helios e-voting system [Adi08].
This comes at the cost of basing the privacy of the e-voting system on stronger
oracle-based computational problems.

We also point out that, it was not known any efficient proof system, even in
the CRS model and with statistical soundness, satisfying a non-trivial notion of
privacy for proving that an El Gamal-like ciphertext decrypts correctly; in the
bilinear group setting instead it was known how to prove efficiently with perfect
soundness correct decryption of ciphertexts (for encryption schemes defined in
the bilinear setting) with just WI security.

Applications of proof of correct decryption to e-voting. In an universally verifiable
e-voting, proofs of correct decryption are a necessary component used to compute
the tally in a privacy-preserving way and guarantee universal verifiability, that
is that every party, not just who took part in the election, may verify the result
of the election. Proofs of correct encryption are also used to enforce that the
encrypted plaintext belong to a valid message space. Our techniques cannot be
used to construct efficient (if we do not consider efficiency, we can instead use
our proofs for NP relations of Section 1.4.4) proofs of correct encryption as the
prover crucially needs the factorization of the modulus. Notwithstanding, we
show that proofs of correct decryption can profitably replace proofs of correct
encryption in e-voting under the very basic assumption that for each candidate
c there exists at least one ciphertext encrypting a vote for c.

5 Observe that this cannot be directly done using NIDDH since the prover of NIDDH
needs the factorization of the modulus that the encryptor does not have. Instead, the
proof system for NP does not suffer this limitation, as the prover for the NP system
generates the modulus and all the group elements in the proof with knowledge of
the corresponding factorization and discrete logs.

15



We would like to stress that in the following we are considering a setting
with a single authority. The single authority has the secret key so is ever able to
obtain the preference of any voter. This is inherent in e-voting. Even in a multi-
authority setting, the authorities can ever collude together to decrypt the votes.
Extending our results to a multi-authority setting is possible but beyond the
scope of the work. Note that, unlike privacy, our results show that verifiability
can be instead guaranteed even if the authorities (or multiple authorities) are
completely malicious. In our analysis, we are also ignoring issues of malleability,
so ours is far from and does not asire to being a complete e-voting solution.
(Preventing malleability attacks can be done, e.g., encrypting in an onion way the
voters’ ciphertexts along with their corresponding signatures under the public
key of another non-malleable cryptosystem. We skip the details.)

For simplicity, consider a referendum (voters should encrypt 0 or 1). We
propose the following. The authority selects a random bit b and groups the
ciphertexts in two classes Z0, Z1 putting in Zb (resp. Z1−b) the ciphertexts en-
crypting 0 (resp. 1). The authority proves that each pair of ciphertexts c and
d in the same class encrypt the same bit by showing that the product of c and
d−1 (where here we mean the usual operations between El Gamal ciphertexts;
cf. Def. 25) decrypts to 0. Notice that this proves that each ciphertext in the
same class decrypts to the same value. This fact, combined with the hypothesis
that there is at least one ciphertext encrypting 0 and one ciphertext encrypting
1, implies that all ciphertexts in Z0 encrypt a bit b and all ciphertexts in Z1

encrypt 1− b.
Additionally, for each ciphertext that does not encrypt either 0 or 1, the

authority provides a corresponding proof of the fact that the ciphertext decrypts
to an invalid plaintext. In this way, the authority is able to prove that it tallies
all and only the ciphertexts encrypting plaintexts that are 0 or 1. This can be
extended to a larger space of voting options with the proof size growing linearly
in the number of options.

Our El Gamal encryption scheme over the group of quadratic residues modulo
N and our proofs of correct decryption for it can be used to construct an e-voting
scheme satisfying the following indistinguishability-based security notion. No
PPT adversary can win in the following game with non-negligible advantage.
The adversary is given the public key of the e-voting system and selects two
tuples of n votes v0,v1 such that

∑
i∈[n] v0,i =

∑
i∈[n] v1,i. A challenge bit b is

chosen at random and the adversary is given n ciphertexts cti, i ∈ [n] encrypting
resp. vb,i along with the tally v (=

∑
i∈[n] vb,i) and a proof of correct computation

of the tally. The goal of the adversary is to guess the bit b. The notion can be
extended to allow the adversary to choose ill-formed votes. See also Section 1.3
for more discussion about the e-voting application and on how to use our proofs
to argue security.

1.3 Harmless Zero-Knowledge Proof of Knowledge

Let us recall a proof of the ZK property for the (interactive) Chaum-Pedersen’s

proof system. The simulator chooses random values e, z ∈ Zp and sets a
4
=

16



gz · u−e, b 4= hz · v−e. It is easy to see that the transcript of the simulator
is distributed identically to the output of the prover, thus the ZK property is
perfect.

In our proof system, the simulator could likewise generate a, b but cannot
compute r−1 mod φ(N) because it does not know r and φ(N). Any approach
to design an efficient simulator is doomed to fail because a ZK proof system for
a non-trivial language cannot be perfectly sound. The reason is that if the proof
system satisfied perfect soundness, the simulator might be used to decide the lan-
guage, a contradiction. Moreover, no ZK proof, even with statistical soundness,
can be completely non-interactive (without trusted parameters).

1.3.1 Harmless ZK According to the ZK paradigm, a proof carries no addi-
tional information (i.e., it is zero-knowledge) if whatever you can compute after
seeing the proof, you could compute by yourself by means of a simulator. The
power of the simulator has to be restricted. Indeed, if the simulator were allowed
to have unbounded time, proofs that leak the witness would be declared ZK just
because there exists a simulator that can simulate the proof in unbounded time.
The obvious restriction is to limit the simulator to run in polynomial-time. We
contend that this definition can be generalized to achieve more properties and
enable more applications while still sticking to the the ZK paradigm.

Let us analyze the ZK paradigm in more detail. Suppose there exists a lan-
guage L that is hard to decide for adversaries of time O(n2) but easy for ad-
versaries of time ω(n2). Then, a proof leaking part or all of the witness might
be declared ZK only because there might exist a simulator running in time
O(n3). This example suggests that simulators running in arbitrary polynomial-
time should not be allowed and that the running-time of the simulator should
depend on the hardness of the language.

One can abstract this line of reasoning: if the language is not decidable by
adversaries using a given set S of ”resources“, the class of admissible simulators
should include all algorithms having access to S. The resources comprise the
time of execution of the algorithm but other resources can be considered as well.
Indeed, if the language is not decidable by PPT adversaries interacting with
some oracle O, the simulator should be allowed to both run in PPT and have
oracle access to O. The oracle can be seen as an external entity handing some
auxiliary information to the parties in the system.

This leads to our notion of harmless ZK (HZK).6 HZK is a generalization
of the traditional ZK formulation in that it allows the simulator to have access
to an oracle relative to which the language is still hard to decide. We stress
that we do not allow the simulator to program the oracle. We will denote an
algorithm/simulator with access to an oracle O an O-aided algorithm/simulator.
Considering oracle machines in the analysis of the complexity of computational
problems is as old as computer science and dates back to Turing himself. In
Section 1.5 we compare our use of oracles to related notions of ZK and secure
computation in general.

6 The name harmless zero-knowledge was suggested to us by Geoffroy Couteau.

17



Our main proof system NIDDH is for the language of DH tuples (over some
group of hidden order) and, conjecturing this language to be hard to decide even
for adversaries given access to an oracle O (to be defined later), we will show
that the proof system is HZK. To avoid trivial attacks, the adversary has to be
restricted to not query the oracle on inputs not belonging to the language (see
Remark 1 for a careful discussion on this point).

As we will show later, ZK essentially implies that the probability for a PPT
adversary of computing a function of the witness given as input a statement for
some language L and a ZK proof for it is bounded by the probability that any
PPT adversary can compute the same function of the witness given only the
statement. The latter probability is negligible if L is hard to decide for PPT
adversaries. HZK makes this property more fine-grained by quantifying over
PPT adversaries that attempt to compute a function of the witness given the
statement but with additional access to some oracle O. Such probability may
still be negligible for adversaries with oracle access to O.

Another way of comparing HZK to the standard ZK formulation is to look
at an application in which a ZK proof system is employed. ZK proofs are used to
enforce correctness in various applications like e-voting while preserving privacy.
The privacy of an e-voting system that uses a ZK proof system can be based, e.g.,
on the (decisional) DH assumption. The running time of the simulator implicitly
affects the assumption: if the simulator runs in time Θ(m), we have to assume
DH to hold against adversaries running in time Ω(m). If the latter were not true,
a simulator of time Θ(m) could not be used in a reduction to the assumption.
This, again, is to reiterate the dependency of the resources of the simulator on
the language for which the proof system is designed. Analogously, to make use of
a simulator with access to an oracle O in a security reduction, the computational
problem to which the security is reduced has to hold with respect to adversaries
with access to O.

1.3.2 HZK of our main proof system To prove NIDDH to be HZK, we
provide a simulator with access to an oracle relative to which we conjecture
the language of DH tuples to be hard (under the constraint that the adversary
cannot query the oracle on invalid tuples). The simulator needs to invoke the
following oracle DHInvO (cf. Def. 28 for more details). The oracle DHInvO takes
as input a tuple (N, g, h, u, v), checks whether u = gw and v = hw for some
w ∈ Z?φ(N); if such value does not exist, it outputs error and outputs (gr, hr, r−1

mod φ(N), (r+w)−1 mod φ(N)) for a random r ∈ Z?φ(N), otherwise. (The or-
acle has to compute the randomness so as to guarantee that the inverses modulo
φ(N) exist.) Our NI NIDDH can be proven O-HZK with respect to this oracle
(see Section 3 for the details). We conjecture the language L of DH tuples (over
our group of hidden order) to be hard to decide with respect to DHInvO and
thus our simulator belongs to the class of legal oracles for a HZK proof system
for L (cf. Def. 5). Precisely, we need to restrict the adversary to not query the
oracle on invalid statements (i.e., non-DH tuples). See also Remark 1. Similar

18



considerations hold for NISG that is DHInvO-HZK with respect to a simulator
with access to the same oracle DHInvO.

Languages vs relations. Having a proof system for a NP language L means having
a proof system for a polynomial-time relation R such that x ∈ L iff there exists
w such (x,w) ∈ R; in this case we say that R is a relation over L. However, for
each NP language L there are different relations over L and a proof system for
a relation R over L does not necessarily imply a proof system for any another
relation R′ over L.

Indeed, a subtle point is that in our proof system for DH tuples (as well
as the ones for correctness of a shuffle and polynomial statements) the prover
cannot be run on input just the statement and the natural witness w (i.e.,
the exponent for the DH tuple) but additionally needs the factorization of the
modulus N . Formally, our proof system is for the relation R(x, (w, [pi,mi]

l
i=1))

whose witness also includes the factorization of the modulus N and checks if

the tuple x
4
= (N, g, h, u, v) is a DH tuple with exponent w, with the group

operation being the multiplication modulo N , and N =
∏l
i=1 p

mi
i . Notice that

R is still a relation over the language of valid DH tuples but is different from
the ”natural“ relation whose witness consists of just the exponent (and nothing
else). This is reflected in applications: NIDDH can be used to provide proofs of
correct decryption but not proofs of correct encryption because our prover needs
to be run with an input that includes the factorization that is not given to an
encryptor.

Notwithstanding, we will see that our techniques can be used to construct
an e-voting scheme. Moreover, our proof system for Boolean circuit satisfiabil-
ity of Section 1.4.4 does not share this limitation (its prover does not need any
trapdoor) but this comes at the cost of trading perfect simulatability for com-
putational simulatability.

1.3.3 Harmless proof of knowledge We extend the above concepts to the
proof of knowledge property that is challenging in a completely non-interactive
setting (no trusted parameters, no RO...). First, we introduce the notion of a hard
relation (cf. Def 13). A hard relation is one that is coupled with a distribution D
over pairs in the relation and is such that no PPT adversary, with possibly access
to some oracle, on input an instance x sampled from D, can output (with non-
negligible probability) the witness w sampled by D. In the case of the relation
of valid DH tuples, we conjecture the hardness of the relation of valid DH tuples
associated with the following distribution D: D outputs pairs (x,w), with x
being an uniformly distributed DH tuple (over Z?N , for a Blum integer N) and
w being the corresponding witness. For the rest of this discussion, we will omit
the dependency on the distribution.

Consider now the following motivating protocol. Parties A and B interact in
the following way. A chooses a random DH tuple x in the group of the quadratic
residues modulo N with knowledge of its witness w and sends x to B. Party B
has access to an oracle W (·) that, given as input x, outputs w. Party B sends

19



a proof π for the validity of x to A. If the proof is accepted, A sends back to B
the witness w and B outputs it. The security property P we require is that a
malicious B? that does not invoke the oracle W should not be able to output a
valid witness w for the instance x chosen by A.

We can reduce the security of P to the following assumption: a PPT adversary
cannot compute a witness for a randomly chosen DH tuple (over the group of
quadratic residues modulo N) even if it has access to a factorization oracle.
The reduction algorithm runs B on input the random tuple x, gets from B the
accepted proof π and from it, using the factorization oracle, can get a witness
to x. The factorization oracle is likely a legitimate resource since the relation of
valid DH tuples over the group of the quadratic residues modulo N is probably
hard even for adversaries with access to the factorization oracle.

Therefore, our definition of harmless proof of knowledge (HPoK) for a hard
relation R states that there exists a PPT extractor algorithm with access to
an oracle O relative to which R is hard that, given any accepted proof π for a
randomly chosen instance x, can output a witness w for x. As mentioned above,
our NI NIDDH has also perfect extraction according to the standard definition
[GOS12] when the modulus N is set to a common parameter (that does not have
to be trusted). We call HZKPoK a proof system that is both HZK and HPoK.

HPoK does not contradict HZK. It is worth observing why HPoK does not
contradict HZK. Consider the concrete example of NIDDH. Intuitively, one could
think at an incompatibility of the two properties as it seems that there exists
an efficent oracle adversary that can extract a witness to a randomly chosen
DH tuple x as follows (and we conjectured such an adversary to not exist). The
adversary could generate a proof for x using the DHInvO-aided simulator and
then run the O-aided extractor on the proof to get a witness to x. The reasoning
is mistaken as for the extraction the adversary needs to invoke an oracle O
different from the oracle DHInvO for the simulation and it might not be longer
hard, for adversaries with access to both DHInvO and O, to extract a witness to a
randomly chosen instance. In the case of our HZKPoK for DH tuples, the oracle
associated with the simulator used in combination with the oracle associated
with the extractor allows indeed to compute a witness to a randomly chosen DH
tuple.

Precisally, it is true that the existence of an O-HPoK proof is in contradic-
tion with the existence of an O2-HZK when the two oracles O(·) and O2(·) are
identical but it is not true in general.

HPoK implies hardness of obliviously computing accepted proofs. The imme-
diate corollary of harmless proof of knowledge is that no PPT algorithm can
output with non-negligible probability an accepted proof for a randomly chosen
statement x (received from a challenger) for a hard relation without knowing a
witness for x. Indeed, if there existed such an algorithm, it could be used by the
extractor with oracle access to O to break the hardness of the relation, contra-
dicting the hypothesis that no PPT algorithm even with access to O can break
the hardness of the relation.

20



1.3.4 O-HZK ⇐⇒ O-function hiding → witness hiding

HZK implies WH. Our proofs are additionally 1-message harmless witness hiding
proofs, under some computational assumptions. Harmless witness hiding (HWH)
is a natural strengthening of witness hiding [FS90]. Witness hiding (WH) requires
that no efficient adversary (playing the role of the verifier) can extract a witness
with non-negligible probability after interacting with the prover on a randomly
chosen instance for a hard relation. O-HWH requires the same property to hold
but quantifying over adversaries with access to O; see Def. 20.

If DHInvO is the oracle associated with the simulator of our NI NIDDH, then
NIDDH is DHInvO-HWH for the hard relation of DH tuples. This holds under
the assumption that no PPT adversary, with access to DHInvO, can extract a
witness from a randomly selected DH tuple over the multiplicative group Z?N ,
for a Blum integer N . In the following, let us call T the previous hardness
assumption. Towards a contradiction, suppose there exist an adversary A, with
oracle access to DHInvO, that can extract with probability p a witness from a
proof for a randomly selected DH tuple over this group. Then there exists a
DHInvO-aided algorithm B that receives as input a randomly selected instance
x, computes a proof π using the DHInvO-aided simulator, and returns the output
A on (x, π). By definition of A and B, B outputs a witness to x with probability
p, contradicting the hardness of T . See Lemma 4 for more generality and details.

Notice that, for any oracle O(·), O-HWH is stronger than WH and indeed,
under assumption T,NIDDH is WH. It is worth observing why this fact does not
contradict the impossibility results of [HRS09,Pas11] of the existence of black-
box reductions of ”standard assumptions“ to WH. The standard assumptions in
[HRS09] can be naturally extended to the case of assumptions against oracle-
aided adversaries but even in this setting the black-box impossibility results of
[HRS09,Pas11] would break down. The core of the previously cited black-box
impossibility results is that if a reduction R using an adversary Adv, guaran-
teed to break the WH of a given proof system (in our case NIDDH), breaks a
computational problem P (in our case Adv is DHInvO-aided and P is the compu-
tational problem H stated above), then the reduction can be rewound to extract
a witness. This would imply the existence of an adversary B that breaks T , in
our case would imply the existence a DHInvO-aided adversary that breaks T . In
the case of our proof NIDDH, an extractor is guaranteed to extract a witness
only with access to the factoring oracle. So, for the previous reasoning to hold,
we would need to give the reduction access to the factoring oracle but then the
black-box impossibility results would imply the existence of an adversary B that
breaks T but with access to both DHInvO and the factoring oracle. This is not a
contradiction as T is not hard against adversaries with access to both DHInvO
and the factoring oracle.

An alternative formulation of HZK. An alternative definition of privacy for NI
systems, that we call O-function (or feature) hiding (O-FH) (cf. Def. 22) that is
implied by O-HZK and turns out to be equivalent to HZK in the case of single

21



witness relations is the following.7 Assume L to be an NP language that is worst-
case hard to decide relative to O. For any possibly randomized function f , for any
PPT algorithm Adv, for any pair (x,w) ∈ RL, let Px,f,Adv the probability that
Adv(x, π; r) is equal to f(x,w; r), where π is a proof for x computed by running
the prover on input (x,w) and uniformly distributed random string s, Adv and
f are executed/evaluated on the same random string r and the probability is
taken over r and s. Then, for any randomized function f , for any PPT algorithm
Adv, there exists a PPT algorithm Adv′ with oracle access to O such that, for
any (x,w) ∈ RL, Adv′O(·)(x; r) is equal to f(x,w; r) with probability (over r and
the random coins used by the oracle) equal to Px,f,Adv.

Looking at the contrapositive of the latter statement, we see that the defini-
tion essentially implies the following: for a given function, if no PPT adversary,
with access to O and on input x ∈ L, can compute the function of a witness with
probability ≥ p, then no PPT adversary (without access to O), given x and a
proof for x ∈ L, can compute a function of a witness with probability ≥ p. That
is, whatever you can compute from the proof, you could compute without the
proof with the same probability using ”non-trivial” resources that do not help
decide the language.

The notion of O-FH shares similarities with the original notion of semantic
security for public key encryption of Goldwasser and Micali [GM84].8

An O-HZK proof system satisfies O-FH. Indeed, for any possibly randomized
function f , for any PPT algorithm Adv, for any pair (x,w) ∈ RL, consider the
following algorithm Adv′ with access to O. The algorithm Adv′ uses the simulator
Sim with oracle access to O guaranteed by the definition of HZK to simulate a
proof π that is identically distributed to a real proof (i.e., computed by the
prover) and runs Adv on (x, π). By hypothesis the probability that Adv′ outputs
f(x,w) equals Px,f,Adv.

The reverse also holds for a single witness relation (O-FH implies O-HZK).
Indeed, consider the randomized function f that implements the prover algo-
rithm that, on input x and a witness w, outputs a proof computed with the NI
system. Consider an adversary Adv that, on input (x, π), just outputs π. The
previous definition guarantees the existence of an algorithm Adv′ with oracle ac-
cess to O that, on input x, outputs f(x,w), that is a proof for x, with probability
Px,f,Adv that, by definition of Adv, equals 1. Such an adversary Adv′ is thus a
simulator with oracle access to O that generates an identically distributed proof,
as it was to show.

7 We would like to remark that, despite the name, our definition of O-FH is concep-
tually different from what is usually denoted as ”feature hiding“ as generalization
of witness hiding [Pas06a]. Ours is a worst-case, non-distributional notion whereas
feature hiding meant as generalization of witness hiding assumes inputs chosen from
a distribution.

8 In the modern treatment of cryptography, semantic security is presented according
to the simulation paradigm whereas the original pioneering work of Goldwasser and
Micali adopted a function-based notion similar to the previous one.

22



See Lemma 6 for a more detailed proof of the previous implications. It is
also easy to see that ZK implies 1-FH9 and, in the case of single witness rela-
tions, is equivalent to 1-FH, with 1(·) being the oracle implementing the identity
function. Therefore, as there exists no NI ZK proof for non-BPP languages, then
there exists no NI FH proof for single witness relations associated to non-BPP
languages.

1.3.5 The impact of the oracle leakage in applications. As byproduct,
HZK implies that the hardness of computing functions of a witness to some
statement, given the statement and a proof for it (and with no access to any
oracle), is bounded by the hardness of computing functions of the witness (given
only the statement) for adversaries with access to the oracle (associated with
the simulator). Therefore, the hardness of computing functions of the witness is
bounded by the amount of leakage the oracle provides.

Such leakage may be harmful in some applications in which adversaries are
given some auxiliary input. For instance, suppose that a proof of membership of
some string x in some worst-case hard NP language L contain the value f(x,w),
for some one-way function f and suppose it be hard to decide L given access to
an oracle that on input x returns f(x,w).10 If f is a trapdoor one-way function,
the proof might help an adversary with access to the trapdoor to carry out some
task it could not perform without having the proof. So, such proof might be risky
for applications in which potential attackers do have access to the trapdoor but
might be suitable in other applications. Different oracles give different leakage
and may be harmless or harmful depending on the application. In the case of
our main HZK proof for DH tuples, for example, the proof cannot be composed
with sub-protocols in which the factorization of the modulus is made public.

As a general example, consider the following 3-party protocol between PPT
parties P, V and an unbounded party Q. P sends to V a HZK proof π for the
membership of x in some worst-case hard language L. Suppose that the proof
leaks the value O(x). The verifier can send to Q some pair (x, y) and if y = O(x)
the party O sends back to V a witness w for x if any, or ⊥ otherwise. It is clear
that this protocol is not ”zero-knowledge“ since the information leaked by the
HZK proof allows V to get non-trivial knowledge from Q. Hence, in this specific
protocol the HZK proof turns out to be indeed harmful. It is easy to design
other counter-examples in which the leakage given by the oracle is deleterious.
However, a proof should be designed to provide ”harmless“ leakage in natural
and practical applications; see Section 1.3.8.

It is interesting noticing why the previous ”attacks“ do not contradict O-FH.
Fix a given function and consider for simplicity an NP language L associated
with a single witness relation. If a PPT adversary, with access to O and on input
x ∈ L, can compute the function of the witness to x with probability > p, then

9 To give more sense to this implication, we should extend the above implications to
the case of interactive proof systems since there is no NI ZK proof. In the following,
we think more generally about interactive proof systems.

10 For simplicity, we are glossing over issues of non-uniformity.

23



we cannot conclude that no PPT adversary (without access to O), given x and
a proof for x ∈ L, can compute the function of the witness with probability > p.
Indeed, in the case of the oracle O associated to our NI NIDDH, an adversary
that has embedded the factorization of a modulus N (that corresponds in the
real world to receiving the factorization from a colluding party) can compute
the witness of a DH tuple over Z?N with just one invocation to the oracle.

Contrast HZK with ZK that is equivalent to 1-FH. The following consider-
ations apply more generally to interactive proof systems. On the one hand, it
may be that there is an PPT oracle adversary that can use an oracle O to com-
pute the function of the witness with probability > p, but no such non-oracle
adversary exists. So, there may exist an O-FH (and thus O-HZK) proof system
that is not 1-FH (and thus not ZK). On the other hand, not considering ora-
cles (or equivalently restricting the oracle to be 1(·)) in the analysis of an proof
system, we are potentially excluding ”attacks“ that may be instead harmless in
a specific application. Viceversa, considering an oracle O in the analysis of an
proof system, we are implicitly excluding as harmful all kind of attacks in which
the adversary may gain knowledge using the oracle. For instance, if a particular
application like e-voting assumes an adversary to not have access to the factor-
ization, then a DHInvO-HZH proof system NIDDH is harmless in that particular
application.

More in detail, fix an oracle O and consider a NI proof system for a single
witness (this is for simplicity) NP relation. We call a pair (f,Adv) consisting of a
randomized function and a PPT (non-oracle) adversary (Adv is not given access
to O or any other oracle) bad if there exists no PPT (non-oracle) adversary Adv′

such that, for any (x,w) ∈ RL, Adv′(x; r) is equal to f(x,w; r) with probability
equal to Px,f,Adv (cf. Def. of O-FH) but there exists such an oracle adversary

Adv
′O(·
2 ) with access to O. In poor words, the pair is bad if (1) Adv, with input

a proof for a statement x, can compute f(x,w) with some probability ≥ p and
(2) no PPT adversary can solve the same task without the proof and (3) instead
a PPT oracle adversary with access to O (and without the proof) can. So, an
oracle O induces a set of bad pairs. If such bad pairs are not harmful in the
application in which the proof has to be utilized, then the proof is harmless
for that particular application. For instance, the pair consisting of an adversary
that has embedded the factorization and the identity function (meaning that the
adversary can compute the entire witness) is bad but this may be not harmful
in applications, like in e-voting, in which the verifier is not given the secret
key. When analyzing the security via ZK (that is, 1-FH), the set of bad pairs
(relative to the trivial oracle 1(·)) is ever empty but this comes at the cost of
being unable to demonstrate useful security properties of the proof system in a
particular application.

In other words, ZK is a powerful notion of privacy but protects against any
possible leakage, even the ones that might not be harmful to the applications in
which ZK protocols are usually employed. O-HZK instead exploits the fact that
in most real-world protocols the corresponding ideal world harmlessly grants to
the adversary an O-leakage. Consider the relation between ZK and WH, and

24



more generally simulatability and WH. The existence of a simulator implies
WH, under the assumption that no adversary, as powerful as the simulator, can
compute a witness from a randomly selected instance for a hard relation. If we
restrict the simulator to be PPT, we are not taking advantage that the fact that
it is likely hard even for adversaries with oracle access to DHInvO to compute a
witness from a randomly selected instance for a hard relation. So, in some case
we might not able to reduce simulatability to WH. So, granting the simulator
more resources may allow, as our results demonstrate, to deduce the WH of a
specific proof system, fact that might not be provable without this leveraging of
the simulator power.

Composition of HZK proofs. HZK proofs can raise issues of composition in a
protocol I when the oracle associated with the simulator can make one of the
hard problems, on which the security of I is based, easy. This is already implicit
but less visible in the case of standard ZK proofs.

Consider a possible world (not ruled by our current knowledge on computa-
tional complexity) in which a problem P used in cryptographic constructions is
provably hard for adversaries of time O(n7) but it is provably breakable by an
adversary of time O(n10). In this world, it would still make sense to design cryp-
tographic protocols choosing appropriately the security parameter though one
would have to carefully take in account the running-time of simulators for ZK
proofs. Indeed, a simulator of time O(n10) should not be considered legitimate.
Moreover, if a larger protocol were based both on P and on another problem
P2 with stronger hardness requirements (e.g., hard only for adversaries of time
O(n4)), even a simulator of time n6 would raise compositional issues. This sce-
nario is however unlikely as we currently believe that PPT algorithms can be
composed together without having ”too much“ effects on the computational as-
sumptions used in the design of protocols.

Yet, the running-time of the simulator of a ZK proof affects the quality of
a reduction of some protocol I that uses the ZK proof to some hard problem
P on which the security of I is based: more time the simulator needs to carry
out the simulation, more time the reduction needs to break P and thus, for a
given security parameter and for a given bound on the computational power
of adversaries, a stronger hypothesis on the hardness of P is required. Then,
composing a sub-protocol for which a tight reduction is known with a ZK proof
may imply a significant worsening of the tightness of the reduction.

Such compositional issues are more evident when using oracles. In particular,
it may be easier to check whether an oracle help in breaking some computational
problem and hence issues with oracle-aided simulation are made manifest.

In view of the above considerations, we advocate a pragmatic approach. ZK
and HZK are tools for proving the security of larger protocols. HZK proofs
can own additional properties provably impossible for ZK proofs, like non-
interactivity and perfect soundness, but this comes at the cost of stronger ”oracle-
based” assumptions and potential composability issues with other protocols
whose security relies on assumptions that do not hold relative to the oracle as-

25



sociated with the HZK simulator. In this paper we show real-world applications
that crisply benefit from replacing ZK with HZK proofs.

Relation to computational ZK or formulations without auxiliary inputs. HZK,
even in its perfect HZK formulation, is somehow qualitatively comparable to
computational ZK without auxiliary input (cZK) in that the computational leak-
age gained by an adversary is harmless unless the adversary holds a trapdoor as
it is illustrated by the following example.

Given an arbitrary NP-relation R, define the relation R′ so that, for each
string pk, R′(x||pk, w) holds iff R(x,w) holds (pk is artificially ignored).

Consider the following ZK proof for R′. The prover, on input x||pk and w,
for a valid El Gamal public key pk, interacts with the verifier using a ZK proof
for R but additionally in the last message sends an encryption of w computed
under pk. The verifier ignores the ciphertext and accepts iff the ZK argument
for R is accepting. This protocol is still simulatable (the simulator can set the
ciphertext to be an encryption of an arbitrary string of the same length) but the
output of the simulator is only computationally indistinguishable under some
computational assumption11 from the output of the honest prover, that is the
protocol is cZK. Yet, an adversary having the secret key corresponding to the
public key can compute the entire witness. So, similarly to HZK, a cZK protocol
does not necessarily guarantee security against adversaries that may gain some
trapdoor information.

1.3.6 On trivial and efficient oracles

Trivial oracles. A HZK simulator is coupled with an oracle. The choice of the
oracle leads to qualitatively different assumptions. In the extreme case, for a
proof system for a relation RL, one could set the oracle to be the trivial ”prover
oracle”. The prover oracle gets as input a statement x ∈ L, finds a witness w
such that R(x,w) = 1 and returns the output of the prover on input (x,w) (and
uniformly chosen random bits). Then the assumption on the hardness of the
language would boil down to require L to be hard even for adversaries seeing
proofs for statements in L. That, in turn, accounts to say that the protocol is
“secure because it is secure”.

One can object that the oracle associated with our main proof system is
somehow trivial as well. We embrace a pragmatic approach. First of all, compu-
tational assumptions are such because of our current limitations on their prov-
ability or refusal. So, the real challenge is to reduce the security of protocols to
assumptions that are at least enough simple to cryptanalyze. Simulators are a
practical tool employed to prove the security of protocols and can be used in
a neater way than witness indistinguishability that, not only introduces direct
inefficiency in the security proofs due to a complicated and unnatural use of OR

11 For each PPT adversary D, for all sufficiently long valid El Gamal public keys pk,
D has negligible advantage in distinguishing an encryption of 0 under pk from an
encryption of 1 under pk.

26



statements, but also results in severe limitations (see discussion on verifiable
functional encryption in Section 1.3.8).

In Section 1.3.8 we show that our main proof system can be profitably used
to prove the security of a concrete non-trivial simplified e-voting protocol and
the overall security of such protocol can be reduced, via a reduction that uses
the oracle-aided simulator, to Assumption 7 that is well-defined and seemingly
cryptanalyzable. We stress that it was not know before how to construct an
efficient protocol for the same task satisfying perfect verifiability (i.e., with proofs
of correct decryption satisfying perfect soundness) without bilinear groups.

It appeared not obvious to us to come up with non-trivial oracles to design
oracle-aided simulators for other known proof systems like the non-interactive
ZAPs of Groth et al. [GOS12].

Note that the trivial proof system for a single witness DH relation in which
the prover outputs the witness in the clear satisfies WI but does not satisfy
(under some reasonable computational assumption) DHInvO-HZK with respect
to the oracle DHInvO previously defined in Section 1.3.2. Indeed, the DHInvO-
aided simulator could be used to extract a witness from a DH tuple (given oracle
access to DHInvO) and this seems a hard problem.

Oracles with auxiliary input. Our oracle DHInvO for our proof system for DH
tuples cannot be implemented in polynomial-time, not even whether the oracle
is given the trapdoor as hint. It is a natural question to ask whether there may
exist a one-message HZK proof system associated with an oracle that runs in
polynomial-time given a trapdoor as auxiliary input. We speculate this situation
to be unlikely. The intuition is that if this were the case, the HZK proof system
might be converted into a traditional ZK proof system by somehow ”obfuscating“
the oracle program (with the trapdoor embedded in its representation).

The question might be related to the problem of removing the oracle and
achieving super-polynomial (but sub-exponential) simulation [Pas03b] via com-
plexity leveraging arguments [CGGM00]. Along this direction, we mention that
our HZK proof for Boolean circuit satisfiability is computational HZK (cf. Def.
6). Our proof for NP can be tweaked, using known techniques, to achieve one-
message arguments with uniform soundness and quasi-polynomial time simula-
tion or alternatively two message-arguments with standard soundness. In Section
1.4.4 we briefly discuss this point.

1.3.7 Undeniability of our proofs Though our proofs are non-interactive,
they are undeniable as well. Indeed, you cannot claim to have generated the
proof by yourself using the simulator. This is because you would need access to
the oracle to run the simulator. In the case of interactive ZK proofs (as well as
for NIZK proofs in the CRS and programmable RO model), the simulator can
be also used to simulate proofs for false statements and thus having a transcript
for a given statement does not represent evidence that you know the veracity of
the statement. In contrast, if you have a perfectly sound HZK proof for a given
statement, you can always check its validity and so you cannot deny that you

27



could have learnt the validity of the statement since proofs for false statements
cannot be simulated.

1.3.8 Applications and how to use HZK proofs

E-voting. Consider the following e-voting application (see also Section 1.2.3).
(We would like to stress that we are in a setting with a single authority. The
single authority has the secret key so is ever able to obtain the preference of
any voter. This is inherent in e-voting. Even in a multi-authority setting, the
authorities can collude together to decrypt the votes.)

The authority adds a proof that the the product ciphertext ct
4
= ct1 ∗ ct2

(where ”∗“‘ has the usual meaning) decrypts to v, with v being v1+v2. We would
like such a protocol to satisfy the following privacy requirement. The require-
ment (details in Assumption 6) states that a PPT adversary cannot distinguish
whether either ct1 encrypts 1 and ct2 encrypts −1 or ct1 encrypts −1 and ct2
encrypts 1, given additionally a proof of the fact that the product ciphertext
ct1 ∗ ct2 decrypts to 0.

If the proof of correct decryption were ZK, we could reduce the security to
the standard Decisional Diffie-Hellman (DDH) assumption, that is the prob-
lem of distinguishing a DH tuple from a random tuple. When using a HZK
proof, one can naively think to reduce the privacy to a variant of DDH in which
the adversary has access to the oracle DHInvO needed by the simulator of our
DHInvO-HZK proof. Unfortunately, there is an issue.

Let us first analyze in more detail how the security reduction would work if
the proof were ZK. Consider the following hybrid experiments (we do not include
all the hybrid experiments necessary to argue the security and we do not take
in consideration the CRS model).

– H0. Hybrid experiment H0 is identical to the real game except that ct1
encrypts 1 and ct2 encrypts −1.

– H1. Hybrid experiment H1 is identical to H0 except that the proof is simu-
lated (instead of being honestly generated).

– H2. Hybrid experiment H2 is identical to H1 except that ct1 encrypts a
random group element (the proof is still simulated like in H1).

One can construct an adversary against DDH from an adversary that distin-
guishes H2 from H1, that is an El Gamal encryption of 1 from an El Gamal
encryption of a random element, given additionally a simulated proof. The point
is that in H2, the proof can be simulated even though the statement given as
input to the simulator is false: ct2 encrypts a random plaintext and hence the

product ciphertext ct
4
= ct1 ∗ ct2 is not a valid statement (it does not decrypt to

0).
A ZK simulator can be run on false statements and indeed one can prove that

simulated ZK proofs for false statements are always accepted by the verifier. In
contrast, a HZK simulator cannot be generally run on false statements. Precisely,
we cannot attempt to reduce the privacy to the variant of DDH in which the

28



adversary has access to the oracle DHInvO because, by definition, DHInvO returns
an error when the input is not a valid DH tuple (cf. Def. 28); the assumption
would be trivially false since the oracle might be used to distinguish a DH tuple
from a random one. Therefore, when using HZK proofs in reductions one has to
guarantee that the simulator is invoked only on valid statements. This can be
done considering the following alternative series of hybrid experiments.

– H ′0. Hybrid experiment H ′0 is identical to the real game except that ct1
encrypts 1 and ct2 encrypts −1.

– H ′1. Hybrid experiment H ′1 is identical to H ′0 except that the proof is simu-
lated (instead of being honestly generated).

– H ′2. Hybrid experiment H ′2 is identical to H ′1 except that ct1 encrypts −1
and ct2 encrypts 1 (the proof is still simulated like in H1).

– H ′3. Hybrid experiment H ′3 is identical to H ′2 except that the proof is honestly
computed (instead of being simulated).

Observe that the simulator is always invoked on valid statements. The perfect
indistinguishability of H ′1 from H ′0 (resp. H ′3 from H ′2) follows from the perfect
HZK simulatability. The indistinguishability of H ′2 from H ′1 follows from As-
sumption 6 that may be easily seen to be equivalent to the following “simpler”
assumption: a PPT adversary cannot distinguish a DH tuple (g, h, u, v) for wit-
ness w (i.e., u = gw, v = hw) from a random tuple, given additionally oracle
access to DHInvO and values h′, v′ such that (g, h′, u, v′) is another DH tuple
for the same witness w. This is stated in Assumption 7 and the reduction of
Assumption 7 to Assumption 6 is proven in Lemma 10.

Verifiable Functional Encryption. Badrinarayanan [BGJS16] et al. put forth the
powerful primitive of verifiable functional encryption that extends functional
encryption in that malicious behavior of the central authority and encryptors can
be detected. The difficulty in the construction of verifiable functional encryption
of Badrinarayanan et al. stems from the fact that, in order to not rely on trusted
parameters, NIZKs in the CRS model have to avoided and replaced by non-
interactive WI proofs. Unfortunately, a complicated and unnatural use of WI
limits the security to be selective (the adversary has to announce the challenge
before seeing the public key). Essentially, to engineer multiple witnesses, the
public key has to contain a commitment that in a hybrid experiment is set to be a
commitment to the challenge message. This shows that often the use of WI is not
only unnatural and causes an efficiency loss but also suffers inherent limitations:
it is not know how to construct, from a fully secure functional encryption scheme
and non-interactive WI proofs, a fully secure verifiable functional encryption
scheme.

A computational O-HZK for NP, as the one we construct in Section 1.4.4,
makes the construction of a fully secure verifiable functional encryption from
an arbitrary fully secure functional encryption scheme straightforward: add to
ciphertexts and tokens of a fully secure functional encryption scheme proofs
of their correct computation. The perfect verifiability follows from the perfect
soundness of the proof and the IND-CPA security for the verifiable functional

29



encryption scheme follows assuming the underlying functional encryption scheme
to be IND-CPA secure against adversaries with access to the oracle used by the
proof system for NP (restricting the adversaries to never query the oracle on
inputs returning error).

1.3.9 O-strong witness indistinguishability Strong witness indistinguisha-
bility (strong-WI) [Gol01,Gol04] requires that for two computationally indistin-
guishable statement distributions X1 and X2, a proof for statement x1 ← X1

must be computationally indistinguishable from a proof for statement x2 ← X2.
The previous application to e-voting makes manifest a close relation to strong-
WI. Indeed, consider the following two distributions Xb, b ∈ {0, 1}. Distribution
Xb contains a randomly selected public key pk for our (variant of) El Gamal
encryption scheme and a ciphertext ct computed as follows. Compute two ci-
phertexts ct0, ct1 encrypting resp. b and 1− b under pk and set ct to be ct0 ∗ ct1.
The statement output by the distribution states that ct is a ciphertext for pub-
lic key pk that decrypts to 1 and ct = ct0 ∗ ct1. Assumption 6 (that is in turn
equivalent to Assumption 7) may be then seen to be equivalent to conjectur-
ing our main proof system to be strong-WI with respect to these two specific
distributions.

More generally, an O-HZK proof system is O-strong-WI, that is strong-WI
when quantifying distributions that are computationally indistinguishable even
by adversaries with access to O; see Def. 21 and Corollary 5. We are not aware of
any work analyzing whether known non-interactive ZAPs are also strong-WI.

1.4 Extensions

In this section we sketch several extensions of our main proof system for DH
tuples. While we provide a comprehensive overview, we sometimes skip techni-
calities and details, in particular we mostly opt for presenting only the details
needed to construct our HZK proof for NP relations of Section 1.4.4.

1.4.1 Verifiable shuffle Our techniques can be extended to construct a non-
interactive perfectly sound proof of correctness of a shuffle of (our variant of) El
Gamal ciphertexts. Our starting point is the verifiable shuffle of Neff [Nef01].

The Iterated Logarithm Multiplication Problem. As in Neff, to construct a verifi-
able shuffle we first build proofs for the iterated logarithm multiplication problem
(ILMP). In the ILMP for parameter k, one wants to prove that two tuples X =

(X1, . . . , Xk) and Y = (Y1, . . . , Yk) are such that
∏k
i=1 dloggXi =

∏k
i=1 dloggYi.

For simplicity, hereafter we consider tuples of 3 elements, that is we consider the
ILMP for k = 3. (For our construction of a HZK NI proof for NP relations of
Section 1.4.4, we would actually need to just consider the case k = 4, but we
believe that the core ideas can be presented more clearly with a slight loss of
generality and we limit the presentation to the case k = 3.)

30



In our setting, the tuples are over Z?N , so it might be that for some i ∈
[3],dloggXi or dloggYi does not exist. Therefore, in the following we will often
assume all the group elements in the tuples to belong to the subgroup generated
by a public group element g (that, if computed honestly, is a generator of the
group of quadratic residues modulo N). This limitation can be removed using
our HZK NI proof NISG to prove each group element in the tuples to belong to
the subgroup generated by g. Observe that ILMP for k = 2 corresponds to the
problem of proving that a tuple of 4 group elements is DH, so ILMP can be seen
as a generalization of the DH problem.

We assume the prover knows the discrete logs in base g of all the elements
Xi’s and Yi’s. In our proof system for Boolean circuit satisfiability of Section
1.4.4 the prover does know the discrete logs of all the group elements (because
it is the prover to create such elements with knowledge of the corresponding
exponents) and so this assumption is not a limitation for that application.

A HZK NI proof for the ILMP. Consider the following non-interactive proof (we
will next show that, in order to make it sound, it has to be modified).

The prover sends values:

A1
4
= Y Θ1

1 , A2
4
= XΘ1

2 · Y −Θ2
2 , A3

4
= XΘ2

3 ,

and values r1, r2 satisfying the following three equations:

Y r11 = A1 ·X1, X
r1
2 · Y

−r2
2 = A2, X

r2
3 = A3 · Y3.

Observe that the prover can efficiently do that as it knows the exponents x1, x2, x3, y1, y2, y3.
The verifier accepts iff all the last equations are satisfied.
Let us set r̄i = ri − Θi. Assuming that the values A1, A2, A3 are generated

correctly, the first equation implies (1) r̄i · y1 = x1, the second implies (2) r̄1 ·
x2 − r̄2 · y2 = 0 and the third (3) r̄2 · x3 = y3. Replacing (1) and (3) in (2) we
have x1·x2

y1
+ y3·y2

x3
= 0 that implies x1x2x3 = y1y2y3.

Therefore, (perfect) soundness would hold if the values A1, A2, A3 were ever

computed correctly (if, e.g., A3 = X
Θ′2
3 for Θ′2 6= Θ2 the above analysis would

break down). For this reason we have to modify the above system to prove
correctness of the computation of the values Ai’s.

To that purpose, the prover also sends z1 = Θ−11 mod φ(N), z2 = Θ−12

mod φ(N). It is easy to see that such values can be used to check the validity of
the Ai’s: the prover first checks that Az21 = Y1 then compute C = A2 ·Xz1

2 , checks
that Cz2 = Y −12 and that Az23 = X3. However, it might be that the value zi’s
are not co-prime with φ(N) and in such case the check would not be sufficient to
guarantee soundness (see Section 1.2). As for our NI proof NIDDH, we have thus
to employ the trick of the parallel repetitions (see Section 1.2). In the following,
for simplicity we will skip this detail and assume the above version of the proof
without parallel repetitions.

Let DHInvO be the oracle associated to the simulator for the NI NIDDH. The
DHInvO-HZK can be proved as follows. The DHInvO-aided simulator SimILMP

31



computes random values r1, r2 ← Zφ(N) and computes elements A1, A2, A3 sat-
isfying the equations

Y r11 = A1 ·X1, X
r1
2 · Y

−r2
2 = A2, X

r2
3 = A3 · Y3.

The distribution of the elements (r1, r2, A1, A2, A3) computed by the simulator
is identical to the distribution of the same elements in the distribution of real
proofs. Finally, the simulator invokes the oracle on (N,Y1, Y1, A1, A1) to get zi =
Θ−11 mod φ(N) and invokes the oracle on (N,X3, X3, A3, A3) to get z2 = Θ−12

mod φ(N) and outputs r1, r2, z1, z2, A1, A2, A3. By definition of the oracle, the
so computed values z1, z2 are distributed identically to the values z1, z2 in the
distribution of real proofs.

Note that, as mentioned above, to prove that all the group elements in the
tuples belong to the subgroup generated by g, we have to invoke NISG that is
also DHInvO-HZK, for the same oracle DHInvO(·). Furthermore, recall that we
are skipping the fact that, for the soundness to hold, the proof has to be repeated
in parallel a certain number of times (in this case, the previous simulator would
have to run the same computation several times).

The previous protocol can be generalized to deal with any tuple of k > 3
elements. For simplicity, we do not present the details. We remark that for our
main application to proofs of Circuit Satisfiability of Section 1.4.4, it is sufficient
to consider proofs for the ILMP with k = 4. Hereafter, we assume to have a proof
for the ILMP for any k > 3.

A HZK interactive proof for proving the correctness of a shuffle. From ILMP
we move to a simple n-shuffle problem. Constants c, d ∈ Z?φ(N) are known to the

prover and commitments C = gc and D = gd are published. The prover has to
convince the verifier that there is some permutation p : [n]→ [n] such that:

Y di = Xc
p(i),

for i ∈ [n]. We assume the prover to know the discrete logs in base g of all
the elements Xi’s and Yi’s; in the application to the proof for NP of Section
1.4.4, this assumption will not constitute a limitation as it will be the prover of
such system to create the group elements with knowledge of the corresponding
exponents.

We firstly consider an interactive protocol. The protocol proceeds as follows.
The verifier sends to the prover a random t ∈ Zφ(N).

Prover and verifier publicly compute U
4
= Dt = gdt and W

4
= Ct = gct and

X̄
4
= (X̄1, . . . , X̄n) = (X1/U, . . . ,Xn/U)

and

Ȳ
4
= (Ȳ1, . . . , Ȳn) = (Y1/W, . . . , Yn/W ).

Prover sends a ILMP proof for the vectors (X̄, [C]n) and (Ȳ , [D]n), where
[C]n (resp. [D]n) denotes a list containing the value C (resp. D) repeated n

32



times. (Here, we are already implicitly assuming to have a generalization of the
ILMP proof to the case k = 2n.)

By the perfect soundness of the ILMP proof, if the proof is accepted then it
holds that:

cn ·
n∏
i=1

(xi − dt) = dn ·
n∏
i=1

(yi − ct)

⇐⇒
n∏
i=1

(xi − dt) = dn ·
n∏
i=1

(yi/c− t)

⇐⇒
n∏
i=1

(xi/d− t) =

n∏
i=1

(yi/c− t).

⇐⇒
n∏
i=1

(t− xi/d) =

n∏
i=1

(t− yi/c).

Denote by P (resp. Q) the left (resp. right) hand of the last equation, that is P
4
=∏n

i=1(t−xi/d) and Q
4
=
∏n
i=1(t−yi/c). P and Q can be seen as polynomials P [t]

and Q[t] over Zφ(N) in the variable t. If P [t] and Q[t] are identical polynomials
(the lists of the coefficients are identical), then the statement (i.e., that there
exists a permutation p over [n] such that for any i ∈ [n], Y di = Xc

p(i)), is true (the

viceversa holds as well). Indeed, suppose P [t], Q[t] to be identical polynomials
(the list of coefficients of P [t] is equal to the list of coefficients of Q[t]). By
definition of P [t] and Q[t], and from the fact that a polynomial of degree n, as
P [t] and Q[t] are, has at most n roots, it follows that there exists a permutation
p over [n] such that for every i ∈ [n], xi/d = yp(i)/c ⇐⇒ xi · c = yp(i) · d ⇐⇒
Xc
i = Y dp(i), as it was to show. Hence, if the statement does not hold, the two

polynomials have to be different.
The soundness error is the probability, over the random choices of t ∈ Zφ(N)

of the verifier, that the proof is accepted but the statement does not hold. There-
fore, the soundness error is equal to the probability that the last equation holds
but the two polynomials P [t] and Q[t] are different. The probability that the
last equation holds is equal to the probability, over a random r ∈ Zφ(N), that
P [t](r) = Q[t](r) (that is, that the evaluation of P [t] at the point r equals the
evaluation of Q[t] at the point r). As a consequence, the probability that the last
equation holds is equal to the probability, over the choices of r ∈ Zφ(N), that r
is a zero of the polynomial (P −Q)[t]. Since P [t] and Q[t] are monic polynomials
of degree n and they are different, the polynomial (P −Q)[t] has at most n− 1
roots, so the soundness error is ≤ (n− 1)/φ(N).

It is easy to see that the protocol is DHInvO-HZK, with DHInvO(·) being
the same oracle associated to the simulator of NIDDH. The DHInvO-oracle aided
simulator SimShfl for the above protocol works as follows. The simulator takes as

33



input (C,D,X1, . . . , Xn, Y1, . . . , Yn), chooses a random t ∈ Zφ(N) and computes

U
4
= Dt = gdt,W

4
= Ct = gct and

X̄
4
= (X̄1, . . . , X̄n) = (X1/U, . . . ,Xn/U)

and

Ȳ
4
= (Ȳ1, . . . , Ȳn) = (Y1/W, . . . , Yn/W ).

Such values are distributed identically as in a real proof. Finally, SimShfl returns
the output of SimILMP on input the vectors (X̄, [C]n) and (Ȳ , [D]n). As the
distribution of the SimILMP’s output for the ILMP problem is identical to a real
proof for the ILMP problem, so the distribution of the SimShfl output is identical
to the distribution of the real transcripts for the above protocol.

Removing interaction and de-randomizing the protocol. The protocol can be
made non-interactive using a non-programmable RO by computing the verifier
message as output of the RO (note that the verifier message is the first message
in the interaction, not the second like in a sigma protocol).

To remove the RO and the negligible soundness error, we recall that, as we
proved above, there are at most n − 1 values of t that can make the verifier to
err. Therefore, the protocol can be repeated n times with different values of t.
It is straightforward to see that the above simulator SimShfl can be adapted to
this modification as well.

(Note that de-randomizing in this way the first message in the interactive
protocol of Neff is possible but does not offer any advantage. Indeed, the Neff’s
interactive proof consists in a first random message sent by the verifier followed
by a sigma protocol between prover and verifier. De-randomizing the first mes-
sage would remove the need of the RO in the first verifier message but not for
the verifier’s message sent in the next three-round protocol.)

From a shuffle of group elements to a shuffle of El Gamal ciphertexts. The previ-
ous protocol could be improved, as done in Neff [Nef01] and following our ideas,
to make it non-interactive and perfectly sound, to remove the limitation that
the shuffler needs to know the discrete logs of all the Xi’s and Yi’s; the result-
ing protocol would have computational HZK, that is the simulator with access
to the oracle DHInvO(·) outputs a transcript computationally indistinguishable
from the one of the prover (cf. Def. 6). Moreover, as in Neff, the protocol can
be generalized to any tuple of k ≥ 2 elements (we have been implicitly assuming
that in the previous analysis) and to a shuffle of El Gamal ciphertexts (i.e., pairs
of group elements). We skip further details.

We instead show how our previous shuffle (in its limited version in which
the prover needs to know the discrete logs of all the elements in the statement)
can be adapted in a simpler way to a shuffle of 2 El Gamal ciphertexts. This is
sufficient for our application to proofs for Circuit Satisfiability of Section 1.4.4.

For a given ciphertext ct = (c1, c2), let us denote by ctl the left part c1 (resp.
by ctr the right part c2). Let ct1 and ct2 be two El Gamal ciphertexts and let

P1
4
= ctl1 · ctr1 and P2

4
= ctl2 · ctr2.

34



The shuffler computes random commitments C = gc, D = gd, selects a ran-

dom permutation p over [2] and sets ct′1
4
= ((ctlp(1))

d/c, (ctrp(1))
d/c) and ct′2

4
=

((ctlp(2))
d/c, (ctrp(2))

d/c), P ′1
4
= ct′l1 · ct′r1 and P ′2

4
= ct′l2 · ct′r2 . Note that P ′1 (resp.

P ′2) is the re-randomized permutation of P1 (resp. P2).
The shuffler uses our previous proof of correct shuffle to prove that all the

following statements hold:

– (1). (ct′l1 , ct′l2 ) is a shuffle with respect to the commitments C,D of (ctl1, ctl2).
– (2). (ct′r1 , ct′r2 ) is a shuffle with respect to the commitments C,D of (ctr1, ctr2).
– (3). (P ′1, P

′
2) is a shuffle with respect to the commitments C,D of (P1, P2).

The verifier checks that P1 = ctl1 · ctr1, P
′
1 = ct′l1 · ct′r1 , P2 = ctl2 · ctr2, P

′
2 = ct′l2 · ct′r2

and that the three proofs above are correct. Furthermore, the verifier checks that
ctl1 6= ctl2 and ctr1 6= ctr2.

Roughly speaking, the shuffler computes three shuffles, one for the left part
of the two ciphertexts, one for the right part, and one for the products, and
proves that each shuffle individually is correct, and additionally performs some
tests to enforce the prover to use the same permutation in all the shuffles.

Let us analyze the soundness. By (1), (ct′l1 , ct′l2 ) = ((ctlp(1))
s, (ctlp(2))

s), for

some permutation p and s = d/c. By (2), (ct′r1 , ct′r2 ) = ((ctrq(1))
s, (ctrq(2))

s), for

some permutation q and s = d/c. By (3), (ct′l1 · ct′r1 ) = (ctlv(1) · ctrv(1))
s and

(ct′l2 · ct′r2 ) = (ctlv(2) · ctrv(2))
s, for some permutation v and s = d/c.

So, P ′1 = (by the verifier’s checks) = ct′l1 · ct′r1 = (by (1) and (2)) = (ctlp(1) ·
ctrq(1))

s = (by (3)) = (ctlv(1) · ctrv(1))
s, and similarly for P ′2. Suppose towards a

contradiction that the proof is accepted (all the verifier’s checks pass) but the
ciphertexts are not permuted correctly, that is that p 6= q. We analyze four
mutually exclusive cases and we reach a contradiction.

– p and v are the identity permutations. In this case, P ′1 = (ctl1 · ctr2)s =
(ctl1 · ctr1)s. This contradicts the fact that ctr1 6= ctr2.

– p is the identity and v is not the identity permutation. In this case, P ′1 =
(ctl1 · ctr2)s = (ctl2 · ctr2)s. This contradicts the fact that ctl1 6= ctl2.

– p is not the identity and v is the identity permutation. In this case, P ′2 =
(ctl1 · ctr2)s = (ctl2 · ctr2)s. This contradicts the fact that ctl1 6= ctl2.

– p and v are both different from the identity permutation. In this case, P ′2 =
(ctl1 · ctr2)s = (ctl1 · ctr1)s. This contradicts the fact that ctr1 6= ctr2.

To demonstrate the DHInvO-HZK of this modified proof, the previously de-
scribed DHInvO-aided simulator SimShfl has to be modified as follows. The sim-
ulator SimShfl on input the two commitments C,D, two pairs of ciphertext ct1
and ct2 and the re-encrypted (according to C and D) and permuted resulting
ciphertexts ct′1 and ct′2, computes what follows. It simulates a proof (using the
previously described version of the simulator for the proof of correct shuffle of
group elements) of the fact that (ct′l1 , ct′l2 ) is a shuffle with respect to the com-
mitments C,D of (ctl1, ctl2), of the fact that (ct′r1 , ct′r2 ) is a shuffle with respect

35



to the commitments C,D of (ctr1, ctr2) and of the fact that (P ′1, P
′
2) is a shuffle

with respect to the commitments C,D of (P1, P2), where, by their definitions,
P1, P2, P

′
1, P

′
2 are publicly computable from the statement. By the previous anal-

ysis, it is straightforward to see that this modified simulator carries out a perfect
DHInvO-aided simulation.

We stress that in our proof system for Boolean circuit satisfiability of Section
1.4.4 the prover does know the discrete logs of all the group elements. Further-
more, in our proof for Circuit satisfiability, the prover only needs to compute
shuffles of 2 El Gamal ciphertexts. So the previous limited version of the shuffle
(i.e., in which the prover needs to know the discrete logs) extended with the
above modification to a shuffle of El Gamal ciphertexts suffices for that applica-
tion.

1.4.2 OR proofs from verifiable shuffle In an OR proof, the prover needs
to convince the verifier that a compound statement like x ∈ L∨x2 ∈ L holds. OR
proofs [CDS94] for sigma protocols are achievable using the simulator construc-
tively in the proof. The idea is that the prover uses the simulator to generate a
proof for the part of the OR statement for which it does not know the witness.
Proving that ciphertext c decrypts to 0 or 1 is easy using such a technique. This
trick cannot be applied to NIDDH as its prover cannot execute the simulator
without the oracle and in general cannot be applied to a HZK proof as the
simulator for it can be only invoked on valid statements.

We can construct an OR proof for proving that an El Gamal ciphertext

ct
4
= (c1, c2) (over Z?N ) for public key pk decrypts to 0 or 1 from the previous

proof of correctness of a shuffle of El Gamal ciphertexts.
We assume the prover to know the discrete logs in base g of c1 and c2. In

our application to proofs for Circuit Satisfiability of Section 1.4.4 this is not a
limitation as the prover of the NI for Circuit Satisfiability applies OR proofs from
ciphertexts created by itself with knowledge of all the corresponding exponents.

The prover holds an El Gamal public key pk (over Z?N ) and a ciphertext
ct1 encrypting a bit b and computes another ciphertext ct2 encrypting 1 − b.
Then the prover computes a shuffle (cts,1, cts,2) of (ct1, ct2), that is it computes

random commitments C
4
= gc, D

4
= gd and a random permutation p over [2] and

sets cts,1 and cts,2 such that ctds,i = ctcs,p(i), for i = 1, 2. (Given a ciphertext

ct
4
= (c1, c2), we denote by ctd the ciphertext (cd1, c

d
2).) The prover computes a

proof of correctness of the previous shuffle of the two previous pairs of ciphertexts
with respect to the commitments C,D. Furthermore, the prover uses NIDDH to
show what values cts,1 and cts,2 decrypt to. The verifier checks that the shuffle
is correct and that cts and ct′s decrypt to two bits that sum up to 1 so it is
convinced that ct1 encrypts a bit (0 or 1).

It is easy to see that the proof inherits the same soundness guarantee of the
underlying proof of correct shuffle, so it is perfectly sound. The DHInvO-aided
simulation is straightforward given a DHInvO-aided simulator for the proof of
correct shuffle. More in detail, consider the following DHInvO-aided simulator

36



SimOR. The simulator SimOR, on input a public key pk and a ciphertext ct1,
computes what follows. Let b the bit encrypted in ct1. SimOR computes a cipher-
text encrypting 1 and uses the homomorphic properties of El Gamal to compute
a ciphertext ct2 encrypting 1− b. Note that the simulator does not know the bit
b but is able to obliviously compute a ciphertext encrypting the bit complement.
Then, as the prover, the simulator computes a shuffle (cts,1, cts,2) of (ct1, ct2),

that is it computes random commitments C
4
= gc, D

4
= gd and a random per-

mutation p over [2] and sets cts,1 and cts,2 such that ctds,i = ctcs,p(i), for i = 1, 2.
The simulator invokes SimShfl to simulate a proof of correctness of the previous
shuffle. It is straightforward to see that the simulation of SimOR is perfect as
the simulation of SimShfl is.

1.4.3 Polynomial statements The ideas and construction in this section are
due to Geoffroy Couteau. An alternative approach to prove OR statements and
more general polynomial statements is the following. We first present a proof
subject to an issue and then we will show how to fix it. Let (g, h) be the El
Gamal public key (our our group of quadratic residues modulo N), and let w
be the secret key (hence h = gw). Let (u, v) be a ciphertext that decrypts to a
message m: (u, v) = (gr, hr ·gm). To prove that m is a bit, it suffices to prove that
there exist values (w,m, x) such that the following four equations are satisfied:

1. h = gw.
2. v = uw · gm.
3. 1 = gx · hm. This equation ensures that x = −w ·m.
4. 1 = ux · (v/g)m. This equation ensures that u−w·m · (v/g)m = 1, which

reduces to gm·(m−1) = 1, hence m is a bit.

The proof that these equations are satisfied works as follows.
Pick random masks w′,m′, and x′ in Z?m, where m is the order of the group.

Compute c0 = gw
′
, c1 = uw

′ · gm′ , c2 = gx
′ · hm′ , and c3 = ux

′ · (v/g)m
′
. The

proof is:

(c0, c1, c2, c3, s1, s2, s3, s4, s5, s6),

with

s1 = w′−1 mod φ(N), s2 = m′−1 mod φ(N), s3 = x′−1 mod φ(N),

s4 = (w+w′)−1 mod φ(N), s5 = (m+m′)−1 mod φ(N), s6 = (x+x′)−1 mod φ(N).

Then, similarly to the proof for DH tuples, the verifier uses s1, s2, s3 to check
that c0, c1, c2, c3 are well formed. To illustrate the check, suppose you want to
check that c1 = uw

′ · gm′ . This check is in fact equivalent to verifying:

(cs21 /g)s1 = us2 ,

which can be done using s1 and s2. Then, analogously the verifier uses
s4, s5, s6 to check that (h · c0, v · c1, v · c2, v · c3) are well-formed.

37



There is a problem with the previous proof system: if we reveal (m+m′)−1

and m′−1, then we leak whether m is equal to 0 or not. However, there is a
simple fix: simply add 1 to m homomorphically and prove that m is equal to 1
or 2; the previous proof system has to be slightly modified in an obvious way12

but we skip the details.
Again, we implicitly assumed all group elements to belong to the same sub-

group. This limitation can be removed as detailed for the proof for DH tuples.
To simulate a proof for polynomial statements, the simulator needs oracle access
to DHInvO. We skip further details.

1.4.4 ZAP and computational HZK proof for NP relations The pre-
vious OR proofs or proofs for polynomial statements can be used to construct
a one-message perfectly sound WI proof (non-interactive ZAP) for Boolean cir-
cuit satisfiability as follows. Our solution is inspired by [GOS12]. Assume the
circuits consist only of NAND gates. If w0, w1 are the values corresponding to
the input wires of a gate and w2 is the value corresponding to its output wire,
it is easy to see that w0, w1, w2 are a valid assignment (i.e., w2 = ¬(w0 ∧ w1))
iff w0 + w1 + 2w2 − 2 ∈ {0, 1} and w0, w1, w2 ∈ {0, 1}.

The prover creates a public key (N, g, h) for our variant of El Gamal and
associates a ciphertext to each wire of the circuit in the following way. To each
input wire corresponding to a bit b of the witness, the prover associates a cipher-
text encrypting b. The prover evaluates the circuit at each gate and associates
to each output wire of a gate the encryption of the corresponding bit (computed
homomorphically).

To each output wire of a gate and to each input wire of the circuit, the
prover adds a proof of the fact that the associated ciphertext decrypts to 0 or
1.13 Let t be a ciphertext encrypting the integer −2 (this can be done with trivial
randomness, so that the verifier can verify that it is correctly computed). For
each gate with ciphertexts ct0, ct1 associated to its input wires and ciphertext

ct2 associated to its output wire, the prover computes the ciphertext G
4
= ct0 ∗

ct1 ∗ ct22 ∗ t and adds a proof that G decrypts to 0 or 1. (Here, by ”∗“ and
exponentiation we mean the usual operations on El Gamal ciphertexts; cf. Def.
25.) Finally, the prover shows that the output gate decrypts to 1.

Using the homomorphic property of El Gamal and the above fact, it is easy to
see that if all the proofs are accepted, the computation is consistent. Therefore,
since the ciphertexts associated to the input wires decrypt to 0 or 1 and the
output wire of the circuit decrypts to 1, the circuit is satisfiable. Notice that
we can easily deal with the issue mentioned in Section 1.2.3. Indeed, for each

12 The essential modification is to adapt the equations so to ensure that g(m−2)(m−1) =
1.

13 Observe that the prover for the NP proof can use our OR proof from proof of correct
shuffle in the simplified version in which the input to the prover for the proof of
shuffle includes the discrete logs of the group elements in the statement. Indeed,
in this case the prover for the NP proof can generate such group elements with
knowledge of the corresponding discrete logs.

38



ciphertext ct = (ct1, ct2), the prover can add a proof that ct1 belongs to the
subgroup generated by g; this can be done by the prover since the prover can
generate N with knowledge of the factorization.

It is easy to see that the computational WI property follows from the as-
sumption that a PPT adversary cannot distinguish the encryption of one of two
bits having in addition a proof (computed as described previously) of the fact
that the ciphertext encrypts a bit (0 or 1) and access to an oracle (that can be
invoked only on valid tuples) for computing proofs of valid statements of this
sort. This can be seen to be equivalent to state that a PPT adversary cannot
distinguish the encryption of one of two bits having the possibility of invoking
the oracle DHInvO of the HZK simulator of our main proof system only on valid
DH tuples. The precise statement is given in Assumption 5. We skip further
details.

cHZK proof for Boolean circuit satisfiability. The previous non-interactive ZAP
is also computational DHInvO-HZK: the simulator computes the public key and
simulates an OR proof for each ciphertext associated with an internal wire and
a proof of the fact that the ciphertext associated with the output gate decrypts
to 1.

Therefore, for the simulator to carry out the simulation is sufficient to provide
the simulator with access to the same oracle DHInvO associated with the HZK
proof for DH tuples, and in addition another oracle ONP (the two oracles can be
seen as a single oracle). The oracle ONP, if invoked on a satisfiable Boolean circuit,
computes the public key, and a bit-by-bit encryption of a witness, specifically
the lexicographically first witness satisfying the statement, or returns error on
input a non-satisfiable Boolean circuit.

Let DHInvO′ be the oracle resulting from joining DHInvO and ONP. The
simulation is not perfect as the ciphertexts leak information (the witness chosen
by the oracle may differ from the one in a real proof). However, our NI for
Boolean circuit satisfiability can be conjectured to be computational HZK (cf.
Def. 6) with respect to the oracle DHInvO′. We state this as an assumption in
itself and skip further details.14 We did not investigate whether the proof be
simulatable via more ”concise“ oracles.

As discussed in Section 1.3.4 the existence of an O-aided simulator for a
proof for a relation R implies that the proof is witness hiding with respect to
distributions D (over pairs (x,w) such that R(x,w) = 1) with the following
property: there exists no PPT oracle adversary B with oracle access to O such
that if (x,w)← D, then B, on input x, outputs w with non-negligible probabil-
ity. With respect to any such distribution over Boolean circuits and satisfying
assignments for them, our proof is witness hiding.

Complexity leveraging and quasi-polynomial time simulation. Pass [Pas03b] showed
how to use complexity leveraging arguments [CGGM00] to construct quasi-

14 The cHZK property might be reduced to ”simpler“ assumptions similar to the one
used to prove the computational WI of our non-interactive ZAP, that is Assumption
5.

39



polynomial time simulatable two-message arguments extended in Barak and
Pass [BP04] to quasi-polynomial time simulatable one-message arguments with
uniform soundness.

The idea of Pass [Pas03b] is (simplifying) the following. The verifier sends
some random challenge c = f(r) for some one-way function f and the prover
proves, using an argument of knowledge, that x ∈ L or there exists a pre-image
for c. The soundness follows from the one-wayness of f and the security of the
argument of knowledge. The quasi-polynomial time simulatability holds setting
the length of c so that the simulator can extract a pre-image in quasi-polynomial
time. The protocol as described results in a four round argument (due to the
use of the argument of knowledge), the rounds can be reduced to two using
non-interactive ZAP and extractable commitments but we skip the details.

Barak and Pass [BP04] builds on this idea to remove the interaction. In
essence, the prover sends a commitment c and a proof, using for instance a
non-interactive ZAP, that x ∈ L or there exists a pair of collisions for a hash
function. Assuming uniform adversarial prover strategies only, the soundness
holds because it is a difficult for a uniform adversary to come up with a pair of
collisions for a hash function. The quasi-polynomial time simulatability follows
setting the parameters appropriately so that the simulator can find a pair of
collisions in quasi-polynomial time.

Our proof for Boolean circuit satisfiability is also harmless proof of knowl-
edge, so it can be used in both constructions to achieve quasi-polynomial time
simulation.

1.5 Related Work and Comparison

Zero-knowledge proofs and arguments. Zero-knowledge proofs, introduced in the
seminal work of Goldreich, Micali and Rackoff [GMR89] and further refined
in [GMW86,GMW91], have been one of the main building blocks of modern
cryptography [GMW87,CCD88], have provided useful in complexity theory to
establish that certain languages are unlikely to be NP-complete [BHZ87,For87]
and represent a fascinating concept in itself. Argument systems have been intro-
duced by Brassard et al. [BCC88] as a natural relaxation of the notion of proof
system in which the dishonest prover is restricted to be efficient.

Zero-knowledge Proof of knowledge systems. Proof of knowledge systems [BM88,GMR89]
[BG93,Gol01] extend proof systems adding the property that if a prover succeeds
in convincing the verifier that, e.g., some NP statement holds, then the prover
”knows“ a witness for the statement; this is formalized requiring the existence
of an efficient extractor that can extract the witness given oracle access to the
prover with probability higher than the success probability of the prover in con-
vincing the verifier (this is a simplification, the actual definition has to take in
account a knowledge error).

Limitations of zero-knowledge. Strong limitations for ZK proofs and arguments
have been studied since its discovery. The impossibility of non-interactive ZK (in

40



the plain model) is straightforward (see Goldreich [Gol01]). Goldreich and Oren
[GO94] proved the impossibility of non-trivial 2-round ZK arguments. Regarding
black-box simulation, the possibility of non-trivial 3-round ZK arguments has
been ruled out by Goldreich and Krawczyk [GK90] while Canetti et al. [CKPR01]
ruled out the existence of non-trivial constant-round concurrent ZK arguments.
The limitations of strict polynomial-time simulators have been studied by Barak
and Lindell [BL02]; the oracle-aided simulators in our proof systems run in strict
polynomial-time.

Fortnow [For87], and Aiello and H̊astad [AH87] study the limits of perfect
and statistical ZK (that guarantee that the ensemble output by the simulator is,
resp., distributed identically or statistically indistinguishable from the ensemble
output by the prover) showing that is unlikely the existence of a perfect or
statistical ZK proof system for an NP-complete language.

CRS-based NIZKs. CRS-based NIZK proof and argument systems have been in-
tensively studied in the last 30 years in a sequel of works [BFM88,DMP88,FLS90,RS92]
[BY93,BY96,Gol01,DDO+01,Can01,Pas03a,BCNP04,Ps05,GOS06b,GOS06a,AF07]
[GS08,GK08,GOS12,Pas13,BFS16,PS19].

One of the initial motivations for CRS-based NIZK proof was CCA-security
[NY90,CS98,Sah99,DDO+01,ES02,CS03,Lin06]. In this setting, the CRS is com-
puted by the receiver, while the NIZK proofs are computed by the sender of
ciphertexts. Thus, for CCA-security the CRS model does not pose any issue.

In contrast, in e-voting [Cha81,CGS97,Adi08,RS06,JCJ10] the authority can-
not be the same party to generate the CRS. Indeed, the authority must compute
proofs of correctness of the tally and thus the CRS has to be setup by a trusted
party. Our proofs for NP of Section 1.4.4 are not based on any trusted parameter
and may be used in several existing e-voting schemes (e.g., [Adi08]) to overcome
this limitation.

NIZKs in the CRS model can be obtained from any trapdoor permutation
[FLS90] (and thus from factoring), from bilinear groups [GOS06a], and recently
from the learning with error problem [CLW18,PS19], only to cite the most no-
table constructions.

The RO model and NIZKs derived via FS-like transformations. An alternative
to the CRS model is the RO model that assumes the availability of a perfect
random function that in practice is implemented with a hash function. The
RO model does not solve the issues of the CRS model but often leads to the
design of more efficient protocols. The RO methodology has been introduced
in the groundbreaking work of Bellare and Rogaway [BR93]. Canetti et al.
[CGH98] show that the RO methodology is unsound in general and several works
[DNRS99,Bar01,GK03,BLV03,BDSG+13,GOSV14,KRR16] studied the security
of the FS methodology. A first rigorous analysis of the FS transform (applied
to the case of signature schemes) appeared in Pointcheval and Stern [PS00].
Since the introduction of the FS transform [FS87], there has been a lot of work
in investigating alternative transformations that achieve further properties or
mitigate some issues of FS.

41



Pass [Pas03a] and Fischlin [Fis05] introduce new transformations with straight-
line extractors to address some problems that arise when using the NIZK argu-
ment systems resulting from the FS transform in larger protocols [SG02]. The
NIZK systems resulting from the Pass’ and Fischlin’s transforms share the same
limitation of FS of being arguments, i.e., sound only against computationally
bounded adversaries. Furthermore, Fischlin’s transform also results in a com-
pleteness error.

(Note that the definition of online extractability of Fischlin implicitly assumes
that the list of RO queries given to the extractor has polynomial size and thus
only withstands adversaries that are possibly computationally unbounded but
limited to a polynomial number of RO queries; according to our terminology, this
limitation brings to an argument system with computational extractability.15)

Damg̊ard et al. [DFN06] propose a new transformation for the standard
model but it results in NIZK argument systems that are only designated verifier,
rests on computational assumptions and has soundness limited to a logarithmic
number of theorems. Designated verifier NIZK proofs are sufficient for some
applications (e.g., non-malleable encryption [PsV06]) but not for others like e-
voting in which public verifiability is a wished property. The limitation on the
soundness of the Damg̊ard’s transformation has been improved in the works of
Ventre and Visconti [VV09] and Chaidos and Groth [CG15].

Lindell [Lin15] (see also the improvement of Ciampi et al. [CPSV16]) puts
forward a new transformation that requires both a non-programmable RO and a
CRS and has computational complexity only slightly higher than FS. The trans-
formations of Lindell and Ciampi et al. are based on computational assumptions.

Mittelbach and Venturi [MV16] investigate alternative classes of interactive
protocols where the FS transform does have standard-model instantiations but
their result yields NIZK argument systems and is based on strong assumptions
like indistinguishability obfuscation [GGH+13], and as such is far from being
practical. Moreover the result of Mittelbach and Venturi seems to apply only to
the weak FS transform in which the statement is not hashed along with the com-
mitment. The weak FS transform is known to be insecure in some applications
[BPW12].

The work of Mittelbach and Venturi has been improved by Kalai et al.
[KRR16] that, building on [BLV03,DRV12], have shown how to transform any
public-coin interactive proof system into a two-round argument system using
strong computational assumptions. The latter work does not yield non-interactive
argument systems.

Ishai et al.[IMS12] and Mahmoody and Xiao [MX13] construct unconditional
sub-linear ZK arguments in the RO model using the FS transform.

Faust et al. [FKMV12] and Bernhard et al. [BFW15] provide a careful study
of the definitions and security properties of the NIZK argument systems resulting
from the FS transform but they do not investigate the possibility of achieving
statistically sound proofs. Both works make use of the general forking lemma

15 The FS transform leads to statistically sound proof systems against computationally
unbounded provers if constrained to a polynomial number of RO queries.

42



of Bellare and Neven [BN06] that extends the forking lemma of Pointcheval
and Stern [PS00]. Wee [Wee09] presents a hierarchy of RO models and some
separations among them.

Recently, Canetti et al. [CLW18] showed how to instantiate correlation-
intractable functions [CGH98] and turned a particular sigma protocol into a
NIZK in the CRS model based on a variant of fully homomorphic encryption.
The result of Canetti et al. has been exploited by Peikert and Shiehian [PS19] to
construct the first NIZK in the CRS model based on learning with error (LWE),
a widely studied post-quantum safe problem.

The FS and NIZKs in the quantum setting. In the quantum setting, the Fiat-
Shamir and NIZK proof/argument systems in the RO model has been studied
in several works [Unr12,ARU14,Unr15] but this goes beyond the scope of our
work.

Sigma protocols. Sigma protocols, which efficient NIZK arguments in the RO
model are based on, have been intensively studied [GQ88,CP93,CDS94,FKI06,BR08]
[Dam10,ABB+10,YZ12,Mau15,GMO16] and incorporate properties both of in-
teractive proof systems and proofs of knowledge systems.

Chaum and Pedersen [CP93] construct sigma protocols for the well-formedness
of DH tuples that can be FS-transformed to non-interactive arguments in the
programmable RO model. Our proof system of Section 3 (overview in Section
1.2) for the well-formedness of (a variant of) DH tuples is non-interactive and
perfectly sound and does not rely on any trusted parameter.

Cramer et al. [CDS94] present techniques to achieve sigma protocol for com-
pound statements and Maurer [Mau15] show that many known sigma protocols
can be seen as a special case of an abstract protocol. Our techniques extend as
well to OR proofs and polynomial statements; see Sections 1.4.2 and 1.4.3.

Verifiable shuffle. The original concept of mix-nets has been introduced by
Chaum [Cha81]. A variant of Chaum’s mix-net called shuffle, based on the re-
encrypt and permute paradigm, has been introduced by Park et al. [PIK94] and
made verifiable by Sako and Kilian [SK94]. To our knowledge, all known efficient
(without passing through NP reductions) non-interactive ”proofs“ of correct
shuffle of ciphertexts of any semantically secure cryptosystem, both in the CRS
and RO model, and even the non-short ones, only achieve soundness against com-
putationally bounded provers. Examples include [SK94,FS01,Nef01,Gro03,Gro05b]
[Wik05,GL07a,GL07b,TW10]. Our verifiable shuffle of Section 1.4.1 extends the
one of Neff [Nef01] making it non-interactive and perfectly sound and is not
based on any trust assumption like the CRS or the RO model.

Witness indistinguishable systems. Dwork and Naor [DN00] constructed 2-round
witness indistinguishable proofs, called ZAPs, for any NP relation (assuming
trapdoor permutations exist). The construction of Dwork and Naor allows for
the first message (from verifier to prover) to be reused, thus only one message is

43



required even if many statements have to be proven. Barak et al. [BOV03] con-
structed the first non-interactive ZAPs for any NP relation. Groth et al. [GOS12]
construct non-interactive ZAPs for any NP relation from number-theoretic as-
sumptions over bilinear groups. Using the same techniques of Groth et al. [GOS12],
the NIZK proofs of Groth and Sahai [GS08] can be used to build non-interactive
ZAPs. The latter are the only known non-interactive ZAPs for practical state-
ments that do not employ NP-reductions. Bitansky and Paneth [BP15] construct
non-interactive ZAPs from indistinguishability obfuscation [GGH+13] and one-
way functions. In Section 1.4.4 we sketch the construction of a non-interactive
ZAP with perfect soundness for Boolean circuit satisfiability. Our non-interactive
ZAP is also computational HZK.

ZAPs only offer witness indistinguishability (WI) [FS90], a security guarantee
strictly weaker than ZK. Indeed, for relations with single witness, a trivial proof
system that outputs the witness as proof satisfies WI. On the other hand, HZK
proofs can be applied to relations with single witness as well, as it is the case for
the relation of well-formed DH tuples.16 WI makes the construction of security
protocols more complex; to make use of WI proofs one has to introduce relations
with artificial witnesses to be able to switch witnesses in hybrid experiments.
This problem does not only affect security reductions. In practice, the prover
invoked by the actual protocol has to compute a proof for a more complex
relation (that usually consists in an OR of different statements, some of which
are not related to the statement to prove, but are artificially needed to make the
reduction go through), and this comes with an additional efficiency loss. As for
ZK, HZK proofs instead do not pose this kind of efficiency loss.

As a reference, in the verifiable functional encryption construction of Badri-
narayanan [BGJS16], four functional encryption instances have to be used in
parallel along with non-interactive WI proofs for very complex relations. More-
over, due to the use of WI the construction of Badrinarayanan et al. is inherently
selectively secure (i.e., the adversary has to choose the challenge messages be-
fore seeing the public key). On the other hand, our non-interactive HZK proof
with perfect soundness for NP relations implies a fully (i.e., non-selective) secure
verifiable functional encryption scheme based on just a single instance of a fully
secure functional encryption in conjunction with HZK proofs.

To our knowledge, no efficient non-interactive WI statistically sound proof for
DH-like languages was known (unless going through expensive NP-reductions).
Hash proof systems [CS02] provide a different avenue to obtain variants of des-
ignated verifier proof systems for several practical relations including the DH
one.

Other formulations of privacy for proof and argument systems. Pass [Pas03b]
proposed a relaxation of ZK by allowing the simulator to run in sub-exponential
time and in this setting presented two-message straight-line concurrent ZK argu-
ments that are composable without requiring trusted parameters bypassing the

16 For simplicity, our formal definition of DH relation over groups of non-prime order
is not single witness but can be done so.

44



impossibility results of [CKPR01,GK90]. The work of Pass is similar in spirit to
ours in that the simulator is allowed more than PPT resources. HZK can be seen
to be more general as a sub-exponential time computation can be simulated by
an oracle.17 In [Pas03b], the motivation was to extend the simulation techniques
to enable advanced composition and reduce the round complexity of protocols.
Pass [Pas03b] only provides computationally sound and interactive protocols,
whereas our protocols are completely non-interactive and perfectly sound.

Barak and Pass [BP04] de-randomize the two-message protocol of Pass [Pas03b]
constructing a one-message quasi-polynomial time simulatable argument sys-
tem for NP, in which the soundness condition holds only against uniform ma-
chines, under general non-standard complexity theoretic assumptions. Chung et
al.[CLMP12] present barriers to using black-box reductions for proving sound-
ness of quasi-polynomial time simulatable arguments, essentially showing that
the results in the aforementioned works are optimal.

Our proofs can be tweaked using complexity leveraging arguments [CGGM00]
along with the techniques in [Pas03b,BP04] to achieve one-message arguments
with uniform soundness and quasi-polynomial time simulation or two-message
arguments with standard soundness and quasi-polynomial simulation; we briefly
discuss this point in Section 1.4.4.

Prabhakaran and Sahai [PS04] realized tasks in the Universal Composability
framework [Can01], known to be impossible without trust assumptions, by allow-
ing the adversary and the environment to have super-polynomial computational
power. The work of Prabhakaran and Sahai also introduces the notion of imagi-
nary angels that are oracles available to the environment and the adversary and
shows this to be an useful abstraction at the aim of defining and analyzing the
security of complex protocols. Our oracles are very similar in spirit to imaginary
angels. Observe that, like for imaginary angels in the work of Prabhakaran and
Sahai, our oracles are used to define and analyze the security but are not used
by the actual parties in proof systems.

Strong-WI [Gol01,Gol04] is a stronger security guarantee than WI. Strong-
WI requires that for two computationally indistinguishable statement distribu-
tions X1 and X2, a pair (x1, π1), in which π1 is a proof for statement x1 ← X1,
must be computationally indistinguishable from a pair (x2, π2), in which π2 is
a proof for statement x2 ← X2. Jain et al. [JKKR17] observe that there is no
evidence of whether ZK is actually necessary to enforce honest behavior of pro-
tocols with indistinguishability-based security and, borrowing ideas from Aiello
et al. [ABOR00], design variant of argument systems that can be used to recover
several applications of ZK. Their argument systems satisfy strong-WI and a
weaker simulation strategy, called distinguisher-dependent simulation, in which
the simulator can depend on the distinguisher. This is done in a setting, called

17 Let D be the oracle that gets as input the representation of a program P and an
input x, and returns the output of the execution of P on x. For each sub-exponential
simulator Sim, consider the D-aided PPT simulator Sim′ that, on input x, invokes
the oracle D on the bit representation of Sim concatenated to x, and returns the
output of the oracle.

45



the delayed-input distributional setting, in which the instance is only determined
by the prover in the last round of the interaction.

We are not aware of any work analyzing whether known non-interactive
ZAPs are also strong-WI. Pass [Pas06a] show that it is not possible to reduce
the strong-WI of a constant-round public-coin proof systems (with negligible
soundness error) for Boolean satisfiability to one-way functions under black-box
reductions. An O-HZK proof is O-strong-WI, that is strong-WI when quantify-
ing distributions that are computationally indistinguishable even by adversaries
with access to O; see Section 1.3.9, Def. 21 and Corollary 5.

Khurana and Sahai [KS17] constructed the first two-message arguments for
NP achieving quasi-polynomial time simulation in which the simulated proofs are
indistinguishable from real proofs by distinguishers running in time significantly
larger than that of the simulator (improving on Pass [Pas03b], in which the sim-
ulated proofs were instead indistinguishable by distinguishers running in time
significantly smaller than that of the simulator). Kalai et al. [KKS18] construct
two-message arguments satisfying the above property but with simulated proofs
statistically indistinguishable from real proofs by distinguishers running in time
significantly smaller than that of the simulator. In the delayed-input distribu-
tional setting, with distinguisher-dependent (polynomial time) simulation, Kalai
et al. [KKS18] improve the work of Jain et al. [JKKR17] achieving statistical
privacy.

Deshpande and Kalai [DK18] construct the first 2-message adaptively sound
witness hiding argument for NP (in the non-delayed input setting). Our proofs
are additionally 1-message harmless witness hiding proofs, under seemingly rea-
sonable computational assumptions. Harmless witness hiding is a natural strength-
ening of witness hiding. Witness hiding requires that no efficient verifier can
extract a witness after interacting with the prover on a randomly chosen in-
stance. Harmless witness hiding quantifies over efficient adversaries with access
to some oracle. For instance, our NI NIDDH is harmless witness hiding, under
the assumption that no PPT adversary, with access to the oracle DHInvO (cf.
Def. 28), can extract a witness from a randomly selected DH tuple over the
multiplicative group Z?N , for a Blum integer N . For more details, see Section
1.3.4, Def. 20 and Lemma 4. Haitner et al. [HRS09] and Pass [Pas11] present
impossibility results for black-box reductions of standard assumptions to WH.
In Section 1.3.4 we elaborate on why the fact that NIDDH is WH (under some
computational assumption) does not contradict the aforementioned black-box
impossibility results.

Dwork and Stockmeyer [DS02] present two-round zero-knowledge proofs for
provers that are resource-bounded (e.g., running in time n4) and simulators
allowed to run in longer time than the prover (long enough to break the soundness
of the system); they also observe that one-message proofs cannot be obtained in
their setting.

De Santis et al. [DPY92] showed that when a bound on the space of the
verifier is known, then there exists a one-message zero-knowledge proof system
for NP with statistical soundness.

46



Bellare et al. [BFS16] study the problem of subversion resistance, that is
they consider the case of an adversary colluding with the CRS generator. Our
proofs are not based on any trusted parameter, hence are additionally subversion
resistant.

Pass, Halpern and Raman [HPR09] present an epistemic formula that holds
iff a proof system is ZK. It would be interesting to find a similar characterization
for O-HZK proof systems.

Precise ZK (see Pass [Pas06b]) aims at bounding the knowledge gained by
a verifier in an interaction in terms of the actual computation rather than the
potential computation. The notion does not apply to NI systems. However, one-
message HZK proofs are not precise in that the simulator is allowed access
to a resource (the oracle) that a potential verifier might use in an attempt to
attack the system. A more ”precise“ definition of O-HZK, meaningful also for NI
systems, might be formulated as a stricter variant of O-FH (see Sections 1.3.4
and 2.2.6) requiring that for every adversary of time t computing a function
of the witness from a proof with probability p, there exists a related O-aided
adversary of time t that can compute the same function of the witness (without
the proof) with the same probability p.

Cryptography in groups of hidden order. The power of groups of hidden order has
been established in the seminal work of Rivest, Shamir and Adleman [RSA78] on
the homonymous RSA cryptosystem. El Gamal-like encryption schemes based
on trapdoors like ours have been already proposed in several works. Paillier
[Pai99] and its elliptic curve variant [Gal02], Bresson et al. [BCP03] and [CL15]
constructed linearly homomorphic encryption schemes based on variants of the
discrete log problem with trapdoors. McCurley [McC88] and Schmuely [Shm85]
observed that the computational Diffie-Hellman assumption in multiplicative
groups modulo a composite number is equivalent to factoring. Hofheinz and
Kiltz [HK09] proposed a cryptographic group in which variants of the El Gamal
encryption scheme can be proven CCA-secure under the factoring assumption.
Groth [Gro05a] show the usefulness of working in small subgroups of Z?N .

Summary of our improvements of the state of the art. Summing up, our work
improves the state of the art as follows.

– We construct the first non-interactive proofs not relying on trusted parame-
ters for non-trivial relations. Known non-interactive proofs without trusted
parameters were only proven WI, whereas ours satisfy the stronger HZK
property, a close variant of ZK rooted in the simulation paradigm. Our use
of oracles to define and analyze security of proof systems is novel but shares
similarities with imaginary angels introduced by Prabhakaran and Sahai
[PS04] in the context of multi-party computation and universal composabil-
ity. In this work, we show that HZK is useful and usable to prove security
of larger protocols by presenting concrete examples (see Section 1.3.8).

– We construct proof systems with perfect soundness enjoying HZK. Interactive
ZK proof systems cannot be perfectly sound.

47



– For the relation of well-formed DH tuples and correctness of shuffles, only
NIZK arguments in the RO model resulting from FS-transforming sigma
protocols for the same relations were known. We construct proofs for these
relations enjoying perfect soundness and not based on any trusted parame-
ter whereas previously known efficient constructions only achieved compu-
tational soundness in the programmable RO model. Our techniques extend
to compound and polynomial statements.

– Our proof systems are additionally proofs of knowledge. In a completely
non-interactive setting like ours, a proof of knowledge guarantees that an
adversary that gets a randomly chosen statement cannot output an accepted
proof for it (to come up with an accepted proof, it would need to know a
witness for the statement). If the group parameter for the DH tuples is seen
as a common parameter made public (that, however, does not have to be
trusted), our proof for DH tuples also satisfies the standard definition of
perfect extraction [GOS12].

– We construct a one-message perfectly sound WI proof (i.e., non-interactive
ZAP) for Boolean circuit satisfiability from a number-theoretic assumption
related to multiplicative groups of hidden order. Previous non-interactive
ZAPs for Boolean circuit satisfiability were based on bilinear group assump-
tions [GOS12]. Our non-interactive ZAP is also (computational) HZK.

– Our proofs, and HZK proofs in general, satisfy O-strong-WI. While strong-
WI requires that for two computationally indistinguishable statement dis-
tributions X1 and X2, a proof for statement x1 ← X1 must be computa-
tionally indistinguishable from a proof for statement x2 ← X2, O-strong-WI
has a similar requirement but quantifies over statement distributions that
are computationally indistinguishable even by adversaries with access to O.
It has been observed that strong-WI can recover several applications of ZK.
Similarly, this is true for O-strong-WI at the cost of basing the security on
assumptions that hold even with respect to adversaries with access to O. In
this paper we present concrete examples in which this is the case; see Section
1.3.8.

– Witness hiding requires that no efficient verifier can extract a witness after
interacting with the prover on a randomly chosen instance. Harmless witness
hiding quantifies over efficient adversaries with access to some oracle and
thus is stronger than witness hiding. Our NIs are 1-message harmless witness
hiding proof systems under seemingly reasonable oracle-based computational
assumptions.

2 Definitions

Notation. We use N to denote the set of all natural numbers. For any natural
number m > 0, we let Um stand for the uniform distribution over binary strings
of length m. A negligible function negl(·) is a function that is smaller than the
inverse of any polynomial in λ (starting from a certain point). We denote by
[n] the set of numbers {1, . . . , n}, by |x| the bit length of x ∈ {0, 1}? and by

48



x||y the concatenation of any two strings x and y in {0, 1}?. A function ε(·) is
non-negligible if ε is not a negligible function.

If S is a finite set, we denote by a ← S the process of setting a equal
to a uniformly chosen element of S. We denote by ⊥ a special symbol not in
{0, 1}?. An oracle O is a, possibly computationally unbounded and stateful,
randomized algorithm that takes as input strings in {0, 1}? and outputs strings
in {0, 1}? ∪ {⊥}.

We let PPT stand for probabilistic polynomial-time and nuPPT for non-
uniform PPT (by Adleman’s theorem [MR95] we could consider only non-uniform
deterministic algorithms without loss of generality). Unless otherwise specified,
all our adversaries are modeled as nuPPT algorithms. Precisely, a non-uniform
algorithm Adv is a family of algorithms {Advλ}λ>0 parameterized by λ such that
Advλ takes as input strings of length λ. The choice of the non-uniform model is
for simplicity and our assumptions and results can be translated to the uniform
model as well.

For a probabilistic algorithm A, A(x) denotes the probability distribution of
the output of A when run with x as input.

We use A(x; r) instead to denote the output of A when run on input x
and coin tosses r. Analogously, we denote by f(x; r) the output of a (possibly
uncomputable) function on input x and random coins r.

An oracle O(·) is a possibly unbounded algorithm. An algorithm that can
invoke an oracle and gets its output during its execution is called an oracle
algorithm. We assume that, when an oracle algorithm can invoke an oracle to
get an output in 1 step. We denote by AO(·) the execution of A with access to an
oracle O(·). The oracle is possibly stateful when it can store internal information
between two executions and is possibly randomized when can choose random
coins in its execution. When it is clear from the context, we denote by 1 the
trivial identity oracle 1(·) that, on input an arbitrary string x returns x. We call
an oracle algorithm with access to an oracle O an O-aided algorithm.

Given two families of random variables X0
4
= {X0,λ}λ and X1

4
= {X1,λ},

a function ε(·) and a nuPPT algorithm D = {Dλ}λ>0, we say that D cannot
distinguish X0 from X1 with advantage more than ε(·) whether |Prob[Dλ(X0) =
1|x ← X0,λ] − Prob[Dλ(X1) = 1| x ← X1,λ]| ≤ ε(λ). If in addition D is given
access to an oracle O(·) we say that DO(·) cannot distinguish X0 from X1 with
advantage more than ε(λ). We say that two families of random variables X0 =
{X0,λ}λ and X1 = {X1,λ} are computationally indistinguishable if there exists
no nuPPT algorithm D and there exists no non-negligible function ε(·) such D
distinguishes X0 from X1 with advantage more than ε(·).

A polynomial-time relation R is a relation for which membership of (x,w) in
R can be decided in time polynomial in |x|. If (x,w) ∈ R then we say that w
is a witness for instance x. A polynomial-time relation R is naturally associated
with the NP language LR defined as LR = {x| ∃w : (x,w) ∈ R}. Similarly, an
NP language is naturally associated with a polynomial-time relation. Given an
NP language L, for any natural number k > 0, we denote by Lk the language
L∩{0, 1}≤k. A relationR is a polynomial-time single witness (or unique witness)

49



relation if R is a polynomial-time relation and for any two pairs (x,w1), (x,w2),
if (x,w1) ∈ R, (x,w2) ∈ R then w1 = w2.

We assume familiarity with interactive algorithms (see [Gol01] for more de-
tails). Given two interactive algorithmsM0 andM1, we denote by 〈M0(x0),M1(x1)〉(x)
the output of M1 when running on input x1 and interacting with M0 running
on input x0 and common input x and by viewA〈A(xA), B(xB)〉(x) the view of A
during the interaction with B when both are executed on common input x and
A (resp. B) is executed on input xA (resp. xB).

For any k > 0, any distribution X over inputs of length k, and any Boolean
predicate f : {0, 1}k → {0, 1}, we denote by Prob[f(x)| x← X] the probability
that f(x) = 1 for x← X.

With a slight abuse of notation, in the description of algorithms we sometimes

use the symbols ”
4
=“ and ”=“ interchangeably to denote a copy of a memory

area (corresponding to a variable in pseudo-code) in another.

2.1 Number-theoretic facts and definitions.

We call a λ-bit integer N = p ·q an RSA modulus [RSA78] for security parameter
λ if p and q are two distinct λ/2-bit odd primes and p and q are both congruent
to 3 modulo 4; such a modulus N is also called a Blum integer. The group
Z?N consists of all the integers of ZN that have an inverse modulo N with group
operation being the multiplication modulo N and has order φ(N) = (p−1)(q−1),
where φ(N) is the Euler’s totient function. We denote by QRN the set of all the
elements y of ZN such that there exists an integer x ∈ ZN satisfying y = x2

mod N . QRN can be shown to be a group under multiplication modulo N and
is called the group of quadratic residues modulo N . If N is a Blum integer, it
can be seen that −1 /∈ QRN .

The Legendre symbol
(
x
p

)
of an integer x ∈ Zp for a prime p is defined to be

1 if x ∈ QRp, x 6= 0, −1 if x /∈ QRp and 0 if x = 0. It can be proven that for
p prime

(
x
p

)
= x(p−1)/2 mod p. For an RSA modulus N = p · q, we denote by(

x
N

)
the Jacobi symbol of x modulo N and we define it as

(
x
N

) 4
=
(
x
p

)
·
(
x
q

)
. There

is a PPT algorithm to compute the Jacobi symbol of x modulo N for any RSA
modulo N [BSJS96].

By the Chinese remainder theorem (CRT) [BSJS96], the group Z?N , for an
RSA modulus N = p · q, is isomorphic to the product group (Z?p×Z?q). Z?p (resp.
Z?q) is cyclic of order p− 1 (resp. q − 1). Therefore QRp (resp. QRq) is cyclic of
order (p− 1)/2 (resp. (q − 1)/2). By the Chinese remainder theorem, the group
QRN , for an RSA modulus N = p · q, has order (p − 1)/2 · (q − 1)/2 = φ(N)/4
and is isomorphic to the product group (QRp × QRq), and hence is cyclic if
gcd((p− 1)/2, (q− 1)/2) = 1. Therefore, with respect to an RSA modulus N for

primes p
4
= 2p′ + 1 and q

4
= 2q′ + 1, for primes p′, q′, the group QRN is cyclic.

We let GenRSA(1λ) be a PPT algorithm that generates elements (N, p, q, g)
such that N = p · q is an RSA modulus for security parameter λ, gcd((p −
1)/2, (q − 1)/2) = 1 and g is a generator of QRN . From the previous facts, it is
easy to see that such an algorithm exists.

50



If g is an element of some group, we denote by ord(g) its order.
By a generalization of the CRT, a system of equations over the integers

x = a mod m1,

x = b mod m2,

has a unique integer solution modulom1m2/ gcd(m1,m2) if a = b mod gcd(m1,m2),
otherwise it has no solution.

We will make use of a PPT algorithm to recognize prime numbers [AKS04].18

2.2 Proof systems.

2.2.1 Interactive and NI proof systems We now recall notions related
to interactive proof systems and put forth our definitions for non-interactive
harmless zero-knowledge proof of knowledge systems.

Definition 1 [Interactive proof system [BM88,GMR89]] A pair (P,V) of PPT
interactive algorithms is a interactive proof system for polynomial-time relation
R associated with a language L if the following properties of completeness and
soundness hold:

– Completeness. For every (x,w) ∈ R, it holds that:

Prob[〈P(w),V〉(x) = 1] = 1.

The property may be relaxed to hold statistically by requiring the probability
to be negligible in |x|. For the sake of our results, we are satisfied with
statistical completeness. Actually, our proof systems, as they are described,
satisfy statistical completeness because, e.g., the prover has to find random
values that are invertible under some constraint. If the provers in our proof
systems select the randomness properly, the required property holds w.v.h.p.,
so the statistical completeness follows. We believe that the provers can be
changed so as to enjoy perfect completeness but we did not investigate the
details. See also Remark 8.

– Soundness. For every non-uniform (possibly computationally unbounded)

algorithm P? 4= {P?λ}λ>0, it holds that for every polynomial p(·), there
exists a constant n such that for every λ ≥ n, for every x ∈ L̄ ∩ {0, 1}λ, it
holds that:

Prob[〈P?λ,V〉(x) = 1] ≤ 1/p(λ).

4
18 If we replace this algorithm with an algorithm that errs with negligible probability

like the Miller-Rabin algorithm [Rab80], our proof systems would incur a negligible
soundness error in which the probability of error is over the random choices of the
verifier, that is if the verifier fails (with some probability over its random coins) in
detecting that an integer sent from the prover is not a prime, the verifier may accept
a false statement.

51



The soundness can be generalized to s(·)-soundness as follows.

Definition 2 [s(·)-soundness] Let s(·) be a function. An interactive proof sys-
tem (P,V) for polynomial-time relation R associated with a language L satisfies
s(·)-soundness if the following holds. For every non-uniform (possibly compu-

tationally unbounded) algorithm P? 4= {P?λ}λ>0, it holds that there exists a
constant n such that for every λ ≥ n, for every x /∈ L ∩ {0, 1}λ, it holds that:

Prob[〈P?λ,V〉(x) = 1] ≤ 1/s(λ).

4

Definition 3 [Perfect soundness] An interactive proof system (P,V) for polynomial-
time relation R associated with a language L satisfies perfect soundness (or it
is perfectly sound) if it satisfies 0-soundness. 4

Definition 4 [Non-interactive proof system] A pair of PPT (non-interactive)
algorithms (P,V) is a non-interactive proof (NI) system for polynomial-time
relation R associated with a language L if (P,V) is a perfectly sound proof
system and V is deterministic. For any (x,w) ∈ R, we call any string π in the
range of P(x,w) a proof for x. 4

Note that in the above definition we require (P,V) to be non-interactive algo-
rithms and thus the prover, on input (x,w) (and the random coins), outputs a
proof π and the verifier V, on input two strings x and π, outputs its decision on
whether x ∈ L.

According to the previous definition, the term NI is synonymous of a non-
interactive perfectly sound proof system. Sometimes, in this paper we denote
by NI just a pair of non-interactive algorithms prover and verifier, and we use
instead the term “NI proof” to stress the perfect soundness condition.

2.2.2 O-HZK

Definition 5 [Legitimate oracle] We definite a legitimate oracle by first defin-
ing an illegitimate (non-legitimate) oracle. A (possibly stateful and randomized)
oracle O(·) is illegitimate for polynomial-time relation R associated with a lan-

guage L if there exists a nuPPT O-aided algorithm AdvO(·) 4= {Adv
O(·)
λ }λ>0 such

that the following conditions hold:

– For every x ∈ L, Adv
O(·)
|x| outputs 1 with probability ≥ 2/3 and Adv

O(·)
|x| never

queries O(·) on a point y such that O(y) = ⊥.

– For every x /∈ L, Adv
O(·)
|x| outputs 1 with probability ≤ 1/3 and Adv

O(·)
|x| never

queries O(·) on a point y such that O(y) = ⊥.

That is, an illegitimate oracle for a relation R over a language L makes L easy
to decide against O-aided nuPPT adversaries.

An oracle O(·) for a polynomial-relation R is legitimate if O(·) is not illegit-
imate for R, in such case we write O(·) ∈ LegOrR. 4

52



Remark 1 The requirement on restricting the adversary to not query the or-
acle on points on which the oracle returns ⊥ (to indicate error) is necessary to
prevent the adversary to decide the language in a trivial way, e.g., querying the
oracle on instances not belonging to the language.
At first sight, this condition may appear ”weird“ for the following reason. If the
oracle cannot be invoked on invalid instances, how could an adversary ever ben-
efit from the access to the oracle? Does not an adversary that invokes the oracle
already ”know“ that the instance is in the language? It would seem so that the
oracle can be never invoked. A careful reflection shows instead that the oracle
might be invoked on any other valid instance that is not necessarily related to
the input of the adversary or might be invoked on a string that is just a part of
the whole input of the adversary; we will later further discuss this point.
What does the definition of legitimate oracle model? Later on, we will conjec-
ture some language to be hard with respect to an adversary with access to a
legitimate oracle for that language. We will now argue that this conjecture is
necessary (it is a minimal assumption) to make any kind of HZK proof useful in
cryptographic protocols.
Let us briefly recall the setting for traditional ZK proofs. A verifier needs a ZK
proof of the fact that x ∈ L because it cannot decide whether x ∈ L or x /∈ L by
itself. If, for instance, it were easy to distinguish DH tuples from non-DH tuples,
we would not need any ZK proof for the well-formedness of DH tuples. So, in this
sense the hypothesis that deciding the language of DH tuples is worst-case hard
is a minimal assumption to make ZK proofs for this language useful. Observe
that in practice one uses such ZK proofs for the well-formedness of DH tuples in
protocols whose overall security is based on a related average-case assumption,
e.g., the problem of distinguishing a random DH tuple from a random tuple.
However, if the worst-case assumption does not hold, the average-case assump-
tion does not hold as well, so the former is ever a necessary assumption.
Consider now the possibility of a world in which deciding the language of DH
tuples (in the worst-case) is hard but it is easy if the adversary is given access
to some oracle O that is only invoked on valid DH tuples. Then, a verifier that
is given access to O would not need any proof of the fact that x ∈ L. Then,
assuming every party to have access to O (an implicit assumption in the setting
of HZK), requiring O to be a legitimate oracle is a necessary condition.
As for the case of traditional ZK proofs for DH tuples, in practice one would use
our HZK proof for the well-formedness of DH tuples in protocols whose overall
security is based on a related average-case assumption, e.g., Assumption 7 (see
Section 1.3.8 on how to use HZK proofs to argue security, and in particular re-
ducing the security of an e-voting application that uses our HZK proofs to such
assumption). The latter assumption essentially states that it is difficult to distin-
guish a random DH tuple for witness w from a random tuple given additionally
another random DH tuple for the same witness w and access to an oracle O that
can be only invoked on valid DH tuples. If the oracle were not legitimate, it is
easy to see that the latter assumption would not hold; this again to stress that
requiring the oracle to be legitimate is a necessary assumption.

53



Assumption 7 also exemplifies why restricting the adversary to not query the
oracle on invalid tuples is natural and useful. It turns out that if an adversary
can break Assumption 6, there exists an adversary breaking Assumption 7 (see
Lemma 10). The latter assumption essentially states that it is difficult to dis-
tinguish whether two El Gamal ciphertexts encrypt resp. (m,−m) or (−m,m)
given additionally a proof that their ”product“ decrypts to 0. When proving that
Assumption 7 implies Assumption 6 via hybrid experiments, we will have that
the adversary, in one case, has to simulate one hybrid with input Z = Aw, where
w is the witness for the DH tuple, and in another case, has to simulate another
hybrid but with input a random Z. However, the adversary also gets as input
a related DH tuple for the same witness w and such tuple, that is by definition
always well-formed, is the input on which the adversary invokes the oracle (the
HZK proof that that the adversary has to simulate in both hybrids is set to be
the output of the oracle on such input). So, notwithstanding the restriction on
the oracle queries, the adversary makes a non-trivial use of the oracle.
Assumption 7 and more generally our oracle-based assumptions have somehow
the flavor of ”one-more“ discrete log assumptions [BNPS02] in that an adver-
sary is asked to break some problem given access to an oracle that breaks other
instances. Indeed, access to oracles in our assumptions allows the check the
membership in some language.

One can argue that the restriction on the oracle queries in Assumption 7
is more natural than the restriction on the oracle queries in, e.g., the following
assumption (that we will state later): the oracle DHInvO (cf. Def. 28), that
returns error on input an invalid DH tuple, is legitimate for the relation of valid
DH tuple (that we will define in Section 2.3). It seems that, unlike Assumption
7, the adversary cannnot benefit from the oracle access. We remark that if in this
case an adversary cannot make any non-trivial use of the oracle, all the more we
are justified to allow the simulator access to the oracle. Indeed, we stress again
that we would like to give the simulator access to all resources that cannot help
the adversary to decide the language (without seeing proofs); if one could prove
that, for the case of the relation of valid DH tuples, the oracle does not add any
power to an adversary attempting to break the worst-case decisional hardness
of the corresponding language, all the more so the oracle is a harmless resource
and as such we grant the simulator access to it. Note that the assumption that
the oracle DHInvO be legitimate for the relation of valid DH tuples basically
accounts to say that an efficient adversary cannot distinguish a DH tuple from
a non-DH tuple seeing additionally proofs of well-formedness of valid DH tuples
of its choice.
We also point out that the oracle we will consider in this paper for the case of
extraction (i.e., the factoring oracle) never outputs error. 4

Definition 6 [Computational harmless zero-knowledge] A NI system NI
4
= (Prove,Verify)

for a polynomial-time relationR is computational harmless zero-knowledge (cHZK)
if there exists a, possibly stateful and randomized, oracle O(·) ∈ LegOrR and

a PPT algorithm SimO(·) (called the simulator) with oracle access to O(·) such
that, for for every sequence {(xλ, wλ)}λ>0 such that ∀λ > 0 (xλ, wλ) ∈ R and

54



|xλ| ≥ λ, for every nuPPT O-aided distinguisher DO(·) = {DO(·)
λ }λ>0, for every

polynomial p(·), there exists a number n > 0 such that for every λ ≥ n, DO(·)
λ

can distinguish the following two random variables with advantage < 1/p(λ):

– (xλ,P(xλ, wλ;Um(|xλ|))). (Where m(λ) is the number of random coins P uses
on an input x of length λ.)

– (xλ,SimO(·;Ud(|·|))(xλ;Us(|xλ|))). (Where d(λ) is the total number of random
coins O uses in a single invocation when running on an input x of length λ,
and s(λ) is the number of random coins SimO(·) uses on an input x of length
λ.)

4

Definition 7 [Statistical harmless zero-knowledge] A NI system NI
4
= (Prove,Verify)

for a polynomial-time relation R is statistical harmless zero-knowledge (sHZK)
if there exists a, possibly stateful and randomized, oracle O(·) ∈ LegOrR and

a PPT algorithm SimO(·) (called the simulator) with oracle access to O(·) such
that, for for every sequence {(xλ, wλ)}λ>0 such that ∀λ > 0 (xλ, wλ) ∈ R and
|xλ| ≥ λ, for every non-uniform (possibly unbounded) distinguisher algorithm
D = {Dλ}λ>0, for every polynomial p(·), there exists a number n > 0 such that
for every λ ≥ n, Dλ can distinguish the following two random variables with
advantage < 1/p(λ):

– (xλ,P(xλ, wλ;Um(|xλ|))). (Where m(λ) is the number of random coins P uses
on an input x of length λ.)

– (xλ,SimO(·;Ud(|·|))(xλ;Us(|xλ|))). (Where d(λ) is the number of random coins
O uses in a single invocation when running on an input x of length λ, and
s(λ) is the number of random coins SimO(·) uses on an input x of length λ.)

4

Definition 8 [Perfect harmless zero-knowledge] A NI system NI
4
= (Prove,Verify)

for a polynomial-time relation R is perfect harmless zero-knowledge (HZK) or
simply harmless zero-knowledge if there exists a, possibly stateful and random-
ized, oracle O(·) ∈ LegOrR and a PPT algorithm SimO(·) (called the simulator)
with oracle access to O(·) such that, for for every sequence {(xλ, wλ)}λ>0 such
that ∀λ > 0 (xλ, wλ) ∈ R and |xλ| ≥ λ, there exists a number n > 0 such that
for every λ ≥ n, the following two random variables are identically distributed:

– (xλ,P(xλ, wλ;Um(|xλ|))). (Where m(λ) is the number of random coins P uses
on an input x of length λ.)

– (xλ,SimO(·;Ud(|·|))(xλ;Us(|xλ|))). (Where d(λ) is the number of random coins
O uses in a single invocation when running on an input x of length λ, and
s(λ) is the total number of random coins SimO(·) uses on an input x of length
λ.)

4

55



Definition 9 [O-HZK] We say that a NI NI is O-HZK for polynomial-time
relation R, for some oracle O(·), if NI satisfies definition 8 with respect to R and
a simulator with oracle access to O(·). Analogously, we say that a NI is O-cHZK
or O-sHZK. 4

In this work, sometimes we informally talk about HZK even when we are actually
referring to cHZK and sometimes.

Definition 10 [ZK] We say that a NI NI is zero-knowledge (ZK) for polynomial-
time relation R if NI satisfies definition 8 with respect to R and a simulator with
oracle access to the trivial identity oracle 1(·). Analogously, we say that a NI is
cHZK or sHZK. 4

Remark 2 Observe that the distinguisher for the real and simulated random
variables in the definition of cHZK is given access to the oracle. This is necessary
to prove sequential composition (see next). Also, compare it with the definition
of ZK in the non-programmable and explicitly programmable RO model given
in Wee [Wee09] in which the distinguisher is likewise given access to the RO.

Our definition of ZK is syntactically different from the standard definition of
ZK but is equivalent regarding language recognition. 4

Definition 11 [Unbounded computational harmless zero-knowledge] A NI sys-

tem NI
4
= (Prove,Verify) for a polynomial-time relation R is unbounded com-

putational harmless zero-knowledge (ucHZK) if there exists a, possibly stateful

and randomized, oracle O(·) ∈ LegOrR and a PPT algorithm SimO(·) (called the
simulator) with oracle access to O(·) such that, for every m > 0, every sequence
{[(xiλ, wiλ)]i∈[m]}λ>0 such that ∀λ > 0, i ∈ [m], (xiλ, w

i
λ) ∈ R and |xiλ| ≥ λ, for

every nuPPT O-aided distinguisher DO(·) = {DO(·)
λ }λ>0, for every polynomial

p(·), there exists a number n > 0 such that for every λ ≥ n, DO(·)
λ can distinguish

the following two random variables with advantage < 1/p(λ):

– Rλ,m
4
= [(xiλ,P(xiλ, w

i
λ;Um(|xiλ|)))]i∈[m]. (Where m(λ) is the number of ran-

dom coins P uses on an input x of length λ.)

– Sλ,m
4
= [(xiλ,SimO(·;Ud(|·|))(xiλ;Us(|xiλ|)))]i∈[m]. (Where d(λ) is the total num-

ber of random coins O uses in a single invocation when running on an input
x of length λ, and s(λ) is the total number of random coins SimO(·) uses on
an input x of length λ.)

A NI NI is a O-ucHZK for polynomial-relation R if NI is ucHZK with respect to
an oracle O(·). 4

Lemma 1 [Composition of cZK proofs] If NI
4
= (P,V) is a O-cZK NI for a

polynomial-time relation R, then NI is a O-ucHZK NI for R. 4

Proof. (Sketch) This follows by a standard hybrid argument observing that the
distinguisher against a cHZK proof is given access to the oracle, by means of
which, the distinguisher can compute simulated proofs. 4

56



Lemma 2 [Impossibility of non-interactive ZK for non-trivial languages] If NI
4
=

(P,V) is a statistically sound cZK proof for a polynomial-time relation R asso-
ciated with a language L, then L is trivial in the following sense: there exists

a nuPPT adversary Adv
4
= {Advλ}λ>0 such that for every sequence {xλ}λ>0

such that for every λ > 0, |xλ| ≥ λ, there exists a value k > 0 such that for
every λ ≥ k, if xλ ∈ L, Adv|x|(x) = 1 with probability ≥ 2/3 and if xλ /∈ L,
Adv|x|(x) = 1 with probability ≤ 1/3.

4

Proof. Let Sim be the 1-aided oracle guaranteed by the cZK property. In the
following, without loss of generality, we assume Sim to not be oracle-aided (any
invocation to the trivial identity oracle 1(·) can be simulated with a constant

overhead). Let Adv
4
= {Advλ}λ>0 be the following nuPPT adversary against the

worst-case membership hardness of L. Algorithm Adv|x| receives as input a string
x, invokes Sim on x to get an output π and returns V(x, π) as its decision on
whether x ∈ L or x /∈ L.

Let us analyze the behavior of Adv. Consider an arbitrary sequence {(xλ, wλ)}λ>0

such that ∀λ > 0 (xλ, wλ) ∈ R, |xλ| ≥ λ.

By the cZK property, for every nuPPT distinguisher D = {Dλ}λ>0, for every
polynomial p(·), there exists a number n > 0 such that for every λ ≥ n, Dλ
can distinguish the following two random variables Rλ and Sλ with advantage
< 1/p(λ):

– Rλ
4
= (xλ,P(xλ, wλ;Um(|xλ|))). (Where m(λ) is the number of random coins

P uses on an input x of length λ.)

– Sλ
4
= (xλ,Sim(xλ;Us(|xλ|))). (Where s(λ) is the number of random coins Sim

uses on an input x of length λ.)

By statistical completeness, there is a negligible function ν(·) such that (1)
for any λ > 0, V accepts (xλ, π), with π ← P(x′λ, wλ), with probability ≥ 1−ν(λ)
over the random coins of P and V.

Suppose towards a contradiction that (2) there exists a polynomial p(·) such
that for every n > 0 there exists λ ≥ n such that V accepts (xλ, π), with
π ← Sim(xλ), with probability < 1 − ν(λ) − 1

p(λ) over the random coins of Sim

and V. Consider the following nuPPT distinguisher D′ 4= {D′λ}λ>0 against the
families of ensembles {Rλ}λ>0 and {Sλ}λ>0. D′λ receives a string (xλ, π) and
outputs V(xλ, π).

For every λ > 0, if (xλ, π) ← Rλ, then, by (1) and definitions of Rλ and
D′λ, D′λ(xλ, π) = 1 with probability ≥ 1 − ν(λ). By (2), for every n > 0, there
exists λ ≥ n such that if (xλ, π) ← Sλ, then, by definitions of Sλ and D′λ,
D′λ(xλ, π) = 1 with probability < 1 − ν(λ) − 1/p(λ). Therefore, there exists a
polynomial p(·) such that for every n > 0 there exists λ ≥ n such that D′λ can
distinguish the distributions Rλ and Sλ with advantage ≥ 1

p(x) , a contradiction

to the cZK property.

57



Since (2) does not hold, then there exists a negligible function ν′(·) such
that (3) for any λ > 0, V accepts (xλ, π), with π ← Sim(xλ), with probability
≥ 1−ν′(λ) over the random coins of Sim and V. Since ν′ is a negligible function,
there exists a value k1 ≥ 0 such that for every λ > k1, ν′(λ) ≤ 1/3. Hence, by
definition of Adv, we have that (4) there exists a value k1 ≥ 0 such that for every
λ > k1, Advλ(xλ) = 1 with probability ≥ 2/3.

By statistical soundness there exists a negligible function µ(·) such that for
every string π, every x /∈ L, V(x, π) = 1 with probability ≤ µ(|x|) over its
random coins. Since µ is a negligible function, there exists a value k2 ≥ 0 such
that for every λ > k2, µ(λ) ≤ 1/3. Hence, there exists a value k2 ≥ 0 such that
for every λ > k2, string π, xλ /∈ L ∩ {0, 1}≥λ, V(xλ, π) = 1 with probability
≤ µ(λ) over its random coins. Therefore, (5) for every sequence {xλ}λ such that
for every λ > 0, |xλ| ≥ λ, there exists a value k2 ≥ 0 such that for every λ > k2,
string π, if xλ /∈ L, V(xλ, π) = 1 with probability ≤ µ(λ) over its random coins.
By definition of Adv and (5), we have that (6) for every sequence {xλ}λ such
that for every λ > 0, |xλ| ≥ λ, there exists a value k2 ≥ 0 such that for every
λ > k2, string π, if xλ /∈ L, Adv(xλ) = 1 with probability ≤ µ(λ) over its random
coins.

Let k be the maximum of k1 and k2. Then, by (4) and (6) we have that for
every sequence {xλ}λ>0 such that for every λ > 0, |xλ| ≥ λ, there exists a value
k > 0 such that for every λ ≥ k, if xλ ∈ L, Adv(x) = 1 with probability ≥ 2/3
and if xλ /∈ L, Adv(x) = 1 with probability ≤ 1/3. This concludes the proof.

4

Remark 3 Note that considering in the above lemma only cZK, rather than
perfect ZK, and statistical soundness, rather than perfect soundness, makes the
impossibility result stronger. 4

2.2.3 Hard relations and O-HPoK

Definition 12 [Hard relation] A polynomial-time relation R associated with
a language L is said to be hard with respect to an algorithm Gen (called the
generator) if:

– Gen, on input 1λ, outputs a pair (x,w) ∈ R where |x| = λ.

– For all nuPPT algorithms A = {Aλ}λ>0, the quantity ε(λ)
4
= Prob[(x,w) ∈

R| x← Gen(1λ); w← Aλ(x)] is a negligible function in λ.

A polynomial-time relation R associated with a language L is said to be hard if
it is hard with respect to some PPT algorithm Gen. 4

Definition 13 [Hard relation with respect to an oracle] Let O(·) be a, possibly
stateful and randomized, oracle. A polynomial-time relation R associated with
a language L is said to be hard with respect to an algorithm Gen and O(·) if:

– Gen, on input 1λ, outputs a pair (x,w) ∈ R where |x| = λ.

58



– For all nuPPT algorithms AO(·) = {AO(·)
λ }λ>0 with access to O(·), the quan-

tity ε(λ)
4
= Prob[(x,w′) ∈ R| (x,w)← Gen(1λ); w′ ← AO(·)

λ (x)] is a negligi-
ble function in λ.

Let O(·) be a, possibly stateful and randomized, oracle. A polynomial-time re-
lation R associated with a language L is said to be hard with respect to O(·) if
it is hard with respect to some PPT algorithm Gen and to O(·). 4

Definition 14 [Legitimate oracle for extraction] A, possibly stateful and ran-
domized, oracleO(·) is said to be a legitimate oracle for extraction for a polynomial-
relation R if R is a hard relation with respect to O(·). In such case, we write
O(·) ∈ LegOrHRR. 4

Definition 15 [Harmless proof of knowledge] A NI system NI
4
= (P,V) for a

polynomial-time relation R is said to be harmless proof of knowledge (HPoK) if
there exists a, possibly stateful and randomized, oracle O(·) ∈ LegOrHRR and

a PPT algorithm ExtO(·) (called the extractor) with oracle access to O(·) such
that the following holds:

– For any strings x, π ∈ {0, 1}?, if V(x, π) = 1 then Prob[(x,w) ∈ R(x,w)| w ←
ExtO(·)(x)] = 1.

4

Definition 16 [O-HPoK] We say that a NI NI is O-HPoK for polynomial-time
relation R, for some oracle O(·), if NI satisfies definition 15 with respect to R
and an extractor with oracle access to O(·). 4

HPoK implies the following corollary.

Corollary 3 If (P,V) is a HPoK NI system for some polynomial-time relation
R, then the following holds:

– Let Gen be a PPT algorithm such thatR is hard with respect to Gen. For any
nuPPT algorithm Adv = {Advλ}λ>0, Prob[V(x, π) = 1| x ← Gen(1λ); π ←
Advλ(x)] = 0.

4

We call a NI system HZKPoK if it satisfies both HZK and HPoK.

Definition 17 [NIHZKPoK] A NIHZK is a NI system satisfying HZK and a
NIHZKPoK is a NI system satisfying both HZK and HPoK. 4

2.2.4 O-WI and O-WH

Definition 18 [Witness indistinguishable NI system] A NI system for a polynomial-
time relation R associated with a language L, consisting of a pair (P,V) of PPT
algorithms, is called witness indistinguishable (WI) if it satisfies the following
property.

59



– Witness indistinguishability (WI):
For every two sequences {(xλ, w0

λ)}λ>0 , {(xλ, w1
λ)}λ>0, such that ∀λ >

0 (xλ, w
0
λ) ∈ R and (xλ, w

1
λ) ∈ R and |xλ| ≥ λ, for every nuPPT distin-

guisher D = {Dλ}λ, for every polynomial p(·), there exists a number n > 0
such that for every λ ≥ n, Dλ can distinguish the following two random
variables with advantage < 1/p(λ):

• P(xλ, w
0
λ;Um(|xλ|)).

• P(xλ, w
1
λ;Um(|xλ|)).

(Where m(λ) is the number of random coins P uses on an input x of
length λ.)

The above definition can be naturally extended to nuPPT distinguishers with
access to an oracle O and in this case we talk about O-WI. 4

A NI system that satisfies WI is also called one-message (or non-interactive)
ZAP.

Definition 19 [Harmless witness hiding ] A NI system NI
4
= (P,V) for a hard

polynomial-time relation R associated to generator Gen is said to be harmless
witness hiding (HWH) if there exists a, possibly stateful and randomized, oracle

O(·) ∈ LegOrHRR and a PPT algorithm ExtO(·) (called the extractor) with oracle
access to O(·) such that the following holds:

– For all nuPPT algorithms AO(·) = {AO(·)
λ }λ>0 with access to O(·), the

quantity ε(λ)
4
= Prob[(x,w′) ∈ R| (x,w) ← Gen(1λ); π ← P(x,w); w′ ←

AO(·)
λ (x, π)] is a negligible function in λ.

4

Definition 20 [O-HWH] We say that a NI NI is O-HWH, or simply O-WH, for
a hard polynomial-time relation R, for some oracle O(·), if NI satisfies definition
19 with respect to R and an extractor with oracle access to O(·). 4

Remark 4 [O-WH → WH] It is easy to see that, for any oracle O, O-WH
implies the traditional notion of witness hiding (WH) [FS90]. Indeed, WH can
be defined as 1-WH for the trivial identity oracle 1(·). 4

Lemma 4 [O-HZK → O-WH] If a polynomial-time relation R is hard, then an

O-HZK NI NI
4
= (P,V) for R is O-WH. 4

Proof. Let R be hard with respect to generator Gen. Suppose towards a con-
tradiction NI to not be O-WH. Then, there exists a nuPPT algorithms AO(·) =

{AO(·)
λ }λ>0 with access to O(·) such that the quantity ε(λ)

4
= Prob[(x,w′) ∈

R| (x,w) ← Gen(1λ); π ← P(x,w); w′ ← AO(·)
λ (x, π)] is a non-negligible func-

tion in λ. Consider the adversary Adv′O(·) with access to O that, on input x,
runs the simulator SimO(·) guaranteed by the O-HZK property, to compute an

60



identically (to the proof computed by the prover) distributed proof π and out-

puts AdvO(·)(x, π). Then, ε′(λ)
4
= Prob[(x,w′) ∈ R| (x,w) ← Gen(1λ); w′ ←

Adv
′O(·)
λ (x)] = ε is a non-negligible function in λ, contradicting the fact that R

is hard with respect to Gen. 4

2.2.5 O-strong-WI

Definition 21 [O-strong-WI] Let O be a, possibly stateful and randomized,

oracle and NI
4
= (Prove,Verify) be a proof system for a polynomial-time relation

R. We say that NI is O-strong-WI if the following holds.
Let {Xb

λ}λ>0, b ∈ {0, 1} be two ensembles of distributions such that for any
b ∈ {0, 1}, Xb

λ outputs a pair (xλ, wλ) ∈ R such that |xλ| ≥ λ. Suppose that for

every O-aided nuPPT adversary AdvO(·) = {Adv
O(·)
λ }λ>0, for every polynomial

p(·), there exists a number n > 0 such that for every λ ≥ n,∣∣∣Prob[Adv
O(·)
λ (x0λ) = 1| (x0λ, w

0
λ)← X0

λ]− Prob[Adv
O(·)
λ (x1λ) = 1| (x1λ, w

1
λ)← X1

λ]
∣∣∣ ≤ 1/p(λ).

Then, for every nuPPT (non-oracle) adversary B = {Bλ}λ>0, for every poly-
nomial p(·), there exists a number n > 0 such that for every λ ≥ n,∣∣Prob[Bλ(x0λ,P(x0λ, w

0
λ)) = 1| (x0λ, w

0
λ)← X0

λ]−

Prob[Bλ(x1λ,P(x1λ, w
1
λ)) = 1| (x1λ, w

1
λ)← X1

λ]
∣∣ ≤ 1/p(λ).

That is, O-strong-WI relaxes strong-WI [Gol01] by quantifying over distribu-
tions {Xb

λ}λ>0, b ∈ {0, 1} that are computationally indistinguishable by O-aided
nuPPT adversaries. 4

Remark 5 It is easy to see that the standard definition of strong-WI is equiv-
alent to 1-strong-WI for the trivial identity oracle 1(·). 4

The following corollary follows straightforward from the definition of O-HZK.

Corollary 5 Let O be an oracle and NI
4
= (Prove,Verify) be an O-HZK system

for a polynomial-time relation R. Them, NI is O-strong-WI. 4

2.2.6 O-FH. An alternative definition of privacy for NI systems, that we call
O-function (or feature) hiding (O-FH) and is implied by O-HZH and turns out
to be equivalent to HZK in the case of single witness relations, is the following.

Definition 22 [O-FH] A NI system NI
4
= (Prove,Verify) for a polynomial-time

relation R is O-function (or feature) hiding (O-FH) if there exists a, possibly
stateful and randomized, oracle O(·) ∈ LegOrR such that the following holds.

For any possibly randomized function f , for any nuPPT algorithm Adv
4
=

{Advλ}λ>0, for any pair (x,w) ∈ R, let

Px,w,f,Adv
4
= Prob[Adv|x|(x, π; r) = f(x; r)| r ← {0, 1}d(|x|); π ← P(x,w; r)],

61



where d(λ) is the maximum of the random coins used by P and f when invoked
on an input of length λ.

Then, for any randomized function f , for any nuPPT algorithm Adv
4
=

{Advλ}λ>0, there exists a nuPPT O-aided algorithm Adv′O(·) 4= {Adv
′O(·)
λ }λ>0

such that, for any (x,w) ∈ R,

Prob[Adv
′O(·)
|x| (x; r) = f(x; r)| r ← {0, 1}d(|x|)] = Px,w,f,Adv,

where d(λ) is the maximum of the random coins used by Adv′O(·) and f when
invoked on an input of length λ. 4

Definition 23 [FH] A NI system NI
4
= (Prove,Verify) for a polynomial-time

relation R is function (or feature) hiding (FH) if NI is 1-FH for the trivial
identity oracle 1(·). 4

Lemma 6 [O-HZH ⇐⇒ O-FH] A NI system NI
4
= (Prove,Verify) for a polynomial-

time relation R is O-FH if NI is O-HZK. A NI system NI
4
= (Prove,Verify) for a

single witness polynomial-time relation R is O-FH if and only if NI is O-HZK.
(See note at the end of the proof.) 4

Proof. – If. Let SimO(·) be the O-aided simulator guaranteed by the O-HZK
of NI. For any possibly randomized function f , for any nuPPT algorithm

Adv
4
= {Advλ}λ, for any pair (x,w) ∈ R, consider the following non-uniform

oracle algorithm Adv′O(·) 4= {Adv
′O(·)
λ }λ>0 with access to O. The algorithm

Adv
′O(·)
|x| , on input x, computes π ← SimO(·)(x) simulating an invocation of

Sim to O with its own oracle O, and outputs Adv|x|(x, π).

Px,w,f,Adv
4
= Prob[Adv|x|(x, π; r) = f(x; r)| r ← {0, 1}d(|x|); π ← P(x,w; r)] =

(by the perfect O-HZK of NI)

= Prob[Adv|x|(x, π; r) = f(x; r)| r ← {0, 1}d(|x|); π ← SimO(·)(x)] =

(by the definition of Adv′)

= Prob[Adv
′O(·)
|x| (x; r) = f(x; r)| r ← {0, 1}d(|x|)],

(1)
as it was to show.

– Only if (in the case of single witness relations). Let L the language
associated with the single witness polynomial-time relation R. Consider the
randomized function f(x; r) that, on input a string x, outputs ⊥ if x /∈ L,
and P(x,w; r), where w is such that (x,w) ∈ R, otherwise. That is:

f(x; r)
4
=

{
⊥, if x /∈ L
P(x,w; r), where (x,w) ∈ R, otherwise.

}

62



Note that the function is well-defined as R is a single witness relation, so for
any x ∈ L, there is a unique witness w such that (x,w) ∈ R.
Consider an adversary Adv that, on input (x, π), just outputs π. By O-FH,

there exists a nuPPT oracle algorithm Adv′O(·) 4= {Adv
′O(·)
λ }λ>0 with oracle

access to O such that:

Prob[Adv
′O(·)
|x| (x; r) = f(x; r)| r ← {0, 1}d(|x|)] = Px,w,f,Adv. (2)

We have that:

Px,w,f,Adv
4
= Prob[Adv|x|(x, π; r) = f(x; r)| r ← {0, 1}d(|x|); π ← P(x,w; r)] =

(by the definition of Adv)

= Prob[π = f(x; r)| r ← {0, 1}d(|x|); π ← P(x,w; r)] =

(by the definition of π)

= Prob[P(x,w; r) = f(x; r)| r ← {0, 1}d(|x|)] =

(by the definition of f)

= Prob[P(x,w; r) = P(x,w; r)| r ← {0, 1}d(|x|)] =

= 1.
(3)

By equations 2 and 3 and definition of f , we conclude that

Prob[Adv
′O(·)
|x| (x; r) = P(x,w; r)| r ← {0, 1}d(|x|)] = 1.

Therefore, adversary Adv′ is a simulator with oracle access to O such that,
for any (x,w) ∈ R, the distribution Adv′|x|(x) is identically distributed to
the distribution P(x,w), as it was to show.

Note. Note that in the proof for the ”only if part“ we actually constructed
a nuPPT simulator whereas in the definition of O-HZK we required the
simulator to be PPT. This is an artifact of the definition of O-FH. To for-
mally prove the Lemma, we should change either the definition of O-HZK
weakening the simulator to be nuPPT or considering PPT algorithms in
the definition of O-FH. To not overburden the presentation, we skip these
details.

4

Corollary 7 If NI
4
= (Prove,Verify) is a NI system for a single witness polynomial-

time relation R associated with a non-easy language in the sense of Lemma 2,
then NI is not FH. 4

Proof. This follows from Lemma 2 and the fact that a NI system NI
4
= (Prove,Verify)

for a single witness polynomial-time relation R is FH if and only if NI ZK.

4

63



Remark 6 It is easy to observe that the equivalence between O-FH (resp. FH)

and O-HZK (resp. ZK) holds even in the case of a NI NI
4
= (P,V) for a general

polynomial-time relation R when, for any x,w1, w2 such that (x,w1) ∈ R and
(x,w2) ∈ R, the random variable P(x,w1) is identically distributed to P(x,w2).

4

2.3 Multiplicative groups of hidden order

2.3.1 El Gamal over groups of hidden order Let GenRSA be defined
as in Section 2.1, i.e., on input the security parameter 1λ generates elements
(N, p, q, g) such that N = p · q is an RSA modulus for security parameter λ,
gcd((p − 1)/2, (q − 1)/2) = 1 and g is a generator of QRN . Henceforth, we will
often denote by m the order of QRN that, as shown in Section 2.1, equals φ(N)/4.

Assumption 1 [DDH over GenRSA] LetX0,λ be the random variable (N, g, h, u, v),

with (N, p, q, g) ← GenRSA(1λ), w ← Z?m, h
4
= gw, u ← QRN , v

4
= uw. Let

X1,λ be the random variable (N, g, h, u, v), with (N, p, q, g) ← GenRSA(1λ),
h, u, v ← QRN . We say that the Decisional Diffie-Hellman assumption (DDH)
holds for generator GenRSA if for every nuPPT algorithm Adv = {Advλ}λ>0, the
following quantity is negligible in λ:

|Prob[Advλ(x) = 1| x← X0,λ]− Prob[Advλ(X1) = 1| x← X1,λ]| .

DDH holds if it holds for generator GenRSA. 4

We assume the reader have familiarity with the notion of public key encryp-
tion scheme. We define an exponential El Gamal encryption scheme over the

group QRN and message spaceM 4
= {0, 1, . . . , d} where d is an integer such that

for any M ∈M, M can be computed by gM in polynomial-time.

Definition 24 [El Gamal over groups of hidden order] Our El Gamal encryption
scheme ElGamal = (Setup,Enc,Dec) over message space M is a tuple of 3 PPT
algorithms.

Setup(1λ): on input the security parameter λ it runs (N, q, q, g)← GenRSA(1λ),
computes h = gw for randomly chosen integer in Z?φ(N) and outputs public

key pk
4
= (N, g, h) and secret key sk

4
= (p, q,w).

Enc(pk,M): on input public key pk
4
= (N, g, h) and a message M ∈M, outputs

ciphertext ct
4
= (gr, h · gM ).

Dec(sk, ct): on input secret key sk
4
= (p, q,w) and ciphertext ct

4
= (ct1, ct2),

compute y = ct2 · ct−w1 and, by brute force search over all elements M ∈M
until an element M such that y = gM is found and in such case output M ;
if no such element can be found, output ⊥.
When it is clear from the context, we sometimes assume Dec to just output
y, that is Dec computes y as above and outputs it.

64



4

It is easy to see that the following facts hold.

Fact 8 ElGamal satisfies (perfect) correctness, that is that for all (pk, sk) ←
Setup(1λ), all M ∈M, for all ct← Enc(pk,M), Dec(sk, ct) = M. 4

Fact 9 If DDH holds, then ElGamal is indistinguishable against chosen message
attack (IND-CPA), that is for every 2 messages M,M ′ ∈ M, and every PPT
adversary A, the following quantity is negligible in λ:∣∣Prob[A(Enc(pk,M)) = 1 | pk← Setup(1λ))]− Prob[A(Enc(pk,M ′)) = 1 | pk← Setup(1λ))]

∣∣ .
4

Definition 25 [Operations on El Gamal ciphertexts]

– Multiplication of El Gamal ciphertexts. Let ct1
4
= (ctl1, ctr1), ct2

4
= (ctl2, ctr2)

be two El Gamal ciphertexts for the same public key pk. We denote by ct1∗ct2
the ciphertext (ctl1 ·ctl2, ctr2 ·ctr2), that is we multiply the two ciphertexts entry
by entry.

– Exponentiation of an El Gamal ciphertext to a constant. Let y be an integer

and ct
4
= (ctl, ctr) an El Gamal ciphertext. We denote by cty the ciphertext

((ctl)y, (ctr)y)), that is we exponentiate each entry of the ciphertext to y.

4

2.3.2 Our relations RDDH and RSG

Definition 26 [RDDH] The relation of well-formedness of Diffie-Hellman (DH)
tuples is defined as follows:RDDH((N, g, h, u, v), (w, [pi,mi]

l
i=1)) = 1 iff g, h, u, v ∈

ZN and u = gw, v = hw for some non-negative integer w < φ(N) (with group

operation being the multiplication modulo N) and N =
∏l
i=1 p

mi
i . 4

Definition 27 [RSG] The relation of subgroup membership between two group
elements is defined as follows: RSG((N, g, u), (w, [pi,mi]

l
i=1)) = 1 iff g, u ∈ ZN

and u = gw for some non-negative integer w < φ(N) (with group operation

being the multiplication modulo N) and N =
∏l
i=1 p

mi
i . 4

Remark 7 We refer the reader to Section 1.3 for a discussion about the need of
the factorization of the modulus in the definition of our relations. Note also that
the relations do not guarantee N to have the correct form or g to be in QRN . If
this is not the case, ElGamal might be not secure.

The definition of RDDH is very general, in particular it is trivially satisfied
for particular choices of g and h (e.g., when g and h have co-prime orders). In
relevant applications, the relation will be used for g and h belonging to the same
subgroup or in conjunction with a proof for RSG to guarantee g and h to be in
the same subgroup. 4

65



2.3.3 Our main oracle DHInvO

Definition 28 [Oracle DHInvO] The oracle DHInvO takes as input a tuple (N, g, h, u, v)
and checks whether u = gw and v = hw for some w ∈ Z?φ(N); if such value w

does not exist, it outputs ⊥ to indicate an error; otherwise, it outputs (gr, hr, r−1

mod φ(N), (r+w)−1 mod φ(N)), with w being an integer < ord(g) such that
u = gw, v = hw and r ← Z?φ(N) under the constraint that r be a prime number

and (r + w) mod φ(N) ∈ Z?φ(N). 4

Remark 8 Actually, our proof systems, as they are described, satisfy statistical
completeness because, e.g., the prover has to find random values that are invert-
ible under some constraint. As our provers might incur a statistical completeness
error, in order to get perfect simulation the simulator should err as the prover.
Hence, we implicitly assume for all our NIs that if a prover or simulator fails
in some bounded polynomial time to find values satisfying the constraints, it
outputs an error symbol (different from ⊥), e.g., (0, 0, 0, 0). We believe that our
provers (and thus the corresponding simulators) can be changed so as to enjoy
perfect completeness but we did not investigate the details. 4

Assumption 2 The assumption states that DHInvO ∈ LegOrRDDH and DHInvO ∈
LegOrRSG . That is, DHInvO is a legitimate oracle for both the polynomial-time
relations RDDH and RSG. 4

Note that the latter assumption basically accounts to say that an efficient ad-
versary cannot distinguish a DH tuple from a non-DH tuple seeing additionally
proofs of well-formedness of valid DH tuples of its choice. See also Remark 1.

2.3.4 Hardness assumptions

Assumption 3 Let GenDDH(1λ) be the generator that, on input security pa-
rameter 1λ, computes (N, p, q, g)← GenRSA(1λ) and outputs statement (N, g, gr, gw, grw)
and witness (w, p, q), with r, w ← Z?φ(N). The assumption states that RDDH is
hard with respect to GenDDH. 4

Definition 29 The factoring oracle FactO takes as input N and outputs the
list of all prime factors of N . 4

Assumption 4 Let GenSG be the following PPT algorithm. The algorithm,
GenSG on input the security parameter 1λ computes (N, p, q, g)← GenRSA(1λ),

and u = gw, with w ← Z?φ(N), and outputs statement x
4
= (N, g, u) and witness

(w, p, q). The assumption states that RDDH and RSG are hard with respect to
GenSG and FactO. Thus, FactO is a legitimate oracle for extraction for both the
polynomial-time relations RDDH and RSG, that is FactO ∈ LegOrHRRDDH and
FactO ∈ LegOrHRRSG . 4

We assume that the reader is familiar with the notion of cryptographic games.

66



Assumption 5 Let ElGamal = (Setup,Enc,Dec) be the encryption scheme as in
definition 24 and DHInvO the oracle as in Definition 28. The assumption holds
if no nuPPT adversary AdvDHInvO = {AdvDHInvO

λ }λ>0 with access to DHInvO can
win with non-negligible advantage in λ in the following game between Adv and
a challenge C. For security parameter λ, the game is the following.

– Setup Phase. The challenger C picks a pair (pk, sk)← Setup(1λ) and gives
pk to Advλ which outputs two pair of messages m0 and m1 under the con-
straint that m0,m1 ∈ {0, 1}.

– Challenge Phase. The challenger picks a random bit b← {0, 1} and gives
to Advλ a ciphertext ct encrypting mb.

– Winning Condition. Advλ outputs a bit b′ and wins iff b′ = b and DHInvO
is never invoked on a input y such that DHInvO(y) = ⊥.

4

Assumption 6 Let ElGamal = (Setup,Enc,Dec) be the encryption scheme as
in Def. 24 and let NIDDH be the NIHZK system for RDDH of Section 3. The
assumption holds if no nuPPT adversary Adv = {Advλ}λ>0 can win with non-
negligible advantage in λ in the following game between Adv and a challenge C.
For security parameter λ, the game is the following.

– Setup Phase. The challenger C picks a pair (pk, sk)← Setup(1λ) and gives
pk to Advλ which outputs two pair of messages (v0,0, v0.1) and (v1,0, v1,1)
under the constraint that v0,0 + v0,1 = v1,0 + v1,1 = 0.

– Challenge Phase. The challenger picks a random bit b← {0, 1} and gives
to Advλ two ciphertexts ct0, ct1 encrypting respectively vb,0, vb,1 along with

a proof π of the fact that ct
4
= ct1 ∗ ct2 decrypts to 0 computed with NIDDH

using statement ct and witness sk.
– Winning Condition. Advλ outputs a bit b′ and wins iff b′ = b.

4

The following assumption and its relation with the previous one are due to
Geoffroy Couteau; it bassically states that it is difficult to distinguish a random
DH tuple for witness w from a random tuple given additionally another random
DH tuple for the same witness w and access to DHInvO that can be only invoked
on valid DH tuples.

Assumption 7 The assumption holds if no nuPPT adversary AdvDHInvO(·) =

{Adv
DHInvO(·)
λ }λ>0 can win with non-negligible advantage in λ in the following

game between AdvDHInvO(·) and a challenge C. For security parameter λ, the game
is the following.

The challenger C picks an instance (N, p, q, g)← GenRSA(1λ), random values
w, a ← Z?φ(N), h, h

′, Z1 ← QRN , a random bit b ∈ {0, 1}, sets A = ga, Z ′ =

h′w, Z0 = Aw and runs Adv
O(·)
λ on input (N, g, h,A, Zb, h

′, Z ′).
Advλ outputs a bit b′ and wins iff b′ = b and Advλ never queried the oracle

on an input y such that DHInvO(y) = ⊥. 4

67



Lemma 10 If there exists an adversary AdvDHInvO(·) breaking Assumption 6
with advantage ε, there exists an adversary BDHInvO(·) breaking Assumption 7
with advantage 2ε. 4

Proof. We consider the following series of hybrid experiments.

– H0. Hybrid H0 is identical to the game of Assumption 7 except that the bit
b = 0 instead of being chosen randomly.

– H1. Hybrid H1 is identical to H0 except that v0,0 is a random message in
Zφ(N) and v0,1 = −v0,0.

– H0. Hybrid H0 is identical to the game of Assumption 7 except that the bit
b = 1 instead of being chosen randomly.

W.l.o.g., we will show that if Adv can distinguish H0 from H1 with advantage ε,
there exists an adversary B breaking Assumption 7 with advantage ε. This will
prove the lemma.

The adversary B receives as input a tuple (g, h,A, Z, h′, Z ′) and works as
follows. The adversary B runs Adv on input the public key (N, g, h) and gets
from Adv two pairs of messages (v0,0, v0.1) and (v1,0, v1,1) such that v0,0 + v0,1 =
v1,0 + v1,1 = 0 (if this is not the case B aborts outputting an arbitrary bit).

The adversary B sets ct0 = (A,Z · gv0,0), ct1 = (h′ · A−1, Z ′ · Z−1 · g−v0,0).
It is easy to verify that the ”product“ of ct0 and ct1 is the ciphertext (h′, Z ′)
encrypting 0. Therefore, B invokes the oracle DHInvO on input (N, g, h, h′, Z ′)
and returns its output to Adv as proof π of the fact that (h′, Z ′) encrypts 0. By
definition of the oracle, π has the right distribution in both the experiments.

Notice that if Z = Aw, ct0 encrypts v0,0 and ct1 encrypts −v0,0, that is
B simulated to Adv the experiment H0. On the other hand, if Z is a random
element in QRN , ct0 encrypts a random message v0,0 and ct1 encrypts −v0,0,
that is B simulated to Adv the experiment H1. This concludes the proof. 4

3 Our HZKPoK proofs for subgroup membership and
DH tuples

In this Section we present our main HZPoKs for the relations RSG (cf. Def. 27)
and RDDH (cf. Def. 26).

3.1 HZKPoK for RSG

We firstly construct a HZKPoK for polynomial-time relation RSG that will be
used as building block in the HZKPoK for RDDH.

Construction 1 The NI system NISG = (ProveSG,VerifySG) for polynomial-
time relation RSG (cf. Def. 27) consists of the following algorithms.

In the following, we let s
4
= |N |. We will later show how to optimize the

parameter s. ProveSG, on inputs statement (N, g, u) and witness (w, [pi,mi]
l
i=1)

for RSG, computes the following proof. We assume w to be the integer < ord(g)

68



such that u = gw. If this is not the case, the prover finds the value w′ with such
property and executes the below protocol with witness w′. We skip this detail
in the algorithm description.

Algorithm ProveSG:
Inputs: statement (N, g, u) and witness (w, [pi,mi]

l
i=1) for RSG.

– For each i ∈ [s], do
• ri ← Z?φ(N), zi = ri + w mod φ(N) under the constraint that ri be a prime number and

(ri + w) mod φ(N) ∈ Z?φ(N).

• r′i = r−1i mod φ(N), z′i = z−1i mod φ(N).
• Ri = gri .

– endFor
– Output (Ri, r

′
i, z
′
i)i∈[s].

VerifySG, on inputs statement (N, g, u) and proof (Ri, r
′
i, z
′
i)i∈[s], outputs a bi-

nary decision, 0 to denote rejection and 1 to denote acceptance.

Algorithm VerifySG:
Inputs: statement (N, g, u) and proof (Ri, r

′
i, z
′
i)i∈[s].

1. If g
∏
i∈[s] r

′
i = 1 then Return 0.

2. For each i ∈ [s], do
(a) If r′i is not a prime number, then Return 0.

(b) If R
r′i
i 6= g then Return 0.

(c) Hi = Ri · u.

(d) If H
z′i
i 6= g then Return 0.

3. endFor
4. If ∃i, j ∈ [s], i 6= j, r′i = r′j then Return 0.
5. Output 1.

4

Theorem 11 The NI system NISG = (ProveSG,VerifySG) for polynomial-time
relation RSG of Construction 1 is complete and perfectly sound. 4

Proof. The proof for completeness is trivial; see Remark 8.
Let us analyze soundness. Suppose that VerifySG, on inputs statement (N, g, u)

and proof (Ri, r
′
i, z
′
i)i∈[s], outputs 1 (i.e., it accepts the proof). We will prove that

u = gw for some w < φ(N) (the order of Z?N ) and thusRSG((N, g, u), (w, [pi,mi]
l
i=1)) =

1, with N =
∏l
i=1 p

mi
i .

We firstly argue there exists at least one index j ∈ [s] such that r′j is co-prime
with φ(N). Suppose towards a contradiction this to be false, that is, for each
i ∈ [s], r′i has a common factor with φ(N). By check 2.a, for each i ∈ [s], ri is

69



prime and, by check 4, the primes r′1, . . . , r
′
s are all different. Then, since s = |N |,

the product t
4
=
∏
i∈[s] r

′
i has to be a multiple of φ(N). Since φ(N) is the order

of Z?N and the order of each group element divides the order of the group, we
have that gt = 1 and hence in check 1 VerifySG refuses the proof, contradicting
the hypothesis.

Let j ∈ [s] be such that r′j is co-prime with φ(N). Check 2.b implies R
r′j
j = g.

Being r′j co-prime with φ(N), it has an inverse modulo φ(N). Let y
4
= r−1j

mod φ(N). Then, powering both sides of the equation R
r′j
j = g to y, we have

Rj = gy. Analogously, check 2.d implies Hi = gy2 for some y2 < φ(N).
Then, by step 3.b, Hi = Ri · u and this implies u = Hi · R−1i = gy2 · g−y =

gy2−y, as we had to prove. 4

Theorem 12 Let DHInvO be the oracle of Def. 28. If Assumption 2 holds, then
the NI system NISG = (ProveSG,VerifySG) of Construction 1 is DHInvO-HZK
for polynomial-time relation RSG. 4

Proof. By Assumption 2, DHInvO is a legitimate oracle for polynomial-time re-
lation RSG. What is left to prove is to show a PPT simulator algorithm for NISG
satisfying (perfect) HZK. Consider the following simulator SimSGDHInvO(·) with
oracle access to DHInvO(·). The simulator takes as input a statement (N, g, u)
and computes a simulated proof as follows with the help of the oracle DHInvO.

Algorithm SimSG:
Inputs: statement (N, g, u).
Oracle: DHInvO.

– For each i ∈ [s], do
• (Ri, Yi, r

′
i, z
′
i) = DHInvO(N, g, g, u, u).

– endFor
– Output (Ri, r

′
i, z
′
i)i∈[s].

By the definition of DHInvO, it is easy to see that for each i ∈ [s], the tu-
ple (Ri, r

′
i, z
′
i) in the output of the oracle on input (N, g, u, g, u) has the same

distribution as a tuple (Ri, r
′
i, z
′
i) output by the prover; see Remark 8. Then,

the output of SimSGDHInvO(·)(N, g, u) is distributed identically to the output of
ProveSG((N, g, u), (w, p, q)), where N = p · q and u = gw. 4

Theorem 13 Let FactO be the oracle of Def. 29. If Assumption 4 holds, then
the NI system NISG = (ProveSG,VerifySG) of Construction 1 is FactO-HPoK for
polynomial-time relation RSG. 4

Proof. By Assumption 4, RSG is hard with respect to FactO, that is FactO ∈
LegOrHRRSG . What is left to prove is to show a PPT extractor ExtSGFactO(·)

with oracle access to FactO(·) such that the following holds: for any strings x, π ∈

70



{0, 1}?, if VerifySG(x, π) = 1 then Prob[(x,w) ∈ RSG(x,w)| w ← ExtSGFactO(·)(x)] =
1.

Consider the following extractor ExtSG with oracle access to FactO. The
extractor ExtSG takes as input a statement (N, g, u) and a proof (Ri, r

′
i, z
′
i)i∈[s]

and computes what follows. ExtSG invokes the oracle to factorize N and gets its

factorization [pi,mi]
l
i=1 from which it can compute m

4
= φ(N)/4, the order of

Z?N . By construction z′i = (r′−1i mod φ(N) +w)−1 mod φ(N) with z′i ∈ Z?φ(N).

Using φ(N), one can invert r′i to get yi
4
= r′−1i mod φ(N), invert z′i to get (r′−1i

mod φ(N)) + w mod φ(N) = yi + w mod φ(N), and subtract from the latter
value yi to get w mod φ(N) that, along with the factorization, forms a valid
witness for RSG. 4

3.2 HZKPoK for RDDH

Construction 2 The NI system NIDDH = (ProveDDH,VerifyDDH) for polynomial-
time relation RDDH (cf. Def. 26) consists of the following algorithms.

In the following, we let s
4
= |N |. We will later show how to optimize the

parameter s. Let NISG = (ProveSG,VerifySG) be the NI for polynomial-time
relation RSG of Construction 1. ProveDDH, on inputs statement (N, g, h, u, v)
and witness (w, [pi,mi]

l
i=1) for RDDH, computes the following proof. We assume

w to be the integer < ord(g) such that u = gw, v = hw. If this is not the case,
the prover finds the value w′ with such property and executes the below protocol
with witness w′. We skip this detail in the algorithm description.

Algorithm ProveDDH:
Inputs: statement (N, g, h, u, v) and witness (w, [pi,mi]

l
i=1) for RDDH.

– For each i ∈ [s], do
• ri ← Z?φ(N), zi = ri + w mod φ(N) under the constraint that ri be a prime number and

(ri + w) mod φ(N) ∈ Z?φ(N).

• r′i = r−1i mod φ(N), z′i = z−1i mod φ(N).
• Xi = gri , Yi = hri .

– endFor
– πu ← ProveSG((N, g, u), (w, p, q)) and πv ← ProveSG((N,h, v), (w, p, q)).
– Output (πu, πv, Xi, Yi, r

′
i, z
′
i)i∈[s].

VerifyDDH, on inputs statement (N, g, h, u, v) and proof (πu, πv, (Xi, Yi, r
′
i, z
′
i)i∈[s]),

outputs a binary decision, 0 to denote rejection and 1 to denote acceptance.

71



Algorithm VerifyDDH:
Inputs: statement (N, g, h, u, v) and proof (πu, πv, (Xi, Yi, r

′
i, z
′
i)i∈[s]).

1. If g
∏
i∈[s] r

′
i = 1 then Return 0.

2. For each i ∈ [s], do
(a) If r′i is not a prime number, then Return 0.

(b) If X
r′i
i 6= g ∨ Y r

′
i

i 6= h then Return 0.
(c) Hi = Xi · u, Zi = Yi · v.

(d) If H
z′i
i 6= g ∨ Zz

′
i
i 6= h then Return 0.

3. endFor
4. If VerifySG((N, g, u), πu) = 0 ∨ VerifySG((N,h, v), πv) = 0 then Return 0.
5. If ∃i, j ∈ [s], i 6= j, r′i = r′j then Return 0.
6. Output 1.

4

Theorem 14 The NI system NIDDH = (ProveDDH,VerifyDDH) for polynomial-
time relation RDDH of Construction 2 is complete and perfectly sound. 4

Proof. The proof for completeness is trivial; see Remark 8.

Let us analyze soundness. Suppose that VerifyDDH, on inputs statement
(N, g, h, u, v) and proof (πu, πv, (Xi, Yi, r

′
i, z
′
i)i∈[s]), outputs 1 (i.e., it accepts the

proof). We will prove that u = gw, v = hw for some w < φ(N) (the order of Z?N )

and thus RDDH((N, g, h, u, v), (w, [pi,mi]
l
i=1)) = 1, with N =

∏l
i=1 p

mi
i .

We firstly argue there exists at least one index j ∈ [s] such that r′j is co-prime
with φ(N). Suppose towards a contradiction this to be false, that is, for each
i ∈ [s], r′i has a common factor with φ(N). By check 2.a, for each i ∈ [s], ri is
prime and, by check 5, the primes r′1, . . . , r

′
s are all different. Then, since s = |N |,

the product t
4
=
∏
i∈[s] r

′
i has to be a multiple of φ(N). Since φ(N) is the order of

Z?N and the order of each group element divides the order of the group, we have
that gt = 1 and hence in check 1 VerifyDDH refuses the proof, contradicting the
hypothesis.

Let j ∈ [s] be such that r′j is co-prime with φ(N). Check 2.b implies X
r′j
j = g

(resp. Y
r′j
j = h). Being r′j co-prime with φ(N), it has an inverse modulo φ(N).

Let y
4
= r′−1j mod φ(N). Then, powering both sides of the equation X

r′j
j = g

(resp. Y
r′j
j = h) to y, we have Xj = gy (resp. Yj = hy). Analogously, check 2.d

implies Hi = gy2 (resp. Zi = hy2) for some y2 < φ(N).

By perfect soundness of NISG, check 4 guarantees that u = gw1 for some
w1 < φ(N) and v = hw2 for some w2 < φ(N). Let k1 (resp. k2) be the order of
g (resp. h). Then, by step 2.c, Hi = Xi · u and Zi = Yi · v and this implies:

gw1 = u = Hi ·X−1i = gy2 · g−y = gy2−y,

72



and

hw2 = v = Zi · Y −1i = hy2 · h−y = hy2−y.

Taking the discrete logs, resp. in base g and h of the last two equations, we
have w1 = y2 − y mod k1 and w2 = y2 − y mod k2. Recall that the system of
equations

x = a mod m1,

x = b mod m2,

has a unique solution modulo m1m2/ gcd(m1,m2) if a = b mod gcd(m1,m2).
Thus, there exists integer x such that x = y2−y mod k1 and x = y2−y mod k2

and setting w
4
= x mod φ(N) we have that u = gw1 mod k1 = gw mod k1 = gw

and v = hw2 mod k2 = hw mod k2 = hw, as it was to prove. 4

Theorem 15 Let DHInvO be the oracle of Def. 28. If Assumption 2 holds, then
the NI system NIDDH = (ProveDDH,VerifyDDH) of Construction 2 is DHInvO-
HZK for polynomial-time relation RDDH. 4

Proof. By Assumption 2, DHInvO is a legitimate oracle for polynomial-time re-
lation RDDH. What is left to prove is to show a PPT simulator algorithm for
NIDDH satisfying (perfect) HZK. Let SimSGDHInvO(·) be the PPT simulator with
oracle access to DHInvO(·) of Theorem 12. Consider the following simulator

SimDDHDHInvO(·) with oracle access to DHInvO(·). The simulator takes as input
a statement (N, g, h, u, v) and computes a simulated proof as follows using SimSG
and with the help of the oracle DHInvO.

Algorithm SimDDH:
Inputs: statement (N, g, h, u, v).
Oracle: DHInvO.

– For each i ∈ [s], do
• (Xi, Yi, r

′
i, z
′
i) = DHInvO(N, g, h, u, v).

– endFor
– πu ← SimSGDHInvO(·)((N, g, u)), πv ← SimSGDHInvO(·)(N,h, v).
– Output (πu, πv, (Xi, Yi, r

′
i, z
′
i)i∈[s]).

By the definition of DHInvO, it is easy to see that for each i ∈ [s], the tuple
(Xi, Yi, r

′
i, z
′
i) output by the oracle on input (N, g, u, h, v) has the same distribu-

tion as a tuple (Xi, Yi, r
′
i, z
′
i) output by the prover; see Remark 8. By Theorem

12, the output of SimSGDHInvO(·)(N, g, u) (resp. SimSGDHInvO(·)(N,h, v)) is dis-
tributed identically to ProveSG((N, g, u), (w, [pi,mi]

l
i=1)) (resp. ProveSG((N,h, v), (w, [pi,mi]

l
i=1)))

for any witness (w, [pi,mi]
l
i=1) for RSG.

Then, the output of SimDDHDHInvO(·)(N, g, h, u, v) is distributed identically to
the output of ProveDDH((N, g, h, u, v), (w, [pi,mi]

l
i=1)) for any witness (w, [pi,mi]

l
i=1)

for RDDH. 4

73



Theorem 16 Let FactO be the oracle of Def. 29. If Assumption 4 holds, then
the NI system NISG = (ProveDDH,VerifyDDH) of Construction 2 is FactO-HPoK
for polynomial-time relation RDDH. 4

Proof. By Assumption 4, RDDH is hard with respect to FactO, that is FactO ∈
LegOrHRRDDH . What is left to prove is to show a PPT extractor ExtDDHFactO(·)

with oracle access to FactO(·) such that the following holds: for any strings
x, π ∈ {0, 1}?, if VerifyDDH(x, π) = 1 then Prob[(x,w) ∈ RDDH(x,w)| w ←
ExtDDHFactO(·)(x)] = 1.

Let ExtDDH be the extractor with oracle access to FactO for NISG guar-
anteed by Theorem 13. Consider the following extractor ExtDDH with oracle
access to FactO that uses ExtDDH. The extractor ExtDDH takes as input a
statement (N, g, h, u, v) and a proof (πu, πv, (Xi, Yi, r

′
i, z
′
i)i∈[s]) and computes

what follows. ExtDDH invokes ExtSG with input (N, g, u) and proof πu sim-
ulating to ExtSG the oracle FactO. ExtDDH outputs the witness output by
ExtSG. By Theorem 13, the witness (w, [pi,mi]

l
i=1) output by ExtSG is such

that RSG((N, g, u), (w, [pi,mi]
l
i=1)) = 1, that is u = gw. By perfect soundness of

NIDDH, h = gw as well. Then, ExtDDH computes a valid witness. 4

An optimization and a more efficient NIZK proof in the CRS model. In the
Constructions 1 and 2, the parameter s is set to |N |. What is needed for the
soundness to hold is having s larger or equal than the possible maximum number
of prime factors of N . We can optimize s in the following way. The verifiers can
check if N has no prime factor of bit length < k. Then, s can be set to |N |/k+1.

In the CRS model, the constructions can be made more efficient. The modulus
N can be computed by a trusted party in an honest way and set to be the CRS.
The proof can be slightly changed so to allow the verifier to check whether a
prime number is co-prime with the group order and thus s can be set to 1, i.e.,
there is no need for parallel repetitions.

Moreover, another reason for inefficiency is the need for checking if an ele-
ment belongs to the correct group. A possibility is to work in the group of signed
quadratic residues modulo a Blum integer N [HK09] where one can efficiently
check if a group element belongs to the group of signed quadratic residues. In
this case, one has to work in the CRS model because the properties of signed
quadratic residues are guaranteed when −1 is not a quadratic residue and thus
the modulus N has to be setup honestly as a Blum integer. Even in the CRS
model, to our knowledge there is no known efficient perfectly sound proof sys-
tem for proving correct decryption of El Gamal ciphertexts over multiplicative
groups.

We remark that moving the constructions to the CRS model still requires
oracle-aided simulation.

4 Conclusions

Since the introduction of zero-knowledge proofs [GMR89], the importance of
removing coordination has been recognized as fundamental both from a the-

74



oretical point of view and for practical applications like e-voting that require
universal verifiability. Unfortunately, one-message zero-knowledge proofs prov-
ably do not exist, so non-interactive zero-knowledge proof systems have been
proposed subject to some limitations like the existence of a trusted player that
setups a shared common reference string [DMP88] or in the so called random
oracle model [BR93] or assuming a known bound on the space of the verifier
[DPY92].

In this work we have put forth proofs for non-trivial and useful cryptographic
relations that (1) can be communicated in one-message and enjoy zero soundness
error, that is they are proofs in the mathematical sense, (2) are efficient and (3)
satisfy a new privacy notion that we call harmless zero-knowledge. In addition,
we presented proofs with the properties (1) and (3) for general NP relations.

Harmless zero-knowledge is rooted in the simulation paradigm and represents
a generalization of zero-knowledge in that it allows the simulator to have access
to an oracle relative to which the language is still hard to decide. Essentially, we
exploit the fact that in several real-world protocols that use cryptographic proofs,
we can assume adversaries to not have access to some trapdoor information (e.g.,
a secret key); restricted to this class of adversaries, a harmless zero-knowledge
proof does not leak knowledge that enables the adversary to attack a larger
system in which the proof is employed.

For example, taking advantage of the fact that adversaries against the privacy
of an encryption scheme do not have access to the secret-key, we can construct a
perfectly sound one-message harmless zero-knowledge proof of correct decryption
of El Gamal ciphertexts that is not based on any trust assumption.19 Instead,
the soundness of proofs of correct decryption obtained via the FS transform
is completely breakable by adversaries discovering a trapdoor, e.g., in the hash
function used to instantiate the random oracle. The drawback is that the privacy
of the application obtained using our harmless zero-knowledge proof of correct
decryption (for instance, the task of distinguishing whether two ciphertexts en-
crypt (1,−1) or (−1, 1) given a proof that the product ciphertext decrypts to
0) is based on a less-studied oracle-based assumption. Therefore, one has trade
a qualitatively different assumption used for the privacy for removing trust and
computational assumptions used for the verifiability.

Contrast this state of affairs with other ”implementations“ of the simulation
paradigm. For instance, the variant of zero-knowledge secure in the Universal
Composability model [Can01] is stronger and offers more general composability
guarantees than standard zero-knowledge but this comes at the cost of limiting
the achievability only to the CRS, RO or restricted models. Analogously, zero-
knowledge is stronger and can be composed with a larger class of protocols

19 Due to the limitations highlighted in Section 1.2.3, we have to use either our proof
for NP or to use our efficient proof but assuming the pair (N, g) to be correctly
generated (we additionally sketch an alternative solution that requires a change in
the encryption scheme). To our knowledge, it was not known how to construct a one-
message perfectly sound proof for correct decryption satisfying a non-trivial notion
of privacy beyond WI useful and usable in security proofs.

75



than harmless zero-knowledge but this comes at the cost of sacrificing non-
interactivity and zero soundness error. For specific applications, harmless zero-
knowledge may be useful, usable and secure.

More in detail, an oracle O induces a set of bad pairs (f,Adv) (see Section
1.3.5) that, roughly speaking, represent the “non-simulatable“ adversaries Adv
that, given a proof of some statement x, can compute f(x,w) for some witness w
to x. Such an adversary may be, for instance, the one that is able to compute the
witness to a DH tuple X over Z?N given a NIDDH proof for X and additionally the
factorization of N as auxiliary input. In some applications like e-voting, we can
safely assume adversaries to not have access to the factorization, thus in those
particular applications such an “attack” is harmless. Therefore, analyzing the
security of an O-HZK proof deployed in a larger protocol accounts to studying
whether the bad pairs induced by O correspond to real attacks in the protocol.

Another way of thinking about about the limitations and power of O-HZK
proofs is to look at the fact that O-HZK implies O-strong-WI (cf. Def. 21 and
discussion in Section 1.3.9): some distributions of statements X and Y are not
computationally indistinguishable by distinguishers with access to the oracle and
thus may not hold that (X,π) is computationally indistinguishable (by distin-
guishers without access to the oracle) from (Y, π). In the analysis of a security
protocol, this limitation can be not necessary to prove the security, and so the
limitation turns out to be harmless (moreover, without introducing the oracle
in the analysis of the security, we could not be able to prove the security). That
is, O-strong-WI punctures out a set of ”bad“ distributions, the ones that are
indistinguishable by distinguishers without access to the oracle but are distin-
guishable by distinguishers with access to the oracle, that are non-simulatable
(by simulators without access to the oracle). If such bad distributions never oc-
cur in the analysis of a protocol using an O-HZK proof, then O-HZK suffices to
prove the security of that particular protocol (and in some applications it may
be necessary to consider HZK as non-interactive ZK proofs do not exist). In view
of these considerations, it would be interesting to characterize O-HZK in terms
of epistemic logic [HPR09].

Our work is far from being a comprehensive or completely satisfactory study
of alternative models to zero-knowledge proofs compatible with zero verification
error and pure non-interactivity and introduces novel computational assump-
tions. We hope, however, it can shed light on this intriguing possibility.

Acknowledgments

I dedicate this work to the memory of my father, Salvatore Iovino (1951-2019),
and to all people with ALS and their relatives and friends.

This research has been supported by an FNR CORE-Junior grant of the
Luxembourg National research fund (project no. C16/IS/11299247).

76



References

ABB+10. José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn,
Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying compiler for
zero-knowledge proofs of knowledge based on sigma-protocols. In Dim-
itris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, ES-
ORICS 2010: 15th European Symposium on Research in Computer Se-
curity, volume 6345 of Lecture Notes in Computer Science, pages 151–167.
Springer, September 2010.

ABOR00. William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrish-
nan Rajagopalan. Fast verification of any remote procedure call: Short
witness-indistinguishable one-round proofs for NP. In Automata, Lan-
guages and Programming, 27th International Colloquium, ICALP 2000,
Geneva, Switzerland, July 9-15, 2000, Proceedings, pages 463–474, 2000.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In USENIX Security
Symposium, volume 17, pages 335–348, 2008.

AF07. Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In
Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Confer-
ence, volume 4392 of Lecture Notes in Computer Science, pages 118–136.
Springer, February 2007.

AH87. William Aiello and Johan H̊astad. Perfect zero-knowledge languages can
be recognized in two rounds. In 28th Annual Symposium on Foundations of
Computer Science, pages 439–448. IEEE Computer Society Press, October
1987.

AKS04. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.
Annals of Mathematics, 160(2):781–793, September 2004.

ARU14. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum at-
tacks on classical proof systems: The hardness of quantum rewinding. In
55th Annual Symposium on Foundations of Computer Science, pages 474–
483. IEEE Computer Society Press, October 2014.

Bar01. Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd
Annual Symposium on Foundations of Computer Science, pages 106–115.
IEEE Computer Society Press, October 2001.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 315–334. IEEE, 2018.

BCC88. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of computer and system sciences, 37(2):156–
189, 1988.

BCNP04. Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Uni-
versally composable protocols with relaxed set-up assumptions. In 45th
Annual Symposium on Foundations of Computer Science, pages 186–195.
IEEE Computer Society Press, October 2004.

BCP03. Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple
public-key cryptosystem with a double trapdoor decryption mechanism
and its applications. In Chi-Sung Laih, editor, Advances in Cryptology –
ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science,
pages 37–54. Springer, November / December 2003.

77



BDPA11. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak
reference, 2011. http://keccak.noekeon.org/.

BDSG+13. Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain,
Yael Tauman Kalai, Adriana López-Alt, and Daniel Wichs. Why “Fiat-
Shamir for proofs” lacks a proof. In Theory of Cryptography: 10th Theory
of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013.,
pages 182–201. Springer, 2013.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th Annual ACM
Symposium on Theory of Computing, pages 103–112. ACM Press, May
1988.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. Nizks with an
untrusted CRS: security in the face of parameter subversion. In Advances
in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part II, pages 777–804, 2016.

BFW15. David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs
of knowledge in the random oracle model. In Public-Key Cryptography -
PKC 2015 - 18th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April
1, 2015, Proceedings, pages 629–649, 2015.

BG93. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume
740 of Lecture Notes in Computer Science, pages 390–420. Springer, Au-
gust 1993.

BGJS16. Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sa-
hai. Verifiable functional encryption. In Advances in Cryptology – ASI-
ACRYPT 2016, pages 557–587, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

BHZ87. R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short inter-
active proofs? Inf. Process. Lett., 25(2):127–132, May 1987.

BL02. Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and
extraction. In 34th Annual ACM Symposium on Theory of Computing,
pages 484–493. ACM Press, May 2002.

BLV03. Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-
black-box zero knowledge. In 44th Annual Symposium on Foundations of
Computer Science, pages 384–393. IEEE Computer Society Press, October
2003.

BM88. László Babai and Shlomo Moran. Arthur-merlin games: A randomized
proof system, and a hierarchy of complexity classes. J. Comput. Syst.
Sci., 36(2):254–276, 1988.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 06: 13th Conference
on Computer and Communications Security, pages 390–399. ACM Press,
October / November 2006.

BNPS02. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. The power of RSA inversion oracles and the security of Chaum’s
RSA-based blind signature scheme. In Paul F. Syverson, editor, FC 2001:
5th International Conference on Financial Cryptography, volume 2339 of

78

http://keccak.noekeon.org/


Lecture Notes in Computer Science, pages 319–338. Springer, February
2002.

BOV03. Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryp-
tography. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 299–315.
Springer, August 2003.

BP04. Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-
knowledge. In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography
Conference, volume 2951 of Lecture Notes in Computer Science, pages
121–132. Springer, February 2004.

BP15. Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indis-
tinguishability from indistinguishability obfuscation. In Theory of Cryp-
tography Conference, pages 401–427. Springer, 2015.

BPW12. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to
prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to
Helios. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology
– ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science,
pages 626–643. Springer, December 2012.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM CCS
93: 1st Conference on Computer and Communications Security, pages 62–
73. ACM Press, November 1993.

BR08. Mihir Bellare and Todor Ristov. Hash functions from sigma protocols and
improvements to VSH. In Josef Pieprzyk, editor, Advances in Cryptology
– ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science,
pages 125–142. Springer, December 2008.

BSJS96. E. Bach, J.O. Shallit, S. Jeffrey, and P.J. Shallit. Algorithmic Number
Theory: Efficient algorithms. Algorithmic Number Theory. MIT Press,
1996.

BY93. Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of
trapdoor permutations. In Ernest F. Brickell, editor, Advances in Cryp-
tology – CRYPTO’92, volume 740 of Lecture Notes in Computer Science,
pages 442–460. Springer, August 1993.

BY96. Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive
zero-knowledge based on any trapdoor permutation. Journal of Cryptol-
ogy, 9(3):149–166, 1996.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd Annual Symposium on Foundations of Com-
puter Science, pages 136–145. IEEE Computer Society Press, October
2001.

CCD88. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncon-
ditionally secure protocols (abstract) (informal contribution). In Carl
Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume 293
of Lecture Notes in Computer Science, page 462. Springer, August 1988.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of par-
tial knowledge and simplified design of witness hiding protocols. In Yvo
Desmedt, editor, Advances in Cryptology – CRYPTO’94, volume 839 of
Lecture Notes in Computer Science, pages 174–187. Springer, August 1994.

CG15. Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive
without random oracles. In Public-Key Cryptography - PKC 2015 - 18th

79



IACR International Conference on Practice and Theory in Public-Key
Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Pro-
ceedings, pages 650–670, 2015.

CGGM00. Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Reset-
table zero-knowledge (extended abstract). In 32nd Annual ACM Sympo-
sium on Theory of Computing, pages 235–244. ACM Press, May 2000.

CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited (preliminary version). In 30th Annual ACM Sym-
posium on Theory of Computing, pages 209–218. ACM Press, May 1998.

CGS97. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and
optimally efficient multi-authority election scheme. In Walter Fumy, editor,
Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes
in Computer Science, pages 103–118. Springer, May 1997.

Cha81. David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

CKPR01. Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box con-
current zero-knowledge requires omega (log n) rounds. In 33rd Annual
ACM Symposium on Theory of Computing, pages 570–579. ACM Press,
July 2001.

CL15. Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic en-
cryption from DDH. In Topics in Cryptology - CT-RSA 2015, The Cryp-
tographer’s Track at the RSA Conference 2015, San Francisco, CA, USA,
April 20-24, 2015. Proceedings, pages 487–505, 2015.

CLMP12. Kai-Min Chung, Edward Lui, Mohammad Mahmoody, and Rafael Pass.
Unprovable security of two-message zero knowledge. Cryptology ePrint
Archive, Report 2012/711, 2012. http://eprint.iacr.org/2012/711.

CLW18. Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-shamir: From prac-
tice to theory, part ii (NIZK and correlation intractability from circular-
secure FHE). Cryptology ePrint Archive, Report 2018/1248, 2018. https:
//eprint.iacr.org/2018/1248.

CMFP+10. Benôıt Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien
Stern, and Jacques Traoré. On some incompatible properties of voting
schemes. In Towards Trustworthy Elections, pages 191–199. Springer, 2010.

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume
740 of Lecture Notes in Computer Science, pages 89–105. Springer, August
1993.

CPS+16. Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi,
and Ivan Visconti. Online/offline OR composition of sigma protocols. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 63–92, 2016.

CPSV16. Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti.
A transform for NIZK almost as efficient and general as the Fiat-Shamir
transform without programmable random oracles. In Theory of Cryp-
tography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part II, pages 83–111, 2016.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462 of
Lecture Notes in Computer Science, pages 13–25. Springer, August 1998.

80

http://eprint.iacr.org/2012/711
https://eprint.iacr.org/2018/1248
https://eprint.iacr.org/2018/1248


CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, vol-
ume 2332 of Lecture Notes in Computer Science, pages 45–64. Springer,
April / May 2002.

CS03. Ronald Cramer and Victor Shoup. Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

Dam10. Ivan Damg̊ard. On Σ-protocol. http://www.cs.au.dk/~ivan/Sigma.pdf,
2010.

DBB+15. Gaby G Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan
Boneh. Provisions: Privacy-preserving proofs of solvency for bitcoin ex-
changes. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pages 720–731. ACM, 2015.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe
Persiano, and Amit Sahai. Robust non-interactive zero knowledge. In Ad-
vances in Cryptology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, pages 566–598, 2001.

DFN06. Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-
knowledge from homomorphic encryption. In Shai Halevi and Tal Rabin,
editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876
of Lecture Notes in Computer Science, pages 41–59. Springer, March 2006.

DK18. Apoorvaa Deshpande and Yael Kalai. Proofs of ignorance and applications
to 2-message witness hiding. Cryptology ePrint Archive, Report 2018/896,
2018. https://eprint.iacr.org/2018/896.

DMP88. Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive
zero-knowledge proof systems. In Carl Pomerance, editor, Advances in
Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer Sci-
ence, pages 52–72. Springer, August 1988.

DN00. Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st
Annual Symposium on Foundations of Computer Science, pages 283–293.
IEEE Computer Society Press, November 2000.

DNRS99. Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer.
Magic functions. In 40th Annual Symposium on Foundations of Computer
Science, pages 523–534. IEEE Computer Society Press, October 1999.

DPY92. Alfredo De Santis, Giuseppe Persiano, and Moti Yung. One-message sta-
tistical zero-knowledge proofs and space-bounded verifier. In Automata,
Languages and Programming, 19th International Colloquium, ICALP92,
Vienna, Austria, July 13-17, 1992, Proceedings, pages 28–40, 1992.

DRV12. Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness
condensers for efficiently samplable, seed-dependent sources. In Ronald
Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, vol-
ume 7194 of Lecture Notes in Computer Science, pages 618–635. Springer,
March 2012.

DS02. Cynthia Dwork and Larry J. Stockmeyer. 2-round zero knowledge and
proof auditors. In 34th Annual ACM Symposium on Theory of Computing,
pages 322–331. ACM Press, May 2002.

ES02. Edith Elkind and Amit Sahai. A unified methodology for constructing
public-key encryption schemes secure against adaptive chosen-ciphertext

81

http://www.cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2018/896


attack. Cryptology ePrint Archive, Report 2002/042, 2002. http://

eprint.iacr.org/2002/042.
Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowl-

edge with online extractors. In Victor Shoup, editor, Advances in Cryptol-
ogy – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 152–168. Springer, August 2005.

FKI06. Jun Furukawa, Kaoru Kurosawa, and Hideki Imai. An efficient com-
piler from sigma-protocol to 2-move deniable zero-knowledge. In Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
ICALP 2006: 33rd International Colloquium on Automata, Languages and
Programming, Part II, volume 4052 of Lecture Notes in Computer Science,
pages 46–57. Springer, July 2006.

FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the Fiat-Shamir transform. In
Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology -
INDOCRYPT 2012: 13th International Conference in Cryptology in India,
volume 7668 of Lecture Notes in Computer Science, pages 60–79. Springer,
December 2012.

FLS90. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract).
In 31st Annual Symposium on Foundations of Computer Science, pages
308–317. IEEE Computer Society Press, October 1990.

For87. Lance Fortnow. The complexity of perfect zero-knowledge (extended ab-
stract). In Alfred Aho, editor, 19th Annual ACM Symposium on Theory
of Computing, pages 204–209. ACM Press, May 1987.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, August 1987.

FS90. Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd Annual ACM Symposium on Theory of Computing,
pages 416–426. ACM Press, May 1990.

FS01. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139
of Lecture Notes in Computer Science, pages 368–387. Springer, August
2001.

Gal02. Steven D. Galbraith. Elliptic curve Paillier schemes. Journal of Cryptology,
15(2):129–138, 2002.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th Annual Symposium on Founda-
tions of Computer Science, pages 40–49. IEEE Computer Society Press,
October 2013.

GH98. Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs
with bounded communication. Inf. Process. Lett., 67(4):205–214, 1998.

GK90. Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. In International Colloquium on Automata, Lan-
guages, and Programming, pages 268–282. Springer, 1990.

GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the
Fiat-Shamir paradigm. In 44th Annual Symposium on Foundations of

82

http://eprint.iacr.org/2002/042
http://eprint.iacr.org/2002/042


Computer Science, pages 102–115. IEEE Computer Society Press, October
2003.

GK08. Vipul Goyal and Jonathan Katz. Universally composable multi-party com-
putation with an unreliable common reference string. In Ran Canetti, ed-
itor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of
Lecture Notes in Computer Science, pages 142–154. Springer, March 2008.

GL07a. Jens Groth and Steve Lu. A non-interactive shuffle with pairing based
verifiability. In Kaoru Kurosawa, editor, Advances in Cryptology – ASI-
ACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages
51–67. Springer, December 2007.

GL07b. Jens Groth and Steve Lu. Verifiable shuffle of large size ciphertexts. In Tat-
suaki Okamoto and Xiaoyun Wang, editors, PKC 2007: 10th International
Conference on Theory and Practice of Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science, pages 377–392. Springer, April
2007.

GM84. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster
zero-knowledge for boolean circuits. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 1069–
1083, 2016.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

GMW86. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity and a methodology of cryptographic protocol de-
sign (extended abstract). In 27th Annual Symposium on Foundations of
Computer Science, pages 174–187. IEEE Computer Society Press, October
1986.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game or A completeness theorem for protocols with honest majority.
In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Com-
puting, pages 218–229. ACM Press, May 1987.

GMW91. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems. Journal of the ACM, 38(3):691–729, 1991.

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, 1994.

Gol01. Oded Goldreich. Foundations of Cryptography: Basic Techniques, vol-
ume 1. Cambridge University Press, Cambridge, UK, 2001.

Gol04. Oded Goldreich. Foundations of Cryptography: Basic Applications, vol-
ume 2. Cambridge University Press, Cambridge, UK, 2004.

GOS06a. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. In Cynthia Dwork, editor, Advances in Cryptol-
ogy – CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science,
pages 97–111. Springer, August 2006.

GOS06b. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In Serge Vaudenay, editor, Advances in Cryptology –
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 339–358. Springer, May / June 2006.

83



GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for non-
interactive zero-knowledge. Journal of the ACM (JACM), 59(3):11, 2012.

GOSV14. Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti.
Black-box non-black-box zero knowledge. In David B. Shmoys, editor,
46th Annual ACM Symposium on Theory of Computing, pages 515–524.
ACM Press, May / June 2014.

GQ88. Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge
protocol fitted to security microprocessor minimizing both trasmission
and memory. In C. G. Günther, editor, Advances in Cryptology – EU-
ROCRYPT’88, volume 330 of Lecture Notes in Computer Science, pages
123–128. Springer, May 1988.

Gro03. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In
Yvo Desmedt, editor, PKC 2003: 6th International Workshop on Theory
and Practice in Public Key Cryptography, volume 2567 of Lecture Notes
in Computer Science, pages 145–160. Springer, January 2003.

Gro05a. Jens Groth. Cryptography in subgroups of zn. In Joe Kilian, editor,
TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lec-
ture Notes in Computer Science, pages 50–65. Springer, February 2005.

Gro05b. Jens Groth. Non-interactive zero-knowledge arguments for voting. In
John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05:
3rd International Conference on Applied Cryptography and Network Secu-
rity, volume 3531 of Lecture Notes in Computer Science, pages 467–482.
Springer, June 2005.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bi-
linear groups. In Nigel P. Smart, editor, Advances in Cryptology – EURO-
CRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
415–432. Springer, April 2008.

HK09. Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues
and applications. In Shai Halevi, editor, Advances in Cryptology –
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages
637–653. Springer, August 2009.

HPR09. Joseph Y Halpern, Rafael Pass, and Vasumathi Raman. An epistemic
characterization of zero knowledge. In Proceedings of the 12th Confer-
ence on Theoretical Aspects of Rationality and Knowledge, pages 156–165.
ACM, 2009.

HRS09. Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (im)possibility
of Arthur-Merlin witness hiding protocols. In Omer Reingold, editor,
TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lec-
ture Notes in Computer Science, pages 220–237. Springer, March 2009.

IMS12. Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-
knowledge PCPs. In Ronald Cramer, editor, TCC 2012: 9th Theory of
Cryptography Conference, volume 7194 of Lecture Notes in Computer Sci-
ence, pages 151–168. Springer, March 2012.

JCJ10. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant elec-
tronic elections. In Towards Trustworthy Elections, pages 37–63. Springer,
2010.

JKKR17. Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Roth-
blum. Distinguisher-dependent simulation in two rounds and its appli-
cations. In Annual International Cryptology Conference, pages 158–189.
Springer, 2017.

84



Kal06. Yael Tauman Kalai. Attacks on the Fiat-Shamir paradigm and program
obfuscation. PhD thesis, Massachusetts Institute of Technology, 2006.

KKS18. Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical wit-
ness indistinguishability (and more) in two messages. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 34–65. Springer, 2018.

KRR16. Yael T. Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation
to the security of Fiat-Shamir for proofs. IACR Cryptology ePrint Archive,
2016:303, 2016.

KS17. D. Khurana and A. Sahai. How to achieve non-malleability in one or
two rounds. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 564–575, Oct 2017.

Lin06. Yehuda Lindell. A simpler construction of CCA2-secure public-key en-
cryption under general assumptions. Journal of Cryptology, 19(3):359–377,
July 2006.

Lin15. Yehuda Lindell. An efficient transform from sigma protocols to NIZK with
a CRS and non-programmable random oracle. In Theory of Cryptography
- 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part I, pages 93–109, 2015.

Mau15. Ueli Maurer. Zero-knowledge proofs of knowledge for group homomor-
phisms. Des. Codes Cryptography, 77(2-3):663–676, 2015.

McC88. Kevin S. McCurley. A key distribution system equivalent to factoring.
Journal of Cryptology, 1(2):95–105, 1988.

MR95. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, New York, NY, USA, 1995.

MV16. Arno Mittelbach and Daniele Venturi. Fiat-Shamir for highly sound pro-
tocols is instantiable. In Security and Cryptography for Networks - 10th
International Conference, SCN 2016, Amalfi, Italy, August 31 - September
2, 2016, Proceedings, pages 198–215, 2016.

MX13. Mohammad Mahmoody and David Xiao. Languages with efficient zero-
knowledge PCPs are in SZK. In Amit Sahai, editor, TCC 2013: 10th
Theory of Cryptography Conference, volume 7785 of Lecture Notes in Com-
puter Science, pages 297–314. Springer, March 2013.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In ACM CCS 01: 8th Conference on Computer and Communications Se-
curity, pages 116–125. ACM Press, November 2001.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd Annual ACM Symposium on
Theory of Computing, pages 427–437. ACM Press, May 1990.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238. Springer, May 1999.

Pas03a. Rafael Pass. On deniability in the common reference string and ran-
dom oracle model. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
316–337. Springer, August 2003.

Pas03b. Rafael Pass. Simulation in quasi-polynomial time, and its application to
protocol composition. In Eli Biham, editor, Advances in Cryptology –
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 160–176. Springer, May 2003.

85



Pas06a. Rafael Pass. Parallel repetition of zero-knowledge proofs and the pos-
sibility of basing cryptography on NP-hardness. In 21st Annual IEEE
Conference on Computational Complexity (CCC’06), pages 13–pp. IEEE,
2006.

Pas06b. Rafael Pass. A precise Computational Approach to Knowledge. PhD thesis,
Massachusetts Institute of Technology, 2006.

Pas11. Rafael Pass. Limits of provable security from standard assumptions. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium
on Theory of Computing, pages 109–118. ACM Press, June 2011.

Pas13. Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-
malleable commitments. In Amit Sahai, editor, TCC 2013: 10th Theory
of Cryptography Conference, volume 7785 of Lecture Notes in Computer
Science, pages 334–354. Springer, March 2013.

PIK94. Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anony-
mous channel and all/nothing election scheme. In Tor Helleseth, editor,
Advances in Cryptology – EUROCRYPT’93, volume 765 of Lecture Notes
in Computer Science, pages 248–259. Springer, May 1994.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

PS04. Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving
universal composability without trusted setup. In László Babai, editor,
36th Annual ACM Symposium on Theory of Computing, pages 242–251.
ACM Press, June 2004.

Ps05. Rafael Pass and Abhi shelat. Unconditional characterizations of non-
interactive zero-knowledge. In Victor Shoup, editor, Advances in Cryptol-
ogy – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 118–134. Springer, August 2005.

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. Cryptology ePrint Archive, Report
2019/158, 2019. https://eprint.iacr.org/2019/158.

PsV06. Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a
non-malleable encryption scheme from any semantically secure one. In
Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 271–289. Springer, Au-
gust 2006.

Rab80. Michael O. Rabin. Probabilistic algorithm for testing primality. Journal
of Number Theory, 12(1), pages 128–138, 1980.

RS92. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In Joan Feigenbaum, ed-
itor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes
in Computer Science, pages 433–444. Springer, August 1992.

RS06. Peter Y. A. Ryan and S. A. Schneider. Prêt à voter with re-encryption
mixes. Technical Report CS-TR-956, University of Newcastle, 2006.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signature and public-key cryptosystems. Communications
of the Association for Computing Machinery, 21(2):120–126, 1978.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th Annual Symposium on Foundations of
Computer Science, pages 543–553. IEEE Computer Society Press, October
1999.

86

https://eprint.iacr.org/2019/158


SG02. Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems
against chosen ciphertext attack. Journal of Cryptology, 15(2):75–96, 2002.

Shm85. Zahava Shmuely. Composite diffie-hellman public-key generating schemes
are hard to break. Technical Repart No. 356, Computer Science Depart-
ment, Technion-Israel Institute of Technology, February 1985.

SK94. Kazue Sako and Joe Kilian. Secure voting using partially compatible
homomorphisms. In Yvo Desmedt, editor, Advances in Cryptology –
CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages
411–424. Springer, August 1994.

TW10. Björn Terelius and Douglas Wikström. Proofs of restricted shuffles. In
Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT 10: 3rd
International Conference on Cryptology in Africa, volume 6055 of Lecture
Notes in Computer Science, pages 100–113. Springer, May 2010.

Unr12. Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
135–152. Springer, April 2012.

Unr15. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques (TCC), pages 755–784.
Springer, 2015.

VV09. Carmine Ventre and Ivan Visconti. Co-sound zero-knowledge with public
keys. In Bart Preneel, editor, AFRICACRYPT 09: 2nd International Con-
ference on Cryptology in Africa, volume 5580 of Lecture Notes in Computer
Science, pages 287–304. Springer, June 2009.

Wee09. Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In
Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, vol-
ume 5912 of Lecture Notes in Computer Science, pages 417–434. Springer,
December 2009.

Wik05. Douglas Wikström. A sender verifiable mix-net and a new proof of
a shuffle. In Bimal K. Roy, editor, Advances in Cryptology – ASI-
ACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages
273–292. Springer, December 2005.

YZ12. Andrew C. Yao and Yunlei Zhao. Digital signatures from challenge-
divided sigma-protocols. Cryptology ePrint Archive, Report 2012/001,
2012. http://eprint.iacr.org/2012/001.

87

http://eprint.iacr.org/2012/001

	Efficient Perfectly Sound One-message Zero-Knowledge Proofs via Oracle-aided Simulation
	Introduction
	Our Results and Roadmap
	Overview of our main proof system
	Standard NIZKA for correctness of El Gamal decryption
	Our new non-interactive proof system
	Proof of correct decryption and its applications

	Harmless Zero-Knowledge Proof of Knowledge
	Harmless ZK
	HZK of our main proof system
	Harmless proof of knowledge
	O-HZK -3mu O-function hiding  witness hiding
	The impact of the oracle leakage in applications.
	On trivial and efficient oracles
	Undeniability of our proofs
	Applications and how to use HZK proofs
	O-strong witness indistinguishability

	Extensions
	Verifiable shuffle
	OR proofs from verifiable shuffle
	Polynomial statements
	ZAP and computational HZK proof for NP relations

	Related Work and Comparison

	Definitions
	Number-theoretic facts and definitions.
	Proof systems.
	Interactive and NI proof systems
	O-HZK
	Hard relations and O-HPoK
	O-WI and O-WH
	O-strong-WI
	O-FH.

	Multiplicative groups of hidden order
	El Gamal over groups of hidden order
	Our relations RDDH and RSG
	Our main oracle DHInvO
	Hardness assumptions


	Our HZKPoK proofs for subgroup membership and DH tuples
	HZKPoK for RSG
	HZKPoK for RDDH

	Conclusions


