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Abstract

Consider the following two fundamental open problems in complexity theory:

• Does a hard-on-average language in NP imply the existence of one-way functions?

• Does a hard-on-average language in NP imply a hard problem in TFNP (i.e., the class of
total NP search problem)?

Our main result is that the answer to (at least) one of these questions is yes.
Both one-way functions and problems in TFNP can be interpreted as promise-true distri-

butional NP search problems—namely, distributional search problems where the sampler only
samples true statements. As a direct corollary of the above result, we thus get that the existence
of a hard-on-average distributional NP search problem implies a hard-on-average promise-true
distributional NP search problem. In other words,

It is no easier to find witnesses (a.k.a. proofs) for efficiently-sampled statements
(theorems) that are guaranteed to be true.

This result follows from a more general study of interactive puzzles—a generalization of
average-case hardness in NP—and in particular, a novel round-collapse theorem for computationally-
sound protocols, analogous to Babai-Moran’s celebrated round-collapse theorem for information-
theoretically sound protocols. As another consequence of this treatment, we show that the
existence of O(1)-round public-coin non-trivial arguments (i.e., argument systems that are not
proofs) imply the existence of a hard-on-average problem in NP/poly.
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1 Introduction

Even if NP 6= P, it could be that in practice, NP problems are easy in the sense that the problems we
encounter in “real life” come from some distribution that make them easy to solve. The complexity-
theoretic study of average-case hardness of NP problems addresses this problem [Lev86, Gur91,
BCGL92, IL90]. A particularly appealing abstraction of an average-case analog of NP 6= P was
provided by Gurevich in his 1989 essay [Gur89] through his notion of a Challenger-Solver Game.1

Consider a probabilistic polynomial-time Challenger C who samples an instance x and provides it
to the Solver S. The solver S is supposed to find a witness to x and is said to win if either (1) the
statement x chosen by the challenger is false, or (2) S succeeds in finding a witness w for x. We
refer to the Challenger-Solver game as being hard if no probabilistic polynomial-time (PPT) solver
succeeds in winning in the game with inverse polynomial probability. (In other words, such a game
models a hard-on-average distributional search problem in NP.) The existence of a hard Challenger-
Solver game means that there exists a way to efficiently sample mathematical statements x that
no computationally bounded mathematician can find proofs for. (Impagliazzo [Imp95] considers a
similar type of game between Professor Grauss and young Gauss, where Professor Grauss is trying
to embarrass Gauss by picking mathematical problems that Gauss cannot solve.)

But, an unappealing aspect of a Challenger-Solver game (which already goes back to the defini-
tion of distributional search problems [BCGL92]) is that checking whether the solver wins cannot
necessarily be efficiently done, as it requires determining whether the sampled instance x is in the
language. Does it make the problem easier if we restrict the challenger to always sample true
statements x?2 In other words, “Is it easier to find proofs for efficiently-sampled mathematical
statements that are guaranteed to be true?” In complexity-theoretic terms:

Does the existence of an hard-on-average distributional search problem in NP imply the
existence of a hard-on-average distributional search problem where the sampler only
samples true statements?

We refer to distributional search problems where the sampler only samples true statements as
promise-true distributional search problems. The above question, and the notion of a promise-true
distributional search problems, actually predates the formal study of average-case complexity: It
was noted already by Even, Selman and Yacobi [ESY84] in 1984 that for typical applications of
(average-case) hardness for NP problems—in particular, for cryptographic applications—we need
hardness for instances that are “promised” to be true. As they noted (following [EY80]3), in the
context of public-key encryption, security is only required for ciphertexts that are sampled as valid
encryptions of some message. (This motivated [ESY84] to introduce the concept of a promise
problem; see also [Gol06] for further discussion on this issue and the connection to average-case
complexity.)

Intuitively, restricting to challengers that only sample true statements ought to make the job
of the challenger a lot harder—it now needs to be sure that the sampled instance is true. There
are two natural methods for the challenger to achieve this task:

(a) sampling the statement x together with a witness w (as this clearly enables the challenger to
be sure that x is true); and,

1Gurevich actually outlines several classes of Challenger-Solver games; we here outline one particular instance of
it, focusing on NP search problems.

2Or equivalently, to distributions where one can efficiently check when the sampler outputs a false instance.
3As remarked in [EY80], these type of “problems with a promise” can be traced back even further: they are closely

related to what was referred to as a “birdy” problem in [Gin66] and a “partial algorithm problem” in [Ull67], in the
study of context-free languages
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(b) restricting to NP languages where every statement is true.

As noted by Impagliazzo [Gur89, Imp95], the existence of a challenger-solver game satisfying re-
striction (a) is equivalent to the existence of one-way functions.4 But whether the existence of a
hard-on-average language in NP implies the existence of one-way functions is arguably the most
important open problem in the foundations of Cryptography: One-way functions are both necessary
[IL89] and sufficient for many of the central cryptographic tasks (e.g., pseudorandom generators
[HILL99], pseudorandom functions [GGM84], private-key encryption [GM84, BM88]). As far as
we know, there are only two approaches towards demonstrating the existence of one-way functions
from average-case NP hardness: (1) Ostrovsky and Wigderson [OW93a] demonstrate such an impli-
cation assuming that NP has zero-knowledge proofs [GMW91], (2) Komargodski et al. [KMN+14]
demonstrate the implication (in fact, an even stronger implication, showing worst-case hardness of
NP implies one-way functions) assuming the existence of indistinguishability obfuscators [BGI+01].
Both of these additional assumptions are not known to imply one-way functions on their own (in
fact, they are unconditionally true if NP ⊆ BPP).

A hard challenger-solver game satisfying restriction (b), on the other hand, is syntactically
equivalent to a hard-on-average problem in the class TFNP [MP91]: the class TFNP (total function
NP) is the search analog of NP with the additional guarantee that any instance has a solution.
In other words, TFNP is the class of search problems in NP ∩ coNP (i.e., F (NP ∩ coNP)). In
recent years, TFNP has attracted extensive attention due to its natural syntactic subclasses that
capture the computational complexity of important search problems from algorithmic game theory,
combinatorial optimization and computational topology—perhaps most notable among those are
the classes PPAD [Pap94, GP16], which characterizes the hardness of computing Nash equilibrium
[DGP09, CDT09, DP11], and PLS [JPY85], which characterizes the hardness of local search. A
central open problem is whether (average-case) NP hardness implies (average-case) TFNP hardness.
A recent elegant result by Hubacek, Naor, and Yogev [HNY17] shows that under certain strong
“derandomization” assumptions [NW94, IW97, MV05, BOV07]—the existence of Nisan-Wigderson
(NW) [NW94] type pseudorandom generators that fool circuits with oracle gates to languages in
the second level of the polynomial hierarchy5—(almost everywhere) average-case hardness of NP
implies average-case hardness of TFNP.6 Hubacek et al. also present another condition under
which TFNP is average-case hard: assuming the existence of one-way functions and non-interactive
witness indistinguishable proofs (NIWI) [FS90, DN00, BOV07] for NP.

The above mentioned works thus give complexity-theoretic assumptions (e.g., the existence
of zero-knowledge proofs for NP, or strong derandomization assumption) under which the above
problem has a positive resolution. But these assumptions are both complex and strong.

Our main result provides a resolution to the above problem without any complexity-theoretic
assumption:7

4That is, a function f that can be computed in polynomial time but cannot be efficiently inverted. Such a function
f directly yields the desired sampling method: pick a random string r and let x = f(r) be the statement and r the
witness. Conversely, to see why the existence of such a sampling method implies a one-way function, consider the
function f that takes the random coins used by the sampling method and outputs the instance generated by it.

5Such PRGs are known under the assumption that E = DTIME[2O(n)] has no 2εn sized Π2-circuits, for all ε > 0,
where a Π2-circuit is a standard circuit that can additionally perform oracle queries to any language L ∈ Π2 (i.e.,
any language in the second level of the polynomial hierarchy).

6[HNY17] also show that average-case hardness of NP implies an average-case hard problem in TFNP/poly (i.e,.
TFNP with a non-uniform verifier). In essence, this follows since non-uniformity enables unconditional derandom-
ization.

7Pedantically, it is not a fully complete resolution as we start with an almost-everywhere hard problem and only
get an infinitely-often hard problem. But, except for this minor issue, it is a complete resolution. We also note that
earlier results [OW93a, HNY17] also require starting off with an almost-everywhere hard-on-average language in NP.
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Theorem 1.1 (Informally stated). The existence of an almost-everywhere hard-on-average lan-
guage in NP8 implies the existence of a hard-on-average promise-true distributional search problem
in NP.

In fact, we demonstrate an even stronger statement. Perhaps surprisingly, we show that without
loss of generality, the sampler/challenger of the distributional search problem needs to satisfy one
of the above two “natural” restrictions:

Theorem 1.2 (Informally stated). The existence of an almost-everywhere hard-on-average lan-
guage in NP implies either (a) the existence one-way functions, or (b) a hard-on-average TFNP
problem.

In other words, in Impagliazzo’s Pessiland [Imp95] (a world where NP is hard-on-average, but
one-way functions do not exist), TFNP is unconditionally hard (on average).

Towards proving this result, we consider an alternative notion of a Challenger-Solver game,
which we refer to as a Interactive Puzzle. Roughly speaking, there are 2 differences: (1) whether
the solver wins should always be computationally feasible to determine, and (2) we allow for more
than just 2 rounds of interaction. As we hope to convey, the study of interactive puzzles is intriguing
in its own right and yields other applications.

1.1 Interactive Puzzles

We initiate a complexity-theoretic study of interactive puzzles: 2-player interactive games between
a polynomial-time challenger C and an Solver/Attacker9 satisfying the following properties:

Computational Soundness: There does not exist a probabilistic polynomial-time (PPT) attacker
A∗ and polynomial p such that A∗(1n) succeeds in making C(1n) output 1 with probability

1
p(n) for all sufficiently large n ∈ N .

Completeness/Non-triviality: There exists a negligible function µ and an inefficient attacker
A that on input 1n succeeds in making C(1n) output 1 with probability 1−µ(n) for all n ∈ N .

Public Verifiability: Whether C accepts should just be a deterministic function of the transcript.

In other words, (a) no polynomial-time attacker, A∗, can make C output 1 with inverse polynomial
probability, yet (b) there exists a computationally unbounded attacker A that makes C output 1
with overwhelming probability. We refer to C as a k(·)-round computational puzzle (or simply a
k(·)-round puzzle) if C satisfies the above completeness and computational soundness conditions,
while restricting C(1n) to communicate with A in k(n) rounds. In this work, we mostly restrict our
attention to public-coin puzzles, where the Challenger’s messages are simply random strings.

As an example of a 2-round public-coin puzzle, let f be a one-way permutation and consider a
game where C(1n) samples a random y ∈ {0, 1}n and requires the adversary to output a preimage
x such that f(x) = y. Since f is a permutation, this puzzle has “perfect” completeness—an
unbounded attackerA can always find a pre-image x. By the one-wayness of f (and the permutation
property of f), we also have that no PPT adversary A∗ can find such an x (with inverse polynomial
probability), and thus soundness holds. If however, f had only been a one-way function and not
a permutation, then we can no longer sample a uniform y, but rather must have C first sample a

8That is, a language in NP such that for every δ > 0, no PPT attacker A can decide random instances with
probability greater than 1

2
+ δ for infinitely many (as opposed to all) n ∈ N . Such an “almost-everywhere” notion is

more commonly used in the cryptographic literature.
9Following the nomenclature in the cryptographic literature, we use the name Attacker instead of Solver.
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random x and next output y = f(x). This 2-round puzzle does not satisfy the public-coin property,
but it still have perfect completeness.

Its not hard to see that the existence of 2-round (public-coin) puzzles is “essentially” equivalent
to the existence of an average-case hard problem in NP: any 2-round public-coin puzzle trivially
implies a hard-on-average search problem (w.r.t. the uniform distribution) in NP and thus by [IL90]
also a hard-on-average decision problem in NP. Furthermore, “almost-everywhere” hard-on-average
languages in NP also imply the existence of a 2-round puzzle (by simply sampling many random
instances x and asking the attacker to provide a witness for at least, say, 1/3 of the instances).10

Proposition 1.1 (informally stated). The existence of an (almost-everywhere) hard-on-average
language in NP implies the existence of a 2-round puzzle. Furthermore, the existence of a 2-round
puzzle implies the existence of a hard-on-average language in NP.

Thus, 2-round puzzles are “morally” (up to the infinitely-often/almost-everywhere issue) equiv-
alent to the existence of a hard-on-average language in NP. As such, k(·)-round puzzles are a natural
way to generalize average-case hardness in NP. Additionally, natural restrictions of 2-round puzzles
capture natural subclasses of distributional problems in NP:

• the existence of a hard-on-average problem in TFNP is syntactically equivalent to the existence
of a 2-round public-coin puzzle with perfect completeness.

• the existence of a hard-on-average promise-true distributional search problem is syntactically
equivalent to a 2-round (private-coin) puzzle with perfect completeness.

While the game-based modeling in the notion of a puzzle is common in the cryptographic
literature—most notably, it is commonly used to model cryptographic assumptions [Nao03, Pas11,
GW11], complexity-theoretic consequences or properties of puzzles have remained largely unex-
plored.

1.2 The Round-Complexity of Puzzles

Perhaps the most basic question regarding the existence of interactive puzzles is whether the ex-
istence of a k-round puzzle is actually a weaker assumption than the existence of a k − 1 round
puzzle. In particular, do interactive puzzles actually generalize beyond just average-case hardness
in NP:

Does the existence of a k-round puzzle imply the existence of (k − 1)-round puzzle?

We here focus our attention only on public-coin puzzles. At first sight, one would hope the classic
“round-reduction” theorem due to Babai-Moran (BM) [BM88] can be applied to collapse any O(1)-
round puzzle into a 2-round puzzle (i.e., a hard-on-average NP problem). Unfortunately, while
BM’s round reduction technique indeed works for all information-theoretically sound protocols,
Wee [Wee06] demonstrated that BM’s round reduction fails for computationally sound protocols.
In particular, Wee shows that black-box proofs of security cannot be used to prove that BM’s
transformation preserves soundness even when applied to just 3-round protocols, and demonstrates
(under computational assumptions) a concrete 4-round protocol for which BM’s round-reduction
results in an unsound protocol.

As BM’s round reduction is the only known round-reduction technique (which does not rely on
any assumptions), it was generally conjectured that the existence of a k-round puzzle is a strictly

10The reason we need the language to be almost-everywhere hard-on-average is to guarantee that YES instances
exists for every sufficiently large input length, or else completeness would not hold.
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stronger assumption than the existence of a (k + 1)-round puzzle—in particular, this would imply
the existence of infinitely many worlds between Impagliazzo’s Pessiland and Heuristica [Imp95]
(i.e., infinitely many worlds where NP 6= P yet average-case NP hardness does not exist). Further
evidence in this direction comes from a work by Gertner et al. [GKM+00] which shows a black-box
separation between k-round puzzles and (k + 1)-round puzzles for a particular cryptographic task
(namely that of a key-agreement scheme).11

In contrast to the above negative results, our main technical result provides an affirmative
answer to the above question—we demonstrates a round-reduction theorem for puzzles.

Theorem 1.3 (informally stated). For every constant c, the existence of a k(·)-round public-coin
puzzle is equivalent to the existence of a (k(·)− c)-round public-coin puzzle.

In particular, as corollary of this result, we get that the assumption that a O(1)-round public-coin
puzzle exists is not weaker than the assumption that average-case hardness in NP exists:

Corollary 1.4 (informally stated). The existence of an O(1)-round puzzle implies the existence of
a hard-on-average problem in NP.

Perhaps paradoxically, we strongly rely on BM’s round reduction technique, yet we rely on a
non-black-box security analysis. Our main technical lemma shows that if infinitely-often one-way
functions12 do not exist (i.e., if we can invert any function for all sufficiently large input lengths),
then BM’s round reduction actually works:

Lemma 1.2 (informally stated). Either infinitely-often one-way functions exist, or BM’s round-
reduction transformation turns a k(·)-round puzzle into a (k(·)− 1)-round puzzle.

We provide a proof outline of Lemma 1.2 in Section 1.5. The proof of Theorem 1.3 now easily
follows by considering two cases:

Case 1: (Infinitely-often) one-way functions exists. In such a world, we can rely on
Rompel’s construction of a universal one-way hashfunction [NY89, Rom90] to get a 2-round
puzzle.

Case 2: (Infinitely-often) one-way functions does not exist. In such a world, by Lemma
1.2, BM’s round reduction preserves soundness of the underlying protocol and thus we have
gotten a puzzle with one round less. We can next iterate BM’s round reduction any constant
number of times.

A natural question is whether we can collapse more than a constant number of rounds. Our
next result—which characterizes the existence of poly(n)-round puzzles—shows that this is unlikely.

Theorem 1.5 (informally stated). For every ε > 0, there exists an nε-round (public-coin) puzzle
if and only if PSPACE 6⊆ BPP.

11The example from [GKM+00] isn’t quite captured by our notion of a computational puzzle as their challenger is
not public coin.

12Recall that a one-way function f is a function that is efficiently computable, yet there does not exist a PPT
attacker A and polynomial p(·) such that A inverts f with probability 1

p(n)
for infinitely many inputs lengths n ∈ N .

A function f is infinitely often one-way if the same conditions hold except that we only require that no PPT attacker
A succeeds in inverting f with probability 1

p(n)
for all sufficiently large n ∈ N—i.e., it is hard for invert f “infinitely

often”
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In particular, if nε-round public-coin puzzles imply O(1)-round public-coin puzzles, then by com-
bining Theorem 1.3 and Theorem 1.5, we have that PSPACE 6⊆ BPP implies the existence of a
hard-on-average problem in NP, which seems unlikely. Theorem 1.5 also shows that the notion of
an interactive puzzle (with a super constant-number of rounds) indeed is a non-trivial generalization
of average-case hardness in NP. Theorem 1.5 follows using mostly standard techniques.13

We next present some complexity-theoretic consequences of our treatment of interactive puzzles.

1.3 Achieving Perfect Completeness: Proving Theorem 1.2

We outline how the round-reduction theorem can be used to prove Theorem 1.2 in the following
steps:

• As mentioned above, an (almost-everywhere) hard-on-average problem in NP yields a 2-round
puzzle;

• We can next use a standard technique from the literature on interactive proofs (namely the
result of [FGM+89]) to turn this puzzle into a 3-round puzzle with perfect completeness.

• We next observe that the BM transformation preserves perfect completeness of the protocol.
Thus, by Lemma 1.2, either infinitely-often one-way functions exist, or we can get a 2-round
puzzle with perfect completeness.

• Finally, as observed above, the existence of a 2-round puzzle with perfect completeness is
syntactically equivalent to the existence of a hard-on-average problem in TFNP (with respect
to the uniform distribution on instances).

The above proof approach actually only concludes a slightly weaker form of Theorem 1.2—we
only show that either TFNP is hard or infinitely-often one-way functions exist. As infinitely-often
one-way functions directly imply 2-round private-coin puzzles with perfect completeness, which (as
observed above) are syntactically equivalent to hard-on-average promise-true distributional search
problems, this however already suffices to prove Theorem 1.1.

We can get the proof also of the stronger conclusion of Theorem 1.2 (i.e., conclude the existence
of standard (i.e., “almost-everywhere”) one-way functions), by noting that an almost-everywhere
hard-on-average language in NP actually implies an 2-round puzzle satisfying a “almost-everywhere”
notion of soundness, and for such “almost-everywhere puzzles”, Lemma 1.2 can be strengthened to
show that either one-way functions exist, or BM’s round-reduction works.14

13Any puzzle C can be broken using a PSPACE oracle (as the optimal strategy can be found using a PSPACE oracle),
so if PSPACE ⊆ BPP, it can also be broken by a probabilistic polynomial-time algorithm. For the other direction,
recall that worst-case to average-case reductions are known for PSPACE [FF93, BFNW93]. In other words, there
exists a language L ∈ PSPACE that is hard-on-average assuming PSPACE 6⊆ BPP. Additionally, recall that PSPACE
is closed under complement. We then construct a public-coin puzzle where C first samples a hard instance for L
and then asks A to determine whether x ∈ L and next provide an interactive proof—using [Sha92, LFKN92] which
is public-coin—for containment or non containment in L. This puzzle clearly satisfies the completeness condition.
Computational soundness, on the other hand, follows directly from the hard-on-average property of L (and the
unconditional soundness of the interactive proof of [Sha92]).

14More precisely, the variant of Lemma 1.2 says that either one-way functions exist, or the existence of a k-round
almost-everywhere puzzle yields the existence of a k − 1-round puzzle (with the standard, infinitely-often, notion of
soundness).
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1.4 The Complexity of Non-trivial Public-coin Arguments

Soon after the introduction of interactive proof by Goldwasser, Micali and Rackoff [GMR89] and
Babai and Moran [BM88], Brassard, Chaum and Crepeau [BCC88] introduced the notion of an
interactive argument. Interactive arguments are defined identically to interactive proofs, but we
relax the soundness condition to only hold with respect to non-uniform PPT algorithms (i.e., no non-
uniform PPT algorithm can produce proofs of false statements, except with negligible probability).

Interactive arguments have proven extremely useful in the cryptographic literature, most no-
tably due to the feasibility (assuming the existence of collision-resistant hashfunctions) of succinct
public-coin argument systems for NP—namely, argument systems with sublinear, or even polyloga-
rithmic communication complexity [Kil92, Mic00]. Under widely believed complexity assumptions
(i.e., NP not being solvable in subexponential time), interactive proofs cannot be succinct [GH98].

A fundamental problem regarding interactive arguments involves characterizing the complexity
of non-trivial argument systems—namely interactive arguments that are not interactive proofs (in
other words, the soundness condition is inherently computational). As far as we know, the first
explicit formalization of this question appears in a recent work by Goldreich [Gol18], but the notion
of a non-trivial argument has been discussed in the community for at least 15 years.15

We focus our attention on public-coin arguments (similar to our treatment of puzzles). Us-
ing our interactive-average-case hardness treatment, we are able to establish an “almost-tight”
characterization of constant-round public-coin non-trivial arguments.

Theorem 1.6 (informally stated). The existence of a O(1)-round public-coin non-trivial argument
for any language L implies a hard-on-average language in NP/poly. Conversely, the existence
of a hard-on-average language in NP implies an (efficient-prover) 2-round public-coin non-trivial
argument for NP.

The first part of the theorem is shown by observing that any public-coin non-trivial argument
can be turned into a non-uniform public-coin puzzle (where the challenger is a non-uniform PPT
algorithm), and next observing that our round-collapse theorem also applies to non-uniform puzzles.
The second part follows from the observation that we can take any NP proof for some language L
and extending it into a 2-round non-trivial argument for L where the verifier samples a random
statement x′ from a hard-on-average language L′ and next requiring the prover to provide a witness
w that either x ∈ L or x′ ∈ L′. Completeness follows trivially (as we can always provide a normal NP
witness proving that x ∈ L, and computational soundness follows directly if L′ is sufficiently hard-
on-average (in the sense that it is hard to find witnesses to true statements with inverse polynomial
probability). This argument system is not a proof, though, since by the hard-on-average property
of L′, there must exist infinitely many input lengths for which random instances are contained in
L′ with inverse polynomial probability.

We finally observe that the existence of nε-round non-trivial public-coin arguments is equivalent
to PSPACE 6⊆ P/poly.

Theorem 1.7 (informally stated). For every ε > 0, there exists an (efficient-prover) nε-round
non-trivial public-coin argument (for NP) if and only if PSPACE 6⊆ P/poly.

The “only-if” direction was already proven by Goldreich [Gol18] and follows just as the only-
if direction of Theorem 1.5. The “if” direction follows by combining a standard NP proof with
the puzzle from Theorem 1.5 (which becomes sound w.r.t. nu PPT attacker assuming PSPACE 6⊆
P/poly), and requiring the prover to either provide the NP witness, or to provide a solution to the
puzzle.

15Wee [Wee05] also considers a notion of a non-trivial argument, but his notion refers to what today is called a
succinct argument.
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1.5 Proof Overview for Lemma 1.2

We here provide a proof overview of our main technical lemma. As mentioned, we shall show that
if one-way functions do not exist, then Babai-Moran’s round reduction method actually works.
Towards this we will rely on two tools:

• Pre-image sampling. By the result of Impagliazzo and Levin [IL90], the existence of so-called
“distributional one-way functions” (function for which it is hard to sample a uniform pre-
image) imply the existence of one-way function. So if one-way functions do not exist, we
have that for every efficient function f , given a sample f(x) for a random input x, we can
efficiently sample a (close to random) pre-image x′.

• Raz’s sampling lemma (from the literature on parallel repetition for 2-prover games and
interactive arguments [Raz98, HPWP10, CP15]). This lemma states that if we sample `
uniform n-bit random variables R1, R2, . . . R` conditioned on some event W that happens with
sufficiently large probability ε, then the conditional distribution Ri of a randomly selected

index i will be close to uniform. More precisely, the statistical distance will be

√
log( 1

ε
)

` , so
even if ε is tiny, as long as we have sufficiently many repetitions `, the distance will be small.16

To see how we will use these tools, let us first recall the BM transformation (and its proof for
the case of information-theoretically sound protocols). To simplify our discussion, we here focus
on showing how to collapse a 3-round public-coin protocol between a prover P and a public-coin
verifier V into a 2-round protocol. We denote a transcript of the 3-round protocol (p1, r1, p2) where
p1 and p2 are the prover messages and r1 is the randomness of the verifier. Let n = |p1| be the length
of the prover message. The BM transformation collapses this protocol into a 2-round protocol in
the following two steps:

Step 1: Reducing soundness error: First, use a form of parallel repetition to make the sound-
ness error 2−n

2
(i.e., extremely small). More precisely, consider a 3-round protocol where P

first still send just p1, next the verifier picks ` = n2 random strings ~r = (r1
1, . . . , r

`
1), and

finally P needs to provide accepting answers ~p2 = (p1
2, . . . , p

`
2) to all of the queries ~r (so that

for every i ∈ [`], (p1, r
i
1, p

i
2) is accepting transcript).

Step 2: Swap order of messages: Once the soundness error is small, yet the length of the first
message is short, we can simply allow the prover to pick it first message p1 after having ~r. In
other words, we now have a 2-round protocol where V first picks ~r, then the prover responds
by sending p1, ~p2. This swapping preserves soundness by a simple union bound: since (by
soundness) for every string p1, the probability over ~r that there exists some accepting response
~r is 2−n

2
, it follows that with probability at most 2n×2−n

2
= 2−n over ~r, there exists some p1

that has an accepting ~p2 (as the number of possible first messages p1 is 2n). Thus soundness
still holds (with a 2n degradation) if we allow P to choose p1 after seeing ~r.

For the case of computationally sound protocols, the “logic” behind both steps fail: (1) it is not
known how to use parallel repetition to reduce soundness error beyond being negligible, (2) the
union bound cannot be applied since, for computationally sound protocols, it is not the case that
responses ~p2 do not exist, rather, they are just hard to find. Yet, as we shall see, using the above
tools, we present a different proof strategy. More precisely, to capture computational hardness,
we show a reduction from any polynomial-time attacker A that breaks soundness of the collapsed

16Earlier works [HPWP10, CP15] always used Raz’ lemma when ε was non-negligible. In contrast, we will here use
it also when ε is actually negligible.
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protocol with some inverse polynomial probability ε, to a polynomial-time attacker B that breaks
soundness of the original 3-round protocol.

B starts by sampling a random string ~r′ and computes A’s response given this challenge
(p′1,

~p′2) ← A(~r′). If the response is not an accepting transcript, simply abort; otherwise, take
p′1 and forward externally as B’s first message. (Since A is successful in breaking soundness, we
have that B won’t abort with probability ε.) Next, B gets a verifier challenge r from the external
verifier and needs to figure out how to provide an answer to it. If B is lucky and r is one of the
challenges r′i in ~r′, then B could provide the appropriate p2 message, but this unfortunately will
only happen with negligible probability. Rather, B will try to get A to produce another accepting
transcript (p′′1,

~r′′, ~p′′2) that (1) still contains p′1 as the prover’s first message (i.e., p′′1 = p′1), and (2)

contains r in some coordinate i of ~r′′. To do this, B will consider the function f(~r, z, i)—which runs
(p1, ~p2)← A(~r; z) (i.e., A has its randomness fixed to z) and outputs (p1, ri) if (p1, ~r, ~p2) is accepting
and ⊥ otherwise—and runs the pre-image sampler for this function f on (p′1, r) to recover some new

verifier challenge, randomness, index tuple (~r′′, z, i) which leads A(~r′′; z) to produce a transcript

(p′1,
~r′′, ~p′′2) of the desired form, and B can subsequently forward externally the i’th coordinate of

~p′′2 as its response and convince the external verifier.
So, as long as the pre-image sampler indeed succeeds with high enough probability, we have

managed to break soundness of the original 3-round protocol. The problem is that the pre-image
sampler is only required to work given outputs that are correctly distributed over the range of the
function f , and the input (p1, r) that we now feed it may not be so—for instance, perhaps A(~r)
chooses the string p1 as a function of ~r. So, whereas the marginal distribution of both p1 and r
are correct, the joint distribution is not. In particular, the distribution of r conditioned on p1 may
be off. We, however, show how to use Raz’s lemma to argue that if the number of repetitions ` is
sufficiently bigger than the length of p1, the conditional distribution of r cannot be too far off from
being uniform (and thus the pre-image sampler will work). On a high-level, we proceed as follows:

• Note that in the one-way function experiment, we can think of the output distribution (p1, r)
of f on a random input, as having been produced by first sampling p1 and next, if p1 6= ⊥,
sampling ~r conditioned on the event Wp1 that A generates a successful transcript with first-
round prover message p1, and finally sampling a random index i and outputting p1 and ri
(and otherwise output ⊥).

• Note that by an averaging argument, we have that with probability at least ε
2 over the choice

of p1, Pr[Wp1 ] ≥ ε
2n+1 (otherwise, the probability that A succeeds would need to be smaller

than ε
2 + 2n × ε

2n+1 = ε, which is a contradiction).

• Thus, whenever we pick such a “good” p1 (i.e., a p1 such that Pr[Wp1 ] ≥ ε
2n+1 ), by Raz’ lemma

the distribution of ri for a random i can be made 1
p(n) close to uniform for any polynomial

p by choosing ` to be sufficiently large (yet polynomial). Note that even though the lower
bound on Pr[Wp1 ] is negligible, the key point is that it is independent of ` and as such we
can still rely on Raz lemma by choosing a sufficiently large `. (As we pointed out above,
this usage of Raz’ lemma even on very “rare” events—with negligible probability mass—is
different from how it was previously applied to argue soundness for computationally sound
protocols [HPWP10, CP15].)

• It follows that conditioned on picking such a “good” p1, the pre-image sampler will also
successfully generate correctly distributed preimages if we feed him p1, r where r is randomly
sampled. But this is exactly the distribution that B feeds to the pre-image sampler, so we
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conclude that with probability ε
2 over the choice of p1, B will manage to convince the outside

verifier with probability close to 1.

This concludes the proof overview for 3-round protocols. When the protocol has more than 3
rounds, we can apply a similar method to collapse the last rounds of the protocol. The analysis
now needs to be appropriately modified to condition also on the prefix of the partial execution up
until the last rounds.

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, interactive Turing machine,
polynomial-time algorithms, probabilistic polynomial-time algorithms (PPT), non-uniform polynomial-
time and non-uniform PPT algorithms. A function µ is said to be negligible if for every polynomial
p(·) there exists some n0 such that for all n > n0, µ(n) ≤ 1

p(n) . For any two random variables X

and Y , we let SD(X,Y ) = maxT⊆U |Pr[X ∈ T ]−Pr[Y ∈ T ]| denote the statistical distance between
X and Y .

Basic Complexity Classes Recall that P is the class of languages L decidable in polynomial time
(i.e., there exists a polynomial-time algorithm M such that for every x ∈ {0, 1}∗, M(x) = L(x)),
P/poly is the class of languages decidable in non-uniform polynomial time, and BPP is the class of
languages decidable in probabilistic polynomial time with probability 2/3 (i.e., there exists a PPT
M such that for every x ∈ {0, 1}∗, Pr[M(x) = L(x)] > 2/3 where we abuse of notation and define
L(x) = 1 if x ∈ L and L(x) = 0 otherwise.)

We refer to a relation R over pairs (x, y) as being polynomially bounded if there exists a polyno-
mial p(·) such that for every (x, y) ∈ R, |y| ≤ p(|x|). We denote by LR the language characterized
by the “witness relation” R—i.e., x ∈ L iff there exists some y such that (x, y) ∈ R. We say that a
relation R is polynomial-time (resp. non-uniform polynomial-time) if R is polynomially-bounded
and the languages consisting of pairs (x, y) ∈ R is in P (resp. P/poly). NP (resp NP/poly) is the
class of languages L for which there exists a polynomial-time (resp. non-uniform polynomial-time)
relation R such that x ∈ L iff there exists some y such that (x, y) ∈ R.

Search Problems A search problem R is simply a polynomially-bounded relation; an NP search
problem R is a polynomial-time relation. We say that the search problem is solvable in polynomial-
time (resp. non-uniform polynomial time) if there exists a polynomial-time (resp. non-uniform
polynomial-time) algorithm M that for every x ∈ LR outputs a “witness” y such that (x, y) ∈ R.
Analogously, R is solvable in PPT if there exists some PPT M that for every x ∈ LR outputs a
“witness” y such that (x, y) ∈ R with probability 2/3.

An NP search problemR is total if for every x ∈ {0, 1}∗ there exists some y such that (x, y) ∈ R)
(i.e., every instance has a witness). We refer to FNP (function NP) as the class of NP search problems
and TFNP (total-function NP) as the class of total NP search problems.

2.1 One-way functions

We recall the definition of one-way functions (see e.g., [Gol01]). Roughly speaking, a function
f is one-way if it is polynomial-time computable, but hard to invert for PPT attackers. The
standard (cryptographic) definition of a one-way function requires every PPT attacker to fail (with
high probability) on all sufficiently large input lengths. We will also consider a weaker notion of an
infinitely-often one-way function [OW93a] which only requires the PPT attacker to fail for infinitely
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many inputs length (in other words, there is no PPT attacker that succeeds on all sufficiently large
input lengths, analogously to complexity-theoretic notions of hardness).

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to
be a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ
such that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

f is said to be an infinitely-often one-way function (ioOWF) if the above condition holds for
infinitely many n ∈ N (as opposed to all).

We may also consider a notion of a non-uniform (a.k.a. “auxiliary-input”) one way function,
which is identically defined except that (a) we allow f to be computable by a non-uniform PPT,
and (b) the attacker A is also allowed to be a non-uniform PPT.

2.2 Interactive Proofs and Arguments

We recall basic definitions of interactive proofs [GMR89, BM88] and arguments [BCC88]. An
interactive protocol (P, V ) is a pair of interactive Turing machine; we denote by 〈P1, P2〉(x) the
output of P2 in an interaction between P1 and P2 on common input x.

Definition 2.2. An interactive protocol (P, V ) is an interactive proof system for a language L ⊆
{0, 1}∗, if V is PPT and the following conditions hold:

Completeness: There exists a negligible function µ(c)̇ such that for every x ∈ L,

Pr[〈P, V 〉(x) = 1] ≥ 1− µ(|x|)

Soundness: For every Turing machine P ∗, there exists a negligible function µ(·) such that for
every x 6∈ L,

Pr[〈P ∗, V 〉(x) = 1] ≤ µ(|x|)

If the soundness condition is relaxed to only hold for all non-uniform PPT P ∗, we refer to (P, V )
as an interactive argument for L. We refer to (P, V ) as a public-coin proof/argument system if
V simply sends the outcomes of its coin tosses to the prover (and only performs computation to
determine its final verdict).

Whenever L ∈ NP, we say that (P, V ) has an efficient prover if there exists some witness
relation R that characterizes L (i.e., LR = L) and a PPT P̃ such that P (x) = P̃ (x,w) satisfies the
completeness condition for every (x,w) ∈ R.

2.3 Average-Case Complexity

We recall some basic notions from average-case complexity. A distributional problem is a pair (L,D)
where L ⊆ {0, 1}∗ and D is a PPT; we say that (L,D) is an NP (resp. NP/poly) distributional
problem if L ∈ NP (resp. L ∈ NP/poly). Roughly speaking, a distributional problem (L,D) is
hard-on-average if there does not exist some PPT algorithm that can decide instances drawn from
D with probability significantly better than 1/2.
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Definition 2.3 (δ-hard-on-the-average). We say that a distributional problem (L,D) is δ-hard-
on-the-average (δ-HOA) if there does not exist some PPT A such that for every sufficiently large
n ∈ N,

Pr[x← D(1n) : A(1n, x) = L(x)] > 1− δ

We say that a distributional problem (L,D) is simply hard-on-the-average (HOA) if it is δ-HOA
for some δ > 0.

We also define an notion of HOA w.r.t. non-uniform PPT algorithm (nuHAO) in exactly the
same way but where we allow A to be a non-uniform PPT (as opposed to just a PPT.

The above notion average-case hardness (traditionally used in the complexity-theory literature)
is defined analogously to the notion of an infinitely-often one-way function: we simply require every
PPT “decider” to fail for infinitely many n ∈ N. For our purposes, we will also rely on an “almost-
everywhere” notion of average-case hardness (similar to standard definitions in the cryptography,
and analogously to the definition of a one-way function), where we require that every decider fails
on all (sufficiently large) input lengths.

Definition 2.4 (almost-everywhere hard-on-the-average (aeHOA)). We say that a distributional
problem (L,D) is almost-everywhere δ hard-on-the-average (δ-aeHOA) if there does not exist some
PPT A such that for infinitely many n ∈ N,

Pr[x← D(1n) : A(1n, x) = L(x)] > 1− δ

We say (L,D) is almost-everywhere hard-on-the-average (aeHOA) if (L,D) is δ-aeHOA for some
δ > 0.

We move on to defining hard-on-the-average search problems. A distributional search problem
is a pair (R,D) where R is a search problem and D is a PPT. If R is an NP search problem
(resp. NP/poly search problem), we refer to (R,D) as an distributional NP (resp. NP/poly) search
problem.

Finally, we say that a distributional search problem (R,D) is promise-true if for every n and
every x in the support of D(1n), it holds that x ∈ LR. (That is, D only samples true instances.)

Definition 2.5 (hard-on-the-average search (SearchHOA)). We say that a distributional search
problem (R,D) is δ-hard-on-the-average (δ-SearchHOA) if there does not exist some PPT A such
that for every sufficiently large n ∈ N ,

Pr[x← D(1n); (w, x)← A(1n, x) : ((LR(x) = 1)⇒ (x,w) ∈ R)] > 1− δ

(R,D) is simply SearchHOA if there exists δ > 0 such that (R,D) is δ-SearchHOA.

We can analogously define an almost-everywhere notion, aeSearchHOA, of SearchHAO (by
replacing “for every sufficiently large n ∈ N” with “for infinitely many n ∈ N”) as well as a
non-uniform notion, nuSearchHOA, (by replacing PPT with non-uniform PPT).

The following lemmas which essentially directly follow from the result of [IL90, BCGL92, Tre05]
will be useful to us. (These results were originally only stated for the standard notion of HOA,
whereas we will require it also for the almost-everywhere notion; as we explain in more detail in
Appendix A, these results however directly apply also for the almost-everywhere notion of HOA.)
The first results from [IL90] (combined with [Tre05]) shows that without loss of generality, we can
restrict our attention to the uniform distribution over statements x; we denote by Up a PPT such
that Up(1n) simply samples a random string in {0, 1}p(n).
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Lemma 2.1 (Private to public distributions). Suppose there exists a distributional NP problem
(L,D) that is HOA (resp., aeHOA or nuHAO). Then, there exists a polynomial p and an NP-
language L′ such that (L′,Up) is HAO (resp. aeHOA or nuHOA).

The next result from [Tre05]) shows that when the distribution over instances is uniform, we
can amplify the hardness.

Lemma 2.2 (Hardness amplification). Let p be a polynomial and suppose there exists a distribu-
tional NP-problem (L,Up) that is HOA (resp., aeHOA or nuHOA). Then, for every δ < 1

2 , there
exists some polynomial p′ and NP language L′ such that (L′,Up′) is δ-HOA (resp., δ-aeHOA or
δ-nuHOA).

Finally, by [BCGL92] (combined with [Tre05], [IL90]) we have a decision-to-search reduction.

Lemma 2.3 (Search to decision). Suppose there exists a distributional NP (resp. NP/poly) search
problem (R,D) that is SearchHOA (resp., nuSearchHOA). Then, there a polynomial p and an NP
(resp. NP/poly) language L such that (L′,Up) is HOA (resp., nuHOA).

3 Interactive Puzzles

Roughly speaking, an interactive puzzle is described by an interactive polynomial-time challenger
C having the property that (a) there exists an inefficient A that succeeds in convincing C(1n) with
probability negligibly close to 1, yet (b) no PPT attacker A∗ can make C(1n) output 1 with inverse
polynomial probability for sufficiently large n.

Definition 3.1 (interactive puzzle). An interactive algorithm C is referred to as a k(·)-round puzzle
if the following conditions hold:

k(·)-round, publicly-verifiability: C is an (interactive) PPT that on input 1n (a) only communi-
cates in k(n) communication rounds, and (b) only performs some deterministic computation
as a function of the transcript to determine its final verdict.

Completeness/Non-triviality: There exists a (possibly unbounded) Turing machine A and a
negligible function µC(·) such that for all n ∈ N,

Pr[〈A, C〉(1n) = 1] ≥ 1− µ(n)

Computational Soundness: There does not exist a PPT machine A∗ and polynomial p(·) such
that for all sufficiently large n ∈ N,

Pr[〈A∗, C〉(1n) = 1] ≥ 1

p(n)

In other words, a k(·)-round puzzle, C, gives rise to an k(·)-round interactive proof (P, V ) (where
P = A, V = C) for the “trivial” language L = {0, 1}∗ with the property that there does not exist
a PPT prover that succeeds in convincing the verifier with inverse polynomial probability for all
sufficiently large n.

We will consider several restricted, or alternative, types of puzzle:

• We refer to the puzzle C as being public-coin if C simply sends the outcomes of its coin tosses
in each communication round.
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• We may also define an almost-everywhere notion of a puzzle by replacing “for all sufficiently
large n ∈ N” in the soundness condition with “for infinitely many n ∈ N”, and a non-uniform
notion of a puzzle C which allows both C and A∗ to be non-uniform PPT (as opposed to just
PPT).

• Finally, a puzzle C is said to have perfect completeness if the “completeness error”, µC(n), is
0—in other words, the completeness condition holds with probability 1.

Remark 3.1. One can consider a more relaxed notion of a (c(·), s(·))-puzzle for c(n) > s(n) +
1

poly(n) , where the completeness condition is required to hold with probability c(·) for every sufficiently

large n ∈ N, and the soundness condition holds with probability s(·) for every sufficiently large
n ∈ N. But, by “Chernoff-type” parallel-repetition theorems for computationally-sound protocols
[PV12, Hai09, HPWP10, CL10, CP15], the existence of such a k(·)-round (c(·), s(·))-puzzle implies
the existence of a k(·)-round puzzle. The same holds for almost-everywhere (resp. non-uniform)
puzzles.

3.1 Characterizing 2-round Public-coin Puzzles

In this section we make some basic observations regarding 2-round public-coin puzzles; these results
mostly follow using standard results in the literature. We begin by observing that the existence of
ioOWF imply the existence of 2-round public-coin puzzles.

Proposition 3.2. Assume the existence of ioOWFs (resp. non-uniform ioOWF). Then, there
exists a 2-round public-coin puzzle (reps. non-uniform puzzle).

Proof: By the result of Rompel [Rom90] (see also [KK05, HHR+10]), we have that ioOWFs imply
the existence of infinitely-often “second-preimage” resistant hash-function families that compress
n bits to n/2 bits.17 This, in turn, directly yields a simple 2-round puzzle where the challenger
C(1n) uniformly samples a hashfunction h and input x ∈ {0, 1}n and sends (h, x) to the adversary;
C accepts a response x′ if |x′| = n, x′ 6= x and h(x′) = h(x). Since the hash function is compressing,
we have that there exists a negligible function µ such that with probability 1 − µ(n), a random
x ∈ {0, 1}n will have a “collision” x′ and thus an unbounded A can easily find a collision and thus
completeness follows. Computational soundness, on the other hand, directly from the (infinitely-
often) second-preimage resistance property. The same result holds also if we start with non-uniform
ioOWFs, except that we now get a non-uniform puzzle.

We turn to showing that any aeHOA distributional NP problem implies a 2-round puzzle. (In
fact, it even implies an almost-everywhere puzzle.)

Lemma 3.3. Suppose there exists a distributional NP problem (L,D) that is aeHOA. Then there
exist an (almost-everywhere) 2-round public-coin puzzle.

Proof: Assume there exists a distributional problem (L,D) such that L ∈ NP and (L,D) is
aeHOA. From Lemma 2.2 and Lemma 2.1, we can conclude that there exists a polynomial p and
a distributional NP problem (L′,Up) that is δ-aeHOA for δ = 3

8 . Let R′ be some NP relation

corresponding to L′. Consider a puzzle C where C(1n) samples a random x ∈ {0, 1}p(n) and accepts

17Roughly speaking, a family of public coin hashfunctions H having the property that for a random h ∈ H and
random input x, it is hard for any PPT to find a different x′ of the same length that collides with x under h (that is,
h(x) = h(x′), |x| = |x′| yet x 6= x′. Rompel’s theorem was only stated for standard OWFs (as opposed to ioOWFs,
but the construction and proof directly also works for the infinitely-often variant as well.
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a response y if (x, y) ∈ R′. We will show that C is a (3
8 ,

1
4)-puzzle which by Remark 3.1 implies

the existence of a 2-round almost-everywhere puzzle. To show completeness, consider an inefficient
algorithm A that on input (1n, x) tries to find a witness y (using brute-force) such that (x, y) ∈ R′
and if it is successful sends it to C (and otherwise simply aborts). Observe that for all sufficiently
large n ∈ N, for a random x ← {0, 1}p(n) we have that Pr[x ∈ L′] > 3

8 ; otherwise, (L′,Up) can be
decided with probability 1− 3

8 for infinitely many n ∈ N contradicting its 3
8 -aeHOA property.18 It

follows that for all sufficiently large n ∈ N , A convinces C with probability 3
8 and thus completeness

of C follows.
To prove soundness, assume for contradiction that there exists a PPT algorithm A∗ such that

Pr[〈A∗, C〉(1n) = 1] > 1
4 for infinitely many n. Consider the machine M(x) that runs A∗(1|x|, x) and

outputs 1 if A∗ outputs a valid witness for x and otherwise outputs a random bit. By definition,
M solves the distributional problem (L′,Up) with probability > 1

4 + 1
2

(
1− 1

4

)
= 5

8 = 1 − 3
8 for

infinitely many n, which contradicts the 3
8 -aeHAO property of (L′,Up).

We now turn to showing that 2-round puzzles imply a HOA distributional NP problem. It will
be useful for the sequel to note that the same result also holds in the non-uniform setting.

Lemma 3.4. Suppose there exists a 2-round public-coin puzzle (resp. a non-uniform puzzle). Then,
there exists a distributional NP problem (resp. distributional NP/poly problem) that is HOA (resp.
nuHOA).

Proof: Let C be a 2-round public-coin puzzle (resp. 2-round non-uniform puzzle). Let `(·) be an
upper bound on the amount of randomness used by C. Consider the NP-relation (resp. NP/poly-
relation) R that includes all tuples ((pad, x), y) such that C(1|pad|) given randomness x ∈ `(|pad|)
accepts upon receiving y, and the sampler D(1n) that picks a random x ∈ {0, 1}`(n) and outputs
(1n, x). We argue next that (R,D) is 1

8 -SearchHOA (resp 3
8 -nuSearchHOA), which concludes the

proof by applying Lemma 2.3. Assume for contradiction that there exists a PPT (resp. non-
uniform PPT) machine M that solves (R,D) with probability > 1− 1

8 = 7
8 for all n > n0. By the

completeness of C, there exists some A, n1 such that such that for every n > n1, Pr[〈A, C〉(1n) =
1] > 7

8 . This implies that for all n > n1, for at most an 1
8 fraction of `(n)-bit strings x, (1n, x) /∈ LR).

In particular, for every n > max(n0, n1), for a random x ∈ {0, 1}`(n), M(1n, x) must output a valid
witness y for x with probability > 7

8 −
1
8 >

1
2 , and can thus be used to break the soundness of the

puzzle with probability > 1
2 for all sufficiently large n which is a contradiction.

If the 2-round puzzle has perfect completeness, essentially the same proof gives a SearchHOA
problem in TFNP as the relation R constructed in the proof of Lemma 3.4 is total if the puzzle has
perfect completeness.

Lemma 3.5. Suppose there exists a 2-round public-coin puzzle (resp. almost-everywhere puzzle)
with perfect completeness. Then, there exists some search problem R ∈ TFNP and some PPT D
such that the distributional search problem (R,D) is SearchHAO (aeSearchHAO).

4 The Round-Collapse Theorem

In this section, we prove our main technical lemma—a round-collapse theorem for O(1)-round
puzzles.

18Note that this is where were are crucially relying on the almost-everywhere hardness of the distributional problem.
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4.1 An Efficient Babai-Moran Theorem

Our main lemma shows that if ioOWF do not exist, the the Babai-Moran transformation preserves
computational soundness.

Lemma 4.1. Assume there exists a k(·)-round public-coin puzzle such that k(n) ≥ 3. Then, either
there exists an ioOWF, or there exists a (k(·)− 1)-round public-coin puzzle. Moreover, if the k(·)-
round puzzle has perfect completeness, then either there exists an ioOWF, or a (k(·) − 1)-round
public-coin puzzle with perfect-completeness.

Proof: Consider some k(·)-round public-coin puzzle C and assume for contradiction that ioOWF
do not exist. We will show that Babai-Moran’s (BM) [BM88] round reduction works in this setting
and thus we can obtain a (k(·)− 1)-round puzzle.

Note that if ioOWF do not exist, every polynomial-time computable function is “invertible” with
inverse polynomial probability for all sufficiently long input lengths n. In fact, since by [IL90], the
existence of distributional one-way functions implies the existence of one-way functions (and this
results also works in the infinitely-often setting), we can conclude that if ioOWF do not exist, for
any polynomial p(·), and any polynomial-time computable function f , there exists a PPT algorithm
Inv such that, for sufficiently large n, the following distributions are 1

p(n) -statistically close.

• {x← {0, 1}n : (x, f(x))}

• {x← {0, 1}n; y = f(x) : (Inv(y), y))}

In this case, we will say that Inv inverts f with 1
p(n) -statistical closeness. We now proceed to show

how to use such an inverter to prove that BM’s round-collapse transformation works on C. To
simplify notation, we will make the following assumptions that are without loss of generality:

• C has at least 4 communication rounds and C sends the first message; we can always add an
initial dummy message to achieve this, while only increasing the number of round by 1. We
will then construct a new puzzle that has k(·) − 2 rounds (which concludes the theorem).
Since, in any puzzle, A sends the final message, this implies we can assume k(·) is even. To
make our notations easier to read, we show how to reduce a 2k(·)-round protocol to a 2k(·)−2
rounds.

• There exists polynomials `c, `a such that all messages from C(1n) are of (the same) length `c(n)
and all the messages from A(1n) need to be of length `a(n) (or else C rejects). Furthemore,
`a(·) and `c(·) are polynomial-time computable, and strictly increasing.

We denote by C(1n, p1, p2, . . . , pi; rC) the (i+1)st-message (i.e., the message to be sent in round 2i+1
round) from C where rC is C’s randomness randomness and p1, p2, . . . , pi are bit strings (representing
the messages received from A in the first 2i rounds). Let m(n) be (`a(n) + 4)(log(n))2 rounded
upwards to the next power of two.19 We will show that the BM transformation works (if ioOWF
do not exist), when using m(·) repetitions. More precisely, consider the following (2k(·)− 2)-round
puzzle challenger C̃ that on input (1n, p1, . . . , pi; rC̃) proceeds as follows:

1. If i < k(n)− 2, output ri+1 (i.e., proceed just like C before round 2k(n)− 3);

2. If i = k(n) − 2, output (rk(n)−1, r
1
k(n), . . . , r

m(n)
k(n) ) (i.e., in round 2k(n) − 3, send the original

challenge for round 2k(n) − 3 as well as a “m(n)-wise parallel-repetition” challenge for the
original round 2k(n)− 1);

19We round to the next power of 2 to make it easy to sample a random number in [m(n)]; this is just to simplify
presentation/analysis
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3. If i = k(n)− 1 (i.e., after receiving the message in the last round), output 1 if and only if

C(1n, p1, p2, . . . , pk(n)−1, p
i
k(n); r1, r2, . . . , rk(n)−1, r

i
k(n)) = 1

for every i ∈ [m(n)] (i.e., all the parallel instances are accepting),

where rC̃ is interpreted as (r1, r2, . . . , rk(n)−1, r
1
k(n), . . . , r

m(n)
k(n) )

We will show that C̃ is a (99/100, 1/2)-puzzle, and thus by Remark 3.1 this implies a puzzle
with the same number of rounds.

We first define some notation:

• Given a transcript T = (r1, p1, . . . , pk(n)−2, rk(n)−1, r
1
k(n), . . . , r

m(n)
k(n) , pk(n)−1, p

1
k(n), . . . , p

m(n)
k(n) )

of an interaction between C̃ and an adversary, we let T≤k−1 = (r1, p1, . . . , pk(n)−2, rk(n)−1)

denote the transcript up to and including the round where C (in the emulation done by C̃)
sends it (k(n)− 1)’st message.

• We say that T is accepting if

C̃(p1, . . . , pk(n)−2, pk(n)−1, p
1
k(n), . . . , p

m(n)
k(n) ; r1, . . . rk(n)−1, r

1
k(n), . . . , r

m(n)
k(n) ) = 1

(i.e,. if C̃ is accepting in the transcript).

Completeness: Completeness (in fact with all but negligible probability) follows directly from
original proof by Babai-Moran [BM88].

Soundness: Assume for contradiction that there exists a PPT algorithm A∗ that convinces C̃ on
common input 1n with probability ε(n) such that ε(n) > 1

2 for all sufficiently large n. Let h(·) be a
polynomial such that A∗ runs in time at most h(n) when its first input is 1n. We assume without
loss of generality that A∗ only sends a real last message if C̃ will be accepting it (note that since C̃
is public coin, A∗ can verify this, so it is without loss of generality), and otherwise sends ⊥ as its
last message.

On a high-level, using A∗ and the fact that polynomial-time computable functions are “invert-
ible”, we will construct a PPT B such that Pr[〈B, C〉(1n) = 1] ≥ 1

64 for sufficiently large n, which
contradicts the soundness of the original 2k(n)-round puzzle C. Towards constructing B, we first
define a polynomial-time algorithm M on which we will apply the inverter Inv. As described in
the introduction, we will consider an algorithm M that operates on inputs of the form (1n, i, rM )
where i is an index of one of the m(n) parallel sessions and rM contains the randomness of A and
C̃. To correctly parse such inputs, let `M (n) = n+ log(m(n)) +h(n) + `c(n) · (k(n)− 1 +m(n)) and
note that by our assumption on `c(n) and `a(n), this is a strictly increasing and polynomial-time
computable function. In the rest of the proof, whenever the security parameter n is clear from
context, we omit it and let k = k(n), `c = `c(n), `a = `a(n), ε = ε(n),m = m(n) and h = h(n).
Now, consider the machine M that on input u internally incorporates the code of A∗ and proceeds
as follows:

1. M finds an n such that `M (n) = |u| (simply by enumerating different n from 1 up to |u|).
If no such n exists, then M outputs ⊥ and halts. Otherwise, M interprets u as (pad, i, rM )
such that |pad| = n, |i| = log(m(n)), rM = (z, r1, r2, . . . , rk−1, r

1
k, . . . , r

m
k ), z ∈ {0, 1}h, and

all the strings r1, r2, . . . , rk−1, r
1
k, . . . , r

m
k are in {0, 1}`c .

17



2. It internally emulates an execution between A∗ and C̃ on common input 1n and respectively
using randomness z and (r1, r2, . . . , rk−1, r

1
k, . . . , r

m
k ). Let

T = (r1, p1, . . . , pk−2, rk−1, r
1
k, . . . , r

m
k , pk−1, p

1
k, . . . , p

m
k )

denote the transcript of the interaction.

3. If T is accepting, then M outputs

(1|pad|, T≤k−1, pk−1, r
i
k),

and otherwise ⊥.

Let Inv be an inverter for M with 1
n statistical-closeness for all sufficiently large n—such an inverter

exists due to our assumption on the non-existence of ioOWFs.
We are now ready to describe our adversaryB for the 2k-round puzzle. B on input (1n, r1, r2, . . . , ri; rB)

proceeds as follows:

1. B interprets rB as (z, pad, s1
k−1, . . . , s

m
k−1) such that z ∈ {0, 1}h, pad ∈ {0, 1}n and all the

strings s1
k−1, . . . , s

m
k−1 are in {0, 1}`c .

2. If i < k − 1, B outputs pi = A∗(1n, r1, r2, . . . , ri; z) (i.e., B proceeds just as A∗ in the first
2k − 4 rounds).

3. If i = k−1 (i.e., in round 2k−2), B lets (pk−1, p
1
k, . . . , p

m
k ) = A∗(1n, r1, r2, . . . , rk−1, s

1
k, . . . , s

m
k ; z)

and outputs pk−1.

4. If i = k (i.e., in round 2k), then:

• B lets T = (r1, p1, . . . , pk−2, rk−1, s
1
k, . . . , s

m
k , pk−1, p

1
k, . . . , p

m
k ), and lets y = (pad, T≤k−1, pk−1, rk)

if T is accepting and y = ⊥ otherwise.

• B lets u ← Inv(y) and interprets u as (pad, j, rM ) where |pad| = n, |j| = log2(m), and
rM = (z′, t1, t2, . . . , tk−1, t

1
k, . . . , t

m
k ), such that z′ ∈ {0, 1}h and t1, t2, . . . , tk−1, t

1
k, . . . , t

m
k

are in {0, 1}`c .
• B next lets (qk−1, q

1
k, . . . , q

m
k ) = A∗(1n, r1, r2, . . . , rk−1, t

1
k, . . . , t

m
k ; z′) and outputs qjk.

We now proceed to analyze the success probability of B against C. In particular, we shall show that
for all sufficiently large n, Pr[〈B, C〉(1n) = 1] > 1

64 which will conclude the proof of Lemma 4.1. We

denote by ViewA∗(〈A∗, C̃〉(1n)) the random variable that represents the view of the adversary A∗
in an interaction with C̃ on common input 1n—for convenience, we describe this view v = (z, T )
by A∗’s random coin tosses z, as well as the transcript T of the interaction between A∗ and C̃.20

Towards analyzingB, we consider a sequence of hybrid experiments Expt0,Expt1,Expt2,Expt3—
formally, an experiment defines a probability space and a probability density function over it. All
experiments will be defined over the same probability space so we can consider the same random
variables over all of them. To simplify notation, we abuse of notation and let Expti(n) also denote
a random variable describing the output of the experiment Expti(n).

Expt0(n) will simply consider an execution between BInv and C on common input 1n and will
output 1 if C is accepting and 0 otherwise; see Figure 1 for a formalization. To simplify the transition

20This is a bit redundant—as the messages sent by A∗ can of course be recomputed given just the randomness of
A∗ and the messages from C̃, but will simplify notation.
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to later experiments, we formalize Expt0(n) as first sampling a full transcript T of an execution
between A∗ and C̃, keeping only the prefix T≤k−1 (this gives exactly the same distribution as an
interaction between B and C up to round 2k − 2), next sampling an “external” random message
r (just as C would in round 2k − 1), and finally producing the last message just as B does. (We
additionally sample a random index i ∈ [m] is not used in the current experiment, but will be useful
in later experiments.) We thus directly have:

Claim 1. Pr[〈B, C〉(1n) = 1] = Pr[Expt0(n) = 1]

We now slowly transform the experiment into one that becomes easy to analyze. See Figure 1
for a formal description of the experiments.

1. We first define an a “good” event G = W ∩ G′, where W is the event that the originally
sampled transcript is accepting and G′ is the event that the “prefix” (T≤k−1,pk−1

) is “good”
in a well defined sense (roughly speaking, that continuations conditioned T≤k−1 are successful
with high probability, and that that in such successful continuations pk−1 is used with not
“too low” probability). Expt1 will next proceeds just like Expt0 except that we additionally
fail if the event G does not happen. We thus have that the probability of Expt0(n) outputting
1 is at least as high as the probability of Expt1(n) outputting 1.

Claim 2. Pr[Expt0(n) = 1] ≥ Pr[Expt1(n) = 1].

Additionally, as we shall show (using an averaging argument), the event G happens with
non-negligible probability, not just in Expt1 but also in all the other experiments Exptj for
j ∈ {1, 2, 3} (as Step 1 of the experiment remains unchanged in all of them).

Claim 3. For j ∈ {1, 2, 3}, Pr[G] ≥ ε2

8 , where the probability is over the randomness in
experiment Exptj(n)

2. We next transition to an experiment Expt2 where instead of choosing the message rk at
random (as it was in Expt1), we select it as the message in the i’th repetition of C̃’s k− 1’st
message in the initially sampled transcript T , where i is a randomly sampled index i ∈ [m].
The reason for defining this experiment is that, in it, we are applying the one-way function
inverter on the “right” distribution (just as in the definition of M). The central claim to
show is that this change does not change the success probability by too much. As discussed
in the introduction, we shall prove it using Raz’s sampling lemma.

Claim 4. Pr[Expt1(n) = 1] ≥ Pr[Expt2(n) = 1]− 1
log(n) .

3. Finally, we transition to an experiment Expt2 where we employ a perfect inverter PInv—that
always samples uniform preimages to M , instead of the (imperfect) inverter Inv. It directly
follows from the fact that Inv is an inverter with statistical closeness 1

n and that the inverter is
applied to an element that is sampled as a uniform image of M21 that the statistical distance
between Expt2(n) and Expt3(n) is bounded by 1

n for sufficiently large n. In particular,

Claim 5. For all sufficiently large n,

Pr[Expt2(n) = 1] ≥ Pr[Expt3(n) = 1]− 1

n
21Note that we here rely on the fact that y = ⊥ when T is not accepting.
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Experiment Expt0(n).

1. Sample (z, T ) ← ViewA∗(〈A∗, C̃〉(1n)); pad ← {0, 1}n; i ← [m]; r ← {0, 1}`c . Interpret T as
(r1, p1, . . . , pk−2, rk−1, s

1
k, . . . , s

m
k , pk−1, p

1
k, . . . , p

m
k ).

2. Let rk = r and let y = (pad, T≤k−1, pk−1, rk) if T is accepting and y = ⊥ otherwise.

3. Let u ← Inv(y); interpret u as (pad, j, rM ) where |pad| = n, |j| = log2(m),
and rM = (z′, t1, t2, . . . , tk−1, t

1
k, . . . , t

m
k ) just as B does and let (qk−1, q

1
k, . . . , q

m
k ) =

A∗(1n, r1, r2, . . . , rk−1, t1k, . . . , tmk ; z′).

4. Output 1 iff T ′ = (T≤k−1, pk−1, rk, q
j
k) is accepting, and 0 otherwise.

Experiment Expt1(n).

1. Sample (z, T ) ← ViewA∗(〈A∗, C̃〉(1n)); pad ← {0, 1}n; i ← [m]; r ← {0, 1}`c . Interpret T as
(r1, p1, . . . , pk−2, rk−1, s

1
k, . . . , s

m
k , pk−1, p

1
k, . . . , p

m
k ).

2. Let rk = r and let y = (pad, T≤k−1, pk−1, rk) if T is accepting and y = ⊥ otherwise.

3. Let u ← Inv(y); interpret u as (pad, j, rM ) where |pad| = n, |j| = log2(m),
and rM = (z′, t1, t2, . . . , tk−1, t

1
k, . . . , t

m
k ) just as B does and let (qk−1, q

1
k, . . . , q

m
k ) =

A∗(1n, r1, r2, . . . , rk−1, t1k, . . . , tmk ; z′).

4. Output 1 iff T ′ = (T≤k−1, pk−1, rk, q
j
k) is accepting and G holds, and 0 otherwise.

Distribution Exptn2

1. Sample (z, T ) ← ViewA∗(〈A∗, C̃〉(1n)); pad ← {0, 1}n; i ← [m]; r ← {0, 1}`c . Interpret T as
(r1, p1, . . . , pk−2, rk−1, s

1
k, . . . , s

m
k , pk−1, p

1
k, . . . , p

m
k ).

2. Let rk = sik and let y = (pad, T≤k−1, pk−1, rk) if T is accepting and y = ⊥ otherwise.

3. Let u ← Inv(y); interpret u as (pad, j, rM ) where |pad| = n, |j| = log2(m),
and rM = (z′, t1, t2, . . . , tk−1, t

1
k, . . . , t

m
k ) just as B does and let (qk−1, q

1
k, . . . , q

m
k ) =

A∗(1n, r1, r2, . . . , rk−1, t1k, . . . , tmk ; z′).

4. Output 1 iff T ′ = (T≤k−1, pk−1, rk, q
j
k) is accepting and G holds, and 0 otherwise.

Distribution Exptn3

1. Sample (z, T ) ← ViewA∗(〈A∗, C̃〉(1n)); pad ← {0, 1}n; i ← [m]; r ← {0, 1}`c . Interpret T as
(r1, p1, . . . , pk−2, rk−1, s

1
k, . . . , s

m
k , pk−1, p

1
k, . . . , p

m
k ).

2. Let rk = sik and let y = (pad, T≤k−1, pk−1, rk) if T is accepting and y = ⊥ otherwise.

3. Let u ← PInv(y); interpret u as (pad, j, rM ) where |pad| = n, |j| = log2(m),
and rM = (z′, t1, t2, . . . , tk−1, t

1
k, . . . , t

m
k ) just as B does and let (qk−1, q

1
k, . . . , q

m
k ) =

A∗(1n, r1, r2, . . . , rk−1, t1k, . . . , tmk ; z′).

4. Output 1 iff T ′ = (T≤k−1, pk−1, rk, q
j
k) is accepting and G holds, and 0 otherwise.

Figure 1: Description of intermediate experiments.
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4. We finally note that in Expt3, there are only two reason the experiment can output 0: (1)
The originally sampled transcript T is not accepting (i.e., the event W does not hold); if is
is accepting, the perfect inverter will make sure that T ′ is also accepting, or (2) the event G
does not hold. Additionally note, since G is defined as W ∩ G′, we have that whenever G
holds, W holds as well and thus the experiment must output 1. Thus, by Claim 3, we have:

Claim 6.

Pr[Expt3(n) = 1] ≥ ε2

8

5. By combining claims 1, 2, 4, 6, we have that for all sufficiently large n,

Pr[〈B, C〉(1n) = 1] = Pr[Expt0(n) = 1] ≥ Pr[Expt1(n) = 1] ≥ Pr[Expt2(n) = 1]− 1

log(n)

≥ Pr[Expt3(n) = 1]− 2

log(n)
≥ ε2

8
− 2

log(n)
>

1

64

which is a contradiction.

To to conclude the proof of Lemma 4.1, it just remains to formalize the event G = W ∩ G′ and
proving Claim 3 and Claim 5.

4.2 The Good Event G and the Proof of Claim 3

We begin by defining some random variables over the probability space over which Expt1 is defined.
Note that the probability space is the same for Expt0,Expt1,Expt2 and as such random variables
and events over Expt1 are also defined over all the other experiments. We use boldface to denote
random variables describing the outcome of variables in the experiments—for instance, we let T
denote a random variable describing the value of T as sampled in the experiments.

Let W denote the event that T is accepting (i.e., the transcript sampled in Step 1 is accepting)
and let Θ be the set of partial transcripts θ such that

Pr[W | T≤(k−1) = θ] ≥ ε

2
.

where the probability is over Expt1(n). That is, Θ is the set of “good” partial transcripts condi-
tioned on which A∗ has a reasonable probability of succeeding. Note that by a standard averaging
argument, we have that such transcripts occur often:

Pr[T≤(k−1) ∈ Θ] ≥ ε

2
. (1)

Now, consider the event Wp that W holds and pk−1 = p; let P (θ) be the set of messages p ∈ {0, 1}`a
for which

Pr[Wp | T≤(k−1) = θ] ≥ ε

2`a+2
.

In other words, P (θ) is the set of “good” (adversary) messages p such that conditioned on the
partial transcript θ, the probability that A∗ succeeds while using p as its k−1’st message is greater
than ε

2`a+2 . As we shall now show using another (standard) averaging argument, for every θ ∈ Θ,
we have

Pr[pk−1 ∈ P (θ) | T≤(k−1) = θ] ≥ ε

4
. (2)
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Suppose for contradiction that for some θ ∈ Θ, Equation 2 does not hold. Then, we have

Pr[W | T≤(k−1) = θ] =
∑

p∈{0,1}`a
Pr[Wp | T≤(k−1) = θ]

=
∑

p∈P (θ)

Pr[Wp | T≤(k−1) = θ] +
∑

p∈{0,1}`a−P (θ)

Pr[Wp | T≤(k−1) = θ]

≤ Pr[pk−1 ∈ P (θ) | T≤(k−1) = θ] +
∑

p∈{0,1}`a−P (θ)

Pr[Wp | T≤(k−1) = θ]

<
ε

4
+

∑
p∈{0,1}`a−P (θ)

Pr[Wp | T≤(k−1) = θ]

≤ ε

4
+

∑
p∈{0,1}`a−P (θ)

ε

2`a+2

≤ ε

4
+ 2`a · ε

2`a+2
=
ε

2

which contradicts that θ ∈ Θ.
Next, define G′ to be the event that T≤(k−1) ∈ Θ and pk−1 ∈ P (T≤(k−1)), and define G as

holding when W and G′ both hold (i.e., the originally sampled transcript is accepting and G′ holds).
Note that G′ in fact implies that W holds (since pk−1 ∈ P (T≤(k−1)) implies that pk−1 6= ⊥ which
by our assumption on A∗ means that T must be accepting), thus in fact G′ = G. By combing
Equations 1 and 2, we have:

Pr[G] = Pr[G′] = Pr[T≤(k−1) ∈ Θ ∧ pk−1 ∈ P (T≤(k−1))]

= Pr[T≤(k−1) ∈ Θ]× Pr[pk−1 ∈ P (T≤(k−1)) | T≤(k−1) ∈ Θ]

≥ ε

2
× ε

4
=
ε2

8

where the probability is taken over Expt1(n). Finally, note that since Step 1 (whose outcome
determines whether G happens) remains unchanged in all the experiments, we can conclude that

Pr[G] ≥ ε2

8 where the probability is taken over Exptj(n) for every j ∈ {1, 2, 3}, which concludes
the proof of Claim 3.

4.3 Proof of Claim 4

Recall that we need to show that Pr[Expt1(n) = 1] ≥ Pr[Expt2(n) = 1] − 1
log(n) . Observe that

the only difference between experiments Expt1 and Expt2 is that, in Expt1, we set rk = r and in
Expt2, we set rk = sik. Furthermore, both the experiments sample ((z, T ), pad, i, r) from the same
distributions and output 0 whenever G does not hold (which is a function only of T ). It follows
that the statistical distance between Expt1(n) and Expt2(n) is bounded by the statistical distance
of Expt1(n) and Expt2(n) conditioned on the event G. Note that we can rephrase the event G as

G =
⋃

θ∈Θ,p∈P (θ)

Wp ∩ (T≤k−1 = θ)

Below, we shall show that for every θ ∈ Θ, p ∈ P (θ), it holds that the statistical distance between
{Expt1(n) | T≤k−1 = θ,Wp} and {Expt2(n)|T≤k−1 = θ,Wp} is bounded by 1

log(n) , which concludes
the proof of Claim 5.
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Consider some θ ∈ Θ, p ∈ P (θ) and consider the experiments {Expt1(n) | T≤k−1 = θ,Wp}
and {Expt2(n) | T≤k−1 = θ,Wp}. Note both experiments proceed exactly the same after rk is
defined in Step 2, so we can ignore everything that happens after this. Additionally, note that the
only variables that are relevant after this point are pad,T≤k−1,pk−1, i and r. Note that pad, i
are both independent of the events T≤k−1 = θ,Wp and thus still independently and uniformly
sampled in both experiments. T≤k−1 and pk−1, on the other hand are fixed (constant) conditioned
on T≤k−1 = θ,Wp. Thus, to bound the statistical difference between {Expt1(n) | T≤k−1 = θ,Wp}
and {Expt1(n) | T≤k−1 = θ,Wp}, it suffices to bound the statistical distance between rk in
{Expt1(n) | T≤k−1 = θ,Wp} and rk in {Expt2(n) | T≤k−1 = θ,Wp}. In other words, we need to
upper bound,

∆ = SD(r, sik |Wp) = SD(sik, s
i
k |Wp) ≤

∑
j∈[m]

1

m
SD(sjk, s

j
k |Wp)

over {Expt2(n) | T≤k−1 = θ} since for each j, sjk is sampled uniformly at random, independent of

T≤k−1 (and independent of sj
′

k for j′ 6= j). Towards bounding this quantity, we will rely on Raz’s
sampling lemma.

Lemma 4.2 ([Raz98]). Let X1, . . . ,X, be independent random variables on a finite domain U . Let

E be an event over ~X = (X1, . . . ,Xm). Then,

1

m
·
m∑
i=1

SD(Xi,Xi|E) ≤

√
1

m
· log

1

Pr[E]

By applying Raz’s lemma, we directly get that

∆ ≤

√
1

m
· log

1

Pr[Wp]

where the probability is over {Expt2(n) | T≤k−1 = θ}. Since by our assumption p ∈ P (θ), we have
that the probability of Wp conditioned on T≤k−1 = θ is at least ε

2`a+2 , thus

∆ ≤
√

1

m
· (`a + 2− log(ε)) ≤ 1

log(n)

since ε > 1
2 and m = (`a + 4)(log(n))2 > (`a + 2− log(ε))(log(n))2.

4.4 Variations

Using essentially the same proofs, we can directly get the following vacations of 4.1. The first
variant simply states that the same result holds for almost-everywhere puzzles.

Lemma 4.3 (Almost-everywhere variant 1). Assume there exists a k(·)-round almost-everywhere
public-coin puzzle such that k(n) ≥ 3. Then, either there exists an ioOWF, or there exists a
(k(·)−1)-round almost-everywhere public-coin puzzle. Moreover, if the k(·)-round puzzle has perfect
completeness, then either there exists an ioOWF, or a (k(·) − 1)-round almost-everywhere public-
coin puzzle with perfect-completeness.
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The next variant shows that if we start off with an almost-everywhere puzzle, we can either
get a (standard) one-way function or a puzzle with one less round (but this new puzzle no longer
satisfies almost-everywhere security) iThis follows from the fact that if the attacker A∗ succeeds on
all sufficiently large input lengths, then it suffices for Inv to work on infinitely many input lengths,
to conclude that BInv works on infinitely many inputs length (thus violating almost-everywhere
security of the original puzzle).

Lemma 4.4 (Almost-everywhere variant 2). Assume there exists a k(·)-round almost-everywhere
public-coin puzzle such that k(n) ≥ 3. Then, either there exists a OWF, or there exists a (k(·)−1)-
round public-coin puzzle. Moreover, if the k(·)-round puzzle has perfect completeness, then either
there exists a OWF, or a (k(·)− 1)-round public-coin puzzle with perfect-completeness.

We additionally consider a variant for non-uniform puzzles. As the challenger now may be a
non-uniform PPT, the function M that we are required to invert is also a non-uniform PPT and
thus we can only conclude the existence of non-uniform OWFs.

Lemma 4.5 (Non-uniform variant). Assume there exists a k(·)-round non-uniform public-coin
puzzle such that k(n) ≥ 3. Then, either there exists a non-uniform ioOWF, or there exists a
(k(·)− 1)-round non-uniform public-coin puzzle.22

4.5 Characterizing O(1)-Round Public-coin Puzzles

We next apply our round-collapse theorem (and its variants) to get a characterization of O(1)-round
puzzles. This characterization applies to both standard puzzles and non-uniform puzzles.

Corollary 4.1. Assume the existence of a O(1)-round (resp. a O(1)-round non-uniform) public-
coin puzzle. Then there exists a 2-round public-coin puzzle (resp. 2-round non-uniform public-coin
puzzle) and thus a distributional NP problem (resp. distributional NP/poly problem) that is HOA
(resp. nuHOA).

Proof: If (non-uniform) ioOWF exists, then by applying Proposition 3.2 we have that 2-round
(non-uniform) public-coin puzzles exist. If (non-uniform) ioOWF do not exist, we can apply
Lemma 4.1 (Lemma 4.5) iteratively to collapse any constant-round protocol to a 2-round pro-
tocol. (Note that we can only apply Lemma 4.1 a constant number of times, as the communication
complexity of the resulting protocol grows polynomially with each application.). Thus in either
case, we conclude that the existence of a O(1)-round (non-uniform) public-coin puzzle implies a
2-round (non-uniform) public-coin puzzle. The corollary is concluded by applying Lemma 3.4.

We remark that the reason we cannot get an (unconditional) characterization of almost-everywhere
puzzles is that ioOWFs. are not known to imply 2-round almost-everywhere puzzles.

5 Characterizing Polynomial-round Puzzles

We observe that the existence of a poly-round public-coin puzzle is equivalent to the statement
that PSPACE 6⊆ BPP. A consequence of this result (combined with Lemma 3.4) is that any round-
collapse theorem that (unconditionally) can transform a polynomial-round puzzle into a O(1)-round
puzzle, must show the existence of a HAO distributional NP problem based on the assumption that
PSPACE 6⊆ BPP (which would be highly unexpected).

22The transformation still preserves perfect completeness, but this will not be of relevance for us.
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Theorem 5.1. For every ε > 0, there exists an nε-round public-coin puzzle (resp. a non-uniform
puzzle) if and only if PSPACE 6⊆ BPP (resp. PSPACE 6⊆ P/poly).

Proof: For the “only-if” direction, note that using the same proof as (the easy direction) in
IP = PSPACE [Sha92, LFKN92], we can use a PSPACE oracle to implement the optimal adversary
strategy in every puzzle and thus (due to the completeness condition of the puzzle) break the
soundness of every puzzle using a PSPACE oracle. So, if PSPACE ⊆ BPP, soundness of every puzzle
can be broken in PPT and thus puzzles cannot exist. (We remark that a very similar statement—in
the language of non-trivial interactive arguments—was already observed by Goldreich [Gol18]; see
Section 7 for more details.)

For the “if” direction, recall that by the classic result of [BFNW93] (see also [TV07]), if
PSPACE 6⊆ BPP, then there is PSPACE language L′, constant c ∈ N, and a polynomial p(·) such
that (L′,Up) is 1

nc -HOA. We will now use this HAO language L′ together with the fact that by
[Sha92, LFKN92] all of PSPACE has a public-coin interactive proof (and the fact that PSPACE is
closed under complement, to get a puzzle. The puzzle challenger C(1n) simply samples a random
statement x ∈ {0, 1}p(n) and sends it to the adversary. The adversary next announces a bit b
(determining whether x ∈ L′ or not) and next if b = 1, C runs the IP verifier for x ∈ L′ and if b = 0
instead runs the IP verifier for x /∈ L′. Due to [Sha92, LFKN92], we may assume without loss of
generality that the IP has completeness 1 and soundness error 2−n. As we shall now argue C is
a (1, 1 − 2

nc )-puzzle which by remark Remark 3.1 implies a puzzle. Completeness follows directly
from the completeness of the IP. For soundness, consider a PPT machine A∗ that convinces C with
probability better than 1− 2

nc . We construct a machine B that breaks the 1
nc -HAO property of L′.

B(1n, x) simply emulates an interaction between C(1n) and A∗ while fixing C’s first message to x
and accepts x if C is accepting, and rejects otherwise. Since B is feeding A∗ messages according
to the same distribution as in the real execution (with C), we have that A∗ convinces C in the
emulation by B with probability at least 1− 2

nc . By the soundness of the IP, we have that except
with probability 2−n, whenever the proof is accepting, the bit b must correctly decide x. We con-
clude (by a union bound) that B correctly decides x with probability 1− 2

nc − 2−n > 1− 1
nc for all

sufficiently large n ∈ N.
The non-uniform version of the theorem follows using exactly the same proof.

6 Achieving Perfect Completeness

We show that any 2-round public-coin puzzle can be transformed into a 3-round public-coin puzzle
with perfect completeness; next, we shall use this result together with our round-reduction theorem
to conclude our main result.

6.1 From Imperfect to Perfect Completeness (by Adding a Round)

Furer et al. [FGM+89] showed how to transform any 2-round public-coin proof system into a
3-round public-coin proof system with perfect completeness. We will rely on the same protocol
transformation to transform any 2-round puzzle into a 3-round puzzle with perfect completeness.
The perfect completeness condition will follow directly from their proof; we simply must argue that
the transformation also preserves computational soundness (as they only showed that it preserves
information-theoretic soundness).

Theorem 6.1. Suppose there exists 2-round public-coin puzzle. Then there exists a 3-round public-
coin puzzle with perfect completeness.
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Proof: Let C be a 2-round public-coin puzzle. Let `c, `a be polynomials such that the message
from C(1n) is of length `c(n) and the message from A(1n) is of length `a(n); we assume without
loss of generality that `c(n) > 2. When the security parameter n is clear from the context we will
omit it and let `c(n) = `c and `a(n) = `a.

We now apply the Furer et al. [FGM+89] transformation to this puzzle to create a 3-round
puzzle C̃. The puzzle will proceed by first having the adversary sending `c “pads” z1, . . . , z`c ∈ `c
to C̃; C̃ next sends back a random message rC̃ ∈ {0, 1}

`c , and the adversary is next supposed to find
a response i, p such that (r ⊕ zi, p) is a valid transcript for the original puzzle (i.e., the adversary
needs to win in one of the parallel “padded” instances of the original puzzle). More formally,
C̃(1n, (z1, . . . , z`c), (i, p); rC̃) = 1 if and only if C(1n, p; rC̃ ⊕ zi) outputs 1. Perfect completeness of

C̃ follows directly from the original proof by [FGM+89]. For completeness, we recall their proof.
From the (imperfect) completeness of C, we have that there exists some adversary A such that
Pr[〈A, C〉(1n) = 1] ≥ 1− 1

n for all sufficiently large n; without loss of A is deterministic. Fix some
n > 2 for which this holds. Let S ⊆ {0, 1}`c be the set of challenges for which A provides an
accepting response; the probability that a random challenge z ∈ {0, 1}`c is inside S is thus at least
1 − 1

n . We will show that there exists “pads” z1, . . . , z`c such that for every r ∈ {0, 1}`c , there

exists some i such that r ⊕ zi ∈ S, which concludes that an unbounded attacker Ã can succeed
with probability 1 (by selecting those pads and next providing an accepting response). Note that
for every fixed r, for a randomly chosen pad zi, the probability that r ⊕ zi /∈ S is at most 1

n ; and
thus the probability over randomly chosen pads z1, . . . , z`c that r ⊕ zi /∈ S for all i is at most 1

n`c
.

We conclude, by a union bound, that the probability over randomly chosen pads z1, . . . , z`c that

there exists some r ∈ {0, 1}`c such that r ⊕ zi /∈ S for all i is at most 2`c

n`c
< 1. Thus, there exists

pads z1, . . . , z`c such that for every r ∈ {0, 1}`c there exists some i such that r ⊕ zi /∈ S, which
concludes perfect completeness.

We now turn to proving computational soundness. Consider some adversary Ã∗ that succeeds
in convincing C̃ with probability ε(n) for all n ∈ N. We construct an adversary A∗ that convinces

C with probability ε(n)
`c

, which is a contradiction. A∗(1n) picks a random tape rÃ∗ for Ã∗, lets

(z1, . . . , z`c) = Ã∗(1n; rÃ∗), picks a random index i ∈ [`c] and outputs zi. Upon receiving a “chal-

lenge” r, it lets (j, p) = Ã∗(1n, r ⊕ zi; rÃ∗) outputs p if i = j and ⊥ otherwise. First, note that in

the emulation by A∗, A∗ feeds Ã∗ the same distribution of messages as Ã∗ would see in a “real”
interaction with C̃; thus, we have that the (j, p) is an accepting message (w.r.t., the challenge r⊕zi)
with probability ε. Additionally, since r ⊕ zi information-theoretically hides i (as r is completely
random), we have that the probability that i = j is 1

`c
and furthermore, the event that this happens

is independent of whether the message (j, p) is accepting. We conclude that A∗ convinces C with

probability ε(n)
`c

, which concludes the soundness proof.

6.2 Promise-trueDistributional Problems

We now conclude our main theorem that a hard-on-average language in NP implies hard-on-average
promise-true distributional search problem.

We first show that 2-round public-coin puzzles imply 2-round (private-coin) puzzles with perfect
completeness:

Theorem 6.2. Suppose there exists 2-round public-coin puzzle. Then there exists a 2-round private-
coin puzzle with perfect completeness.

Proof: The theorem follows directly by applying our earlier proved results:
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• By Theorem 6.1 (perfect completeness through adding a round), a 2-round public-coin puzzle
implies a 3-round public-coin puzzle with perfect completeness.

• By Lemma 4.4 (round-collapse lemma), we conclude that either ioOWF exists, or there exists
a 2-round public-coin puzzle with perfect completeness.

• As ioOWFs trivially imply a 2-round (private-coin) puzzle, the theorem follows.

By observing that 2-round private-coin puzzles with perfect completeness are syntactically equiva-
lent to a hard-on-average promise-true distributional search problem, and recalling that by Lemma 3.3,
aeHOA distributional NP problem implies a 2-round puzzle, we directly get the following corollary:

Corollary 6.3. Suppose there exists a distributional NP problem (L,D) that is aeHOA. Then, there
exists a hard-on-average promise-true distributional NP search problem.

In other words, “it isn’t easier to prove efficiently-sampled statements that are guaranteed to
the true”.

6.3 TFNP is Hard in Pessiland

We next use the same approach to conclude that a hard-on-average language in NP implies either
(1) the existence of one-way functions, or (2) the existence of a hard-on-average problem in TFNP.

Theorem 6.4. Suppose there exists a distributional NP problem (L,D) that is aeHOA. Then, either
of the following holds:

• There exists a OWF;

• There exists some R ∈ TFNP and some PPT D such that (R,D) is SearchHAO.

Proof: Again, the theorem follows by simply applying our earlier proved results:

• From Lemma 3.3, we have that an aeHOA distributional NP problem implies a 2-round
almost-everywhere puzzle.

• By Theorem 6.1 (perfect completeness through adding a round), this implies a 3-round almost-
everywhere puzzle with perfect completeness.

• Applying Lemma 4.4 (round-collapse, variant 2), we conclude that either one-way functions
exists, or there exists a 2-round public-coin puzzle with perfect completeness.

• Finally, by applying Lemma 3.5, a 2-round public-coin puzzle with perfect completeness
implies the existence of some R ∈ TFNP and some PPT D such that (R,D) is SearchHAO.

By replacing the use of Lemma 4.4 with Lemma 4.3 (round-collapse, variant 1), we instead get the
following variants.

Theorem 6.5. Suppose there exists a distributional NP problem (L,D) that is aeHOA. Then, either
of the following holds:

• There exists an ioOWF;

• There exists some R ∈ TFNP and some PPT D such that (R,D) is aeSearchHAO.
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7 Characterizing Non-trivial Public-coin Arguments

We finally apply our round-collapse theorem to arguments systems.

Non-trivial arguments We first define the notion of a non-trivial argument. Whereas such a
notion of a non-trivial argument has been discussed in the community for at least 15 years, as far
as we know, the first explicit formalization in the literature appears in a recent work by Goldreich
[Gol18]. We simply say that an argument system is non-trivial if it is not a proof systems—i.e.,
the computation aspect of the soundness condition is “real”.

Definition 7.1 (non-trivial arguments). An argument system (P, V ) for a language L is called
non-trivial if (P, V ) is not an interactive proof system for L.

We focus our attention on public-coin arguments. We show that the existence of any O(1)-
round public-coin non-trivial argument implies the existence of distributional NP/poly problem
that is nuHAO.

Theorem 7.2. Assume there exists a O(1)-round public-coin non-trivial argument for some lan-
guage L. Then, there exists a distributional NP/poly problem that is nuHOA.

Proof: Consider some k-round non-trivial public-coin argument system (P, V ). We show that
this implies the existence of a k-round non-uniform puzzle. The theorem next follows by applying
Corollary 4.1.

Since (P, V ) is not a proof system, there must exist a some polynomial p(·), an unbounded
prover B, and sequences I = {n1, n2, . . .} and {xni}i∈N such that for all i ∈ N, |xni | = ni, xni /∈ L
yet B convinces V on common input xni with probability 1

p(ni)
.

Now consider the k-round non-uniform puzzle C that for each n receives (1, xn) as non-uniform
advice if n ∈ I and otherwise (0,⊥). Given non-uniform advice (b, x), C(1n) simply accepts if
b = 0 and otherwise runs the verifier V (xn). We shall argue that C is a ( 1

p(n) ,
1

2p(n)) puzzle which

by Remark 3.1 implies a puzzle. Completeness follows directly from the existence of B (when
b = 0, we have completeness 1 and otherwise, we have completeness 1

p(n) by construction). To show

soundness, notice that any non-uniform PPT adversary A∗ that breaks soundness of the puzzle with
probability 1

2p(n) for all sufficiently large n, must in particular break it for infinitely many n ∈ I,

and as such breaks the soundness of (P, V ) for infinitely many x ∈ {0, 1}∗ − L with probability
1

2p(|x|) , which contradicts the soundness of (P, V ).

We next remark that the implication is almost tight. The existence of a nuHOA problem in NP
(as opposed to NP/poly) implies a 2-round non-trivial public-coin argument for NP.

Lemma 7.1. Suppose there exists a distributional NP problem (L′,D) that is nuHOA . Then, for
every language L ∈ NP, there exists a non-trivial 2-round public-coin argument for L with an
efficient prover.

Proof: We first observe that by the same proof as for Lemma 3.3, a nuHOA NP problem implies
a 2-round puzzle satisfying a “weak” completeness property, where completeness only holds for
infinitely many n ∈ N, but where soundness holds also against non-uniform PPT algorithms. (Recall
that in the proof of Lemma 3.3, we only relied on the almost-everywhere HOA property of the NP
problem to ensure that completeness held for all sufficiently large input lengths.) We next simply
combine this “weakly-complete” puzzle with a standard NP proof for L to get a non-trivial 2-round
argument for L. More precisely, the verifier V (x) samples the first message of the puzzle and sends
it to the prover; next the verifier accepts the prover’s response if it is either a witness for x ∈ L (for

28



some witness relation for L), or if the response is a valid response to the puzzle. The honest prover
P simply sends a valid witness for x. Completeness of (P, V ) trivially holds. Soundness holds due
to the soundness of the puzzle (w.r.t. nu PPT). By the weak completeness property of the puzzle,
we additionally have that (P, V ) is not an interactive proof (since there are infinitely many input
lengths on which an unbounded prover can find a puzzle solution and thus break soundness).

We finally observe that the existence of nε-round non-trivial public-coin arguments is equivalent
to PSPACE 6⊆ P/poly. We remark that one direction (that non-trivial arguments imply PSPACE 6⊆
P/poly) was already previously proven by Goldreich [Gol18].

Theorem 7.3 (informally stated). For every ε > 0, there exists an (efficient-prover) nε-round
non-trivial public-coin argument (for NP) if and only if PSPACE 6⊆ P/poly.

Proof: The “only-if” direction (which was already proven by Goldreich [Gol18]) follows just as
the only-if direction of Theorem 5.1. The “if” direction follows by combining a standard NP proof
with the puzzle from Theorem 5.1 and requiring the prover to either provide the NP witness, or to
provide a solution to puzzle.

Round Collapse for Succinct Arguments We proceed to remark that the proof of our round-
collapse theorem also has consequences for succinct [Kil92] and universal [Mic00, BG02] argument
systems.

Theorem 7.4. Assume there exists a k-round public-coin (efficient-prover) argument system for
L with communication complexity `(·), where k is a constant. Then, either non-uniform ioOWFs
exists, or there exists a 2-round public-coin (efficient-prover) argument for L with communication
complexity O(`(n)polylog(n))k(n)−1.

Proof: We apply the BM round-collapse transformation to the k-round argument system k − 1
times, and between each application repeat the protocol in parallel log2 n times (where n is the
length of the statement to be proven). Completeness (also w.r.t. efficient provers) follows directly
from the classic proof of the BM round collapse [BM88]. To show soundness, as before, we consider
a single application of the round-collapse transformation. Consider an adversary that breaks the
soundness of the k − 1-round argument system with probability ε(n) for infinitely many {xn}n; by
[PV12, HPWP10] such an adversary can be turned into an adversary that break the soundness
of a single of the log2 n repetitions of the protocol obtained after the BM transformation with
probability ε′(n) > 1

2 for infinitely many {xn}n. If non-uniform ioOWFs does not exist, then we
can rely on the same construction as in the proof of Lemma 4.1 to construct an adversary B∗ that
breaks the k-round argument system for the same statements {xn}n with probability 1

64 , which
contradicts the soundness of the k-round argument.

Note that each step of the round-collapse transformation has a multiplicative overhead of
O(`a(n)polylog(n)) where `a(n) bounds the length of the prover messages. Therefore, iterating the
round collapse transformation i times will result in a multiplicative overhead of O((`(n)polylog(n))i).

Theorem 7.4 thus shows that the existence of a O(1)-round succinct (i.e., with sublinear or
polylogarithmic communication complexity) public-coin argument systems can either be collapsed
into a 2-round public-coin succinct argument for the same language (and while preserving com-
munication complexity up to polylogarithmic factors, as well as prover efficiency), or non-uniform
ioOWF exist.

It is worthwhile to also note that if the underlying O(1)-round protocol satisfies some notion
of resettable [CGGM00] privacy for the prover (e.g., resettable witness indistinguishability (WI) or
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witness hiding (WH) [CGGM00, FS90]), then so will the resulting 2-round protocol. (The reason
we do not consider resettable zero-knowledge is that due to [OW93b] even just plain zero-knowledge
protocols for non-trivial languages imply the existence of a non-uniform ioOWF; thus for resettable
zero-knowledge, the result would hold vacuously assuming NP 6⊆ BPP. However, it is not known
whether (resettable) WI or WH arguments for non-trivial languages imply non-uniform ioOWFs.)
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A Some Theorems from Average-Case Complexity

In this section, we provide formal justifications for Lemmas 2.1, 2.2 and 2.3 We recall some previous
results on average-case complexity relevant to our work.

Theorem A.1 ([Tre05]). Suppose that there exists a NP language L and polynomials `(·) and
p(·) such that (L,U`) is 1

p(n) -HOA (resp., 1
p(n) -aeHOA and 1

p(n) -nuHOA). Then there exists a NP

language L′ and polynomial `′(·) such that (L′,U`′) is 1
2 −

1
(logn)α -HOA (resp., 1

2 −
1

(logn)α -aeHOA

and 1
2 −

1
(logn)α -nuHOA). The value α > 0 is an absolute constant.

Theorem A.2 ([IL90]). Suppose there exists a distributional NP search problem (R,D) that is 1
p(n) -

SearchHOA (resp., 1
p(n) -aeSearchHOA and 1

p(n) -nuSearchHOA) for some polynomial p(·). Then

there exists a search problem R′ and polynomials `(·) and q(·) such that (R′,U`) is 1
q(n) -SearchHOA

(resp., 1
q(n) -aeSearchHOA and 1

q(n) -nuSearchHOA).

Theorem A.3 ([BCGL92]). Suppose that there exists a distributional NP search problem (R,U`)
that is 1

p(n) -SearchHOA (resp., 1
p(n) -aeSearchHOA and 1

p(n) -nuSearchHOA) for some polynomials

p(·) and `(·). Then there is a NP-language L′ and polynomials `′(·) and q(·) such that (L′,U`′) is
1

q(n) -HOA (resp., 1
q(n) -aeHOA and 1

q(n) -nuHOA). If we start with a distributional NP/poly search

problem (R,U`) that is 1
p(n) -nuSearchHOA, then we obtain L′ ∈ NP/poly such that (L′,U`′) is

1
q(n) -nuHOA.
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Theorems A.1, A.2 and A.3 are stated in a slightly different form in [Tre05, IL90, BCGL92].
Namely, we highlight that the reduction is in fact “length-regular”23 in that solving instances of
size `(n) in the target language helps solving instances of size n in the source language. We will
require this stronger property for the reductions to hold in the case of almost-everywhere hardness.

Proof of Lemma 2.2. This follows immediately from Theorem A.1.

Proof of Lemma 2.3. Suppose there exists a distributional NP-search problem (R,D) that
is SearchHOA (resp., aeSearchHOA and nuSearchHOA). By Theorem A.2, there exists a search
problem R′ and polynomials `(·), q(·) such that (R′,U`) is 1

q(n) -SearchHOA (resp., aeSearchHOA

and nuSearchHOA). Next, by Theorem A.3, there is a NP-language L′ and polynomials `′(·) and q′(·)
such that (L,U`) is 1

q′(n) -HOA (resp. aeHOA and nuHAO), which when combined with Theorem A.1

yields a NP language L′′ and a polynomial `′′ such that (L′,U`′′) is 1
2 −

1
(logn)α -HOA (resp., aeHOA

and nuHAO). This implies that (L′′,U`′′) is HOA (resp., aeHOA and nuHOA).

Proof of Lemma 2.1. Suppose (L,D) is a distributional NP problem that is HOA (resp. a
distributional NP/poly problem that is nuHOA), then (R,D) is SearchHOA (resp., nuSearchHOA)
where R is the witness relation corresponding to L. By Lemma 2.3, we can obtain a NP (resp.
NP/poly) language L′ and polynomial `′ such that (L′,U`′) is HOA (resp., nuHOA).

23A length-regular function f : {0, 1}∗ → {0, 1}∗ satisfies the properties that: (1) |x| = |y| ⇔ |f(x)| = |f(y)|,and
(2) |x| < |y| ⇔ |f(x)| < |f(y)| for any two strings x,y. We require the “length-regular” property for Turing (Cook)
reductions where solving an instance x on the target language requires queries the oracle only on instances of size
`(|x|) on the source language where ` is a non-decreasing function.
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