
Distributing any Elliptic Curve Based Protocol

Nigel P. Smart1,2[0000−0003−3567−3304] and Younes Talibi
Alaoui2[0000−0002−7947−9450]

1 University of Bristol, Bristol, UK.
2 KU Leuven, Leuven, Belgium.

nigel.smart@kuleuven.be,younes.talibialaoui@kuleuven.be

Abstract. We show how to perform a full-threshold n-party actively
secure MPC protocol over a subgroup of order p of an elliptic curve group
E(K). This is done by utilizing a full-threshold n-party actively secure
MPC protocol over Fp in the pre-processing model (such as SPDZ), and
then locally mapping the Beaver triples from this protocol into equivalent
triples for the elliptic curve. This allows us to transform essentially any
(algebraic) one-party protocol over an elliptic curve, into an n-party one.
As an example we show how to transform a general Σ-protocol over
elliptic curves and the shuffle protocol of Abe into an n-party protocol.
This latter application requires us to also give an MPC protocol to derive
the switches in a Waksman network from a generic permutation, which
may be of independent interest.

1 Introduction

Over the years there have been a number of protocols developed for elliptic
curves, starting with basic protocols such as encryption and signature, through
to zero-knowledge proofs, and secure shuffles. In some application instances one
wants to perform these protocols where the secret data of a party is not held
by a single party but held by a set of parties via a secret sharing scheme. Obvi-
ous examples include distributed decryption and distributed signing protocols.
Indeed the case of distributed signatures for EC-DSA has recently undergone a
renewed interest, see [8, 14–16], due to applications to block-chain. In addition,
general distributed cryptographic solutions for decryption and signature opera-
tions are becoming more in vogue, as evidenced by the recent NIST workshop
in this space3.

There are however a large number of other protocols which applications may
require to be distributed in this manner. For example take a simple elliptic
curve based Sigma-protocol to prove equality of two discrete logarithms, see
[18][Chapter 21]. If the application requires the two discrete logarithms to be
secret shared, then the protocol to produce the proof must be executed in a
distributed manner. In this work we present a simple method to produce n-party
actively secure distributed elliptic curve based protocols.

3 https://www.nist.gov/news-events/events/2019/03/

nist-threshold-cryptography-workshop-2019.

https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019
https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019


Our method applies to what we term algebraic protocols over E(K). These
are protocols which do not involve non-algebraic operations on secret data. Thus
EC-DSA signing is an algebraic protocol as the non-algebraic operation (the
hash-function operation) is performed on public data, but EC-IES decryption is
not as the key-derivation needs to be applied on secret data. Thus our technique
is unable to deal with the issues raised in [17]. Despite this restriction our model
captures a number of useful cryptographic protocols.

We take the underlying elliptic curve as E(K) where the (cryptographically
interesting) subgroup order is a prime p. For such protocols we need to secret
share both finite field elements in Fp, and elliptic curve group elements in E(K).
In both cases we do this via an additive secret sharing scheme. Linear operations
in Fp and in E(K) are then able to be performed for free, and the problem then
comes in performing the non-linear operations. For non-linear operations in Fp

(i.e. multiplication) we utilize the idea of Beaver triples from general Multi-
Party Computation (MPC) protocols (such as [7]), and thus our protocol is in
the offline/online paradigm. For non-linear operations in E(K), which are point
multiplications of a secret shared point by a secret shared field element, we
can utilize the same Beaver triples. Thus supporting additively secret shared
elements in E(K) can be accomplished using the same offline phase as is needed
to perform MPC over Fp.

To achieve active security we utilize the methodology of the SPDZ protocol
[7] and its improvements, e.g. [6]. This protocol is a so-called MPC-with-abort
system, in that if a dishonest party deviates from the protocol then the honest
parties will abort with overwhelming probability. In SPDZ for each field element
x ∈ Fp which is secret shared, we also secret share a MAC-value α · x for some
global secret shared MAC value α. We then translate this to the elliptic curve
sharing by not only additively sharing an element P ∈ E(K), but also additively
sharing its MAC value [α]P , for the same MAC key α as used to authenticate
the shares over Fp.

The first part of this paper is devoted to giving the details of this MPC
protocol over elliptic curves, and the associated security proofs. We then give
three applications, the first to show how distributed EC-DSA signing can be per-
formed using this protocol. The online time for this EC-DSA signing operation
will be very fast, the only drawback being the offline time inherited from the
SPDZ protocol for generating authenticated Beaver triples over Fp. Our second
application shows how to perform a simple distributed Sigma protocol for an
OR-proof, using the same methodology.

We then turn to a more complex application. In a number of applications one
has a set of ElGamal ciphertexts and one wishes to perform a secure shuffle on
them. The traditional method for doing this is to pass them through a sequence
of so-called Mix-Nets. Each mixer applies their own private shuffle, and provides
a zero-knowledge proof, that their mix has been performed correctly. The final
recipient of the mix needs to verify each individual zero-knowledge proof. Thus if
we have n-mixers we have a proof n times larger than that produced by a single
mixer. Another way of achieving the same security, but with a smaller zero-

2



knowledge proof, would be for the mixers to produce the mix in a distributed
manner and generate a single joint proof of correctness of the mix. We show how
the mix protocol of Abe [2] can be performed in such a distributed manner using
our underlying MPC protocol.

Given a permutation as a Waksman network [20], with each Waksman switch
secret shared, we show how to generate in a distributed manner the proof pre-
sented by Abe. This is essentially a more complex version of the Sigma protocol
for equality of two discrete logarithms discussed earlier. We note, that more
efficient proofs of correct shuffle have been given since Abe’s work, see for exam-
ple [4, 9–11], but we concentrate on this one as it shows how our elliptic curve
MPC protocol can be applied to more complex higher level protocols. Our so-
lution is more efficient than an equivalent solution to the problem of n-mixers
discussed by [1].

A problem with Abe’s mixer is how to generate the secret shared Waksman
network. Simply generating the switch values at random does not produce a
uniformly random permutation (as was noticed in [3]). We can easily produce
a secret shared uniformly random permutation, by each party Pi generating a
permutation σi, sharing it, and then using as the secret-shared final permuta-
tion the product permutation σ = σ1 · · ·σn. However, the question then remains
how to convert the secret-shared permutation σ, given by (say) a permutation
matrix, into a set of switches for a Waksman network. There is a classical algo-
rithm to do this, which appears to require solving a set of non-linear equations.
However, by closely examining this algorithm we see that one can perform the
conversion from a permutation matrix to Waksman switches using a relatively
simple algorithm which is suitable for implementation via an MPC system. Our
algorithm for obtaining the Waksman switches in secret shared form is actively
secure, if the underlying MPC system used is actively secure (which is what we
assume throughout this work).

We end this introduction by re-iterating that our MPC system is in the full
threshold paradigm, where active security is obtained by authenticating a share
using a global shared MAC key. We note that our methodology can also be ap-
plied in the case of Q2 access structures (for example honest majority threshold
access structures) if we accept MPC-with-abort. In such systems one can obtain
similar authentication of the shares by utilizing the error detection properties
of the underlying error correcting code associated to the secret sharing scheme,
see [19] for a discussion of MPC for Q2 access structures in the case of MPC-
with-abort. It can be easily seen that minor adaptations to our MPC protocol
over elliptic curves will also enable one to support such Q2 access structures.
Our methodology can also be applied to protocols over any finite abelian group
of prime order, and not just elliptic curves. We concentrate on elliptic curves to
make the presentation more down to earth.

3



2 Preliminaries

In this section we present some basic notation and the underlying MPC protocols
we will make extensive use of.

Notation: We assume that all the parties P1, . . . ,Pn are probabilistic poly-
nomial time Turing machines. We let [n] denote the interval [1, . . . , n]. We let
a ← X denote randomly assigning a value a from a set X, where we assume a
uniform distribution on X. If A is an algorithm, we let a← A denote assignment
of the output, where the probability distribution is over the random tape of A;
we also let a ← b be a shorthand for a ← {b}, i.e. to denote normal variable
assignment. If D is a probability distribution over a set X then we let a ← D
denote sampling from X with respect to the distribution D.

We let G ⊆ E(K) denote a subgroup of large prime order of an elliptic curve
E over a finite field K. Let the order of G be p. Any (non-zero) element of G
can be taken as a generator, however we assume that a specific generator P is
given as part of the group description. An element Q ∈ G can be multiplied by
an element x ∈ Fp to produce another element R ∈ G. We call this operation
the point multiplication between a point Q and a multiplier x, and we write it
as R← [x] ·Q.

The SPDZ Protocol: Our protocols will be built on top of a number of existing
functionalities/protocols. The main two being an ideal commitment functionality
FCommit (given in the full version) and the SPDZ MPC protocol [7] for performing
actively secure MPC over Fp for full-threshold adversaries. The SPDZ protocol
processes data using an authenticated secret sharing scheme defined over a finite
field Fp, where p is prime.

We describe the variant of authentication and checking presented in [6]. The
secret sharing scheme is defined as follows: Each party Pi holds a share of a
global MAC key αi ∈ Fp, where the global MAC key is defined to be α =

∑
i αi.

A data element x ∈ Fp is held in secret shared form as a tuple {xi, γi}i∈[n], such
that x =

∑
i xi and

∑
γi = α · x. We denote a value x held in such a secret

shared form as 〈x〉F . If we wish to denote the specific value on which γi is a
MAC share then we write γi[x].

The SPDZ protocol implements the functionality given in Figure 1. The
functionality permits the secure computation of any function f on parties’ inputs,
assuming that any (reactive) function f is expressed in term of additions and
multiplications over a finite field. Parties can also choose to whom the output of
f is sent.

As explained earlier, SPDZ is an MPC-with-abort system. In such a system,
an adversary can always deviate from the protocol, however, honest parties will
abort when this happens with overwhelming probability. This behavior explains
why FOnline[SPDZ] is written as such. That is, within the output stage, an adver-
sary can choose between not sending Deliver, which translates the fact that they

4



Functionality FOnline[SPDZ]

Initialize: On input (init , p) from all parties, the functionality stores (domain, p).
Input: On input (input ,Pi, varid , x) from Pi and (input ,Pi, varid , ?) from all other

parties, with varid a fresh identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x+ y).

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Triple: On input (triple, varid1, varid2, varid3) from all parties (if none of the
varid i are stored in memory), the functionality generates a uniformly random
a, b ∈ Fp and computes c = a · b and then stores (varid1, a), (varid2, b) and
(varid3, c)

Output: On input (output , varid , i) from all honest parties (if varid is present in
memory), the functionality retrieves (varid , y) and outputs it to the environ-
ment. The functionality waits for an input from the environment. If it is Deliver
then y is output to all players if i = 0, or y is output to player i if i 6= 0. If the
adversarial input is not equal to Deliver then ∅ is output to all players.

Figure 1. The ideal functionality for MPC over Fp

can deviate from protocol during the online phase, and sending Deliver, which
means that the adversary is following the protocol so far.

The SPDZ protocol works in an offline-online manner, the precise offline
protocol will not concern us in this work. The main goal of the SPDZ offline
phase is to produce random triples (〈a〉F , 〈b〉F , 〈c〉F ) such that c = a · b. It is
convenient in some protocols to assume that the Beaver triples produced in the
offline phase are also available to the user of the online phase. Thus we have a
command in the online functionality that exports this data.

The online protocol ΠOnline[SPDZ] is given in Figure 2, and can be shown
(see e.g. [6]) that it realises the FOnline[SPDZ] functionality in the (FOffline[SPDZ],
FCommit)-hybrid model. The online protocol makes use of a crucial sub-protocol,
called ΠMACCheck[SPDZ], which we have given in Figure 3. This sub-protocol is
executed (in batches) on every opened value throughout the computation, in
order to check if the adversary is trying to deviate from the protocol without
being caught.

Since 〈·〉F is a linear secret sharing scheme it is easy to compute linear func-
tions on the share values. In particular given 〈x〉F and 〈y〉F and three field
constants a, b, c ∈ Fp we can compute the sharing of z = a · x+ b · y + c locally
by each player computing

z1 ← a · xi + b · yi + c for i = 1

zi ← a · xi + b · yi for i 6= 1

γi[z]← a · γi[x] + b · γi[y] + αi · c for all i.

5



Protocol ΠOnline[SPDZ]

Initialize: The parties call FOffline to get the shares αi of the MAC key, a number of
multiplication triples (〈a〉F , 〈b〉F , 〈c〉F ) and mask values (ri, 〈ri〉F ) as needed for
the circuit being evaluated. If FOffline aborts then abort, otherwise the operations
specified below are performed according to the circuit.

Input: To share his input xi, player i takes an available mask value (ri, 〈ri〉F ) and
does the following:
1. Broadcast e← xi − ri.
2. The players compute 〈xi〉F ← 〈ri〉F + e.

Add: On input (〈x〉F , 〈y〉F ), the players locally compute 〈x+ y〉F ← 〈x〉F + 〈y〉F .
Multiply: On input (〈x〉F , 〈y〉F ), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) and open 〈x〉F −
〈a〉F , 〈y〉F − 〈b〉F to get s and t respectively.

2. Locally each player computes 〈z〉F ← 〈c〉F + s · 〈b〉F + t · 〈a〉F + s · t
Triple: Here the players simply take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) off

the pre-computed list obtained in the offline phase.
Output: This procedure is entered once the players have finished the circuit eval-

uation, but still the final output 〈y〉F has not been opened.
1. The players call the MACCheck[SPDZ] protocol on input all opened values

so far.
2. The players open 〈y〉F and call MACCheck[SPDZ] on input y to verify its

MAC.

Figure 2. Operations for Secure Function Evaluation

Protocol ΠMACCheck[SPDZ]

Usage: Each player has input αi and (γi[aj ]) for j = 1, . . . , t. All players have a
public set of opened values {a1, . . . , at}; the protocol either succeeds or outputs
failure if an inconsistent MAC value is found.

MACCheck({a1, . . . , at}):
1. All players Pi sample si and asks FCommit to broadcast τsi ← Comm(si).
2. Every player Pi calls FCommit with Open(τsi ) all players obtain sj for all j.
3. Set s← s1 ⊕ · · · ⊕ sn.
4. Players using s sample a random vector r from Ft

p; note all players obtain
the same vector as they have agreed on the seed s.

5. Each player computes the public value a←
∑t

j=1 rj · aj .
6. Pi computes vi ←

∑t
j=1 rj · γi[aj ], and wi ← vi − αi · a.

7. Pi asks FCommit to broadcast τwi ← Comm(wi).
8. Every player calls FCommit with Open(τwi ), all players obtain wi for all i.
9. If w1 + · · ·+ wn 6= 0Fp , the players output ∅ and abort.

Figure 3. Method To Check MACs On Partially Opened Values

Waksman Networks: A Waksman network [20] is a circuit with m input and
output wires, to make our discussion cleaner we will assume m is a power of

6



Fig. 4. Waksman network of size 8
Fig. 5. A realization of the permuta-
tion π̃

two. Within the circuit, inputs are shuffled with respect to a permutation. The
building blocks of a Waksman network are switches; where a switch is a circuit
with two input and output wires, with a hardwired bit called the control bit.
If the control bit equals one, the switch swaps its inputs, otherwise, the switch
simply forwards its inputs to the output wires.

The construction of a Waksman network follows a recursive structure (Fig-
ure 4), that is to say a Waksman network contains:

– One inward layer.

– One outward layer.

– Two parallel subnetworks of size m
2 , linked in a butterfly manner to the

inward and outward layers.

The inward layer contains m
2 switches, whereas the outward layer contains m

2 −1
switches. That is, the missing switch (switch 1∗) is fixed by setting its control bit
to be zero. The inner networks are constructed in a similar manner, and there
are 2 · log2(m)− 1 layers in total. Thus the total number of switches within the
whole network is m · log2(m)−m+1. Given any permutation, there is a classical
algorithm to determine a set of control bits realizing it. That is to say, this
algorithm takes as input the permutation, and outputs a control bit for every
switch, such that the resulting Waksman network realizes this permutation. In
our work (for ease of implementing the algorithm to create a Waksman network
in a data-oblivious manner) we use a more relaxed definition of a Waksman
network in which the first gate of the outer layer is not fixed to be an empty
switch. This increases the total number of switches in a network by m/2− 1 to
the value m · log2(m)−m/2.

7



As an example consider the permutation matrix

M̃ =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


realizing the permutation π̃ ∈ S8. This can be represented by the Waksman
network in Figure 5. One immediately sees an advantage of using a Waksman
network to represent a permutation on a vector v. Instead of evaluating π on v
by a matrix vector product, we apply a series of transpositions on v using the
permutation networks. This is more efficient in terms of operations performed.
That is, the matrix based approach requires m2 multiplications to apply a per-
mutation on a vector, whereas a network based approach using (our modified)
Waksman network, would require at most m · log2(m)−m/2 swaps. In terms of
an MPC based implementation of the network for secret shared control bits, one
swap consists of two multiplications.

3 Multiparty Computation Over Elliptic Curve Groups

Our goal in this section is to define a protocol to perform efficient actively secure
(with abort) MPC in the context of elliptic curve calculations. This will enable
us to efficiently transfer any algebraic ECC based cryptographic protocols into
the distributed domain. Such protocols require us to perform arithmetic not
only in the elliptic curve group, but also over the finite field given by the order
of the large prime subgroup (the so-called exponent group, even though it is a
field). Our basic strategy is to use the SPDZ protocol to conduct the MPC in
the exponent group, and to use a similar protocol with the same MAC key to
define the MPC protocol to work in the elliptic curve group itself.

The functionality we aim to produce a secure realisation of is FOnline[ECC],
given in Figure 6. This functionality permits the parties to compute over elliptic
curve points, and as explained earlier, this essentially requires doing computa-
tion over a finite field, as well as over an elliptic curve group. Therefore, one
immediately notes that this is essentially an extension of the FOnline[SPDZ] func-
tionality in that we have added an additional set of variables corresponding to
elliptic curve points. Given this similarity it should not be surprising that we
utilize the same secret sharing as in SPDZ to share values in the exponent group.

In our realisation of this functionality, an elliptic curve data element Q ∈ G
is held in secret shared form as a tuple {Qi, Γi}i∈[n], such that Q =

∑
iQi and∑

Γi = [α] ·Q where α is the same MAC key as used in the secret sharing 〈·〉F .
We denote a value Q held in such a secret shared form as 〈Q〉E . Again if we want
to denote the specific value on which Γi is a MAC share we will write Γi[Q].

8



Functionality FOnline[ECC]

Initialize: On input (init ,G) from all parties, the functionality stores (domain,G).
Two lists of identifiers are established, one called field identifiers and one called
curve identifiers.

Input-F: On input (inputF ,Pi, varid , x) with x ∈ Fp from Pi and
(input ,Pi, varid , ?Fp) from all other parties, with varid a fresh identifier, the
functionality stores (varid , x) in the list of field identifiers.

Input-G: On input (inputG,Pi, varid , Q) with Q ∈ G from Pi and
(input ,Pi, varid , ?G) from all other parties, with varid a fresh identifier, the
functionality stores (varid , P ) in the list of curve identifiers.

Add-F: On command (addF , varid1, varid2, varid3) from all parties where
varid1, varid2 are in the list of field identifiers and varid3 is not, the func-
tionality retrieves (varid1, x), (varid2, y) from the list of field identifiers and
stores (varid3, x+ y) in the list of field identifiers.

Add-G: On command (addG, varid1, varid2, varid3) from all parties where
varid1, varid2 are in the list of curve identifiers and varid3 is not, the func-
tionality retrieves (varid1, Q), (varid2, R) from the list of curve identifiers and
stores (varid3, Q+R) in the list of curve identifiers.

Multiply-F: On command (multiplyF , varid1, varid2, varid3) from all parties
where varid1, varid2 are in the list of field identifiers and varid3 is not, the
functionality retrieves (varid1, x), (varid2, y) from the list of field identifiers
and stores (varid3, x · y) in the list of field identifiers.

Triple: On input (triple, varid1, varid2, varid3) from all parties (if none of the
varid i are stored in memory), the functionality generates a uniformly random
a, b ∈ Fp and computes c = a · b and then stores (varid1, a), (varid2, b) and
(varid3, c) in the list of field identifiers.

Multiply-G-P: On command (multiplyGP , varid1, Q, varid2) from all parties
where varid1 is in the list of field identifiers, Q ∈ G, and varid2 is a fresh identi-
fier from the list of the curve identifiers, the functionality retrieves (varid1, x),
from the list of field identifiers and stores (varid2, [x] ·Q).

Multiply-G-S: On command (multiplyGS , varid1, varid2, varid3) from all parties
where varid1 is in the list of field identifiers and varid2 is in the list of curve
identifiers and varid3 is not, the functionality retrieves (varid1, x), (varid2, Q)
from the respective lists and stores (varid3, [x] ·Q).

Output-F: On input (outputF , varid , i) from all honest parties (if varid is present
in the list of field identifiers), the functionality retrieves (varid , y) from the set
of field identifiers and outputs it to the environment. The functionality waits
for an input from the environment. If this input is Deliver then y is output to
all players if i = 0, or y is output to player i if i 6= 0. If the adversarial input is
not equal to Deliver then ∅ is output to all players.

Output-G: On input (outputG, varid , i) from all honest parties (if varid is present
in the list of curve identifiers), the functionality retrieves (varid , R) from the set
of curve identifiers and outputs it to the environment. The functionality waits
for an input from the environment. If this input is Deliver then R is output to
all players if i = 0, or R is output to player i if i 6= 0. If the adversarial input
is not equal to Deliver then ∅ is output to all players.

Figure 6. The ideal functionality for MPC over G ⊆ E(K) with #G = p

9



Again, as 〈·〉E is a linear secret sharing scheme it is easy to compute linear
functions on the share values. In particular given 〈Q〉E and 〈R〉E , two field
constants a, b ∈ Fp and one public curve point S we can compute the sharing of
T = [a] ·Q+ [b] ·R+ S locally by each player computing

T0 ← [a] ·Qi + [b] ·Ri + S for i = 0

Ti ← [a] ·Qi + [b] ·Ri for i 6= 0

Γi[T ]← [a] · Γi[Q] + [b] · Γi[R] + [αi] · S for all i.

One can also compute U = [a] · Q when a is shared and Q is public, with only
local computation. This can be done by having each player locally compute

Ui ← [ai] ·Q for all i.

Γi[U ]← [γi[a]] ·Q for all i.

Which we write as

〈U〉E ← [〈a〉F ] ·Q. (1)

The only complex part is then to perform non-linear operations, namely to com-
pute the point multiplication of a secret shared element in Fq by a secret shared
elliptic curve point. An operation which we write as

〈U〉E ← [〈a〉F ] · 〈Q〉E . (2)

3.1 MACCheck Protocol

Before presenting our protocol for performing the arithmetic operation in equa-
tion (2), we first modify the SPDZ MACCheck protocol so that it also checks the
MAC values on the authenticated sharings of elliptic curve points. This is done
in Figure 7. The intuition behind correctness and soundness of this protocol,
comes from the fact that we took the MAC check protocol from SPDZ operating
over elements in Fp, and replicated it for elements of G. Then, we combined
these two checks in order to execute the protocol only once. So we perform the
MAC check in a single operation on both opened elements in Fp and opened
elements in G. Thus at step 7 we map the share vi − αi · a of player i to the
point [vi−αi · a] ·P over G. This makes the protocol inherit the correctness and
soundness properties from the one in SPDZ. This is captured in the following
theorem, the proof of which is given in the full version.

Theorem 1. The protocol ΠMACCheck[ECC] is correct and sound. That is, it ac-
cepts if all values {a1, . . . , at} and {A1, . . . , Au} along with their corresponding
MACs were correctly computed, and it rejects except with negligible probability if
at least one value or MAC was not correctly computed.

10



Protocol ΠMACCheck[ECC]

Usage: Each player has input αi, (γi[aj ]) for j = 1, . . . , t and (Γi[Ak]) for k =
1, . . . , u. All players have two public sets of opened values : {a1, . . . , at} over
Fp, and {A1, . . . , Au} over G; the protocol either succeeds or outputs failure if
an inconsistent MAC value is found.

MACCheck({a1, . . . , at}, {A1, . . . , Au}):
1. Every player Pi samples a seed si and asks FCommit to broadcast τsi ←

Comm(si).
2. Every player Pi calls FCommit with Open(τsi ) and all players obtain sj for

all j.
3. Set s← s1 ⊕ · · · ⊕ sn.
4. Players using s sample a random vector r from Ft+u

p ; note all players obtain
the same vector as they have agreed on the seed s.

5. Each player computes the public values a ←
∑t

j=1 rj · aj and A ←∑u
k=1[rk+t] ·Ak

6. Player i computes vi ←
∑t

j=1 rj · γi[aj ], and Γi ←
∑u

k=1[rk+t] · Γi[Ak]
7. Player i computes Wi ← [vi − αi · a] · P + Γi − [αi] · A, where P is the

generator of G
8. Player i asks FCommit to broadcast τWi ← Comm(Wi).
9. Every player calls FCommit with Open(τWi ), and all players obtain Wi for all

i.
10. If W1 + · · ·+Wn 6= 0G , the players output ∅ and abort.

Figure 7. Method To Check MACs On Partially Opened Values

3.2 MPC Online Protocol

We introduce now in Figure 8 our protocol for the online phase. Similar to
FOnline[ECC], which was constructed by extending FOnline[SPDZ], we do the same
here while realizing FOnline[ECC]. That is, the sub-functionalities Initialize,
Input-F, Add-F, and Multiply-F, will be realized the same way as in the
protocol ΠOnline[SPDZ]. For the remaining functionalities, we will realize them
using essentially the same techniques as in the SPDZ protocol.

– Input-G is realized using the same trick as used to impement Input-F.
That is, assuming player i holds (Ri, 〈Ri〉E), this player can share a point
Qi ∈ G by broadcasting E = Qi − Ri, then players compute 〈Qi〉E =
〈Ri〉E + E to obtain a share of Qi. However, as we are using only the pre-
processing of SPDZ, we need to somehow provide (Ri, 〈Ri〉E) to player i,
using only the generated data from FOffline[SPDZ]. This can be done using
the generator P , That is, from a SPDZ input mask (ri, 〈ri〉F ), one can obtain
a mask (Ri, 〈Ri〉E) by setting 〈Ri〉E ← [〈ri〉F ] · P , which requires only local
computation.

– Add-G is realized similarly to Add-F. That is, players will locally compute
〈Q+R〉E ← 〈Q〉E + 〈R〉E .

– Multiply-G-P is realized by having players locally compute 〈R〉E ← 〈x〉F ·
Q.

11



Protocol ΠOnline[ECC]

Initialize: The parties call FOffline to get the shares αi of the MAC key, a num-
ber of multiplication triples (〈a〉F , 〈b〉F , 〈c〉F ), and mask values (ri, 〈ri〉F ) as
needed for the circuit being evaluated. If FOffline aborts then abort, otherwise
the operations specified below are performed according to the circuit.

Input-F: To share his input xi, player i takes an available mask value (ri, 〈ri〉F )
and does the following:
1. Broadcast e← xi − ri.
2. The players compute 〈xi〉F ← 〈ri〉F + e.

Input-G: To share his input Qi, Player i takes an available mask value (ri, 〈ri〉F )
and does the following:
1. Broadcast E ← Qi − [ri] · P .
2. The players compute 〈Qi〉E ← [〈ri〉F ] · P + E using Multiply-G-P.

Add-F: On input (〈x〉F , 〈y〉F ), the players locally compute 〈x+y〉F ← 〈x〉F +〈y〉F .
Add-G: On input (〈Q〉E , 〈R〉E), the players locally compute 〈Q+R〉E ← 〈Q〉E +
〈R〉E .

Multiply-F: On input (〈x〉F , 〈y〉F ), the players do the following:
1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) and open 〈x〉F −
〈a〉F , 〈y〉F − 〈b〉F to get s and t respectively.

2. Locally each player sets 〈x · y〉F ← 〈c〉F + s · 〈b〉F + t · 〈a〉F + s · t
Triple: Here the players simply take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ) off

the pre-computed list obtained in the offline phase.
Multiply-G-P: On input (〈x〉F , Q), where Q is a public point in G, the players

locally compute 〈[x] ·Q〉E ← [〈x〉F ] ·Q using the operation defined in (1) .
Multiply-G-S: On input (〈x〉F , 〈Q〉E), the players do the following:

1. Take one multiplication triple (〈a〉F , 〈b〉F , 〈c〉F ), locally compute 〈U〉E ←
[〈b〉F ] · P and 〈V 〉E ← [〈c〉F ] · P using Multiply-G-P.

2. Open 〈x〉F − 〈a〉F , 〈Q〉E − 〈U〉E to get s and T respectively.
3. Locally each player sets 〈[x] ·Q〉E ← 〈V 〉E + [s] · 〈U〉E + [〈a〉F ] · T + [s] · T

Output-F: This procedure is entered once the players have finished the circuit
evaluation, but still the final output 〈y〉F has not been opened.
1. The players call the MACCheck[ECC] protocol on input all opened values

so far.
2. The players open 〈y〉F and call MACCheck[ECC] on input y to verify its

MAC.
Output-G: This procedure is entered once the players have finished the circuit

evaluation, but still the final output 〈R〉E has not been opened.
1. The players call the MACCheck[ECC] protocol on input all opened values

so far.
2. The players open 〈R〉E and call MACCheck[ECC] on input R to verify its

MAC.

Figure 8. Operations for Secure Function Evaluation

12



– Multiply-G-S is realized using the Beaver trick. That is, assuming players
hold a triple (〈a〉F , 〈U〉E , 〈V 〉E) such that V = [a] · U , to compute [〈x〉F ] ·
〈Q〉E , players open 〈x − a〉F and 〈Q − U〉E to obtain s and T . Then the
product can be obtained by setting 〈[x] ·Q〉E ← 〈V 〉E + [s] · 〈U〉E + [〈a〉F ] ·
T + [s] · T . However, the SPDZ preprocessing doesn’t provide this type of
triples, nonetheless, we still can obtain them locally by taking a SPDZ-triple
(〈a〉F , 〈b〉F , 〈c〉F ) and having players locally compute 〈U〉E = 〈b〉F · P and
〈V 〉E = 〈c〉F ·P . This results in a triple (〈a〉F , 〈U〉E , 〈V 〉E), which is a valid
triple since V = [c] · P = [a · b] · P = [a] · U .

– Output-F and Output-G are realized the same way as in SPDZ, where
we call here the MAC check protocol ΠMACCheck[ECC] that we defined in
the previous section, operating over all opened values in Fp and G so far,
then we open the final output y (resp. R) and call ΠMACCheck[SPDZ] (resp.
ΠMACCheck[ECC])

Thus we have the following theorem, the proof of which is given in the full
version.

Theorem 2. The protocol ΠOnline[ECC] securely implements FOnline[ECC] in the
FOffline[SPDZ] hybrid model.

4 Simple Example Applications

In this section we present two toy applications of our methodology to perform
MPC over elliptic curves, distributed EC-DSA signing and a distributed zero-
knowledge proof.

EC-DSA Signing

Given a secret key x ∈ Fp for a public key Q = [x] · P , for P an element of order
q in E(K), a hash function H with codomain Fp, and a message m, the EC-DSA
operation is given by:

1. k ← Fp.
2. R← [k] · P .
3. r ← x− coord(R) (mod p).
4. e← H(m).
5. s← (e+ x · r)/k (mod p).
6. Output (r, s).

Figure 9. EC-DSA Signing Operation

Distributed EC-DSA: The EC-DSA signing operation is given in Figure 9.
To produce a distributed version we assume that the secret key x is already

13



secret shared 〈x〉F using our secret sharing scheme. For simplicity we ignore
the unlikely event that r = 0 in our description. The associated distributed
version is given in Figure 10. The protocol requires three multiplication triples
from the offline phase (one to produce the initial sharings of (〈k〉F , 〈b〉F , 〈k · b〉F )
and two to enable the secure computation of 〈u〉F and 〈v〉F . Note, that we
have correctness since the s produced by the distributed EC-DSA protocol is
equal to s = v/c = (u · b)/(k · b) = (e + x · r)/k. The trivial simulation of
the distributed protocol appears to leak a minor amount of information. In
particular the execution of the distributed protocol reveals R, whereas the ideal
functionality for distributed signing will only reveal r = x− coord(R) (mod p).
However, the verification operation recovers R in any case, thus this is not an
actual leak of information.

Distributed EC-DSA Signing

1. Call Triple on FOnline[ECC] so as to obtain (〈k〉F , 〈b〉F , 〈c〉F ) where c = k · b.
2. Compute 〈R〉E ← [〈k〉F ] · P by calling Multiply-G-P on FOnline[ECC].
3. Open 〈R〉E so all parties obtain R by calling Output-G on FOnline[ECC].
4. r ← x− coord(R) (mod p).
5. e← H(m).
6. 〈u〉F ← e+ 〈x〉F · 〈r〉F using Multiply-F.
7. 〈v〉F ← 〈u〉F · 〈b〉F using Multiply-F.
8. Open 〈c〉F using Output-F.
9. 〈s〉F ← 〈v〉F /c.

10. Open 〈s〉F using Output-F.
11. Output (r, s).

Figure 10. Distributed EC-DSA Signing Operation

In practice the specialist threshold EC-DSA protocols of [8, 14–16] may be
preferable than our general one. This is because whilst our protocol is especially
simple in the online phase, and so will be able respond to requests much faster
than the specialist protocols, the downside comes from needing to perform the
offline phase. Thus the preferred protocol depends on whether the application
supports offline processing. For intermittent signing operations, such as in an in-
dividual crypto wallet, the offline costs could be prohibitive. But for applications
on an crypto-currency exchange the offline cost could be a cost worth bearing
in order to respond faster to signing requests as they arise.

Distributed OR-Proof: The above EC-DSA application did not use the full
power of our MPC over elliptic curves, in particular we did not make use of
any non-linear operations on the elliptic curve. Here we present a more complex
example, which will be useful later when we consider the MixNet proof of Abe,
and which does present an application of these additional non-linear operations.

14



Suppose we want to give a non-interactive zero-knowledge proof the state-
ment L =

{
xb : T0 = [x0] · P or T1 = [x1] · P

}
, where xb ∈ Fp, for b ∈ {0, 1}, is

the secret value. Non-interactive zero-knowledge proofs of such statements are
trivial to obtain, in the random oracle model, using the OR-proof technique for
Sigma protocols [5]. To fix notation for what follows it can make more sense to
consider the statement as being given by

{
b, xb : Tb = [xb]·P

}
, where b ∈ {0, 1},

xb ∈ Fp are the secret values. In Figure 11 we give the standard non-interactive
proof for such a statement, again we assume a hash function with codomain Fp.

Non-Interactive Zero-Knowledge Proof of the Statement L.

Proof The proof proceeds as follows:
1. If b = 0 then

(a) k0, e1, s1 ← Fp.
(b) R0 ← [k0] · P .
(c) R1 ← [s1] · P − [e1] · T1.
(d) e← H(R0, R1, T0, T1, P ).
(e) e0 ← e− e1.
(f) s0 ← k0 + e0 · x0.

2. Else
(a) k1, e0, s0 ← Fp

(b) R0 ← [s0] · P − [e0] · T0.
(c) R1 ← [k1] · P .
(d) e← H(R0, R1, T0, T1, P ).
(e) e1 ← e− e0.
(f) s1 ← k1 + e1 · x1.

3. Output (e0, e1, s0, s1).
Verify Verification of the above proof is done as follows:

1. R0 ← [s0] · P − [e0] · T0, R1 ← [s1] · P − [e1] · T1.
2. e← H(R0, R1, T0, T1, P ).
3. Reject if e 6= e0 + e1.

Figure 11. Non-Interactive ZKPoK for the statement L

If we assume the secret inputs to the zero-knowledge proof are now dis-
tributed via our secret sharing scheme 〈b〉F , 〈xb〉F , then we need to execute the
above protocol using our elliptic curve based MPC protocol. We make use of the
standard trick of multiplexing between two values depending on a hidden bit b,
via yb ← b · y1 + (1− b) · y0. Our distributed protocol then can be described as
in Figure 12. Note, that operations of the form 〈x〉F ← Fp can be performed by
utilizing the first two elements in a Beaver triple produced in the offline phase.
Notice how in lines 4, 5 and 6 we use non-linear secret-shared operations on the
curve.

15



Distributed Non-Interactive Zero-Knowledge Proof of the Statement L.

1. 〈ku〉F , 〈ev〉F , 〈sv〉F ← Fp

2. 〈Ru〉E ← [〈ku〉F ] · P .
3. 〈Tv〉E ← [〈b〉F ] · T0 + [1− 〈b〉F ] · T1.
4. 〈Rv〉E ← [〈sv〉F ] · P − [〈ev〉F ] · 〈Tv〉E .
5. 〈R0〉E ← [〈b〉F ] · 〈Rv〉E + [1− 〈b〉F ] · 〈Ru〉E
6. 〈R1〉E ← [〈b〉F ] · 〈Ru〉E + [1− 〈b〉F ] · 〈Rv〉E
7. Open 〈R0〉E and 〈R1〉E .
8. e← H(R0, R1, T0, T1, P ).
9. 〈eu〉F ← e− 〈ev〉F .

10. 〈su〉F ← 〈ku〉F + 〈ev〉F · 〈xb〉F .
11. 〈e0〉F ← [〈b〉F ] · 〈ev〉F + [1− 〈b〉F ] · 〈eu〉F
12. 〈e1〉F ← [〈b〉F ] · 〈eu〉F + [1− 〈b〉F ] · 〈ev〉F
13. 〈s0〉F ← [〈b〉F ] · 〈sv〉F + [1− 〈b〉F ] · 〈su〉F
14. 〈s1〉F ← [〈b〉F ] · 〈su〉F + [1− 〈b〉F ] · 〈sv〉F
15. Open 〈e0〉F , 〈e1〉F , 〈s0〉F and 〈s1〉F .
16. Output (e0, e1, s0, s1).

Figure 12. Distributed Non-Interactive ZKPoK for the statement L

5 Application to MixNets

The rest of the paper is devoted to applying the above techniques to providing
a more efficient (in terms of bandwidth and verification time) for a standard
ElGamal based shuffle due to Abe [2]. As remarked in the introduction more
efficient single party shuffles are now known, here we are focused on providing a
general n-party shuffle.

Secure shuffling consists of randomly shuffling a vector of m elements v using
a uniformly random permutation π ∈ Sm unknown to the adversary. Secure
shuffling is used in several contexts such as Oblivious-RAM, secure voting, etc.
Within any context, we can distinguish three sets of parties, the parties A that
provide input elements v, the parties B that shuffle v to get v′, and the parties
C that will use v′. These sets are not necessarily disjoint sets. That is, it depends
on the context whether a party is part of more than one set.

Prior MPC use in shuffles has primarily considered two cases: In the first
case, used in [13], the data donors A provide the sensitive data v to the comput-
ing parties (where here B = C) via secret sharing. The parties in B then shuffle
the secret shared data with respect to a uniformly random permutation π to get
v′, and then perform computation on v′ on behalf of a client. The permutation
π ∈ Sm is generated by each party i ∈ B locally generating their own permuta-
tion πi and then secret sharing this, with the final permutation being computed
via the product π =

∏
πi. If the permutations are represented as permutation

matrices this can be achieved by simply multiplying the secret shared permuta-
tion matrices. Active security being obtained by performing the obvious checks
on the final matrix representing π, i.e. that all entries are in {0, 1} and that the
row and column sums are all equal to one.

16



In [12] the case of A = B = C is considered for an application of Oblivious-
RAM within an MPC calculation. Parties are already assumed to have secret
shares of the values to be shuffled. In order to hide the data access pattern
on v, that is which component of v is queried at any specific point, v is shuf-
fled with a uniformly random permutation. To generate π, every party i gen-
erates their own permutation πi and (locally) transforms it into control bits
for a Waksman network. Then every party secret shares its control bits among
the other parties, and all permutations are evaluated in sequence. The switch
with respect to a control bit being evaluated using the traditional multiplex
(x, y) −→ ((1− b) · x+ b · y, b · x+ (1− b) · y). To ensure active security, we
check whether control bits b are in {0, 1} by opening b · (b− 1).

In traditional MixNets one has that the sets A, B and C are disjoint. A
MixNet works by A entering a set of input ciphertexts, consider for example
ElGamal style ciphertexts over our elliptic curve group G, i.e. the vector v = (vi)
consists of values of the form

vi = (Mi + [ki] ·Q, [ki] · P )

for some ElGamal public key Q = [x] · P . We then want to shuffle these ci-
phertexts and output a new set of ciphertexts v′ which are the result of the
shuffle. Here we utilize the malleability of ElGamal ciphertexts to transform an
encryption of a message Mi into another ciphertext encrypting the same mes-
sage. Traditionally each Mixer in the MixNet performs a shuffle and provides a
zero-knowledge proof that the resulting output ciphertexts are in fact the per-
muted (and randomized) input ciphertexts. Then the data is passed onto another
Mixer which does the same operation. Thus B consists of a number of parties
all of whom operate in sequence. The receiving parties C need to verify all of
the zero-knowledge proofs from each Mixer.

In this work we examine whether one can treat B as a single multi-party
mixer, and thus end up with a single zero-knowledge proof. To do this we examine
the MixNet protocol of Abe [2], and cast it not as a single player protocol but as
a multi-party protocol. Our protocol consists of two stages. In the first stage we
generate a secret-shared permutation π, then in the second stage we utilize the
permutation π to shuffle the ciphertexts and produce the zero-knowledge proofs.

Stage 1: Producing the shared permutation: In this stage each of our
n parties generates a random permutation πi, represented as a permutation
matrix. They enter it into the MPC system, and the parties then multiply the
permutation matrices together to form a permutation π. We then need to derive
switches for a Waksman network producing the same permutation as π. We leave
this step to the next section. Note that we cannot generate shared random bits
and use these as the control bits for a Waksman network, as this does not result
in a uniformly random permutation, as was observed in [3].

Stage 2: Producing the ciphertext permutation and proof: To perform
the second step we can concentrate on what happens at a single switching gate

17



in the Waksman network. Let the control bit for this gate be secret shared as
〈b〉F , where b ∈ {0, 1}, and we assume the input ciphertexts are given by

v0 = (A0, B0) = (M0 + [k0] ·Q, [k0] · P ),

v1 = (A1, B1) = (M1 + [k1] ·Q, [k1] · P ).

for some unknown messages M0,M1 and ephermal keys k0 and k1. In Abe’s
MixNet the output of the switching gate will be the values

v′b = (Ab, Bb) = (A0 + [r0] ·Q,B0 + [r0] · P ),

v′1−b = (A1−b, B1−b) = (A1 + [r1] ·Q,B1 + [r1] · P ),

plus a zero-knowledge proof of the statement that(
logQ(A0 −A0) = logP (B0 −B0) = r0

AND logQ(A1 −A1) = logP (B1 −B1) = r1

)
OR

(
logQ(A0 −A1) = logP (B0 −B1) = r1

AND logQ(A1 −A0) = logP (B1 −B0) = r0

)
given the secret input r0 and r1. This is (again) a relatively standard Sigma
protocol proof, and we have already seen how to produce an (albeit simpler)
zero-knowledge proof for an OR statement of equality of discrete logarithms in
Section 4. For the values of r0 and r1 we take a Beaver triple (〈r0〉F , 〈r1〉F ,
〈r2〉F ) from the pre-processing. These values of 〈r0〉F and 〈r1〉F are also used to
generate the zero-knowledge proof. Thus we only need to produce the values of
Ab, Bb etc, which can be derived from the assignments

〈C0〉E ← A0 + [〈r0〉F ] ·Q,
〈D0〉E ← B0 + [〈r0〉F ] · P,
〈C1〉E ← A1 + [〈r1〉F ] ·Q,
〈D1〉E ← B1 + [〈r1〉F ] · P,
〈A0〉E ← [1− 〈b〉F ] · 〈C0〉E + [〈b〉F ] · 〈C1〉E ,
〈B0〉E ← [1− 〈b〉F ] · 〈D0〉E + [〈b〉F ] · 〈D1〉E ,
〈A1〉E ← [1− 〈b〉F ] · 〈C1〉E + [〈b〉F ] · 〈C0〉E ,
〈B1〉E ← [1− 〈b〉F ] · 〈D1〉E + [〈b〉F ] · 〈D0〉E .

We can then open (〈A0〉E , 〈B0〉E , 〈A1〉E , 〈B1〉E), and produce the zero-knowledge
proof as well.

6 Generating the Waksman Control Bits

We are now left with the final problem of giving an algorithm which on input
of a secret-shared permutation matrix, outputs the secret-shared control bits

18



of the associated Waksman network. Recall we simplify the algorithm, and the
network, by not having the fixed switch in the first gate of each output layer (thus
increasing the number of gates by m/2−1 from a traditional Waksman network).
There is a classical algorithm for this [20], but it is not obvious how to translate
this to work in a data-oblivious manner. Thus in this section we show how
to perform this transformation obliviously. We let M denote the permutation
matrix which we start with, whose i-th row and j-th column element we refer
to as Mi,j . We assume that (the shared value of) M is guaranteed on input to
be a permutation matrix; which can be checked by opening the column and row
sums and checking them to be equal to m, as well as opening Mi,j · (Mi,j − 1)
and verifying it is equal to zero for all i and j.

In what follows, to explain the algorithm used to do this conversion from the
matrix to control bits, and how we realized it with MPC, we will use a running
example which is the permutation π̃ of matrix given earlier:

M̃ =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0


The high level idea behind the algorithm uses the fact that a Waksman network
has a recursive structure, hence finding the control bits for a given permutation
π can be done recursively. From π we determine two permutations π1, π2 for
the two subnetworks, as well as control bits for the inward and outward layers,
such that the composition of these realizes π. Then we apply the same process
on π1, π2 and so on, till a control bit is determined for every switch. The process
proceeds in the three steps:

– Step One: The first step consists of taking the m×m permutation matrix
M of π, and merging coordinates corresponding to the same input or output
switch, e.g, the first and second rows correspond to the first inward switch
thus they will be merged. The first and second columns correspond to the
first outward switch, they will be merged as well. Thus, this will result in an
m/2×m/2 matrixM ′ such thatM ′i,j = M2·i−1,2·j−1+M2·i,2·j−1+M2·i−1,2·j+

M2·i,2·j . For instance, for the permutation π̃, M̃ ′ will be

M̃ ′ =


2 0 0 0
0 1 0 1
0 0 2 0
0 1 0 1


– Step Two: In the second step, we construct two permutation matrices M1

and M2 such that M1
i,j + M2

i,j = M ′i,j . Those matrices will be the ones

19



corresponding respectively to π1 and π2, the permutations of the two sub
networks. For our example, M̃1 and M̃2 can be (one has a choice obviously)

M̃1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 M̃2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


– Step Three: The last step is then setting the control bits for the inward

and outward layers. The algorithm does this by identifying the coordinates
of the entries in M , that correspond to the entries in M1 which are equal
to one. So for our example M̃1

2,2 = 1 as this entry corresponds to the one

in position (4, 4) of M̃ , therefore the coordinates (4, 4) are identified. Note
that for some entries, two coordinates can be identified instead of one, which
is the case for M̃1

1,1 and M̃1
3,3 in our example. When this happens, one of

the coordinates is identified (which one does not matter for the algorithm)
As such, for example, the coordinates (2, 1), (4, 4), (5, 5) and (8, 7) could be
identified.
Then within each of these coordinates, if there is an even component, the
associated switch to this component is identified and its control bit is set to
be one. So for our example, the coordinates (2, 1) contain an even component
(in the first position) and thus the associated switch to this even component
is the switch one, i.e. 2/2, in the inward layer, i.e. control one bit is set to
one.
Similarly, the coordinates (4, 4), and (8, 7) contain even components, and so
the associated switches to these even components are 2 = 4/2 and 4 = 8/2
in the inward layer and 2 = 4/2 in the outward layer, and their associated
control bits are also set to one.
The control bit of all the remaining switches in the inward and outward
layers are set to zero.

This process is repeated recursively on the sub networks, until we reach the
subnetworks of size 2 which are simply switches. For such switches, if the corre-
sponding matrix is the identity matrix, we set the switch to be zero, otherwise,
we set it to be one. Figure 5 illustrates the resulting realization of the permuta-
tion π̃.

Making the algorithm suitable for MPC implementation: Recall, our
aim is to transform a secret shared permutation matrix M of π, into secret
shared control bits realizing it. We can achieve this if we somehow manage to
transform the above algorithm into arithmetic operations.

The first step of the algorithm is easy to transform, as constructing M ′ is
by definition done by summing up entries from M of known coordinates, and is
thus a local operation when M is presented in secret shared form.

The last step is also relatively easy to transform; it consists of comparing
entries from M1 with entries from M , then checking whether coordinates contain

20



even components. As such, the control bit bink for the switch k in the inward layer
and boutk in the outer layer can be computed as

bink =

j=m/2∑
j=1

M1
k,j · (M2·k,2·j−1 +M2·k,2·j),

boutk =

i=m/2∑
i=1

M1
i,k · (M2·i−1,2·k · (1−M2·i,2·k−1) +M2·i,2·k).

The control bit corresponding to a subnetwork of size two can be computed as

bmid = M1,2,

as we have M = I2 if no switch occurs and M is the off-diagonal 2× 2 matrix if
a switch occurs.

The second step is the most intricate one to transform, given that we need
to split a secret shared matrix M ′ into two secret-shared permutation matrices
M1 and M2. Our idea for this step is to express constraints on M1 and M2

into equations, where variables are entries of M1 and M2. Therefore, solving
these equations identifies M1 and M2. This solution is then accomplished by
making use of the fact that the entries are integers in {0, 1}, which constrains
their possible value considerably.

The first constraint on M1 and M2 is that they sum up to M ′, i.e. for
i, j ∈ {1, . . . ,m/2} we have

M1
i,j +M2

i,j = M ′i,j

The second constraint on M1 and M2 is that they are permutation matrices,
which translates into the set of linears equations for j ∈ {1, . . . ,m/2} and k ∈
{1, 2}

m/2∑
i=1

Mk
i,j = 1 and

m/2∑
i=1

Mk
j,i = 1,

as well as the quadratic equations for i, j ∈ {1, . . . ,m/2} and k ∈ {1, 2}

Mk
i,j · (Mk

i,j − 1) = 0.

To find M1 and M2, the strategy will be to solve the linear equations, while
allowing entries Mk

i,j to have values only in {0, 1}, which thus caters for the
quadratic equations.

We do this by first initializing the matrices M1, M2, O1 and O2 by having
their entries equal to zero. The matrices M1 and M2 will contain at the end the
permutation matrices of π1 and π2, as soon as we fix an entry in Mk

i,j we set

Ok
i,j equal to one. This is represented by the algorithm Init(M1,M2, O1, O2) in

Figure 13
The next step of the process consists of setting entries Mk

i,j that have only

one solution, see the function StartFix(M ′,M1,M2, O1, O2) in Figure 13. When

21



we have M ′i,j = 0 (resp. 2) then we know that the values Mk
i,j must be equal to

zero (resp. one), since these are the only ways integers in {0, 1} can add up to
zero (resp. two).

For our example, after the execution of StartFix our values of Õ1 and Õ2

become

Õ1 =


1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

 Õ2 =


1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0


If Mk are not fully determined at this stage, we need to deal with entries cor-
responding to one’s in M ′. Having a one in M ′i,j means that one of the entries

M1
i,j ,M

2
i,j is equal to one, and the other equals zero. We will take (as a free

choice) coordinates (i, j) of the first entry in M ′ that is equal to one, and we
will set M1

i,j to be one. See procedure MakeChoice in Figure 13. In our example,

after making such a choice, Õ1 and Õ2 become

Õ1 =


1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 0

 Õ2 =


1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 0



Making a choice will fix one entry in Mk, and fixing an entry in Mk will
allow us to fix other entries, see sub-procedure Update in Figure 13. For our
example, after executing Update, all entries Õk

i,j are equal to one and therefore

M1,M2 are fully determined. However, executing Update only once does not
always guarantee to fix all entries that can be fixed with respect to the choice
made, in addition making one choice does not guarantee that all entries will be
fixed. That is, some permutations require repeated application of MakeChoice
and Update until all the values Õk

i,j are equal to one. Then we need to determine
the bounds of how many times we should iterate these steps.

At the end of the execution of StartFix, in each row i (resp. column j) of Mk,
either m/2− 2 entries are fixed (which is the case where the row i (resp. column
j) in M ′ contained two one’s), or m/2 entries are fixed (which is the case where
the row i (resp. the column j) in M ′ contained an entry that is equal to two).
Thus, at most n entries in Mk remain unfixed.

Recall once we make a choice to fix one entry in Mk, this allows us to fix
other entries. That is, at least row i and column j in Mk will now contain only
one entry that is not fixed, respectively Mk

i,f and Mk
f ′,j . This is because each

row (resp. column) in Ok can contain at most two zero entries before fixing the
value (i, j). These two entries will themselves fix one entry in row f ′ and one
entry in column f (if f = f ′ only one entry will be fixed). Therefore, making a
choice and updating with respect to it will fix at least four other entries, with
the minimum occuring when f = f ′. Thus, we will need to execute MakeChoice
at most m/4 times.

22



Init(M1,M2, O1, O2):
1. For k ∈ {1, 2} and i, j ∈ {1, . . . , m

2
}:

(a) Mk
i,j ← 0, Ok

i,j ← 0.

StartFix(M ′,M1,M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}:

(a) If (M ′
i,j = 0) then set O1

i,j ← 1, O2
i,j ← 1.

(b) If (M ′
i,j = 2) then set M1

i,j ← 1, O1
i,j ← 1, M2

i,j ← 1, O2
i,j ← 1.

MakeChoice(M ′,M1,M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}

(a) If (M ′
i,j = 1 and O1

i,j = 0) then set M1
i,j ← 1, M2

i,j ← 0, O1
i,j ← 1,

O2
i,j ← 1 and return.

Update(M1,M2, O1, O2):
1. For i, j ∈ {1, . . . , m

2
}:

(a) If (O1
i,j = 0)

i. If (

m
2∏

k=1
k 6=j

O1
i,k = 1) then set M1

i,j ← 1− (

m
2∑

k=1
k 6=j

M1
i,k), O1

i,j ← 1, M2
i,j ←

1−M1
i,j and O2

i,j ← 1.
(b) If (O1

i,j = 0)

i. If (

m
2∏

k=1
k 6=i

O1
k,j = 1) then set M1

i,j ← 1− (

m
2∑

k=1
k 6=i

M1
k,j), O

1
i,j ← 1, M2

i,j ←

1− (M1
i,j) and O2

i,j ← 1.

Waksman-Sub(M ′):
1. Init(M1,M2, O1, O2).
2. StartFix(M ′,M1,M2, O1, O2).
3. For c ∈ {1, . . . , m

4
}

(a) MakeChoice(M ′,M1,M2, O1, O2) .
i. For k ∈ {1, . . . ,m+ 1− 4 · c}

A. Update(M1,M2, O1, O2).

Figure 13. Waksman Algorithm Step 2 Sub-Procedures

23



Assuming that the first execution of Update after MakeChoice will fix at least
three entries, and each execution of Update after the first execution will at least
fix one entry of the entries that can be fixed. Also the choice we made may fix the
whole of the matrices Mk. Thus, we will need to execute Updatem+1−4·c times
where c is the number of choices already made. This gives the final procedure
for the second step in sub-algorithm Waksman-Sub in Figure 13.

Transforming the algorithm: Having produced an (almost) data-oblivious
methodology to generate a Waksman network we now need to transform it into
a fully data-oblivious methodology by replacing all operations with algebraic
operations. Again steps one and three are trivial, thus we are left with step two.
The key step is dealing with the conditional operations, but this can be easily
transformed into algebraic operations as follows.

At various points we need to determine whether a value in {0, 1, 2} is equal
to zero, one or two. This can be done via algebraic operations using three simple
quadratic functions, namely

Q0(x) = (x− 1) · (x− 2)/2,

Q1(x) = −x · (x− 2),

Q2(x) = x · (x− 1)/2.

Given these functions converting Figure 13 into a secret shared format is rela-
tively simple; which we give in the full version.

Acknowledgements

The authors would like to thank Tim Wood, for insightful discussions and sugges-
tions. This work has been supported in part by ERC Advanced Grant ERC-2015-
AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA)
and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under con-
tracts No. N66001-15-C-4070 and FA8750-19-C-0502, and by the FWO under
an Odysseus project GOH9718N. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the ERC, DARPA or FWO.

References

1. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403,
pp. 437–447. Springer, Heidelberg (May / Jun 1998)

2. Abe, M.: Mix-networks on permutation networks. In: Lam, K.Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT’99. LNCS, vol. 1716, pp. 258–273. Springer, Heidel-
berg (Nov 1999)

3. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.
In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg
(Feb 2001)

24



4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (Apr 2012)

5. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (Aug 1994)

6. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (Sep 2013)

7. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

8. Doerner, J., Kondi, Y., Lee, E., shelat, a.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy.
pp. 980–997. IEEE Computer Society Press (May 2018)

9. Fauzi, P., Lipmaa, H., Siim, J., Zajac, M.: An efficient pairing-based shuffle ar-
gument. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 97–127. Springer, Heidelberg (Dec 2017)

10. Fauzi, P., Lipmaa, H., Zajac, M.: A shuffle argument secure in the generic model.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032,
pp. 841–872. Springer, Heidelberg (Dec 2016)

11. González, A., Ràfols, C.: New techniques for non-interactive shuffle and range
arguments. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.) ACNS 16. LNCS,
vol. 9696, pp. 427–444. Springer, Heidelberg (Jun 2016)

12. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525.
Springer, Heidelberg (Dec 2014)

13. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (Oct 2011)

14. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer, Heidelberg (Aug
2017)

15. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M.,
Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1837–1854. ACM Press (Oct
2018)

16. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody. IACR
Cryptology ePrint Archive 2018, 987 (2018), https://eprint.iacr.org/2018/987

17. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (May / Jun 1998)

18. Smart, N.P.: Cryptography Made Simple. ISC, Springer, Heidelberg (2016)
19. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-

cation to communication-efficient multi-party computation. In: Matsui, M. (ed.)
CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Heidelberg (Mar 2019)

20. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)

25

https://eprint.iacr.org/2018/987

	Distributing any Elliptic Curve Based Protocol

