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Abstract. In this paper we investigate the security of 5-round AES
against two different attacks in an adaptive setting. We present a prac-
tical key-recovery attack on 5-round AES with a secret s-box that re-
quires 232 adaptively chosen ciphertexts, which is as far as we know a
new record. In addition, we present a new and practical key-independent
distinguisher for 5-round AES which requires 227.2 adaptively chosen ci-
phertexts. While the data complexity of this distinguisher is in the same
range as the current best 5-round distinguisher [14], it exploits new struc-
tural properties of 5-round AES.

Keywords: AES · Zero-difference · Secret-key distinguisher · Differen-
tial · Secret S-box.

1 Introduction

Block ciphers are typically designed by iterating an efficiently computable round
function many times in the hope that the resulting composition behaves like a
randomly drawn permutation. The designer is typically constrained by various
practical criterion, e.g. security target, implementation boundaries, and special-
ized applications, that might lead the designer to introduce symmetries and
structures in the round function as a compromise between efficiency and secu-
rity. In the compromise, a round function is iterated enough times to make
sure that any symmetries and structural properties that might exist in the
round function vanish. Thus, a round function is typically designed to increas-
ingly de-correlate with structure and symmetries after several rounds. Low data-
and computational-complexity distinguishers and key-recovery attacks on round-
reduced block ciphers have recently gained renewed interest in the literature.
There are several reasons for this. In one direction cryptanalysis of block ciphers
has focused on maximizing the number of rounds that can be broken without ex-
hausting the full codebook and key space. This often leads to attacks marginally
close to that of pure brute-force. These are attacks that typically have been
improved over time based on many years of cryptanalysis. The most successful
attacks often become de-facto standard methods of cryptanalysis for a partic-
ular block cipher and might discourage anyone from pursuing new directions
in cryptanalysis that do not reach the same number of rounds. This in itself
might hinder new breakthroughs, thus it can be important to investigate new
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promising ideas that might not have reached its full potential yet. New meth-
ods of cryptanalysis that break or distinguish fewer rounds faster but with lower
complexity than established cryptanalysis is therefore interesting in this process.
Many constructions employ reduced round AES as part of their design. On the
other hand, reduced versions of AES have nice and well-studied properties that
can be favorable as components of larger designs (see for instance Simpira [13]).

The security of Rijndael-type block cipher [5] designs is believed to be a
well-studied topic and has been in the focus of a large group of cryptanalysts
during the last 20 years (see e.g. [2, 3, 6, 7, 4, 8, 9, 12, 14, 1]). Several distinguisher
attacks exists agaist reduced-round of AES. The aim of a distinguisher attack
is to distinguish the cipher from a sufficiently generic permutation i.e. the aim
is to find some properties of the cipher that allows to set up a test for an un-
usual event with sufficiently different probability of happening in comparison
to random (e.g. finding certain collision-events in a set of ciphertexts when re-
stricted to structured sets of plaintexts). At Crypto 2016, Sun et al. [15] pre-
sented the very first 5-round key-dependent distinguisher for AES. They extend
a 4-round integral property to 5-rounds by exploiting properties of the AES
MixColumn matrix. Although their distinguisher requires the whole codebook,
it spawned a series of new fundamental results for AES. It was later improved
to 298.2 chosen plaintexts with 2107 computations by extending a 4-round im-
possible differential property to a 5-round property. Then, at Eurocrypt 2017,
Grassi et al. [12] proposed the first 5-round key-independent chosen plaintext
distinguisher which requires 232 chosen plaintexts with a computational cost of
236.6 look-ups into memory of size 236 bytes. They showed that by encrypting
cosets of certain subspaces of the plaintext space the number of times the dif-
ference of ciphertext pairs lie in a particular subspace of the state space always
is a multiple of 8. Later, at Asiacrypt 2017, Rønjom et al. [14] presented new
fundamental properties for Rijndael-type block cipher designs leading to new
types of 3- to 6-round key-independent distinguishers for AES that beats all
previous records. They showed that zero-differences of encrypted plaintext (or
decrypted ciphertext) pairs are left invariant by encrypting new pairs formed
by exchanging ciphertext/plaintext-dependent values between already observed
pairs. Using this property they present the first 6-round distinguisher which re-
quires 2122.83 adaptively chosen ciphertexts and which has computational cost
of 2121.83 XORs. Note that their result is in the adaptive setting where the ad-
versary can actively query the encryption and decryption function depending on
observed values, while the previous distinguishers are in the chosen plaintext or
ciphertext setting.

The security of AES with a secret s-box has been investigated in several
papers. In this case, when the choice of s-box is made uniformly at random from
all 8-bit s-boxes, the size of the secret information increases from 128− and 256-
bit keys to 1812− and 1940-bits of secret key material. In FSE 2015, Tiessen et
al. [16] proposed the first 5-round key recovery attack on AES with a secret s-
box based on integral cryptanalysis, which requires 240 chosen plaintexts with a
computational cost of 238.7 encryptions. In their attack, they first derive an affine
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equivalent s-box before they recover the secret key. Then at FSE 2016, Grassi et
al. [11] proposed a key recovery attack which exploits a particular property of
the AES MixColumn matrix. They then combine this with impossible differential
cryptanalysis to derive the secret key. Their attack requires 2102 chosen plaintexts
with 2100.4 computations. It was later improved to 253.25 chosen plaintexts and
252.6 computations in [10] by using a similar approach, but instead of using
impossible differential cryptanalysis, they apply multiple-n cryptanalysis.

1.1 Our Contribution

So far, various 5-round key recovery attacks on AES with a secret s-box have been
presented based on integral, impossible differential and multiple-n cryptanalysis.
In this paper, we raise the question whether it is possible to set up a 5-round
key recovery attack on AES with a secret s-box based on recently developed
attack techniques called zero-difference cryptanalysis. In this paper we present an
efficient key-recovery attack on 5-round AES with a secret s-box based on zero-
difference cryptanalysis that requires 232 adaptively chosen ciphertexts and that
has computational complexity consisting of 231 XORs. We also present a new
key-independent distinguisher for 5-round AES which requires 227.2 adaptively
chosen ciphertexts and which has computational complexity consisting of 226.2

XORs. The latter distinguisher exploits new structural properties in 5-round
AES.

1.2 Overview of This Paper and Main Results

In Section 2 we briefly recall some results and notation that we use in the rest
of this paper. In Section 3, we describe a new 5-round distinguisher for AES.
Then in Section 4 we present a new key-recovery attack for AES with a se-
cret s-box. The current best secret key distinguishers for 5-round AES and best
key-recovery attacks for 5-round AES-128 with a secret s-box are presented in
Table 1 and Table 2. We adopt that data complexity is measured in a min-
imum number of chosen plaintexts/ciphertexts CP/CC or adaptively chosen
plaintexts/ciphertexts ACP/ACC. Time complexity is measured in equivalent
number of AES encryptions (E), memory access (M) and/or XOR operations
(XOR).

Table 1. Secret-Key Distinguishers for 5-round AES

Property Rounds Data Cost Key-Independent Ref.

Multiple-8 5 232 CP 236.6 M X [12]
Zero Difference 5 227.2 ACC 226.2XOR X Sect. 3

Zero Difference 5 226.8 ACC 225.8 XOR X [14]
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Table 2. Comparison of key-recovery on 5-round AES with a secret s-box

Attack Rounds Data Computation Memory Ref.

Imp. Diff. 5 276.37 CP 274.09 E 28 [10]
Multiple of n 5 253.25 CP 252.6 E 216 [10]

Integral 5 240 CP 238.7 E 240 [16]
Zero Difference 5 229.19CP + 232 ACC 231 XOR small3 Sect. 4
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Fig. 1. Description of one AES round

2 Preliminaries

2.1 A Short Description of AES

The AES internal state is typically represented as a 4 by 4 matrix over the finite
field F28 . The state is sometimes also represented as a vector of length 4 over F4

28

typically formed by concatenating the columns of the matrix state from left to
right. This is the view typically taken in SuperBox cryptanalysis. One full round
of AES consists of SubBytes (SB), ShiftRows (SR), MixColumns (MC) and
AddKey (AK), R = AK ◦MC ◦ SR ◦ SB (depicted in Figure 1). The SB-layer
applies a fixed 8-bit to 8-bit s-box independently to each byte of the state, the
SR-layer cyclically shift the i-th row by i positions, while the MC-layer applies
a fixed linear transformation to each column. The key addition simply XORs a
secret round-dependent value to the state. Also, Rn(x) means n rounds of AES.
We omit the last MC ◦SR operations to simplify the presentation of our attacks
(our attacks work as well in the case in which the final linear layer is omitted).

2.2 Subspace trail on AES

In [11], Grassi et al. present subspace trail cryptanalysis on AES. They define
two different subspaces related to AES. If we let {e0,0, ..., e3,3} form the unit
vectors of F4×4

28 , we have the following.

Definition 1. (Diagonal spaces) The diagonal spaces Di are defined as

Di =< e0,i, e1,i+1, e2,i+2, e3,i+3 >
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where i + j is computed modulo 4. For instance, the diagonal space D0 corre-
sponds to the symbolic matrix:

D0 =

{
x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 ∣∣∣∣∀x1, x2, x3, x4 ∈ F28

}
.

Definition 2. (Column spaces) The column spaces Ci are defined as

Ci =< e0,i, e1,i, e2,i, e3,i > .

For instance, the columns space C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
.

Definition 3. Let I ⊆ {0, 1, 2, 3}. Let DI and CI be defined as

DI =
⊕
i∈I
Di, CI =

⊕
i∈I
Ci.

The dimension of the subspaces DI and CI are both 4 · |I|. The following theorem
describes the deterministic mapping between these two subspaces.

Theorem 1. [11] For I ⊂ {0, 1, 2, 3} and for each a ∈ D⊥I (orthogonal comple-
ment of DI), there exists one and only one b ∈ C⊥I (orthogonal complement of
CI) such that:

R(DI ⊕ a) = CI ⊕ b.

Lemma 1. [11] For all x, y ∈ F4×4
28 and for all I ⊆ {0, 1, 2, 3}, it follows that

Pr(R(x)⊕R(y) ∈ CI |x⊕ y ∈ DI) = 1.

In the other word, we can deduce that for each c ∈ C⊥I , there exists exactly one
d ∈ D⊥I such that

R−1(CI ⊕ c) = DI ⊕ d
and in general

Pr(R−1(x)⊕R−1(y) ∈ DI |x⊕ y ∈ CI) = 1.

Lemma 2. [11] For any CI and DJ , we have that

Pr(x ∈ (CI ∩ DJ)|x ∈ CI) = (2−8)4·|I|−|I|·|J|

Pr(x ∈ (CJ ∩ DI)|x ∈ DI) = (2−8)4·|I|−|I|·|J|.

This means that if two elements belong to the same coset of DI (respectively
CI), then they also belong to the same coset of CJ ( respectively DJ) with
probability (2−8)4·|I|−|I|·|J|. More precisely, when we encrypt two plaintexts from
the same coset of DI for one round, then they belong to the same coset of CI∩DJ

with probability (2−8)4·|I|−|I|·|J|. We use this lemma to compute most of the
probabilities in our attacks.
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2.3 Zero-difference for 4-round AES

In [14], Rønjom et al. present zero-difference cryptanalysis against generic Sub-
stitution Permutation Networks (SPNs). In the following, we recall the basic
zero-difference properties for 4-rounds of AES.

Definition 4. [14] For a vector v ∈ F4
2 and a pair of states α, β ∈ F4×4

28 define
a new state

ρv(α, β) = (αivi ⊕ βi(vi ⊕ 1) | 0 ≤ i < n).

where αi and βi are ith columns of α and β

The new pair (α′, β′) = (ρv(α, β), ρv(β, α)) is formed by exchanging individual
words between α and β according to the binary coefficients of v.

Zero-difference cryptanalysis exploits a fundamental property of the SLS
construction (S is a non-linear layer and L is a linear transformation) which is
encapsulated in the following theorem originally presented in [14].

Theorem 2. [14] Let α, β ∈ F4×4
28 and α′ = ρv(α, β), β′ = ρv(β, α) then

ν(S ◦ L ◦ S(α)⊕ S ◦ L ◦ S(β)) = ν(S ◦ L ◦ S(α′)⊕ S ◦ L ◦ S(β′))

where ν(x) denotes the indicator vector which is 1 if the word i of x is zero and
0 otherwise.

Due to the symmetry of SLS, we get exactly the same result in the decryption
direction. Note that the SLS construction essentially corresponds to 4 full rounds
of AES. In [14], the authors fix plaintexts with fixed zero diagonals and decrypt
the exchanged ciphertext pairs to a new plaintext pair which with probability 1
have exactly the same zero diagonals.

We can represent Theorem 2 in terms of subspace cryptanalysis. Consider
two plaintexts in the same coset of a diagonal space DI , p0, p1 ∈ DI + a. Then
let c0 = R4(p0), c1 = R4(p1), p′0 = R−4(ρv(c0, c1))) and p′1 = R−4(ρv(c1, c0))).
Then with probability one, we also have that p′0⊕p′1 ∈ DI (different coset than
DI +a). In the next two sections, we present two practical different attacks based
on this 4-round property. We have practically verified the attacks on full-scale
AES in C/C++4.

3 5-round key-independent distinguisher

In this section we extend the 4-round distinguisher mentioned in the previous
section to a 5-round distinguisher by adding one round at beginning. We en-
crypt a plaintext set and expect that some of them follow the 4-round property
after one round encryption. Thus, we present a new 5-round key-independent
distinguisher which requires 227.2 adaptively chosen ciphertexts. The idea for
setting up a 5-round distinguisher is as follows. We pick a plaintext set P from
a coset of a diagonal space D0, P ⊂ D0 + a, and encrypt them. Then from the

4 https://github.com/Kryptoraphy/practical-attacks
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Fig. 2. 5-round truncated differential characteristic used in case 1

set of all possible ciphertext pairs we form 7 new ciphertext pairs by exchanging
mixed values between the original pairs. Then we decrypt the set of these newly
generated ciphertext pairs and expect to observe one such pair belonging to the
same coset of DL with |L| = 3.

We know that each coset of DI is mapped into a coset of CI with probability
one, and diagonal and column spaces always have an intersection with a certain
probability (Lemma 2). So, when we encrypt the plaintexts set P , one of following
cases may happen after one round encryption.

First case. After one round encryption, then according to Lemma 2, with
probability 4 · 2−24 (a single byte can be active in 4 different positions in a
column) we have that

R(pi)⊕R(pj) ∈ DK ∩ C0

where |K| = 1. If we swap word(s) between the ciphertexts and decrypt them,
we have, according to the 4-round property mentioned in Section 2.3, that

R−4(ρv(ci, cj))⊕R−4(ρv(cj , ci)) ∈ DK

and

R−4(ρv(ci, cj))⊕R−4(ρv(cj , ci)) ∈ DK ∩ CL

where |L| = 3 with probability 4 · 2−8 (there are 4 possible choices for choosing
L). It means that after one more round of decryption, according to Theorem 1,
the two new plaintexts, p′i and p′j , are in same coset of a diagonal space DL

where |L| = 3. Thus, it happens with a probability 4 ·2−24 ·4 ·2−8. The truncated
differential characteristic used in this case is depicted in Figure 2.

Second case. In this case, R(pi)⊕R(pj) differ in only two bytes with probability
6 · 2−16. In other words:

R(pi)⊕R(pj) ∈ DK ∩ C0

where |K| = 2. Then, according to the 4-round property, we have that

R−4(ρv(ci, cj))⊕R−4(ρv(cj , ci)) ∈ DK ,
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Fig. 3. 5-round truncated differential characteristic used in case 2
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Fig. 4. 5-round truncated differential characteristic used in case 3

and with probability 4 · 2−16 we have that

R−4(ρv(ci, cj))⊕R−4(ρv(cj , ci)) ∈ DK ∩ CL

so R−5(ρv(ci, cj)) ⊕ R−5(ρv(cj , ci)) is zero in a diagonal with probability 6 ·
2−16 · 4 · 2−16. Figure 3 depicts the truncated differential characteristic used in
this case.

Third case. There is also a case that R(pi)⊕R(pj) is zero in all bytes except
three bytes, which happens with probability 4 · 2−8. It means that

R(pi)⊕R(pj) ∈ DK ∩ C0

where |K| = 3. Thus, this pair follows the 4-round property

R−4(ρv(ci, cj))⊕R−4(ρv(cj , ci)) ∈ DK ,

and with probability 4 · 2−24, we also have that

R−4(ρv(ci, cj))⊕R−4(ρv(cj , ci)) ∈ DK ∩ CL.

Then after one more round of decryption, it follows that p′i ⊕ p′j ∈ DL where
|L| = 3. In total, we expect this event happens with probability 4 · 2−8 · 4 · 2−24.
In Figure 4, the truncated differential characteristic used in this case is depicted.

In total, the probability that there is a plaintext pair such that p′i⊕p′j ∈ CL

is 16 · 2−24 · 2−8 + 24 · 2−16 · 2−16 + 16 · 2−8 · 2−24 = 2−26.19. In order to set up
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a distinguisher, we encrypt 212.2 plaintexts from a coset of D0. We generate all
223.4 possible ciphertext pairs and for each pair we generate all 7 possible new
ciphertext pairs by swapping words between them. Then we decrypt all 7 · 223.4
ciphertext pairs and expect that there is at least one plaintext pair such that
p′0 ⊕ p′1 ∈ DL with |L| = 3. At random, the probability that two plaintexts
belong to the same coset of DL is 2−30. For AES, the probability of having a
plaintext pair with our desired difference pattern is 1 − (1 − 2−26.2)2

26.2

= 0.63
after decrypting 226.2 ciphertext pairs, while for a random permutation, this
probability is 1 − (1 − 2−30)2

26.2

= 0.07. Thus, the probability of success is
0.58. So, we can distinguish 5-round AES from a random permutation using
212.2 chosen plaintext and 2 · 226.2 = 227.2 adaptively chosen ciphertext. The
algorithm for this distinguisher is presented in Algorithm 1.

The data complexity of this distinguisher is in the same range as the data
complexity of the best 5-round adaptive distinguisher presented in [14]. Both
distinguishers extend on the 4-round distinguisher mentioned in Section 2.3 to
a 5-round distinguisher by adding a round at the begining. In the distinguisher
presented in [14], the aim is to find plaintext pairs such that all of them have
a certain property (a certain zero-byte set). To achieve this, attacker needs to
generate new pairs of plaintexts and ciphertexts adaptively from the original
pairs. To set up our distinguisher, we just need to generate new ciphertext pairs
adaptively. Our distinguisher exploits another structural properties over 5-round.

Algorithm 1: 5-round key-independent distinguisher

Input: Set P contains 212.2 plaintext pi where bytes in first diagonal takes a
random values and others are constant

Output: 1 for an AES, -1 otherwise.
for i from 0 to 212.2 do

ci ← enck(pi)
end
for i from 0 to 212.2 do

for j from i+ 1 to 212.2 − 1 do
for r from 1 to 7 do

c′i ← ρvr (ci, cj), c′j ← ρvr (cj , ci)
p′i ← deck(c′i), p′j ← deck(c′j)
if p′i ⊕ p′j ∈ DL where |L| = 3 then

return 1
end

end

end

end
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4 Key recovery attack on 5-round AES with a single
secret s-box

In this section we present a new key-recovery attack on 5-round AES with a secret
s-box. The idea is to turn the 4-round distinguisher mentioned in section 2.3 to
a key recovery attack by adding a round at beginning using a property of the
MixColumn operation in AES. The MixColumns matrix M in AES is defined
by

M =


α α+ 1 1 1
1 α α+ 1 1
1 1 α α+ 1

α+ 1 1 1 1

 .
We pick two pairs of plaintexts p0 and p1 where the first diagonal is given by
SR−1(p00) = SR−1(0, i, j, 0) and SR−1(p10) = SR−1(z, z + i, z + j, 0) and where
z is a random non-zero element of F28 . Let k0 = (k0,0, k1,1, k2,2, k3,3) denote the
key-bytes XORed with the first diagonal of the plaintext. Then the difference
between the first column after one encryption of the two plaintexts becomes

α∆x0 ⊕ (α+ 1)∆x1 ⊕∆x2 =y0

∆x0 ⊕ α∆x1 ⊕ (α+ 1)∆x2 =y1

∆x0 ⊕∆x1 ⊕ α∆x2 =y2

(α+ 1)∆x0 ⊕∆x1 ⊕∆x2 =y3.

where ∆x0 = s(k0,0) ⊕ s(z ⊕ k0,0), ∆x1 = s(k1,1 ⊕ z ⊕ i) ⊕ s(k1,1 ⊕ i), ∆x2 =
s(k2,2⊕ z⊕ j)⊕ s(k2,2⊕ j) and where s(x) is the AES-sbox. Since the plaintexts
are equal in the last byte, this part cancels out in the difference. In particular, if
we look at the first two equations, it is not hard to see that they are zero when
∆x0 = ∆x1 = ∆x2,

s(k0,0)⊕ s(z ⊕ k0,0) = s(k1,1 ⊕ z ⊕ i)⊕ s(k1,1 ⊕ i) = s(k2,2 ⊕ z ⊕ j)⊕ s(k2,2 ⊕ j)

This happens when i ∈ {k0,0⊕k1,1, z⊕k0,0⊕k1,1} and j ∈ {k0,0⊕k2,2, z⊕k0,0⊕
k2,2}. Thus, if we let i and j run through all values of F28 , we are guaranteed
that there are at least four values for which the first two equations are zero.

We prepare a set P of plaintext pairs as follows. For each i and j, we gener-
ate a pair of plaintexts p0 and p1 where the first diagonal of p0 is SR−1(p00) =
SR−1(0, i, j, 0) while the first diagonal in the second text is SR−1(p10) = SR−1(z, z⊕
i, z ⊕ j, 0). We then encrypt this pair five rounds to a pair of ciphertexts c0 and
c1. We then pick all 7 new ciphertext pairs c′0, c′1 = (ρv(c0, c1), ρv(c1, c0)) and
return the corresponding plaintexts p′0 and p′1. Now we know that there are 28
pairs in the set such that

R−4(ρv(c0, c1))⊕R−4(ρv(c1, c0)) ∈ DK

where |K| = 2, since for each of the pair satisfy R(p0) ⊕ R(p1) ∈ DK . Thus,
according to Lemma 2, with probability 4 · 2−16 we have that

R−4(ρv(c0, c1))⊕R−4(ρv(c1, c0)) ∈ DK ∩ CL
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Fig. 5. 5-round truncated differential characteristic used in key recovery attack AES

where |L| = 3. This means that p′0 ⊕ p′1 ∈ DL. Thus, for this pair, we can
deduce the values of i and j which corresponds to k0,0⊕k1,1 (z⊕k0,0⊕k1,1) and
k0,0⊕ k2,2 (z⊕ k0,0⊕ k2,2) respectively. The truncated differential characteristic
used in the attack is depicted in Figure 5. Since there are 28 right pairs in
the set P, the probability that there is a new plaintext pair such that p′0 ⊕
p′1 ∈ CL is 1 − (1 − 2−14)28 = 2−9.19. Then we need to encrypt 29.19 sets P
(by picking different constants for the last three diagonals). Thus, to find two
bytes of the key, the attacker needs 2 · 29.19 · 216 = 226.19 chosen plaintexts and
2 ·7 ·29.19 ·216 = 229 adaptively chosen ciphertexts. Then the attacker can repeat
the attack for other diagonals (two times for each diagonal) and guess one byte of
the key for each diagonal. In total the attacker needs 229.19 chosen plaintexts and
232 adaptively chosen ciphertexts to form an attack with success rate of 0.63.
The algorithm for this key recovery attack is presented in Algorithm 2. The
key-recovery attacks on 5-round AES with a secret s-box presented in [10] are
based on impossible and multiple-n cryptanalysis, while our attack is based on
zero-difference cryptanalysis. Since our attack exploits a probability one 4-round
property, it requires less texts than others which exploit probabilistic 4-round
properties. Also, the best 5-round key recovery attacks in adaptive setting [14]
and non-adaptive setting [1] require 211.3 adaptively chosen ciphertexts and 222

chosen plaintext respectively (with a known s-box), so compared to our attack,
and despite the increased size of the secret information, the required data is
increased, at most, by a factor of 221.

5 Conclusion

In this paper we have introduced a new 5-round key-independent distinguisher
which requires 212.2 chosen plaintexts and 227.2 adaptively chosen ciphertexts.
In addition, we present a new key recovery attack against 5-round AES with
a secret s-box based on zero-difference cryptanalysis.The attack requires 229.19

chosen plaintexts and 232 adaptively chosen ciphertexts. Both attacks mentioned
in this paper are practical and have been verified experimentally on a standard
laptop.
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Algorithm 2: Key recovery attack on 5-round AES with a single secret
s-box

Input: 29.12 different sets P where each contains 216 plaintext pairs
Output: Candidates for k0,0 ⊕ k1,1 (1⊕ k0,0 ⊕ k1,1) and k0,0 ⊕ k2,2

(1⊕ k0,0 ⊕ k2,2)
for c from 0 to 29.12 do

for i from 0 to 28 do
for j from 0 to 28 do

p00 ← (0, i, j, 0), p10 ← (1, 1⊕ i, 1⊕ j, 0)
p0l = p1l = Random− value for l = 1, 2, 3
c0 ← enck(p0), c1 ← enck(p1)
for r from 1 to 7 do

c′0 ← ρvr (c0, c1), c′1 ← ρvr (c1, c0)
p′0 ← deck(c′0), p′1 ← deck(c′1)
if p′0 ⊕ p′1 ∈ DL where |L| = 3 then

(i, j) is a candidate for two bytes of key.
end

end

end

end

end
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