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Abstract. In this work, we present new low-data secret-key distinguish-
ers and key-recovery attacks on reduced-round AES.
The starting point of our work is “Mixture Differential Cryptanalysis”
recently introduced at FSE/ToSC 2019, a way to turn the “multiple-
of-8” 5-round AES secret-key distinguisher presented at Eurocrypt 2017
into a simpler and more convenient one (though, on a smaller number
of rounds). By reconsidering this result on a smaller number of rounds,
we present as our main contribution a new secret-key distinguisher on 3-
round AES with the smallest data complexity in the literature (that does
not require adaptive chosen plaintexts/ciphertexts), i.e. approximately
half of the data necessary to set up a 3-round truncated differential dis-
tinguisher (which is currently the distinguisher in the literature with the
lowest data complexity). E.g. for a probability of success of 95%, our dis-
tinguisher requires just 10 chosen plaintexts versus 20 chosen plaintexts
necessary to set up the truncated differential one.
Besides that, we present new competitive low-data key-recovery attacks
on 3- and 4-round AES, both in the case in which the S-Box is known
and in the case in which it is secret.

Keywords: AES, Mixture Differential Cryptanalysis, Secret-Key Dis-
tinguisher, Low-Data Attack, Secret S-Box

1 Introduction

AES (Advanced Encryption Standard) [6] is probably the most used and studied
block cipher, and many constructions employ reduced-round AES as part of their
design. Determining its security is therefore one of the most important problems
in cryptanalysis. Since there is no known attack which can break the full AES
significantly faster than via exhaustive search, researchers had concentrated on
attacks which can break reduced-round versions of AES. Especially within the
last couple of years, new cryptanalysis results on the AES have appeared regu-
larly (e.g., [11,13,9,1]). While those papers do not pose any practical threat to
the AES, they do give new insights into the internals of what is arguably the
cipher that is responsible for the largest fraction of encrypted data worldwide.

Among many others, a new technique called “Mixture Differential Crypt-
analysis” [9] has been recently presented at FSE/ToSC 2019, which is a way to



Table 1. Secret-key distinguishers on 3-round AES which are independent of the
secret key. The data complexity corresponds to the minimum number of cho-
sen plaintexts/ciphertexts (CP/CC) and/or adaptive chosen plaintexts/ciphertexts
(ACP/ACC) which are needed to distinguish the AES permutation from a random
permutation with a success probability denoted by Prob. Distinguishers proposed in
our work are in bold.

Property Prob Data Reference

Imp. Mixt. Integral ≈ 65% 6 CP Section 4.3

Trunc. Differential ≈ 65% 12 CP [10]

Imp. Mixt. Integral ≈ 95% 10 CP Section 4.3

Trunc. Differential ≈ 95% 20 CP [10]

Integral ≈ 100% 256 = 28 CP [5,12]

Yoyo ≈ 100% 2 CP + 2 ACC [13]

translate the (complex) “multiple-of-8” 5-round distinguisher [11] into a simpler
and more convenient one (though, on a smaller number of rounds). Given a pair
of chosen plaintexts, the idea is to construct new pairs of plaintexts by mixing
the generating variables of the initial pair of plaintexts. As proved in [9], for
4-round AES the corresponding ciphertexts of the initial pair of plaintexts lie in
a particular subspace if and only if the corresponding pairs of ciphertexts of the
new pairs of plaintexts have the same property. Such a secret-key distinguisher
– which is also independent of the details of the S-Box and of the MixColumns
matrix – has been reconsidered in [4], where authors showed that it is an imme-
diate consequence of an equivalence relation on the input pairs, under which the
difference at the output of the round function is invariant. Moreover, it is also
the starting point for practical and competitive key-recovery attacks on 5-round
AES-128 and 7-round AES-192 [1], breaking the record for such attacks which
was obtained 18 years ago by the classical Square attack.

In this paper, we reconsider this distinguisher on a smaller number of rounds
in order to set up new (competitive) low-data distinguishers and key-recovery
attacks on reduced-round AES.

Our Contribution and Related Work

Low-data distinguishers/attacks on reduced-round ciphers have recently gained
renewed interest in the literature. This is motivated by the following reason.

In one direction, cryptanalysis of block ciphers has focused on maximizing
the number of rounds that can be broken without exhausting the full code book
and key space. This often leads to attacks marginally close to that of pure brute
force. Even if these attacks are very important in order to e.g. determine the
security margin of a cipher (that is, the ratio between the number of rounds
which can be successfully attacked and the number of rounds in the full cipher),
they are obviously not practical.

For this reason, it seems desirable to consider also other approaches, such as
restricting the resources available to the adversary in order to adhere to “real-
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Table 2. Attacks on reduced-round AES-128. The data complexity corresponds to
the number of required chosen plaintexts (CP). The time complexity is measured in
reduced-round AES encryption equivalents (E), while the memory complexity is mea-
sured in plaintexts (16 bytes). Precomputation is given in parentheses. The case in
which the final MixColumns operation is omitted is denoted by “r.5 rounds”, that is,
r full rounds and the final round. “Key sched.” highlights whether the attack exploits
the details of the key schedule of AES. Attacks proposed in our work are in bold. Note
that the details of the S-Box have to be known to the attacker.

Attack Rounds Data (CP) Cost Memory Key sched. Reference

TrD 2.5 - 3 2 231.6 28 No [10]

G&D-MitM 2.5 2 224 216 Yes [3]

G&D-MitM 3 2 216 28 Yes [3]

TrD 2.5 - 3 3 211.2 − No [10]

G&D-MitM 3 3 28 28 Yes [3]

TrD 2.5 - 3 3 25.7 212 No [10]

MixInt 2.5− 3 4 28.1 − No Section 5.1

MixInt 2.5− 3 4 < 1 (+236.1) 228 No Section 5.1

TrD (EE) 3.5 - 4 2 296 − Yes [10]

G&D-MitM 4 2 288 28 Yes [3]

G&D-MitM 4 3 272 28 Yes [3]

TrD (EE) 3.5 - 4 3 269.7 212 Yes [10]

G&D-MitM 4 4 232 224 Yes [3]

MixInt 3.5− 4 6 245.3 − No Section 5.2

MixInt 3.5− 4 6 233.3 (+235.7) 228 No Section 5.2

ImpPol 3.5 - 4 8 238 215 No [15]

G&D: Guess & Det., MitM: Meet-in-the-Middle, TrD: Truncated Differential,
ImpPol: Imp. Polytopic, EE: Extension at End, EB: Extension at Beginning.

life” scenarios. In this case, the time complexity of the attack is not restricted
(besides the natural bound of exhaustive search), but the data complexity is
restricted to only a few known or chosen plaintexts. Attacks in this scenario have
been studied explicitly in a number of papers, which include low-data Guess-
and-Determine and Meet-in-the-Middle techniques (see [3]), low-data truncated
differential cryptanalysis (see [10]), polytopic cryptanalysis (see [15]), and – if
adaptive chosen plaintexts/ciphertexts are allowed – yoyo-like attacks (see [13]).

“Mixture Integral” Key-Recovery Attacks. In Sect. 4.2 and Sect. 5 we show that
“Mixture Differential Cryptanalysis” [9] can be exploited in order to set up low-
data attacks on reduced-round AES. Given a set of chosen plaintexts defined as
in [9], our attacks are based on the fact that the XOR sum of the corresponding
texts after 2-round AES encryptions is equal to zero with prob. 1. Using the
same strategy proposed in a classical square/integral attack [5,12], this zero-
sum property can be exploited to set up competitive attacks on 3- and 4-round
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AES, which require only 4 and 6 chosen plaintexts, respectively. A comparison
of all known low-data attacks on AES and our attacks is given in Table 2. Since
(1) the pairs of plaintexts used to set up the attacks share the same generating
variables – which are mixed in the same way proposed by the Mixture Differential
Distinguisher – and since (2) such attacks exploit the zero-sum property (instead
of a differential one), we call this attack a “Mixture Integral” attack.

“Impossible Mixture Integral” Secret-Key Distinguisher. In Section 4.3, we show
that the previous distinguishers/attacks can also be exploited to set up a new
3-round secret-key distinguisher on AES, which is independent of the key, of
the details of the S-Box and of the MixColumns operation. For a probability of
success of ≈ 95%, such a distinguisher requires only 10 chosen plaintexts (or ci-
phertexts), that is half of the data required by the most competitive distinguisher
currently present in the literature (which does not require adaptive chosen plain-
texts/ciphertexts).

What is the property exploited by this new distinguisher? Consider a zero-
sum key-recovery attack on 3-round AES (based on a 2-round zero-sum distin-
guisher). The assumption of an integral attack is that the zero-sum property
is always satisfied when decrypting under the secret key. As a result, if there
is no key for which the zero-sum property is satisfied, one can deduce that the
ciphertexts have been generated by a random permutation, and not by AES.
Such a strategy can be used as a distinguisher, but requires key guessing and is
thus not independent of the secret key. In Section 4.3, we show how to check this
property without guessing any key material by providing a property – which is
independent of the secret key – that holds on the ciphertexts only in the case
in which the key-recovery (mixture integral) attack just proposed “fails”. The
obtained 3-round distinguisher – which is independent of the secret key – can
also be used to set up new key-recovery attacks on reduced-round AES.

AES with a Single Secret S-Box. Finally, in Appendix B we show that a compet-
itive “Mixture Integral” attack can also be set up on reduced-round AES with
a single secret S-Box, i.e., the case in which the AES S-Box is replaced by a
secret 8-bit one while keeping everything else unchanged. In the literature, two
possible strategies are considered to set up the attack:

Strategy S1: The attacker first determines the secret S-Box up to additive
constants (that is, S-Box(· ⊕ a)⊕ b for unknown a and b), and then they use
this knowledge and apply attacks present in the literature (e.g., the integral
one) to derive the whitening key.

Strategy S2: The attacker exploits a particular property of the MixColumns
matrix (i.e., the fact that two elements for each row of the matrix are equal)
in order to directly find the secret key (no information of the secret S-Box is
found or used).

Examples for attacks based on the first strategy are given in [16], while examples
for attacks based on the second strategy are given in [14,10,8]. In Appendix B we
exploit the first strategy in order to set up a competitive attack on 3-round AES
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Table 3. Comparison of attacks on reduced-round AES with secret S-Box. The
data complexity corresponds to the number of required chosen plaintexts/ciphertexts
(CP/CC). The time complexity is measured in reduced-round AES encryption equiva-
lents (E), in memory accesses (M), or XOR operations (XOR). The memory complexity
is measured in plaintexts (16 bytes). The case in which the final MixColumns operation
is omitted is denoted by “r.5 rounds”, that is, r full rounds and the final round. New
attacks are in bold. Strategy 1 (S1) denotes an attack that requires to find the details
of the S-Box, while Strategy 2 (S2) denotes an attack that directly finds the key.

Attack Rounds S1 S2 Data Computation Memory Reference

MixInt 2.5− 3 3 211.6 CP 28 E + 222.6 XOR 210.6 Appendix B

TrD 2.5 - 3 3 213.6 CP 213.2 XOR small [10]

I 2.5 - 3 3 219.6 CP 219.6 XOR small [10]

I 3.5 - 4 3 216 CC 217.7 E 216 [16]

I 3.5 - 4 3 216 CP 228.7 E 216 [16, Sect. 3.5]

TrD 3.5 - 4 3 230 CP 236 M ≈ 229.7 E 230 [10]

TrD: Truncated Differential, I: Integral, ImD: Impossible Differential.

with a single secret S-Box. A comparison of all known attacks on reduced-round
AES with a single secret S-Box and our attack is given in Table 3.

Practical Verification. We implemented most of our distinguishers and attacks in
practice and could verify the theoretical results. We also implemented a method
to find the affine equivalent of a secret S-Box. All the source code files can be
found on GitHub1.

2 Preliminary - Brief Description of AES

The Advanced Encryption Standard [6] is a Substitution-Permutation network
that supports key sizes of 128, 192, and 256 bits. The 128-bit plaintext initializes
the internal state as a 4×4 matrix of bytes as values in the finite field F28 , defined
using the irreducible polynomial x8+x4+x3+x+1. Depending on the version of
AES, Nr rounds are applied to the state, where Nr = 10 for AES-128, Nr = 12
for AES-192, and Nr = 14 for AES-256. An AES round applies four operations
to the state matrix:

– SubBytes (S-Box) – applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (provides non-linearity in the cipher).

– ShiftRows (SR) – cyclic shift of each row to the left.

– MixColumns (MC) – multiplication of each column by a constant 4×4 MDS
matrix (SR and MC provide diffusion in the cipher).

– AddRoundKey (ARK) – XORing the state with a 128-bit subkey.

1 https://github.com/mschof/aes-mixint-analysis
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One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.

The Notation Used in this Paper. Let x denote a plaintext, a ciphertext,
an intermediate state, or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte
in the row i and in the column j. We denote by R one round2 of AES, while
we denote r rounds of AES by Rr. Finally, in the paper we often use the term
“partial collision” (or “collision”) when two texts belong to the same coset of
a given subspace X . We recall that given a subspace X, the cosets X ⊕ a and
X ⊕ b (where a 6= b) are equal (that is, X ⊕ a ≡ X ⊕ b) if and only if a⊕ b ∈ X.

3 Subspace Trail Cryptanalysis

The concept of trails of subspaces has been introduced in [10] as a generalization
of invariant subspace.

Definition 1. Let F denote a round function in an iterative block cipher and
let (V1, V2, ..., Vr+1) denote a set of r+ 1 subspaces with dim(Vi) ≤ dim(Vi+1). If
for each i = 1, ..., r and for each ai there exists ai+1 s.t. F (Vi⊕ai) ⊆ Vi+1⊕ai+1,
then (V1, V2, ..., Vr+1) is subspace trail of length r for the function F .

This means that if F t denotes the application of t rounds with fixed keys,
then F t(V1 ⊕ a1) = Vt+1 ⊕ at+1.

Subspace Trails of AES. Here we briefly recall the subspace trails of AES pre-
sented in [10] – we refer to Appendix A for more details. In the following, we only
work with vectors and vector spaces over F4×4

28 , and we denote by {e0,0, ..., e3,3}
the unit vectors of F4×4

28 (e.g., ei,j has a single 1 in row i and column j).

Definition 2. For each i ∈ {0, 1, 2, 3}:

– The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.
– The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly, the inverse-

diagonal spaces IDi are defined as IDi = SR(Ci).
– The i-th mixed spaces Mi are defined as Mi = MC(IDi).

Definition 3. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [10]:

– For any coset DI ⊕ a there exists a unique b ∈ C⊥I s.t. R(DI ⊕ a) = CI ⊕ b.
2 Sometimes we use the notation Rk instead of R to highlight the round key k.
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– For any coset CI ⊕ a there exists a unique b ∈M⊥I s.t. R(CI ⊕ a) =MI ⊕ b.

Theorem 1 ([10]). For each I ⊆ {0, 1, 2, 3} and for each a ∈ D⊥I , there exists
one and only one b ∈M⊥I s.t. R2(DI ⊕ a) =MI ⊕ b.

Observe that if (1) X is a subspace, (2) X ⊕ a is a coset of X and (3) x and
y are two elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (1)

We remark that all these results can be redescribed using a more “classical”
truncated differential notation. For example, if two texts t1 and t2 are equal
except for the bytes in the i-th diagonal3 for each i ∈ I, then they belong to
the same coset of DI . A coset of DI corresponds to a set of 232·|I| texts with
|I| active diagonals. Again, two texts t1 and t2 belong to the same coset of IDI
if the difference of the bytes that lie in the i-th anti-diagonal for each i /∈ I is
equal to zero. Similar considerations hold for the column space CI and the mixed
space MI .

We finally introduce some notation that we largely use in the following.

Definition 4 ([9]). Let X be one of the previous subspaces, that is, CI , DI , IDI
orMI . Let x0, ..., xn−1 ∈ F4×4

28 be a basis of X , i.e., X ≡ 〈x0, x1, ..., xn−1〉, where
n = 4 · |I|. Let t be an element of an arbitrary coset of X , that is, t ∈ X ⊕ a for
arbitrary a. We say that T is “generated” by the generating variables (t0, ..., tn−1)
– for the following, t ≡ (t0, ..., tn−1) – if and only if t = a⊕

⊕n
i=0 t

i · xi.

As an example, let X = M0 ≡ 〈MC(e0,0),MC(e3,1),MC(e2,2),MC(e1,3)〉,
and let p ∈M0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if and only if

p ≡ p0 ·MC(e0,0)⊕ p1 ·MC(e1,3)⊕ p2 ·MC(e2,2)⊕ p3 ·MC(e3,1)⊕ a.

Similarly, let X = C0 ≡ 〈e0,0, e1,0, e2,0, e3,0〉, and let p ∈ C0 ⊕ a. Then p ≡
(p0, p1, p2, p3) if and only if p ≡ a⊕ p0 · e0,0 ⊕ p1 · e1,0 ⊕ p2 · e2,0 ⊕ p3 · e3,0.

4 Mixture Integral Distinguisher on 2-Round AES

4.1 Mixture Differential Secret-Key Distinguisher

In order to present our result, we recall the “mixture differential distinguisher”
[9] on reduced-round AES proposed at FSE/ToSC 2019.

3 The i-th diagonal of a 4 × 4 matrix A is defined as the elements that lie on row r
and column c such that r− c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A
is defined as the elements that lie on row r and column c such that r+ c = i mod 4.
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Theorem 2 ([9]). Given the subspace C0∩D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two
plaintexts p1 and p2 in the same coset (C0 ∩ D0,3)⊕a generated by p1 ≡ (z1, w1)
and p2 ≡ (z2, w2) (where zi, wi ∈ F28 for i = 1, 2). Let p̃1, p̃2 ∈ C0 ⊕ a ≡
〈e0,0, e1,0, e2,0, e3,0〉 ⊕ a be two other plaintexts generated by

p̃1 ≡ (z1, w1, Ψ, Φ), p̃2 ≡ (z2, w2, Ψ, Φ) or p̃1 ≡ (z1, w2, Ψ, Φ), p̃2 ≡ (z2, w1, Ψ, Φ),

where Ψ and Φ can take any possible value in F28 . Then

R4(p1)⊕R4(p2) ∈MJ ⇐⇒ R4(p̃1)⊕R4(p̃2) ∈MJ

holds with prob. 1 for 4-round AES, independently of the secret key, of the details
of the S-Box, and of the MixColumns matrix.

For completeness, we mention that such a result has been revisited recently in
[4], where authors show that the above property is an immediate consequence
of an equivalence relation on the input pairs, under which the difference at the
output of the round function is invariant.

Proof Using the “Super-Sbox” Notation. We briefly recall the proof pro-
vided in [9] using the “super-Sbox” notation introduced in [7], where

super-Sbox(·) = S-Box ◦ARK ◦MC ◦ S-Box(·). (2)

In order to prove the result, it is sufficient to show that

R2(p1)⊕R2(p2) = R2(p̃1)⊕R2(p̃2). (3)

Indeed, due to the fact that Prob(R2(x) ⊕ R2(y) ∈ MI |x ⊕ y ∈ DI) = 1,
Theorem 2 follows immediately – we refer to [9] for all details.

As it is well-known, 2-round encryption can be rewritten using the super-
Sbox notation as

R2(·) = ARK ◦MC ◦ SR ◦ super-Sbox ◦ SR(·).

Since the ShiftRows and MixColumns operations are linear, it is sufficient to
prove that

super-Sbox(q1)⊕ super-Sbox(q2) = super-Sbox(q̂1)⊕ super-Sbox(q̂2), (4)

where qi = (zi, wi) and q̂i = (zi, w3−i), or equivalently

qi = SR(pi) ≡ SR(a)⊕


zi 0 0 0
0 0 0 wi

0 0 0 0
0 0 0 0

 and q̂i = SR(p̂i) ≡ SR(a)⊕


zi 0 0 0
0 0 0 w3−i

0 0 0 0
0 0 0 0


for i ∈ {1, 2} (note that SR(D0,3 ∩ C0) = C0,3 ∩ ID0 by definition). Since (1)
each column of q1 and q2 depends on different and independent variables, (2)
the super-Sbox works independently on each column, (3) the XOR sum is com-
mutative, and (4) the difference in the second and in the third column is equal
to zero independently of the values of Ψ and Φ, it follows that Equation (4) is
satisfied, which implies the thesis.
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4.2 Mixture Integral Distinguisher on 2-Round AES

The result proposed in Theorem 2 can be rewritten as a zero-sum (or integral)
distinguisher and serves as a starting point for our distinguisher and key-recovery
attacks on reduced-round AES.

Lemma 2. Given the subspace C0 ∩D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two plain-
texts p1 and p2 in the same coset (C0 ∩ D0,3)⊕ a generated by p1 ≡ (z1, w1) and
p2 ≡ (z2, w2). Let p̃1, p̃2 ∈ C0 ⊕ a be two other plaintexts generated by

p̃1 ≡ (z1, w1, Ψ, Φ), p̃2 ≡ (z2, w2, Ψ, Φ) or p̃1 ≡ (z1, w2, Ψ, Φ), p̃2 ≡ (z2, w1, Ψ, Φ),

where Ψ and Φ can take any possible value in F28 . Then

R2(p1)⊕R2(p2)⊕R2(p̃1)⊕R2(p̃2) = 0 (5)

holds with prob. 1 for 2-round AES, independently of the secret key, of the details
of the S-Box, and of the MixColumns matrix.

We highlight that, since the previous event occurs with prob. 2−128 if the ci-
phertexts are generated by a random permutation, it is potentially possible to
distinguish 2-round AES from a random permutation by exploiting the previous
result4.

4.3 Impossible Mixture Integral Distinguisher on 3-Round AES

The property just proposed in the previous section is independent of the secret
key and of the S-Box, and it can be used to set up a key-recovery attack on
reduced-round AES. In particular, consider p1, p2, p̃1, p̃2 as in Lemma 2 and the
corresponding ciphertexts c1 = R3(p1), c2 = R3(p2), c̃1 = R3(p̃1), c̃2 = R3(p̃2)
after 3-round AES encryptions. Assuming the last MixColumns operation is
omitted and since

R2(p1)⊕R2(p2)⊕R2(p̃1)⊕R2(p̃2) = 0,

it follows that the secret key k must satisfy

S-Box−1(c1j,l ⊕ kj,l)⊕ S-Box−1(c2j,l ⊕ kj,l)

⊕ S-Box−1(c̃1j,l ⊕ kj,l)⊕ S-Box−1(c̃2j,l ⊕ kj,l) = 0
(6)

for each j, l = 0, ..., 3 as for a classical “integral attack” [5,12] (all the details of
the attack are given in the next section). The crucial point here is that there exists
at least one key (namely, the secret key) that satisfies the previous equivalence.

Lemma 3. Let {c1, c2, c̃1, c̃2} be the set of ciphertexts corresponding to the 3-
round encryptions of p1, p2, p̃1, p̃2. With prob. 1 there exists (at least) one key k
that satisfies Equation (6).

4 However, note that a truncated differential distinguisher is more competitive, since
it requires only 2 chosen plaintexts instead of 4.
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Proof. Let [R2(p)]i,j be the byte in position (i, j) of the 2-round encryption of

p. Let k̂ be the secret key, and let k be the guessed key. Due to Lemma 2, we
know that

S-Box−1
[
S-Box

(
[R2(p1)]j,l ⊕ k̂j,l

)
⊕ki,j

]
⊕ S-Box−1

[
S-Box

(
[R2(p2)]j,l ⊕ k̂j,l

)
⊕ki,j

]
⊕ S-Box−1

[
S-Box

(
[R2(p̃1)]j,l ⊕ k̂j,l

)
⊕ki,j

]
⊕ S-Box−1

[
S-Box

(
[R2(p̃2)]j,l ⊕ k̂j,l

)
⊕ki,j

]
= 0,

where
c1 = R3(p1) ≡ S-Box

(
R2(p1)⊕ k̂

)
and similarly for the other texts. Due to Lemma 2, the equality is always satisfied
for k̂j,l = ki,j , which means that there exists at least one key that satisfies
Equation (6). ut

What happens if there is no key for which the previous condition is satisfied?
It turns out that if this is the case, then the set of ciphertexts {c1, c2, c̃1, c̃2} is
not generated by 3-round AES, but by a random permutation. That is, if there
is no key kj,l that satisfies Equation (6), then the ciphertexts {c1, c2, c̃1, c̃2} are
not the 3-round AES encryptions of p1, p2, p̃1, p̃2, but they are generated by a
random permutation.

However, if we want to set up a distinguisher which is independent of the
secret key, we need a way to check this property without checking the existence of
a key. So the problem is to rewrite this property in order to avoid key guessing.
To solve this issue, the idea is to look for values of {c1, c2, c̃1, c̃2} for which
Equation (6) does not admit any solution k. As a result, we are going to show
that a particular property – which is independent of the secret key – holds on the
ciphertexts only in the case in which the key-recovery (mixture integral) attack
just proposed “fails”.

Theorem 3. Given the subspace C0 ∩ D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two
plaintexts p1 and p2 in the same coset (C0 ∩ D0,3)⊕a generated by p1 ≡ (z1, w1)
and p2 ≡ (z2, w2). Let p3, p4 ∈ C0 ⊕ a be two other plaintexts generated by

p3 ≡ (z1, w1, Ψ, Φ), p4 ≡ (z2, w2, Ψ, Φ) or p3 ≡ (z1, w2, Ψ, Φ), p4 ≡ (z2, w1, Ψ, Φ),

where Ψ and Φ can take any possible value in F28 . For all i, j = 0, ..., 3 and for
all pairwise distinct5 α, β, γ, δ ∈ {1, 2, 3, 4}, the condition[

R3(pα)⊕R3(pβ)]i,j = 0 and
[
R3(pγ)⊕R3(pδ)]i,j 6= 0, (7)

where [·]i,j denotes the byte in row i and column j, can never hold for 3-round
AES (without the final MixColumns operation), independently of the secret key,
of the details of the S-Box, and of the MixColumns matrix.

Note that the same event occurs with probability

1−
[
1− 2−8 · (1− 2−8)

]16·6≈ 2−1.65 ≈ 31.87%

5 More precisely, we assume that α 6= β, α 6= γ, α 6= δ, β 6= γ, β 6= δ and γ 6= δ.
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in the case in which the ciphertexts are generated by a random permutation
(there are 16 bytes and 6 possible combinations of α, β, γ, δ ∈ {1, 2, 3, 4}). As a
result, this property can be exploited to set up a secret-key distinguisher which
is independent of the secret key.

Proof. We prove this result by contradiction. Assume there exist j, k ∈ {0, ..., 3}
and there exist pairwise distinct α, β, γ, δ ∈ {1, 2, 3, 4} such that[

R3(pα)⊕R3(pβ)]i,j = 0 and
[
R3(pγ)⊕R3(pδ)]i,j 6= 0.

According to Lemma 3, there exists at least one key k for 3-round AES that
satisfies Equation (6). Since R3(pα)]i,j = [R3(pβ)]i,j , it turns out that cαi,j = cβi,j ,
which implies

S-Box−1(cαi,j ⊕ ki,j)⊕ S-Box−1(cβi,j ⊕ ki,j) = 0.

It follows that Equation (6) reduces to

S-Box−1(cγi,j ⊕ ki,j)⊕ S-Box−1(cδi,j ⊕ ki,j) = 0.

Since
[
R3(pγ)⊕R3(pδ)]i,j 6= 0, that is, cγi,j 6= cδi,j , it follows that

∀kj,l : S-Box−1(cγi,j ⊕ ki,j) 6= S-Box−1(cδi,j ⊕ ki,j),

which contradicts Lemma 3. As a result, for all pairwise distinct α, β, γ, δ ∈
{1, 2, 3, 4}, the condition

∀i, j = 0, ..., 3 :
[
R3(pα)⊕R3(pβ)]i,j = 0 and

[
R3(pγ)⊕R3(pδ)]i,j 6= 0

can never hold for 3-round AES. ut
What about the name? We decided to call this an “Impossible Mixture Inte-

gral” distinguisher because it exploits a property which holds with prob. 0 and
because it extends the Mixture Integral distinguisher presented before.

Notation. For the follow-up, we introduce a notation in order to easily explain
the costs of the distinguisher and of the attacks based on the impossible zero-
sum property just proposed. Let x1, y1, x2, y2 ∈ F28 s.t. x1 6= x2 and y1 6= y2

arbitrary but fixed. Let Tx,yΨ,Φ be the set of a pair of plaintexts (i.e., two plaintexts)
defined as

Tx,yΨ,Φ := {p1 = (x1, y1, Ψ, Φ), p2 = (x2, y2, Ψ, Φ)} (8)

where Ψ, Φ ∈ F28 and where p1, p2 ∈ C0 ⊕ a. Since x1, y1, x2, y2 are fixed, we
usually denote Tx,yΨ,Φ by TΨ,Φ, that is, Tx,yΨ,Φ ≡ TΨ,Φ.

Let S be the union of two sets Tx,y (i.e., as set of four plaintexts) defined as

S = TΨ,Φ ∪ Tψ,φ ≡
{
p1 = (x1, y1, Ψ, Φ), p2 = (x2, y2, Ψ, Φ),

p3 = (x1, y1, ψ, φ), p4 = (x2, y2, ψ, φ)
}
,

(9)

where (Ψ, Φ) 6= (ψ, φ). Note that given p1, p2, p3, p4 ∈ S, the corresponding
ciphertexts after 3-round AES encryptions satisfy Theorem 3.
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Data: 5 different sets TΨ,Φ = {p1 = (x1, y1, Ψ, Φ), p2 = (x2, y2, Ψ, Φ)} where
p1, p2 ∈ C0 ⊕ a s.t. p1 ≡ (x1, y1, Φ, Ψ), p2 ≡ (x2, y2, Φ, Ψ) defined as in
Equation (8), and corresponding ciphertexts after 3 rounds

Result: 1 if AES permutation - 0 if random permutation (with prob. 95%)
for each pair of couples [R3(p1), R3(p2)] and [R3(q1), R3(q2)] where
T1 ≡ {p1, p2} and T2 ≡ {q1, q2} do

for each i, j = 0, ..., 3 do
if “

[
a⊕ b]i,j = 0 and

[
c⊕ d]i,j 6= 0” where

(a, b, c, d) ∈ {R3(p1), R3(p2), R3(q1), R3(q2)} are all distinct (i.e.
a 6= b, a 6= c, ..., c 6= d) then

return Random Perm
end

end

end
return 3-round AES

Algorithm 1: Impossible Mixture Integral Distinguisher on 3-round AES

Data Cost of the Distinguisher. If the goal is to distinguish 3-round AES
from a random permutation with a probability higher than 95%, one needs at
least 8 different sets S defined as before, since 1− (1−2−1.65)N ≥ 0.95 if N ≥ 8.
In order to generate such 8 sets S, one needs at least 5 different sets T, since(
5
2

)
= 10 ≥ 8. As a result, the cost of such a distinguisher is of 5 · 2 = 10 chosen

plaintexts.
We emphasize that the corresponding 3-round encryptions of

p1 ≡ (z1, w1, Ψ, Φ), p2 ≡ (z2, w2, Ψ, Φ), p3 ≡ (z1, w2, Ψ ′, Φ′), p4 ≡ (z2, w1, Ψ ′, Φ′)

satisfy Lemma 3 even if Ψ 6= Ψ ′ and Φ 6= Φ′.
For completeness, if a success probability of 65% is sufficient, then one needs

only 6 chosen plaintexts (by analogous computation, 1− (1− 2−1.65)N ≥ 0.65 if
N ≥ 3, which implies that N ≥ 3 sets S are required, or equivalently

(
3
2

)
= 3

sets T, that is 2 · 3 = 6 chosen plaintexts).

Computational Cost of the Distinguisher. The property needs to be tested
for each pair of the 5 input sets, and for each of the 16 state bytes. Testing the
property requires

(
4
2

)
· 2 table lookups and XOR operations. Hence, the total

computational cost consists of at most(
5

2

)
·

(
4

2

)
· 2 · 16 = 1920 ≈ 210.9

table lookups and XOR operations, that is, approximately 25 3-round AES
encryptions (assuming6 20 S-Boxes ≈ 1-round).

6 Even if this approximation is not formally correct – the size of the table of an S-Box
lookup is smaller than the size of the table used for our proposed distinguisher –
it allows to give a comparison between our distinguishers and the others currently
present in the literature. This approximation is largely used in literature (assuming
that the linear/affine operations of each AES round are negligible in terms of costs).
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Before going on, we mention that this cost is roughly of the same order of
the one required to set up a 3-round AES distinguisher based on the truncated
differential property (see e.g. [10, Sect. 4.3] for more details7).

Remark. In Appendix C, we consider the possibility to set up a similar “Impos-
sible Mixture Integral” distinguisher on 4-round AES (by extending the 3-round
integral distinguisher). However, as we show there, it seems that a trivial ap-
plication of such a distinguisher on 4 rounds requires more than the full code
book. An open future problem is to study the possibility to set up a similar
distinguisher on 4 (or even more) rounds of AES.

Practical Verification. We implemented and practically verified8 the distin-
guisher just presented on 3-round AES. By practical tests, we found that using
10 chosen plaintexts, the distinguisher always recovers the 3-round AES permu-
tation when the ciphertexts are generated by such a permutation. In the case in
which the ciphertexts are generated by a random permutation – given (in our
case) by 21-round AES – the distinguisher is able to recover it with a success
probability of 94.4%, close to 95% used before (number of tests: 250 000 ≈ 218).
In the other cases, the distinguisher is not able to distinguish the 3-round AES
permutation from the random one. Moreover, we found out that

– using 6 or 8 chosen plaintexts instead of 10, this probability decreases to
61% and 82.9%, respectively;

– using 12, 14 or 16 chosen plaintexts instead of 10, this probability increases
to 98.5%, 99.7% and 99.95%, respectively.

5 Mixture Integral Attacks on Reduced-Round AES

5.1 Mixture Integral Key-Recovery Attack on 3-Round AES

The previous secret-key distinguisher on 2-round AES proposed in Section 4.2 is
the starting point for a key-recovery attack on 3- and 4-round AES.9 The attack
works in the same way as a classical integral key-recovery attack [5,12], with the
crucial difference that it has a data cost of only 4 chosen plaintexts.

7 For comparison, for the case of 6 chosen plaintexts, the computational cost of our
distinguisher is of

(
3
2

)
·
(
4
2

)
· 2 · 16 = 576 ≈ 29.2 table look-ups, which amounts to

approximately 23 3-round AES encryptions.
8 The source codes of the distinguishers and attacks are available as supplementary

material. They will be made public together with the publication of the paper.
9 Potentially, it is also possible to set up an attack on 5-round AES by extending the

4-round one at the beginning. However, such attack is not in the low-data scenario
and it would not be competitive w.r.t. other attacks present in the literature. For
this reason, we do not present it.
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Data: 4 chosen plaintexts p1, p2, p̃1, p̃2 ∈ (D0,3 ∩ C0)⊕ a s.t.
p1 ≡ (z1, w1), p2 ≡ (z2, w2) and p̃1 ≡ (z1, w2), p̃2 ≡ (z2, w1), and
corresponding ciphertexts after 3 rounds

Result: secret key k
for each i, j = 0, ..., 3 do

for each k∗i,j from 0x00 to 0xFF do
if Equation (10) is satisfied // prob. 2−8 then

store k∗i,j as candidate for byte (i, j) of the last round key;
end

end

end
if more than a single candidate k∗ passed the test then

do a brute-force attack on the possible candidates for the respective
master keys (filter wrongly guessed candidates);

end
return secret key k.
Algorithm 2: Mixture Integral Key-Recovery Attack on 3-round AES

Given the subspace C0 ∩ D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two plaintexts
p1 and p2 in the same coset (C0 ∩ D0,3) ⊕ a generated by p1 ≡ (z1, w1) and
p2 ≡ (z2, w2). Let p̃1, p̃2 ∈ C0 ⊕ a be two other plaintexts generated by

p̃1 ≡ (z1, w1, Ψ, Φ), p̃2 ≡ (z2, w2, Ψ, Φ) or p̃1 ≡ (z1, w2, Ψ, Φ), p̃2 ≡ (z2, w1, Ψ, Φ),

where Ψ and Φ can take any possible value in F28 . Moreover, let c1, c2, c̃1, c̃2

denote the corresponding ciphertexts after 3-round AES:

c1 = R3(p1), c2 = R3(p2), c̃1 = R3(p̃1), c̃2 = R3(p̃2).

Assume that the final MixColumns operation has been omitted10. Due to the
zero-sum distinguisher just proposed and working at byte level, we know that
the secret key ki,j for each i, j = 0, ..., 3 satisfies

S-Box−1(c1i,j ⊕ ki,j)⊕ S-Box−1(c2i,j ⊕ ki,j)

⊕ S-Box−1(c̃1i,j ⊕ ki,j)⊕ S-Box−1(c̃2i,j ⊕ ki,j) = 0
(10)

with prob. 1 independently of the S-Box. Since a wrongly guessed key satisfies
the previous equality with prob. 2−8, it is possible to find the right one.

A complete pseudo-code of the attack is given in Algorithm 2. The data cost
of the attack is of 4 chosen plaintexts, while the computational cost is of

16︸︷︷︸
number of bytes

· 28︸︷︷︸
number of ki,j

· 4︸︷︷︸
number of S-Boxes

= 214 S-Box operations,

that is, 28.1 3-round AES encryption (assuming 20 S-Box ≈ 1-round).

10 If not, since the MixColumns is a linear operation, it is sufficient to swap the final
MixColumns and the final AddRoundKey operation: k⊕MC(·) = MC(k′⊕·), where
k′ = MC−1(·). When k′ is given, one can find k using the relation k = MC(k′).
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Data: 4 chosen plaintexts p1, p2, p̃1, p̃2 ∈ (D0,3 ∩ C0)⊕ a s.t.
p1 ≡ (z1, w1), p2 ≡ (z2, w2) and p̃1 ≡ (z1, w2), p̃2 ≡ (z2, w1), and
corresponding ciphertexts after 3 rounds

Result: secret key k
Let A be an array of 232 entries;
for each (i, j, h, l) from (0, 0, 0, 0) to (0xFF, 0xFF, 0xFF, 0xFF ) do

if i 6= j and i 6= h and i 6= l and j 6= h and j 6= l and h 6= l then
for each κ from 0 to 0xFF do

if S-Box−1(i⊕ κ)⊕ S-Box−1(j ⊕ κ)⊕ S-Box−1(h⊕ κ)⊕
⊕S-Box−1(l ⊕ κ) = 0 then
A[i+ 28 × j + 216 × h+ 224 × l]← κ;

end

end

end

end
for each i, j = 0, ..., 3 do

if c1i,j 6= c2i,j and c1i,j 6= c̃1i,j and c1i,j 6= c̃2i,j and c2i,j 6= c̃1i,j and c2i,j 6= c̃2i,j and
c̃1i,j 6= c̃2i,j // approximately prob. 99.991% - see main text! then
ki,j ← A[c1i,j + 28 × c2i,j + 216 × c̃1i,j + 224 × c̃2i,j ];

end
else

ki,j can take any possible value;
end

end
if more than a single key passed the test then

do a brute-force attack on the possible candidates (filter wrongly guessed
candidates);

end
return secret-key k.

Algorithm 3: Mixture Integral Key-Recovery Attack on 3-round AES (2nd
Version)

An Optimal Implementation of the Attack. The previous attack does not require
any memory cost. However, another possible version of the attack can be con-
sidered. This second version requires precomputation and it has a memory cost,
but the computational cost is negligible. The idea is simply to generate a table
with the solutions κ of the equation

S-Box−1(i⊕ κ)⊕ S-Box−1(j ⊕ κ)⊕ S-Box−1(h⊕ κ)⊕ S-Box−1(l⊕ κ) = 0 (11)

for each i, j, h, l ∈ F28 . A complete pseudo code is given in Algorithm 3.

What is the number of solutions of the previous equality? If i = j = h = l
or if i = j and h = l (where j 6= h – analogous for the other 6 cases), then
the previous equality is always satisfied for each κ. Moreover, by Section 4.3 we
know that the case11 i = j and h 6= l (analogous for the other 6 cases) is not

11 Note that the case i = j = h and h 6= l is included here.
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possible. Finally, consider the case12 i 6= j and i 6= h and i 6= l and j 6= h and
j 6= l and h 6= l. In such a case, the number of solutions is on average 1. Indeed,
Equation (11) can be split into

S-Box−1(i⊕ κ)⊕ S-Box−1(j ⊕ κ) ≡ S-Box−1(x⊕∆x
I )⊕ S-Box−1(x) = ∆x

O,

S-Box−1(h⊕ κ)⊕ S-Box−1(l ⊕ κ) ≡ S-Box−1(y ⊕∆y
I )⊕ S-Box−1(y) = ∆y

O,

where ∆x
O = ∆y

O and where x = j ⊕ κ, ∆x
I = i ⊕ j, y = l ⊕ κ and ∆y

I = h ⊕ l.
Since ∆x

O can take any possible value while ∆x
I is fixed, there are on average 256

values of x (and so of κ since j is fixed) that satisfy the first equation (analogous
for the second equation). Since ∆x

O = ∆y
O, the probability that κ satisfies both

equations is 2−8. As a result, the average number of κ values that satisfy both
equations is 256/256 = 1.

Once such a table is generated and the ciphertexts c1, c2, c̃1, c̃2 are given, the
attacker needs only 16 table lookups to find the secret key (one lookup for each
byte of the key), which is much less than a single encryption. An overall estima-
tion for the precomputation cost is given by 232 · 28 · 4 = 242 S-Box operations,
that is, 236.1 3-round AES encryptions.

5.2 Mixture Integral Key-Recovery Attack on 4-Round AES

The previous attack can be extended to 4-round AES using the technique pro-
posed in [5,12] in order to extend an integral attack at the end. The idea is to
guess the final anti-diagonal of the key, partially decrypt one round and to use
the previous attack on 3 rounds to filter out wrongly guessed keys:

(p1, p2, q1, q2)
R2(·)−−−−→
prob. 1

Zero Sum
R−1(·)←−−−−−−−−−−

key guess (byte)

R−1(·)←−−−−−−−−−−−−−
key guess (anti-diag.)

(c1, c2, d1, d2)

where ci = R4(pi), di = R4(qi) for i = 1, 2 and where S = {p1, p2, q1, q2} is
defined as in Equation (9). We refer to Algorithm 4 for a complete pseudo code
and details.

Data Cost. We consider 2 pairs of texts, that is, (p1, q1) and (p2, q2) gen-
erated by mixing variables. The attacker guesses 4 bytes of the final key –
that is, (k40,0, k

4
1,3, k

4
2,2, k

4
3,1) – and 4 bytes of the second to final key – that

is, (k30,0, k
3
1,0, k

3
2,0, k

3
3,0) (analogous for the other four cases). Since she can verify

the zero-sum property “only” on four bytes and using only 4 chosen plaintexts,
the number of remaining keys is 232 (≡ values of k4) ·232 (≡ values of k3)
·2−32 = 232. As a result and without using the details of the key schedule, she
needs at least another pair of texts (p3, q3) to filter out all wrongly guessed keys
(without using brute force), for a total of 6 chosen plaintexts.

12 The probability of this case is

28 · (28 − 1) · (28 − 2) · (28 − 3)

28 · (28 − 1) · (28 − 2) · (28 − 3) + 6 · 28 · (28 − 1)︸ ︷︷ ︸
case: i=j and h=l

+ 28︸︷︷︸
case: i=j=h=l

= 99.991%
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Data: 6 chosen plaintexts pi, qi ∈ C0 ⊕ a for i = 1, 2, 3 s.t.
pi ≡ (x, y, φi, ψi), qi ≡ (z, w, φi, ψi) for x 6= z and y 6= w, and
corresponding ciphertexts ci = R4(pi), di = R4(qi) after 4 rounds

Result: (k30,0, k
3
1,0, k

3
2,0, k

3
3,0) and (k40,0, k

4
1,3, k

4
2,2, k

4
3,1)

Let A be an array of 232 entries;
for each (i, j, h, l) from (0, 0, 0, 0) to (0xFF, 0xFF, 0xFF, 0xFF ) such that (1st)
i 6= j, (2nd) i 6= h, (3rd) i 6= l, (4th) j 6= h, (5th) j 6= l and (6th) h 6= l do

for each κ from 0 to 0xFF do
if S-Box−1(i⊕ κ)⊕ S-Box−1(j ⊕ κ)⊕ S-Box−1(h⊕ κ)⊕
⊕S-Box−1(l ⊕ κ) = 0 then
A[i+ 28 × j + 216 × h+ 224 × l]← κ;

end

end

end
(k30,0, k

3
1,0, k

3
2,0, k

3
3,0) and (k40,0, k

4
1,3, k

4
2,2, k

4
3,1) for each k40,0, k

4
1,3, k

4
2,2, k

4
3,1 from

(0,0,0,0) to (0xFF, 0xFF, 0xFF, 0xFF ) do
for each i = 1, 2, 3 do

Compute 1-round decryption w.r.t. guessed key k4:
c̃i0,0
c̃i1,0
c̃i2,0
c̃i3,0

←MC−1 ·


S-Box−1(ci0,0 ⊕ k40,0)
S-Box−1(ci3,1 ⊕ k43,1)
S-Box−1(ci2,2 ⊕ k42,2)
S-Box−1(ci1,3 ⊕ k41,3)


(similar for [d̃i0,0, d̃

i
1,0, d̃

i
2,0, d̃

i
3,0]T )

end
let g(·, ·, ·, ·) : N4 → N defined as g(x, y, z, w) := x+ 28 · y + 216 · z + 224 · w
where x, y, z, w ∈ [0, 255];

if A[g(c̃10,0, d̃
1
0,0, c̃

2
0,0, d̃

2
0,0] = A[g(c̃10,0, d̃

1
0,0, c̃

3
0,0, d̃

3
0,0] // prob. 2−8 then

if A[g(c̃11,0, d̃
1
1,0, c̃

2
1,0, d̃

2
1,0] = A[g(c̃11,0, d̃

1
1,0, c̃

3
1,0, d̃

3
1,0] then

if A[g(c̃12,0, d̃
1
2,0, c̃

2
2,0, d̃

2
2,0] = A[g(c̃12,0, d̃

1
2,0, c̃

3
2,0, d̃

3
2,0] then

if A[g(c̃13,0, d̃
1
3,0, c̃

2
3,0, d̃

2
3,0] = A[g(c̃13,0, d̃

1
3,0, c̃

3
3,0, d̃

3
3,0] then

k̂30,0 ← A[c̃10,0 + 28 × c̃20,0 + 216 × d̃10,0 + 224 × d̃20,0];

k̂31,0 ← A[c̃11,0 + 28 × c̃21,0 + 216 × d̃11,0 + 224 × d̃21,0];

k̂32,0 ← A[c̃12,0 + 28 × c̃22,0 + 216 × d̃12,0 + 224 × d̃22,0];

k̂33,0 ← A[c̃13,0 + 28 × c̃23,0 + 216 × d̃13,0 + 224 × d̃23,0];

end

end

end

end

end

[k30,0, k
3
1,0, k

3
2,0, k

3
3,0]T ←MC · [k̂30,0, k̂31,0, k̂32,0, k̂33,0]T ;

return (k30,0, k
3
1,0, k

3
2,0, k

3
3,0) and (k40,0, k

4
1,3, k

4
2,2, k

4
3,1)

Algorithm 4: Mixture Integral Key-Recovery Attack on 4-round AES (re-
peat (an analogous) attack to find the full key – if more than a single key
passes the distinguisher, do a brute-force attack on the possible candidates)
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Computational Cost. First of all, a 1-round decryption costs

232︸︷︷︸
anti-diagonal of k4

· 4︸︷︷︸
number of S-Boxes

· 6︸︷︷︸
number of texts

= 3 · 235

S-Box lookups. For each anti-diagonal of k4, the cost to find 4 bytes of k3 is
of 2 · (1 + 2−8 + 2−16 + 2−24) = 2 table lookups. Since the probability that
the first condition (namely, A[g(c̃10,0, d̃

1
0,0, c̃

2
0,0, d̃

2
0,0] = A[g(c̃10,0, d̃

1
0,0, c̃

3
0,0, d̃

3
0,0] in

Algorithm 4) is satisfied is 2−8, it is 2−16 for both the first and the second
condition and so on. As a result, in order to find the full key, the cost is of
4 · 3 · 235 · 2 = 3 · 238 S-Box lookups, that is, 233.3 4-round encryptions. Note that
no details of the key schedule have been used.

For completeness, we mention that the same attack can be performed without
precomputation and table lookups. Using the same computation proposed before
for the 3-round attack, the cost in such a case would be of

4 · 3 · 235 · ( 4︸︷︷︸
number of bytes

· 28︸︷︷︸
k3i,j

· 4 · 2︸︷︷︸
number of S-Boxes

) = 3 · 250

S-Box lookups, that is, 245.3 4-round encryptions.

Practical Verification. We implemented and practically verified Algorithm 2
in C++, which allows us to find the last secret round key almost instantly on
our tested machine (Intel i7-8550U @ 4.00 GHz).

6 Impossible Mixture Integral Attack on 4-Round AES

In Section 4.3, we presented a new 3-round AES secret-key distinguisher which
is independent of the key. Using the techniques just described, here we exploit
this distinguisher in order to set up an attack13 on 4-round AES.

The low-data attack works as follows. Assuming that the final MixColumns
operation is omitted, the attacker partially guesses one anti-diagonal of the final
key, partially decrypts one round, computes the inverse MC operation, and
exploits the 3-round distinguisher of Theorem 3 to partially decrypt

(p1, p2, p3, p4)
R3
f (·)−−−−→

prob. 1
Distinguisher (Theorem 3)

MC−1◦(R−1(·))←−−−−−−−−−−−−
key-guess (4 bytes)

(c1, c2, c3, c4),

where S = {p1, p2, p3, p4} is defined as in Equation (9) and where R3
f (·) denotes

a 3-round encryption of AES without the final MixColumns operation.
By exploiting the distinguisher presented in Theorem 3, the attacker can filter

wrongly guessed keys, since for wrongly guessed keys the behavior is similar to
that of a random permutation. That is, due to the “Wrong-Key Randomization

13 Potentially, the 4-round attack can be extended at the beginning, in order to set
up a 5-round AES attack. However, as we show in details in Appendix D, such an
attack is not competitive w.r.t. other attacks in the literature.
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Data: 24 ' 24.58 different sets TΨ,Φ = {p1 = (x1, y1, Ψ, Φ), p2 = (x2, y2, Ψ, Φ)}
where p1, p2 ∈ C0 ⊕ a s.t. p1 ≡ (x1, y1, Ψ, Φ), p2 ≡ (x2, y2, Ψ, Φ) defined
as in Equation (8), and corresponding ciphertexts after 4 rounds

Result: (final) secret key k
given p1, p2 ∈ T, let c1 = R4(p1) and c2 = R4(p2);
for each k40,0, k

4
1,3, k

4
2,2, k

4
3,1 from (0,0,0,0) to (0xFF, 0xFF, 0xFF, 0xFF ) do

(partially) compute the 1-round decryption of TΨ,Φ for each Ψ,Φ w.r.t. the
guessed key k4, that is:

T′ ←
{
∀i = 1, 2 :


ti0,0
ti1,0
ti2,0
ti3,0

←MC−1 ·


S-Box−1(ci0,0 ⊕ k40,0)
S-Box−1(ci1,3 ⊕ k41,3)
S-Box−1(ci2,2 ⊕ k42,2)
S-Box−1(ci3,1 ⊕ k43,1)

}

// Note: T′ contains a pair of 4 bytes, not a pair of texts!

flag ← 0;
for each T′Ψ,Φ and T′ψ,φ (where (Ψ,Φ) 6= (ψ, φ)) do

for each i = 0, ..., 3 do
if “a⊕ b = 0 and c⊕ d 6= 0” where (a, b, c, d) ∈ [T′Ψ,Φ ∪ T′ψ,φ]i,0 are

all distinct (where [·]i,0 denotes the byte in position (i, 0)) then
(k40,0, k

4
1,3, k

4
2,2, k

4
3,1) is wrong: check next 4-byte value;

flag ← 1;
end

end

end
if flag = 0 then

Return (k40,0, k
4
1,3, k

4
2,2, k

4
3,1) as a possible candidate for the key;

end

end
Repeat the same procedure for the next 3 anti-diagonals of the final key;
if more than a single key passed the test then

do a brute-force attack on the possible candidates (filter wrongly guessed
candidates);

end
return (final) secret key k
Algorithm 5: Impossible Mixture Integral Attack on 4-round AES

Hypothesis”14, given the ciphertexts (c1, c2, c3, c4) and for a wrongly guessed

key k̂, the texts MC−1 ◦ (R−1(ci ⊕ k̂)) for i = 1, ..., 4 satisfy the property of
Theorem 3 with prob. 1 − (1 − 2−8)4·6, while such a property is never satisfied
by the secret key.

Remark. We emphasize that the distinguisher on 3 rounds (Section 4.3) works
independently on each byte of the ciphertexts only in the case in which the final
MixColumns operation is omitted. If it is not omitted, it is sufficient to swap it
with the AddRoundKey operation (since both operations are linear). However,

14 This hypothesis states that when decrypting one or several rounds with a wrong key
guess creates a function that behaves like a random function.
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if such a property is exploited to set up a key-recovery attack on 4 (or more)
rounds of AES (by extending the distinguisher at the end), one has to work on an
entire column (namely, 4 bytes) in order to check it instead of checking each byte
independently. As a result, the attacker has to guess one anti-diagonal (4 bytes)
of the final key, because she has to apply the inverse MixColumns operation in
order to check if the required property is satisfied or not.

Data Cost. Assume the goal is to filter all wrong keys with probability at least
95%. Working independently on each column/anti-diagonal of the key, 4 random
texts {t1, t2, t3, t4} satisfy the required property with prob. 1−(1−2−8)4·6 (using
the same argumentation provided for the corresponding distinguisher).

Since there are 4 columns/anti-diagonals and each one of them can take
232 different values (which are all independent), we ask that for each 4-byte
key guess there exists at least one set S that satisfies the required property
with prob. 0.951/(4·2

32). As a result, we need N different sets of S defined as in
Equation (9) such that

1− (1− 2−8)24·N ≥ 0.95
1

4·232

in order to find the entire key with prob. higher than 95%, that is, N ≥ 284.
It follows that we need n different T defined as in Equation (8) in order to
construct N sets S s.t.

(
n
2

)
≥ 284, that is, n ≥ 24 ' 24.58. In conclusion, we

need approximately 2 · 24 = 48 ' 25.6 pairs of texts (p1, p2) ∈ T ⊆ C0 ⊕ a.

Computational Cost. The 1-round decryption requires 4 · 4 · 232 · 24.6 = 241.6

S-Box lookups. We store these (partially decrypted) values in a table. In order
to check the required property of Theorem 3, one has to construct all possible
sets of 4 texts for each possible guessed key. As a result, the total cost of the
attack is of

241.6︸︷︷︸
partially decrypt

+ 4 · 232︸ ︷︷ ︸
number of keys

· 4 · 2 ·

(
24

2

)
︸ ︷︷ ︸
check property

≈ 241.6 + (4 · 232) · (4 · 2 · 28.11) ≈ 245.23

table and S-Box lookups, which corresponds to 238.91 4-round encryptions.
Note that this is the computational cost in the worst case. Indeed, on average

N = 25 different sets S are sufficient to discard a wrongly guessed key, since
1−(1−2−8)4·6·2

5 ≥ 0.95. In particular, when the attacker finds a set S for which
the required property is not satisfied, she can simply discard such a wrongly
guessed key (that is, she does not need to verify the required property for the
other sets S). As a result, the average cost of the attack is well approximated by
241.6 + (4 · 232) · (4 · 2 · 27) = 244.25 table and S-Box lookups, which corresponds
to 237.9 4-round encryptions.

Practical Verification. We implemented and practically verified the Impos-
sible Mixture Integral Attack on 4-round AES (Algorithm 5) in C++ on our
machine, and are able to find 4 bytes of the final round key in under one hour.
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A Subspace Trail Cryptanalysis for AES

In this section, we give all the details about the subspace trails of AES presented
in [10] and briefly recalled in Section 3.

Here we only work with vectors and vector spaces over F4×4
28 , and we denote

by {e0,0, ..., e3,3} the unit vectors of F4×4
28 (e.g., ei,j has a single 1 in row i and

column j).

Definition 5. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For example, C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .

Definition 6. The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly,
the inverse-diagonal spaces IDi are defined as IDi = SR(Ci).

For example, D0 and ID0 correspond to the symbolic matrices

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for all x1, x2, x3, x4 ∈ F28 .

Definition 7. The i-th mixed spaces Mi are defined as Mi = MC(IDi).

For example, M0 corresponds to the symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2


for all x1, x2, x3, x4 ∈ F28 .

Definition 8. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.
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B Mixture Integral Attacks on Reduced-Round AES
with a Single Secret S-Box

The 3-round mixture integral attack proposed in Section 5.1 exploits a property
which holds with prob. 1 and which is independent of the secret key and of the
details of the S-Box. For this reason, we are going to show that a similar attack
can be set up on 3-round AES with a single secret S-Box, exploiting an idea
similar to the one proposed in [16]. The strategy consists of two steps:

1. The attacker finds the S-Box up to additive constants, i.e., they find S-Box−1(·⊕
a)⊕ b.

2. The attacker exploits the previous information in order to find the key up
to 28 equivalents, like (k0, k1 ⊕ k0, ..., k15 ⊕ k0).

B.1 Strategy of the Attack

Finding the S-Box (Up to Additive Constants). In order to find S′ =
S-Box−1(· ⊕ a)⊕ b, we use the equality

S-Box−1(c10,0 ⊕ k0,0)⊕ S-Box−1(c20,0 ⊕ k0,0)

⊕ S-Box−1(c̃10,0 ⊕ k0,0)⊕ S-Box−1(c̃20,0 ⊕ k0,0) = 0.
(12)

This is similar to what is done in [16], where the authors exploit the fact that⊕
x∈(D0∩C0)

S-Box−1([R4(x)]0,0 ⊕ k0,0) = 0,

which is a well-known property of the integral attack on 4-round AES. We em-
phasize that this equality involves 256 different texts, while the one exploited in
this paper requires only 4 texts (even if on a smaller number of rounds).

Working as in [16], taking different sets (c1, c2, c̃1, c̃2) of ciphertexts corre-
sponding to the 3-round encryptions of plaintexts that share the same generat-
ing variables, we can now try to generate enough linear equations to be able to
determine S-Box−1(· ⊕ a)⊕ b. However, we are only able to determine

{L ◦ S-Box−1(· ⊕ a)⊕ b |L : F28 → F28 linear permutation & a, b ∈ F28},

which is of size 270.2. In the following, L◦S-Box−1(·⊕a)⊕b ≡ A◦S-Box−1(·⊕a),
where A is an affine permutation.

As each linear equation gives us one byte of information and as we can only
determine the S-Box up to 270.2 ≤ 272 = 29·8 variants, there can at most be
256 − 9 = 247 linearly independent equations like Equation (12). By practical
experiments, we found that using 3 · 256 = 768 ≈ 29.6 different sets of pairs of
texts are sufficient in most cases to generate a set of equations with rank 247
(for a cost of 4 · 29.6 = 211.6 chosen plaintexts).

Given such a set of equations and working as in [16], it is now easy to deter-
mine one representative from the set of affine equivalents to S-Box(k0 ⊕ ·): We
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incrementally start assigning linearly independent values to variables in order
to potentially increase the rank of the corresponding coefficient matrix to 256.
However, when assigning a value, it might happen that we do not increase the
rank of the matrix. If this is the case, we remove the assignment for this variable
and instead try a different one, in order to filter out variable assignments which
result in a system with no solutions (this countermeasure is sufficient due to
the Rouché-Capelli theorem15). We repeat this approach until we have found 9
variables, such that fixing them to linearly independent values in F28 results in a
rank-256 coefficient matrix, and we note that such a set of variable assignments
can easily be found after a small number of trials. When choosing a different ap-
proach (e.g., assigning random values to the variables), we might find a solution
to the original equation system which is not a permutation.

Let the representative we found be denoted as A ◦ S-Box−1(· ⊕ a) for an
invertible (and unknown) affine transformation A.

Note that this is sufficient in order to find the secret key, since⊕
x∈X

S-Box−1(x⊕ a) = 0 ⇐⇒
⊕
x∈X

A ◦ S-Box−1(x⊕ a) = 0,

where A is an affine operation (that is, A(x⊕ y) = A(x)⊕A(y) for each x, y).

Finally, we refer to [16, Sect. 3.2] if one aims to determine more information
about S-Box(· ⊕ a) ⊕ b. We highlight that such information is not necessary in
order to find the key, and that the strategy proposed there applies here as well.

Finding the Key Given the S-Box. Assume the attacker knowsA◦S-Box−1(·⊕
k0,0) for some unknown A and k0,0. This information can be used to find k0,0⊕ki,j
for 0 ≤ i ≤ 3, 0 ≤ j ≤ 3 (except where i = j = 0), where k denotes the third
round key. Indeed, given p1, p2, q1, q2 as before and the corresponding ciphertexts
c1, c2, c̃1, c̃2 after 3 rounds, we know that Equation (6), which can be rewritten
as[

S-Box−1

(
[c1i,j ⊕ (ki,j ⊕ k0,0)]⊕ k0,0

)]
⊕
[
S-Box−1

(
[c2i,j ⊕ (ki,j ⊕ k0,0)]⊕ k0,0

)]
⊕
[
S-Box−1

(
[c̃1i,j ⊕ (ki,j ⊕ k0,0)]⊕ k0,0

)]
⊕
[
S-Box−1

(
[c̃2i,j ⊕ (ki,j ⊕ k0,0)]⊕ k0,0

)]
= 0,

is satisfied. Since A ◦ S-Box−1(· ⊕ k0,0) is known (note that the affine layer A(·)
plays no role), it is possible to exploit such information in order to find ki,j⊕k0,0
by guessing ki,j ⊕ k0,0 (28 values) and verifying that Equation (6) is fulfilled.

15 The Rouché-Capelli theorem states that a system of linear equations in n variables
has a solution if and only if the rank of its coefficient matrix is equal to the rank
of its augmented matrix. Since we are assigning linearly independent values to the
new variables and since the rank of the whole matrix is at least 247, the rank of
the augmented matrix is always larger than or equal to the rank of the coefficient
matrix. Thus, verifying that the rank of the coefficient matrix (1) increases when
assigning a variable and (2) reaches 256 is sufficient for our purposes.
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B.2 Computational Cost

We need the ciphertexts of 768 · 4 chosen plaintexts for our attack to work with
high probability. Thus, the data complexity is 2log2(768·4) ≈ 211.6. Finding the
S-Box consists of matrix rank calculations and the solving step for the system of
linear equations. The rank of an m×n matrix with coefficients in F2 can be found
in O(mn2) XOR operations involving single bits using Gaussian elimination. In

our case, n = 256 and m = 786, therefore we need at most 2log2(768·256
2) ≈ 225.6

single-bit XOR operations for the initial rank calculation, which amounts to
≈ 222.6 8-bit XOR operations. For the additional variable assignments, where
we need to calculate the rank again for each assignment, note that we assign
values to variables such that we can (1) reuse the previous matrix (which is
now in row echelon form) and (2) minimize the number of operations needed
by choosing variables efficiently. For example, when 10 trials are needed to find
9 suitable variables (which is sufficient in most cases according to our practical

tests), we can choose them such that at most 2log2(10
3·10) ≈ 213.3 XOR operations

are needed (note that these potentially include 8-bit XOR operations now, since
we are adding arbitrary elements of F28 to our augmented matrix).

We still need to account for the cost of solving the final system of linear
equations. However, note that this is almost free, since our final matrix is already
in row echelon form due to the previous computations.

In order to find the 15 key relations ki,j⊕k0,0, we need 15·256·4 = 213.91 table
lookups, which amounts to about 28 3-round AES encryptions (assuming that
the cost of one encryption round is approximately the same as the cost of 20 table
lookups). Hence, the complexity of the whole attack is given by ≈ 225.6 single-bit
XOR operations (in order to find the rank of the first 768× 256 matrix) and of
28 3-round AES encryptions (in order to find the 15 key relations ki,j ⊕ k0,0).

Practical Verification. We implemented the attack in practice and both find-
ing an S-Box representative and finding the key relations take less than 0.2
seconds on our tested machine (note that we do not count the time needed
for the encryption oracle). We note that the bounds for XOR operations given
in our theoretical estimation above are actually upper bounds. We expect the
real number of operations to be lower, mainly because our initial systems are
relatively sparse.

B.3 Note on an Attack on 4-Round AES with a Single Secret S-Box

As done in [16, Section 3.4], the previous attack can potentially be used against
4 rounds of AES instead of 3 rounds. Instead of finding the secret S-Box up to
an affine equivalence, the idea is to find the secret super-Sbox up to an affine
equivalence. In particular, the last 2 rounds can be written as a combination
of a super-Sbox operation and affine operations (we refer to Section 4.1 for
more details). When the secret super-Sbox operation is found (up to an affine
equivalence), one can determine the secret S-Box and repeat the attack as before.
We refer to [16, Section 3.4] for all the details.
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Due to the same computation given in [16, Section 3.4], a system of linear
equations for one super-Sbox now involves 232 variables instead of 28 ones. This
means that we need at least 232 chosen plaintexts (or ciphertexts) to find it.
Since the integral attack on 4-round AES with a single secret S-Box proposed
in [16, Sect. 3.2] requires only 216 chosen plaintexts, our attack cannot be more
competitive than that. For this reason, we have decided not to present our attack
in details. We remark that, while in the attack proposed in [16, Section 3.2] the
attacker looks for an equivalence representation of the secret S-Box, in our attack
the attacker must look for an equivalence representation of the secret super-Sbox.

C An Impossible Mixture Integral Distinguisher on
4-Round AES?

In Section 4.3, we proposed a new distinguisher on 3-round AES. Here we show
that it does not seem to be possible to set up a similar distinguisher on 4-round
AES.

As it is well-known from integral cryptanalysis, the relation
A C C C
C C C C
C C C C
C C C C

 R3(·)−−−→


B B B B
B B B B
B B B B
B B B B


holds with prob. 1. Equivalently,⊕

x∈(D0∩C0)⊕a

R3(x) = 0.

This property can be used to set up an integral key-recovery attack on 4-round
AES. In particular, consider pi ∈ (D0 ∩ C0) ⊕ a for i = 0, ..., 28 − 1 and the
corresponding ciphertexts ci = R4(pi) after 4 rounds. Assuming that the last
MixColumns operation is omitted, it is well-known that the secret key k must
satisfy

28−1⊕
i=0

S-Box−1(cij,l ⊕ kj,l) = 0. (13)

The crucial point here is that the secret key satisfies the previous equivalence
with prob. 1. In other words, if the set of ciphertexts {ci}i corresponds to the
4-round encryptions of pi ∈ (D0 ∩ C0)⊕ a, then there exists (at least) one key k
that satisfies the previous equivalence.

If, however, there is no key for which the previous zero sum is satisfied, that
is,

∀kj,l :

28−1⊕
i=0

S-Box−1(cij,l ⊕ kj,l) 6= 0,
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then the ciphertexts {ci}i are not generated by 4-round AES, but by a random
permutation. However, to check this property we need to check the existence of
a key. So the problem is to rewrite this property in order not to depend on the
existence of the key.

To solve this issue, the idea is to look for values of cij,l for which Equation (13)
does not have any solution k. This result is given by the following theorem.

Theorem 4. Consider 28 chosen plaintexts pi in (D0 ∩ C0) ⊕ a and the corre-
sponding ciphertexts ci = R4(pi) after 4 rounds for i ∈ {0, 1, . . . , 28 − 1}. Then,
for any i, j ∈ {0, 1, 2, 3} the conditions

1. There exist α, β ∈ {0, 1, . . . , 28 − 1}, where α 6= β and s.t. cα ⊕ cβ 6= 0.
2. For each γ ∈ {0, 1, . . . , 28− 1} \ {α, β}, there exists a δ ∈ {0, 1, . . . , 28− 1} \
{α, β, γ} s.t. cγ ⊕ cδ = 0.

can never hold for 4-round AES, independently of the key, of the details of the
S-Box, and of the MixColumns matrix.

Since the previous event can occur for a random permutation, it is possible to
use it to distinguish 4-round AES from a random permutation.

Proof. We prove the previous result by contradiction. Assume there exist j, k ∈
{0, 1, 2, 3} such that (1) there exists α, β ∈ {0, 1, . . . , 28 − 1} s.t. α 6= β and
s.t. cα ⊕ cβ 6= 0 and (2) for each γ ∈ {0, 1, . . . , 28 − 1} \ {α, β} there exists
δ ∈ {0, 1, . . . , 28 − 1} \ {α, β, γ} s.t. cγ ⊕ cδ = 0. As we have just seen, it is not
possible for 4-round AES that

∀kj,l :

28−1⊕
i=0

S-Box−1(cij,l ⊕ kj,l) 6= 0.

Due to the second assumption, it turns out that

28−1⊕
i=0

S-Box−1(cij,l ⊕ kj,l) = S-Box−1(cαj,l ⊕ kj,l)⊕ S-Box−1(cβj,l ⊕ kj,l),

since

cγ ⊕ cδ = 0 → S-Box−1(cγj,l ⊕ kj,l)⊕ S-Box−1(cδj,l ⊕ kj,l) = 0.

The results follow from the fact that

cα ⊕ cβ 6= 0 → S-Box−1(cαj,l ⊕ kj,l) 6= S-Box−1(cβj,l ⊕ kj,l)

for each kj,l. As a consequence, there is no key that satisfies Equation (13), which
is not possible for 4-round AES. ut

In order to give details about the data complexity, we need to estimate how
many different independent pairs we are able to construct.
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Proposition 1. Given 2N texts, it is possible to construct

N∏
i=1

(2 · i− 1)

different independent pairs.

Proof. We prove this result by induction. For 2N = 2, it is possible to construct
just 1 set.

Assume that the result is true for 2N . We prove the results for 2(N+1). Given
texts {t(1), t(2), ..., t(2N+1), t(2N+2)}, it is possible to construct 2N + 1 different
pairs of texts that contain t(1), that is (t(1), t(i)) for i = 2, ..., 2N + 2. Now,
given the texts {t(2), ..., t(2N+1), t(2N+2)} \ {t1} of 2N + 1 texts, it is possible to
construct

N∏
i=1

(2 · i− 1)

different pairs. As a result, it is possible to construct

(2N + 1) ·
N∏
i=1

(2 · i− 1) =

N+1∏
i=1

(2 · i− 1)

different sets, which concludes the proof. ut

Note that
N∏
i=1

(2 · i− 1) = (2 ·N)! ·
( N∏
i=1

(2 · i)
)−1

=
(2 ·N)!

2N ·N !
.

Using the previous result, it turns out that the number of different sets of inde-
pendent pairs of bytes that is possible to construct is given by

27∏
i=1

(2 · i− 1) =
28!

2128 · 27!
≈ 2841.27,

where we use Stirling’s Formula, i.e., n! ≈ nn/en ·
√

2π · n.
Hence, for a fixed byte in row j and column l and for a random permutation,

the probability of the event given in Theorem 4 is approximately

1−
[
1− (1− 2−8) · (2−8)2

7−1
]2841.27

≈ 1−
(
1− 2−1 016

)2841.27≈ 1− e−
1

2174.73 .

Indeed, two bytes are equal with prob. 2−8 and 27− 1 = 127 pairs of bytes must
be equal in order to satisfy the assumption of Theorem 4. Note that we used
the definition of Euler’s number limx→∞(1 − x−1)x = e−1 (where limx→∞(1 −
x−1)x ≈ limx�1(1− x−1)x).

Since there are 16 bytes, it follows that one needs to repeat the test at least
2174.73/16 ' 2170.73 times in order to distinguish 4-round AES from a random
permutation. This means that one needs more than the full code book to set up
the distinguisher.
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Open Problem. An open problem regards the possibility to “improve” Theo-
rem 4, in order to consider more cases for which it is possible to distinguish
4-round AES from a random permutation without guessing the key.

D Impossible Mixture Integral Attack on 5-Round AES

As already mentioned in Section 6, the impossible mixture key-recovery attack
on 4-round AES can be extended at the beginning to set up a 5-round attack.

The idea is very simple. As recalled in [10], each coset of a diagonal space
D0 is mapped into a coset of a column space C0, independently of the secret key.
Thus, the attacker chooses plaintexts in the same coset of D0 which is mapped
into a coset of another subspace C0 after one round. Here, the attacker guesses
the first diagonal of the secret key k0, such that they can compute Rk0(D0⊕ a).
Then, the attacker divides the texts in sets T and S, repeats the attack on 4-
round AES, and filters wrongly guessed keys. Similar to what is done in mixture
differential cryptanalysis [9,1], the crucial points of the attack are that (1) the
way in which the couples of two (plaintext, ciphertext) pairs are divided in sets
T and S depends on the (partially) guessed key and (2) the behavior of a set for
a wrongly guessed key is (approximately) the same as in a random permutation,
thus the attacker can filter wrong candidates for the key and finally finds the
right one.

This means that for a wrongly guessed key, the texts are divided in sets T
and S in a random way. As a result, for a wrongly guessed key, the property
presented in Theorem 4 has probability different from zero, and one can exploit
it to filter wrong key guesses.

Details of the Attack

In order to set up the attack, the attacker chooses 24 ' 24.6 different sets
TΨ,Φ = {t1 = (x1, y1, Ψ, Φ), t2 = (x2, y2, Ψ, Φ)} where t1, t2 ∈ C0 ⊕ b s.t. t1 ≡
(x1, y1, Φ, Ψ), t2 ≡ (x1, y2, Φ, Ψ) as defined in Equation (8), exactly in the same
way as proposed in Section 6.

Then, for each possible value of the first diagonal of the secret key (k00,0, k
0
1,1,

k02,2, k
0
3,3), they partially decrypt the texts

piΨ,Φ = a⊕


k00,0 0 0 0

0 k01,1 0 0
0 0 k02,2 0
0 0 0 k03,3


︸ ︷︷ ︸

guessed key

⊕S-Box−1


SR−1


MC−1 ×


xi 0 0 0
yi 0 0 0
Ψ 0 0 0
Φ 0 0 0


︸ ︷︷ ︸
≡ ti

Ψ,Φ




for a random constant a and for i = 1, 2. Note that the corresponding texts pi

belong to a coset ofD0, so it is sufficient for the attacker to guess just one diagonal
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of the secret key (we highlight that both the integral [5] and the impossible
differential attack [2] on reduced-round AES work in the same way).

Then the attacker asks for the corresponding ciphertexts after 6 rounds.
Using the key-recovery attack proposed in Section 6, they can find the final key
k5. In order to filter out wrongly guessed keys, they simply use these keys and
the key schedule to compute the first diagonal of the first key, denoted by k̂0. If

diag0(k0) 6= diag0(k̂0)

(where diag0(·) denotes the first diagonal), the guessed keys are wrong. Since
the previous condition is satisfied with prob. 1− 2−32, all wrongly guessed keys
are filtered.

Data and Computational Costs. Since the 4-round attack proposed in Sec-
tion 6 must be repeated for every possible diagonal of the secret key k0, the cost
of the attack is roughly given by

232︸︷︷︸
diag of k0

·( 4 · 24︸ ︷︷ ︸
partial decryption

· 244.25︸ ︷︷ ︸
cost of the attack

) = 282.8

S-Box and table look-ups, which corresponds to 276.2 5-round AES encryptions.
A rough approximation of the data cost is given by 232 chosen plaintexts.

Even if this cost can be improved using the technique proposed in [1], these
results are not very interesting on their own sake, as they are clearly inferior to,
e.g., the improved Square attack on the same variant of AES [17], which has a
data complexity of 28 chosen plaintexts and a computational cost of 238 5-round
AES encryptions.
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