
Pay-To-Win:
Incentive Attacks on Proof-of-Work

Cryptocurrencies
Aljosha Judmayer

SBA Research
ajudmayer@sba-research.org

Nicholas Stifter
TU Wien

nicholas.stifter@tuwien.ac.at

Alexei Zamyatin
Imperial College London
a.zamyatin@imperial.ac.uk

Itay Tsabary
Technion and IC3

itaytsabary@gmail.com

Ittay Eyal
Technion and IC3
stanga@gmail.com

Peter Gaži
IOHK

peter.gazi@iohk.io

Sarah Meiklejohn
University College London

s.meiklejohn@ucl.ac.uk

Edgar Weippl
SBA Research

eweippl@sba-research.org

Abstract—The feasibility of bribing attacks on cryptocurren-
cies was first highlighted in 2016, with various new techniques
and approaches having since been proposed. Recent reports of
real world 51% attacks on smaller cryptocurrencies with rented
hashrate underline the realistic threat bribing attacks present, in
particular to permissionless cryptocurrencies.

In this paper, bribing attacks and similar techniques, which
we refer to as incentive attacks, are systematically analyzed and
categorized. We show that the problem space is not fully explored
and present several new and improved incentive attacks. Thereby,
we identify no- and near-fork incentive attacks as a powerful,
yet largely overlooked, category. To be successful, such attacks
require forks of short length that are independent from a security
parameter k defined by the victim, or even no forks at all. The
consequences, such as transaction exclusion and ordering attacks,
raise serious security concerns for smart contract platforms.

Further, we propose the first trustless out-of-band bribing
attack capable of facilitating double-spend collusion across differ-
ent blockchains that reimburses collaborators in case of failure.
Our attack is hereby rendered between 85% and 95% cheaper
than comparable bribing techniques (e.g., the whale attack). We
implement the basic building blocks of all our out-of-band attacks
as Ethereum smart contracts to demonstrate their feasibility.

Index Terms—cryptocurrencies, bribing attacks, smart con-
tracts, mechanism design

I. INTRODUCTION

”The system is secure as long as honest nodes collectively
control more CPU power than any cooperating group of
attacker nodes.” Satoshi Nakamoto [24].

Despite an ever growing body of research in the field
of cryptocurrencies, it is still unclear if Bitcoin, and thus
Nakamoto consensus, is actually incentive compatible under
practical conditions, i.e., that the intended properties of the
system emerge from the appropriate utility model for min-
ers [8]. Bribing attacks, in particular, target incentive com-
patibility and assume that at least some miners act rationally,
i.e., they accept bribes to maximize their profit. If the attacker,
together with all bribable miners, can gain a sizable portion
of the computational power, even for a short period of time,
attacks are likely to succeed.

Most bribing attacks proposed so far focus on optimizing
a player’s (miner’s) utility by accepting in-band bribes, i.e.,
payments in the respective cryptocurrency. Thus, a common
argument against the practicality of such attacks is that miners
won’t participate in these attacks as they would put the
economic value of their respective cryptocurrency at risk,
harming their own income stream. Another common counter
argument against classical bribing attacks is that they are
considered quite expensive for an adversary (e.g., costs of
several hundred bitcoins for one successful attack [20]), or
require substantial amounts of attacker hashrate.

Related to classical bribing attacks, which focus on transac-
tion revision, there also exist attacks aimed at transaction ex-
clusion and/or ordering. Until recently, the latter was a largely
overlooked category [17] that, especially in the context of
bribing, has not been explicitly considered yet. Only a specific
form of a transaction ordering attack was described i.e., front
running. In its simplest form clients raise the transaction fee
in the hope to front-run a competing transaction, which can
also be viewed as an unsophisticated bribing attack. Recent
research highlights and analyzes front running in the context
of the Ethereum platform [11], [13].

Another form of bribing is the Goldfinger attack, where the
goal of an attacker is to destroy a competing cryptocurrency to
gain some undefined external utility [18]. The attack is named
after the James Bond movie villain Goldfinger who seeks
to destroy the gold reserves stored in Fort Knox to increase
the value of his own holdings. The first practical example of
such an attack was suggested in [8] and implemented in [22].
Goldfinger attacks inherently require some external utility e.g.,
that the payments have to be performed out-of-band since, if
successful, the value of the targeted cryptocurrency is intended
to drop. In comparison, classical bribing attacks directly aim
at gaining in-band profit.

The attacks presented in this paper bridge this gap, as
they can either be executed driven by in-band profit, or as
Goldfinger-style attacks. Thereby, the use of bribes may break

the mechanism design and cause rational players to deviate
from the prescribed protocol. To systematically expose the
body of research on bribing-, front-running- Goldfinger- and
other related attacks, we jointly consider them under the
general term incentive attacks, as they all intend to tamper
with the incentives of rational actors in the system.

A. Contributions

In this paper we show that sophisticated trustless out-of-
band attacks can readily be constructed, given state-of-the-art
smart contract platforms. Such attacks pose an even greater
threat to cryptocurrencies, as the argument that miners won’t
harm their own income stream can no longer be readily applied
in this case. Moreover, we show that the cost for an attacker
can be significantly reduced by guaranteeing that participating
bribees are reimbursed, as well as aligning the interests of
multiple attacks (crowdfunding) in a trustless manner, i.e.,
through smart contract code.

Furthermore, we demonstrate that ordering attacks can also
be executed as targeted bribing attacks using smart contracts.
Such attacks do not require any attacker hashrate and can work
without inducing deep blockchain forks or near forks, and may
even be successful with no forks at all. This possibility for ra-
tional miners to (trustlessly) auction the contents of their block
proposals (i.e., votes) to the highest bidder raises fundamental
questions on the security and purported guarantees of most
permissionless blockchains.

We begin our analysis by outlining general assumptions of
the attack model most analyzed and newly proposed incentive
attacks have in common (Section II). We then present a
detailed analysis of related work in the area of incentive attacks
which allows us to compare and categorize the varying sys-
tem/attack models of previously proposed attacks (Section III).
This is a prerequisite to identify related attacks and compare
them against each other. Thereby, we also show that the
problem space is not yet fully explored. By classifying along
two different dimensions i.e., intended impact and required
interference, we find that incentive attacks on transaction
ordering can be performed as a byproduct of other analysed
attacks, but no dedicated incentive attacks have so far been
proposed that explicitly target this area.

We propose two new incentive attacks (Section V and VI)
to fill some of the gaps outlined by our analysis 1. Both are
trustless for the attacker and the collaborating miners, rely
on out-of-band payments using a different cryptocurrency and
do not require the adversary to control any hashrate. The
first lies in the previously underrepresented category of no-
/near-fork incentive attacks and targets transaction ordering
and exclusion. The second attack incentivizes deep forks and
double-spend collusion.

On the technical level, We introduce three crucial enhance-
ments to incentive attacks: (i) ephemeral mining relays, as a
mechanism for executing trustless, time-bounded, cross-chain

1Two other new in-band attacks which we also identified have been moved
to the appendix because of concurrent independent work [34].

incentive attacks, (ii) guaranteed payment of bribed miners
even if the attack fails, which actually reduces the costs of
such attacks, and (iii) crowdfunded attacks, to further reduce
the individual cost of executing incentive attacks.

Summarizing our contributions are as follows:
• A trustless out-of-band incentive attack to incentivize

transaction exclusion and/or ordering which can be ex-
ecuted without deep blockchain forks

• A trustless out-of-band incentive attack to incentivize
double-spend collusion

• A construction for an ephemeral mining relay to facilitate
the proposed out-of-band attacks

• Methods to guarantee payments to participating bribees
and an evaluation of the attack cost reduction

• A method to crowdfund out-of-band double-spending
attacks

II. MODEL

For all analyzed and presented incentive attacks we adopt
the following general attack model. If an analyzed attack
deviates from this model, it is highlighted in detail when the
attack is described.

We consider incentive attacks within permissionless proof-
of-work (PoW) cryptocurrencies. That is, we assume protocols
adhering to the design principles of Bitcoin [24], generally
referred to as Nakamoto consensus or Bitcoin backbone pro-
tocol [15], [25], [30].

Within the attacked cryptocurrency we differentiate between
miners, who participate in the consensus protocol and attempt
to solve PoW-puzzles, and clients, who do not engage in
such activities. As in previous work on bribing attacks [7],
[20], [22], [31], we assume the set of miners to be fixed,
as well as their respective computational power within the
network to remain constant. To abstract from currency details,
we use the term value as a universal denomination for the
purchasing power of a certain amount of cryptocurrency units
or any other out-of-band funds such as fiat currency. Miners
and clients may own cryptocurrency units and are able to
transfer them (i.e., their value) by creating and broadcasting
valid transactions within the network. Moreover, as in prior
work [20], [22], [32], we make the simplifying assumption that
exchange rates are constant over the duration of the attack.

We split participating miners into three groups and their
roles remain static for the attack duration. Categories follow
the BAR (Byzantine, Altruistic, Rational) [5], [19] rational
behavior model.
• Byzantine miners or attacker(s) (Blofeld): The at-

tacker B wants to execute an incentive attack on a target
cryptocurrency. B is in control of bribing funds fB > 0
that can be in-band or out-of-band, depending on the
attack scenario. He has some or no hashrate α ≥ 0 in the
target cryptocurrency. The attacker may deviate arbitrarily
from the protocol rules.

• Altruistic or honest miner(s) (Alice): Honest miners A
always follow the protocol rules, hence they will not

accept bribes to mine on a different chain-state or de-
viate from the rules even if it would offer larger profit.
Miners A control some or no hashrate β ≥ 0 in the target
cryptocurrency.

• Rational or bribable miner(s) (Rachel): Miners R
controlling hashrate ω > 0 in the target cryptocurrency
aiming to maximize their short term profits. We consider
such miners “bribable”, i.e., they follow strategies that
deviate from the protocol rules as long as they are
expected to yield higher profits than being honest. For our
analyses we assume rational miners do not concurrently
engage in other rational strategies such as selfish mining.

Additionally, we assume the victim (Vincent) of the bribing
attacks to be a client without any hashrate. While other bribing
attacks implicitly model the victim as honest, i.e., as strictly
following the protocol, we want to emphasise that this aspect
is important if economically rational counter attacks by the
victim should be considered, even in a setting where the victim
has no hashrate but funds (fV). Therefore we distinguish
between rational and honest victims to allow for a more
fine grained discussion of the presented attacks. If Vincent
is to be modeled with possession of some hashrate, it can be
considered either to be part of β (if altruistic) or ω (if rational).
It holds that α+ β + ω = 1.

Whenever we refer to an attack as trustless, we imply that
no trusted third party is needed between briber and bribee to
ensure correct payments are performed for the desired actions.
Thus the goal is to design incentive attacks in a way that
the attacker(s) as well as the collaborating miners have no
incentive to betray each other if they are economically rational.

A. Communication and Timing

Participants communicate through message passing over a
peer-to-peer gossip network, which we assume implements a
reliable broadcast functionality. As previous bribing attacks,
we further assume that all miners in the target cryptocurrency
have perfect knowledge about the attack once it has started.
Analogous to [15], we model the adversary Blofeld as “rush-
ing”, meaning that he gets to see all other players messages
before he decides his strategy, e.g., executes his attack.

If more than one cryptocurrency is involved in the consid-
ered scenario, for example when out-of-band payments should
be performed in another cryptocurrency, an additional funding
cryptocurrency is assumed. While the attack is performed on
a target cryptocurrency, the funding cryptocurrency is used
to orchestrate and fund it. In such a case, we assume that the
difficulty and thus the mean block interval of the funding chain
is fixed as well. Further, no additional attacks are concurrently
being launched against either cryptocurrencies.

B. Incentive Attacks, Impact and Interference

Incentive attacks represent a generalized form of bribing
attacks [7], comprising adversarial strategies aimed at ma-
nipulating the incentives of rational participants. Hereby, we
first introduce a general classification along two different
dimensions, namely by the intended impact an attack has on

transactions and their ordering and the required interference,
i.e., the depth of blockchain reorganizations caused by forks
for the attack to be successful. Combined with other important
characteristics, we systematically analyze and categorize the
body of research on incentive manipulation attacks.

1) Intended Impact on Transactions: A core goal for per-
missionless PoW cryptocurrencies is to achieve an (eventually)
consistent and totally ordered log of transactions that define
the global state of the shared ledger. We differentiate between
three states a transaction can be in from the perspective of a
participant (miner or client):
• proposed/ published/ unconfirmed, the transaction has

been broadcasted in the respective P2P network;
• confirmed, the transaction has been confirmed by at least

one block, i.e., has been included in a block;
• agreed, the transaction has been confirmed by at least k

blocks, where k is defined by the recipient of the transac-
tion. We denote kparticipant to refer to the confirmation
policy of a participant if it is not clear from the context
e.g., kV denotes the confirmation policy of the victim.

We separate between the following three main categories of
incentive attacks aimed at manipulating transactions and their
ordering:
• transaction revision, change a previously proposed, pos-

sibly confirmed or agreed transaction;
• transaction ordering, change either the proposed, con-

firmed or already agreed upon order of transactions;
• transaction exclusion/censorship, exclude a specific

transaction, or set of transactions, from the log of trans-
actions for a bounded amount of time i.e., the transaction
remains unconfirmed.

Some incentive attacks may allow multiple types of transac-
tion manipulation at the same time (see Table I). Depending on
the state of the targeted transaction(s) (proposed, confirmed,
agreed) the attack might vary in cost and in the required level
of interference with consensus.

2) Required Interference with Consensus: While the previ-
ous classification of transaction manipulation attacks describes
the intended impact, here we consider the required interference
with consensus by which they can be achieved. Specifically,
we introduce three different fork requirements.
• Deep-fork required, where a fork with depth of at least `

exceeding a security parameter kV is necessary (i.e., ` >
kV). The victim defines kV [14], [29] and it refers to
its required number of confirmation blocks for accepting
transactions.

• Near-fork required, where the required fork depth is
not dependent on a kV , but forks might be required. In
other words, the attacker defines the gap kgap he wants
to overcome, which can be smaller than kV .

• No-fork required, where no blockchain reorganization is
necessary at all (i.e., ` = 0).

No-fork attacks distinguish themselves from the other two
categories by aiming to manipulate miner’s block proposals
rather than (preliminary) consensus decisions, i.e., already

mined blocks. Deep- and near-fork attacks seek to undo state-
updates to the ledger that are already confirmed by subsequent
proof-of-work.

Some attacks, such as front-running or transaction revision
where the victim accepts kV =0 (zero confirmation), may be
executable as no-fork attacks. Others, such as performing a
double spend where the victim has carefully chosen kV [29],
may require deep-forks because they need to substantially
affect consensus and violate the security assumption that
a common prefix of the blockchain remains stable, except
with negligible probability [14] (see Section VI). Transaction
censorship may require near-forks to exclude blocks which
include the respective transaction (see Section V).

III. RELATED WORK

Equipped with our attack model and the classification by
intended impact and required interference, we consider related
work on the topic of incentive manipulation attacks within this
section. Table I presents an overview of our categorization of
previous proposals, as well as our new pay-to-win attacks.
Each row represents a different attack and columns outline
respective properties.
Tx revision / Tx ordering / Tx exclusion are outlined
in subsection II-B1. In the first bribing attack proposed by
Bonneau [7] the use of lock time transactions is suggested,
which are only valid on the attacker’s chain but there they
can be claimed by anyone (anyone-can-spend outputs). Miners
are hence expected to be incentivized to mine blocks on
the attacker’s chain to collect these bribes. A variation of
this attack using high fee transactions (whale transactions) to
provide incentives for miners to join the attack was described
by Liao and Katz [20]. In [22] they proposed a smart contract
(HistoryRevisionCon) which pays additional in-band
rewards to miners of the attacker’s desired Ethereum chain
branch, iff the effects of the double-spending transaction have
occurred on this branch. The mentioned attacks ([7], [20],
[22]) are designed to replace or revise a specific transaction,
i.e., perform a single double-spend. As a consequence, they
do not consider defining the order or exclusion of arbitrary
transactions. Except for the double-spending transaction itself,
the block content of subsequent blocks can freely be defined
by the bribed miners. Therefore, it would be possible for
such miners to also perform a double-spend of one of their
transactions for free by piggybacking on the attack financed
by the original attacker.
GoldfingerCon [22] can be seen as a special case of the

transaction exclusion attack which rewards Bitcoin miners for
mining empty blocks with the help of an Ethereum smart con-
tract. Similarly, Pitchforks [16] leverages merged mining
to subsidize the creation of empty (or specially crafted) blocks
in the attacked chain [16].

The Script puzzle 38.2% [31] and
CensorshipCon attack [22] distract hashrate of bribable
miners to gain an advantage over the remaining honest
miners. The goal of both attacks is that the attacker gains the
majority of the hashrate in the respective chain, and he can

hence arbitrarily order and exclude transactions. Although,
the attack does not explicitly aim to allow the specific
ordering of certain transactions, this capability is achieved
as a byproduct. Neither attack is reverting blocks to change
history, which is a different scenario and requires further
analysis in this context, as reverting blocks would change the
incentives of miners which have produced them.

The only previously proposed attack to theoretically
achieve all three properties is the Script Puzzle
double-spend [31]. Here PoW like puzzles, offering in-
band rewards, are published within the respective cryptocur-
rency with the intent to distract the hashrate of rational
miners. Again, using the gained advantage to overtake the
main chain requires attacker hashrate and transaction ordering
merely comes as a byproduct and was not an explicit design
goal. Moreover, upon successful execution rational miners are
deprived of their bribes, rendering the attack non-repeatable.
Required chain reorganization is outlined in II-B2 and clas-
sifies if an attack can be realized without, with a near- or with
a deep-fork. A classical double-spending attack scenario [27],
[29] requires deep forks (` > k) to reorganize the chain.
Since the attacker has full control over the required hashrate
to perform the attack, he can also arbitrarily order and exclude
transactions from the longest chain.

Depending on the scenario and the desired attack outcome,
e.g., if only ordering is relevant, deep forks are not necessarily
required. For instance, the order of unconfirmed transactions
can be manipulated without necessitating a fork, such as per-
forming front-running [13]. Ordering attacks on smart contract
cryptocurrencies have not been intensively studied [28]. In
the paper at hand, we generalize this ability in the context
of incentive attacks and analyze how it can be realized
(Section E).
Requires attacker hashrate α for the attack to be suc-
cessfully executed. As observable in Table I there are three
attacks which require α > 0. The Script Puzzle 38.2%
attack allows an adversary with appropriate hashrate to
establish a computational majority and gain a net profit without
considering double-spending attacks. In Script Puzzle
double-spend the adversary has no explicit minimum
hashrate requirement, however low hashrate has to be com-
pensated with more puzzle funds. Moreover, it is designed as a
single-shot double-spending attack that, if successful, deprives
rational miners of their bribes. CensorshipCon uses a smart
contract to offer in-band bribes for mining uncle blocks to
distract hashrate. Thus, it requires attacker hashrate to include
uncle blocks from rational miners in the main chain. Since it
has to include all mined uncle blocks, it requires the hashrate
of the attacker to be larger than 1

3 and the hashrate of the
bribable miners to be between [13 ,

2
3).

It makes sense to bound the attacker hashrate below 1
2 since

otherwise the attacker has no need to perform bribing attacks
as he could overtake the chain single handedly.
Required minimal rational miner hashrate ω for the attack
to have a chance to succeed as described and evaluated in
the respective paper. Generally, all bribing attacks have to

Tx rev. Tx ord. Tx excl. Required chain
reorganization

Attacker
hashrate α

Rational
hashrate ω

Distracts
hashrate

Requires
smart contract Payment Trustless for

attacker
Trustless for
collaborator Subsidy Compensates

if attack fails
Checklocktime bribes [7] 3 7 7 Deep fork 7 ≈ [12 , 1] 7 7 in-band 3 ∼ 7 7

Whale Transactions [20] 3 7 7 Deep fork 7 ≈ [12 , 1] 7 7 in-band 3 ∼ 7 7

Script Puzzle double-spend [31] 3 ∼ 3 Deep fork (0, 1
2) 1− α 3 7 in-band ∼ 7 7 ∼

Script Puzzle 38.2% attack [31] 7 ∼ 3 Near-/No forks [0.382, 1
2) 1− α 3 ?† out-of-band ?† ?† 7 3

Proof-of-Stale blocks [21], [33] -? -? -? -? 7 - 3 3 out-of-band ∼ 3 7 3

CensorshipCon [22] 7 ∼ 3 Near-/No forks [13 ,
1
2) [13 ,

2
3) 3 3 in-band ∼ 7 3 7

HistoryRevisionCon [22] 3 7 7 Deep fork 7 ≈ [12 , 1] 7 3 in-band 3 ∼ 3 7

GoldfingerCon [22] - - 3all No fork 7 ≈ [12 , 1] 7 3 out-of-band 3 3 7 3

Pitchforks [16] - - 3all No fork 7 (1
3 , 1] 3 7 out-of-band 3 3 3 7

Front-running [11], [13] 7 3 7 No fork 7 (0, 1] 7 7 in-band 7 3 7 3

Pay per Miner Censorship [34] 7 7 3 No fork 7 1 7 3 in-band 3 3 7 7

Pay per Block Censorship [34] 7 7 3 No fork 7 1 7 3 in-band 3 3 7 3

Pay per Commit Censorship [34] 7 7 3 Near-/No fork 7 1 7 3 in-band 3 3 7 7

P2W Tx Excl.& Ord. 7 3 3 Near-/No forks 7 [12 , 1] 7 3 out-of-band 3 3 7 3

P2W Tx Rev. & Excl. & Ord. 3 3 3 Deep fork 7 [12 , 1] 7 3 out-of-band 3 3 7 3

P2W Tx Ord. Appendix E 7 3 7 No fork 7 (0, 1] 7 3 in-band 3 3 7 7

P2W Tx Excl. Appendix F 7 7 3 Near-/No forks 7 [12 , 1] 7 3 in-band 3 3 7 7

TABLE I: Comparison of our P2W and existing incentive attacks on cryptocurrencies. A property is marked with 3 if it is
achieved and with 7 otherwise, - is used if a property does not apply. The symbol ∼ means that the property cannot be clearly
mapped to any of the previously defined categories without further details or discussion. The symbol ? means that this attack
aims against mining pools and hence is not intended to manipulate the chain. The symbol † means that the paper does not
explicitly specify the out-of-band payment method but assumes its correctness.

assume that at least some of the miners are rational and hence
bribable. Both Script Puzzle attacks require all miners
to be rational, i.e., α+ω = 1, as well as the Pay per ...
attacks (ω = 1).
Distracts hashrate from the valid tip(s) of the attacked
blockchain to some other form of puzzle or alternative branch
that does not contribute to state transitions, e.g., Ethereum
uncle blocks in case of CensorshipCon or another cryp-
tocurrency in the case of Pitchforks.
Requires smart contracts holds true for all attacks which
necessitate the use of smart contracts to operate as expected.
Payment specifies where the payments to the bribees are
performed. Rewards are either in-band, i.e., in the respective
cryptocurrency under attack or out-of-band, e.g. in a different
cryptocurrency. It can be argued that miners will try not to
harm the value of their own cryptocurrency by accepting
in-band bribes, hence out-of-band incentive attacks are of
particular interest.
Trustless for attacker specifies if the attack itself can be ex-
ploited by allowing collaborating/bribed miners to profit with-
out adhering to the attack. For example, script puzzle
attacks require some form of freshness guarantee to prevent
bribees from intentionally waiting until the attack fails before
computing puzzle solutions to obtain rewards. It is also pos-
sible to claim rewards for stale honest blocks that are later on
submitted as uncles to the CensorshipCon. In naive front-
running attacks the attacker has no guarantee that the desired
ordering will be achieved by paying a high fee.
Trustless for collaborator specifies if bribees have to trust the
attacker that they will receive their payments, if they adhere
to the attack. In Checklocktime bribes the adversary
can try to cheat by creating a conflicting/racing transaction.
However, this attempt is only possible if the attacker is under
control of some hashrate α > 0. The same holds true for
Whale Transactions, since the attacker has to provide
new high fee transactions for each block on the attack chain at

each step of the attack. While HistoryRevisionCon does
not explicitly consider trustlessness for collaborating miners,
an augmentation is possible, 2 CensorshipCon requires
that the attacker includes blocks produced by collaborating
miners as uncle blocks and thus is not trustless. The Script
Puzzle double-spend attack is designed as a one-shot
attack that defrauds collaborators. The Script Puzzle
38.2% attack does not specify how payments are performed
and assumes a trusteless out-of-band payment method.

Subsidy means that the attack leverages some characteristic
of the cryptocurrency or environment to become cheaper. In
case of CensorshipCon the rewards from uncle blocks are
used to subsidize the attack, whereas in Pitchforks the
additional income from merged mining is used as an incentive.

Compensates if attack fails refers to the property that
at least a portion of the bribe is paid irrespective of
the outcome. To successfully engage rational miners, at-
tacks such as Checklocktime bribes [7], Whale
Transactions [20] and HistoryRevisionCon [22],
must pay high rewards in case of success to compensate the
financial risk faced by bribees if the attack fails despite of their
participation. So far no attack facilitating transaction revision
achieves this property.

Script Puzzle double-spend defrauds the bribed
miners if successful and hence actually only pays out rewards
if it fails.

In front-running attacks, high transaction fees are usually
incurred even if the desired ordering effect is not achieved.
Thus, in this case it is an undesirable property for the attacker.

2The issue stems from the fact that the bribing contract checks the balance
of the Ethereum account which should receive the bribing funds before issuing
any bribes, but without any additional locking constraints these funds can be
moved be the attacker once received.

A. Main Observations

1) Ordering attacks underrepresented: Ordering attacks on
smart contract cryptocurrencies are still not well understood
and discussed [28], yet can be observed in practice [11], [13].
It can be observed that most bribing attack scenarios focus
either on transaction revision or transaction exclusion, and
allow for transaction ordering merely as a byproduct. All
such currently available attacks (CensorshipCon,Script
Puzzle ...) require that the attacker is in possession of
some hashrate. Therefore, the ability to order transactions
arbitrarily comes as a byproduct of the ability as a miner to
freely define the order and set of transactions to include in their
own block proposals as long as a valid block is produced.

A notable exception are front-running attacks. However,
the attacks observed in practise provide no guarantees for
the attacker that the desired ordering is achieved even if the
highest transaction fee has been paid as the resulting game is
an all pay auction [11]. Moreover, we argue that front-running
is only a subset of possible (re-)ordering attacks. For instance,
it can be desirable to position a transaction precisely between
two other transactions. An example where such a constellation
would result in a successful attack can be found in [28], where
a vulnerability in the BlockKing contract is described. In the
paper at hand, scenarios where the ordering of transactions can
be manipulated by attackers who themselves are not miners
are of particular interest.

2) No out-of-band attacks facilitating transaction revision:
Moreover, we also observe insufficiencies of existing out-of-
band incentive attacks. The only available technique beyond
Goldfinger attacks (GoldfingerCon, Pitchforks), is
the Script Puzzle 38.2% attack, which requires sub-
stantial attacker hashrate. Proof-of-stale-blocks [21]
represents a special case aimed at mining pools. So far
there exists no out-of-band attack which facilitates transaction
revision. Theoretically, all attacks in which the payment is
performed out-of-band can be used to launch Goldfinger-style
attacks, as the reward of the bribee is not directly bound to
the value of the respective cryptocurrency under attack. The
question of whether or not such attacks are profitable depends
on the external utility that can be generated from the failing
cryptocurrency.

In the following, we propose two new incentive attacks
aimed at different scenarios to fill the outlined gaps.

IV. PAY-TO-WIN INCENTIVE ATTACKS

We introduce two new pay-to-win incentive attacks that are
trustless, both for the attacker and the collaborating miners.
Our attacks do not require the adversary to control any
hashrate, i.e., we assume α = 0. The payment is performed
out-of-band therefore, we differentiate between a target cryp-
tocurrency, where the attack is to be executed, and a funding
cryptocurrency, where the attack is coordinated and funded.
While the funding cryptocurrency must support sufficiently
expressive smart contracts, there are no such requirements for
the target cryptocurrency. For presentation purposes, we use
Bitcoin as target and Ethereum as funding cryptocurrency to

instantiate and describing the attack below. Theoretically, the
attack can be funded on any smart contract-capable funding
cryptocurrency which fulfills the requirements listed in B.
Therefore, these attacks are arguably more difficult to detect
and protect against, as the victim would have to monitor
multiple, if not all, possible funding blockchains. Moreover,
when relying on out-of-band payments, the assumption that
miners of the target cryptocurrency would not harm their own
revenue channel does not necessarily hold true anymore. In a
world where more than one cryptocurrency with a certain PoW
algorithm exists, this is a even more compelling argument.

Sections V-VI each describe one of the introduced attacks
in detail and follow the same structure: (i) a general overview
of the attack, (ii) a step-by-step description, (iii) evaluation of
the attack.

Note that we also describe two new in-band incentive
attacks: in-band transaction ordering and in-band transaction
exclusion. The latter was also described and analysed in
concurrent work by Winzer et al. [34], therefore we decided
to focus on our out-of-band attack and moved the in-band
attacks to the appendix. In-band transaction exclusion (Section
F) can be seen as practical instantiation of the theoretical
attack described in [34]. In-band transaction ordering (Section
E) allows the attacker to specify desired ordering conditions.
Compared to front running [11], this attack utilizes a smart
contract to directly reward miners iff the correct ordering
condition is upheld.

V. TRANSACTION EXCLUSION AND ORDERING ATTACK
(OUT-OF-BAND)

In this section we describe how out-of-band incentive at-
tacks, which facilitate both transaction exclusion and ordering,
can be constructed. This might be used to perform multiple
front-running attacks at once, or/and to censor certain transac-
tions. Such attacks can be profitable for an attacker attempting
to falsely close an off-chain payment channel (i.e., publish an
old/invalid state) but prevent the victim from executing the
usual penalizing measures [12], [23], [26]. To execute the
attack, we describe how an attacker can construct a smart
contract which temporarily rewards the creation of attacker-
defined blocks on the target cryptocurrency. We call this
technique an ephemeral mining relay, as it combines elements
from a mining pool and a chain relay. The attack presented
here can also be viewed as a form of the feather forking
attack proposed by Miller [9]. In a feather fork the attacker
publicly promises that he will ignore any block containing a
blacklisted transaction. The attack proposed in this paper uses
smart contracts on a funding cryptocurrency to provide a more
credible threat.

A. Description

Figure 1 provides a visualization of an ongoing attack.
Initialization. The attacker’s goal is to prevent an unconfirmed
transaction txV from being included within N newly mined
Bitcoin blocks. The adversary initializes an attack smart con-
tract, which provides the functionality of an ephemeral mining

relay, by specifying block templates. These templates have to
be used by the collaborating Bitcoin miners to be eligible
for rewards. This allows the attacker to fully control the
content of the mined blocks, including ordering and inclusion
of transactions. For each block template, the corresponding
bribe is also conditionally locked within the smart contract,
ensuring miners will be reimbursed independently of the final
attack outcome as long as they provide a valid solution.

In the case of Bitcoin block templates, the adversary pub-
lishes incomplete block headers to the attack contract, as
well as the corresponding coinbase transaction. The latter is
necessary to allow collaborating miners to include their own
Ethereum payout addresses within the block template, as this
is later used by the smart contract for reimbursement if a valid
block is submitted. Miners joining the attack can only freely
change the nonce (used to iterate over PoW solutions) and
the coinbase field (include Ethereum address) in the generated
Bitcoin blocks.

We point out that it is the attacker who must receive
the Bitcoin block rewards and not the collaborating miners.
Instead, collaborators are reimbursed the value of the Bitcoin
block reward as part of the bribing payouts in the Ethereum
attack contract. This is required as an additional payout
guarantee for the bribee in order to render the attack trustless
for collaborators. Thereby, rational miners are not required to
verify if the block template they are bribed to mine on will
result in a valid block 3

Attack. Rational miners submit valid Bitcoin blocks, based
on the attacker’s block templates, to the attack smart contract
on Ethereum via the ephemeral mining relay attack contract,
which verifies that they form a valid chain. As multiple miners
may race to claim the rewards for the same block template,
they are incentivized to publish any valid PoW solutions they
find in a timely manner. An additional incentive for the bribee
to publish a solution promptly, comes from the fact that the
attack contract pays an additional ε for each solution if the
bribing attack as a whole is successful. The incentive of the
attacker to publish the solutions together with the associated
full block in Bitcoin comes from the rewards he receives in
any case, plus the gain from a successful attack.

At each step, the attacker updates the Bitcoin block tem-
plates after each submission to the attack contract and, if
necessary, can add additional bribes. If no new templates are
submitted, the attack halts. It is possible to include more than
one block template in a single block, as shown in e3 (for
details see Appendix C).
Payout. Miners can claim payouts in the attack contract once
kB Bitcoin blocks have been mined after the attack has ended
(kB being a security parameter defined by the attacker). The
attack smart contract is responsible for verifying the validity
of submitted blocks, i.e., their PoW in compliance with the
specified block template, and that all blocks form a valid attack
chain. If a submitted PoW is valid, the attack contract rewards
miners even if the attack chain did not succeed to become the

3We provide more details on block template constructions in Section V-D

Ethereum block
Zero or more blocks in between

Bitcoin block Rewarded blockBlock not yet mined

out-of-band tx ordering attack:

b0 b1 b2

b'3

eT
e0 e1 e2

b3

e3

b4

e4

b5

eN

bN bT

Failed:

b0 b1 b2

b3

eT
e0 e1 e2

b'3

e3

b'4

e4

b'5

eN

b'N

bTb4 b5 bN

Ongoing:

b0 b1 b2

e0 e1

b'4

b'3 b'4 b'5 b'N

txV incl.

txV incl.

b'5

txV incl.

init

init

init

target chain
(B

itcoin)
funding chain
(E

thereum
)

pay

pay

Successful:

1

1+ϵ 1+ϵ 1+ϵ 1+ϵ 1+ϵ 1+ϵ

1 11 1 1

kB

kB

Fig. 1. Blockchain structure and timeline of an ongoing, a failed, and a
successful tx exclusion and ordering attack with out-of-band payments. The
attack is initialized when the attack contract is published in block e0. Block
templates are published as transactions in the funding cryptocurrency and refer
to blocks in the target cryptocurrency. The payouts are performed in block
eT . The yellow blocks are rewarded by the attack contract, either only with
their original value (reward + free = 1) or with an additional 1 + ε if the
attack was successful.

main chain, i.e., collaborating miners face no risk. The first
miner to submit a valid PoW for the respective block template
will, in any case, receive value equivalent to the full Bitcoin
block reward in Ether, regardless if the attack has failed, plus
an extra ε if the attack is successful.

B. Evaluation with Rational Miners Only (ω = 1)

As previously outlined, the attacker locks up a bribe per
submitted block template, to ensure miners face no payout risk
and are incentivized to join the attack. For an attack duration
of N blocks, we can derive a lower bound for the financial
resources (budget) for Blofeld in Ether (fB) required for this
attack. Let us assume Blofeld wants to run the attack for N
blocks. Before the attack has finished, N is only known to the
attacker.
Necessary attack budget: The budget of the attack contract
must cover and compensate all lost rewards rb (including fees
4), for every Bitcoin attack chain block in Ether 5, in case the
attack fails, plus an extra bribe ε per block in case the attack
was successful. These values together with the initial funds of

4In a concrete attack rb is not constant, but given by the coinbase output
values of every submitted block.

5For simplicity we assume a fixed exchange rate between cryptocurrencies.

the attacker fB , define the maximum duration of the attack N
in terms of attack chain blocks that can be financed:

fB = N · (rb + ε) + coperational (1)

N =

⌊
fB − coperational

rb + ε

⌋
(2)

There, coperational specifies the operational costs for smart
contract deployment and execution (e.g., gas costs on
Ethereum). Compared to the current block rewards, the oper-
ational costs for managing the smart contract are insignificant
given the measurements in [22] and Section V-D. Although,
costs currently being below 100 USD (see V-D), we decided
to set coperationl = 0.5 BTC to provide a future-proof
and permissive margin. Assume an attacker wants to specify
the transaction ordering and/or exclusion in Bitcoin for the
duration of one hour i.e., N = 6. A lower bound for the budget
of the attacker fB can thus be derived by the current block
reward (12.5 BTC) including approximated 6 fees (1 BTC)
amounting to rb = 13.5 BTC. Providing an additional ε = 1
BTC, yielding approximately 87.5 BTC as a lower bound for
the budget in this example.
Costs of a failed attack: Although the attack cannot fail in
a model where all miners are rational and the attacker has
enough budget, it is relevant for a scenario where ω < 1 to
determine the worst case cost for an unsuccessful attack. Note
that the actual costs for a failed attack can be much lower,
since Blofeld is able to halt the attack by not publishing any
further block templates. In the worst case the attack duration
is N and not one block produced by complacent miners
(according to a published block template) made it into the
main chain. Then the costs would be close to the maximum
budget, reduced by ε, which amounts to approximately 81.5
BTC in our example:

cfail = N · rb + coperational (3)

Costs and profitability of a successful attack: If the attack
is successful, the attacker earns the block rewards on the main
chain in BTC which compensate his payouts to bribed miners
in Ether. The costs for a successful attack are thus given by
N · rb main chain blocks, whereas rewards must be paid for
N · (rb + ε) block templates. Therefore, in our example the
costs for a successful attack would be approximately 6.5 BTC,
which amounts to roughly 48 000 USD at current exchange
rates 7:

csuccess = N · (rb + ε) + coperational − (N · rb) (4)
= N · ε+ coperational (5)

Since we assume rational miners, the attack in this scenario is
always successful iff ε > 0 and no fork is required. Theoreti-
cally the bribe can be much smaller than in our example. For

6According to https://blockchain.com/charts the average transaction fees per
Bitcoin block are 0.69 BTC. Accounting for standard deviation of fee and
produced blocks per day the value varies between 0.75 BTC and 0.64 BTC.
To provide a permissive margin we round to 1 BTC.

7Exchange rates from end of October 2019.

a successful attack to be profitable, the amount gained from
ordering or transaction withholding va must exceed csuccess.

While the attacker must have the funds to compensate
collaborating miners regardless of the outcome of the attack
– the attack becomes cheaper than comparable attacks since
the additional bribe does not have to account for the risk
of getting nothing, faced by rational miners in the other
bribing scenarios. Other previously proposed incentive at-
tacks aiming at transaction exclusion require the attacker to
have a sizeable portion of the overall hashrate (in the target
cryptocurrency) under their direct control to even stand a
chance. At least 1/3 for CensorshipCon, or at least 38.2%
for Script Puzzle 38.2%. Acquiring or sustaining the
required amount of hashrate already bares large costs, not to
mention the additionally required bribes. The costs for renting
1/3 of Bitcoin’s total hashrate with NiceHash 8 for the duration
of one hour are approximately 470 000 USD.

The Pay per ... attacks proposed in concurrent work
[34] operate in a comparable setting as our described attack
and also highlight the economic feasibility without going
into detail how such attacks can be constructed. The main
differences to our attack are, that they focus on an in-band
setting and only consider a model where all miners are
rational.

C. Evaluation with Altruistic Miners (ω + β = 1)

We now discuss a more realistic scenario where not all
miners switch to the attack chain immediately, i.e., some of
them act altruistically. Altruistic miners follow the protocol
rules and only switch to the attack chain if it becomes the
longest chain in the network – but do not attempt to optimize
their revenue, contrary to economically rational or bribable
miners9.

Blocks of altruistic miners are likely to also include trans-
actions and transaction orderings that are undesirable to the
attacker. Therefore, blocks of such miners may have to be
excluded by the attacker, i.e., by providing templates which
intentionally fork away these blocks. If altruistic miners find
a block, the attacker and colluding miners must mine at least
two blocks for the attack chain to become the longest chain
again – which altruistic miners will then follow. Hence, the
security parameter kgap is equal to 1 in this case, as we start
our attack immediately after one undesired block has been
mined. Therefore, near-forks are required.

We derive the probability of the attack chain to win a race
against altruistic miners, based on the budget of the attacker.
The attack chain must find two blocks more than the altruistic
main chain – but must achieve this within the upper bound of
N blocks (maximum funded attack duration). Each new block
is appended to the main chain with probability β, and to the
attack chain with probability ω respectively (β + ω = 1). We
therefore seek all possible series of blocks being appended
to either chain, and calculate the sum of the probabilities of

8https://www.crypto51.app/
9Another explanation can be that some miners have imperfect information,

which might be the case in practice.

Fig. 2. The probability of catching up one block on the y-axis (log scale)
within N blocks on the x-axis for different hashrates ω. The dashed line is
the maximum probability to catch-up one block after an unlimited number (
N = ∞) of blocks i.e., (ω

β
)2.

the series which lead to a successful attack. In a successful
series i ∈ N blocks are added to the main chain and kgap+i+1
blocks are added to the attack chain. The probability for such
a series is:

ωkgap+i+1 · βi (6)

Observe a series of a successful attack with i blocks added to
the main chain and kgap + i + 1 blocks added to the attack
chain. For any prefix strictly shorter than the whole series, the
number of appended blocks to the attack chain is smaller than
kgap + 1, as otherwise the attack would have ended sooner.
It follows that the last block in a successful series is always
appended to the attack chain. The number of combinations for
such a series is derived similarly to the Catalan number, with
a difference of kgap for the starting point:((

kgap + 2i

i

)
−
(
kgap + 2i

i− 1

))
(7)

Assuming the attacker can only fund up to N blocks on the
attack chain, the probability of a successful attack is hence
given by:
i≤N−kgap−1∑

i=0

((
kgap + 2i

i

)
−
(
kgap + 2i

i− 1

))
· ωkgap+i+1 · βi

(8)

Figure 2 outlines the probability of catching up one block for
different hash rates of ω. It can be observed that N quickly
approaches the maximum achievable probability of catching
up one block within an unlimited number of blocks i.e., (ωβ)2

according to [24], [27]. For example if ω = 0.66, then there is
a 85% probability to catch up one block after six total blocks
(N = 6) and a 96% probability after twelve total blocks (N =
12). This means, the attacker can decide whether or not to
extend the attack period and increase N to win an ongoing
race with a higher probability.
Costs of a successful and failed attack: The success prob-
ability of the attack has an influence on the choice of N and

thus on the required budget fB . But the calculations for the
respective bounds in terms of costs are the same as in the
previous model with only rational miners (Section V-B).

D. Evalution of the ephemeral mining relay

In this section we outline the functionality of the ephemeral
mining relay used in out-of-band incentive attacks, and provide
cost estimates for an implementation on top of Ethereum,
which verifies the Bitcoin blockchain.

To verify the outcome of the attack and correctly pay
rewards in trustless out-of-band scenarios, we introduce the
concept of ephemeral mining relays (EMR) 10. An ephemeral
mining relay is a smart contract that combines the functionality
of a chain relay [2], [10], [35] and mining pool [21], [33].

Chain relays are smart contracts which allow to verify
the state of other blockchains, i.e., verify the proof-of-work
and difficulty adjustment mechanism, differentiate between the
main chain and forks, and verify that a transaction was in-
cluded within a specific block (via SPV Proofs [6]). However,
a naive chain relay implementation allows only to verify that
a certain block (or transaction) was included in a chain with
the most accumulated proof-of-work (i.e., heaviest chain). It
does not allow to verify whether the blocks and transactions
included in this heaviest chain are indeed valid, i.e., adhere to
the consensus rules of the corresponding blockchain.

In contrast to previous proposals, our EMR is capable of
fully validating the consensus rules of the target cryptocur-
rency by restricting the allowed block structure. In our case
the set of transactions within blocks generated by collaborating
miners is specified by the block template provided by the
adversary. As Blofeld wants to submit collected PoW solutions
to Bitcoin, it is in his best interest to provide only templates
including valid transactions. Conversely, collaborating rational
miners do not care if the block template they mine on is
actually valid in Bitcoin, since the rewards they receive for
solutions are guaranteed to be paid out by the smart contract
in Ethereum.

Furthermore our EMR tracks all ongoing blockchain
branches, which is not only a necessary feature to determine
the winning branch, but also to correctly compensate the failed
branch of an incentive attack.
Liveness: The liveness of chain relays in general depends upon
the submission of new blocks to advance their state. Therefore,
if the relay starves through a lack of submitted blocks - long
range attacks have a higher chance to succeed, as attackers
gain additional time to compute long fake chains.

In our concrete EMR instantiation liveness is less of an
issue as the duration of the attack is finite and well defined.
Moreover, involved actors have an incentive to feed the correct
information to the relay in a timely fashion. Consider, for
example, a rational miner R who mined a block template for b′3
(see figure 1). Then R has an incentive to submit the solution
to the PoW for this template timely, since he is competing with

10We use the term “ephemeral” as the mining relay is instantiated only
temporarily and does not require verification of the entire blockchain, but
only the few blocks relevant for the attack.

Operation
Approx. costs

Gas USD
Initialization 244 137 0.21

Block parsing and verification 90 912 0.08

Block header storage 60 228 0.05

Transaction parsing 117 253 0.1

Markle tree verification 39 971 - 194 351 0.03 - 0.16

Gas price: 5 Gwei, Exchange rates as per 10 May 2019 (168.01 USD/ETH) [3]

TABLE II: Overview of costs for each of the main operations
of the ephemeral chain relay, implemented as a smart contract
on Ethereum for Bitcoin. Note: Merkle tree verification costs
depend on the depth of the tree/transactions in a block.
Numbers provided are lower and upper bounds.

other rational miners for the offered rewards and bribe. As the
additional bribe ε is only payed if the attack is successful, this
further incentivizes rational miners to publish solutions timely.
Our scenario also enables the attacker, at any stage, to cease
publishing additional new block templates in order to reduce
his losses in case the attack appears likely to fail.
Costs estimates: We implement a minimal viable EMR on
Ethereum, which is capable of verifying the state of the Bitcoin
blockchain. We use Solidity v0.5.2 and use a local instance of
the Ethereum blockchain for cost analysis.

Specifically, we identify five main operations of an
ephemeral mining relay:
• Initialization, i.e., storing the first block and necessary

templates used as basis for the incentive attack, as defined
by the attacker.

• Block parsing and verification, i.e., checking that (i)
the proof-of-work of a block is valid and meets the
necessary difficulty target, (ii) the block extends the
correct blockchain branch (attacker fork or main chain).

• Block header storage, i.e., permanently storing the nec-
essary block header information in the smart contract, to
be used for later verification (e.g. during payouts). Note:
it is not necessary to store all transactions included in a
block, but only the block header (e.g., 80 bytes in Bitcoin)
which contains the root of the transaction Merkle tree.

• Transaction parsing, i.e., parsing and verifying the inputs
and outputs of a transaction and extracting any additional
data (e.g. funding cryptocurrency address to be used for
payout of collaborating miners).

• Merkle tree verification, i.e., verifying that a given trans-
action (more specifically, its hash) is included in the
Merkle tree of a block at a specific position. Verification
of Merkle tree templates follows a similar principle, as it
is only necessary to check the inclusion of sub-trees (i.e.,
check that the root of the attacker’s Merkle tree template
is included at the correct position in the Merkle tree of
the block).

The cost estimates for the above operations are summarized
in Table II. Note: the costs for Merkle tree verification may
vary, depending on the depth of the Merkle tree. However,
the increase in costs is marginal, as each additional layer
merely requires an additional hashing operation (i.e., costs

grow in O(log(n), where n is the depth of the Merkle tree).
The worst case costs per Bitcoin block in 2018/2019 (< 2048
transactions/block) [1] amount to approximately USD 0.16.

We observe the costs for maintaining an EMR are marginal
and negligible when compared to the potential scale of incen-
tive attacks described in this paper. As such, in an exaggerated
case where an out-of-band attack on Bitcoin via a relay on
Ethereum is maintained for 24 hours (144 Bitcoin blocks on
average), the costs merely amount to approximately USD 10
in the best and USD 23 in the worst case (if all blocks are full),
i.e., between USD 0.4 and USD 1 per hour. For comparison:
the reward for a single Bitcoin block (excluding transaction
fees) at the time of writing amounts to USD 76 875.

VI. TRANSACTION REVISION, EXCLUSION AND ORDERING
ATTACK (OUT-OF-BAND)

In the following, we describe an out-of-band transaction
revision attack which directly facilitates double-spend col-
lusion. Miners are bribed to mine blocks on the favored
branch of a target cryptocurrency, in our case Bitcoin, in
which the adversary is executing a double-spend. Moreover,
we show how the attack can be constructed to always reward
collaborating miners, regardless of the outcome of the attack.
Interestingly, this renders our approach significantly cheaper
than comparable attacks [20]. To further reduce the costs,
we describe how smart contracts can be used to crowdfund
and/or combine multiple double-spending attempts into a
single coordinated attack, which further reduces the costs for
participants. While we focus on transaction revision in our
description, the presented attack also bares the possibility for
an adversary to exclude and/or order transactions.

A. Description

Figure 3 shows the stages and two different outcomes of
the attack.
Initialization phase. First the attacker (Blofeld) creates the
uninitialized attack contract and publishes it on the Ethereum
blockchain. This is done with a deploy transaction included
in some Ethereum block e0 from an Ethereum account con-
trolled by the attacker 11 . Then, Blofeld creates a conflicting
pair of Bitcoin transactions. The spending transaction txB
is published on the main chain in Bitcoin immediately, and
the double-spending transaction tx′B is kept secret. After the
confirmation period of kV blocks, defined by the victim,
has passed on the Bitcoin main chain, Blofeld releases an
initialization transaction which defines the conditions of the
attack in the smart contract on the Ethereum chain. The block
e1 represents the first block on the Ethereum chain after the
Bitcoin block bkV has been published.

11It is also possible to deploy and initialize the attack contract at the same
time (e1), but publishing an uninitialized attack contract upfront ensures that
potential collaborators can audit it and familiarize themself with the procedure.
In any case, it is important that the double-spend transaction tx′B is disclosed
after block bkV on the main chain, as otherwise Alice may recognize the
double-spending attack and refuse to release the goods.

In e1 the contract is initialized with kV + 1 new Bitcoin
block templates, each carrying the transactions from the origi-
nal chain to collect their fees, but instead of txB the conflicting
transaction tx′B is included. Collaborating miners are now free
to mine on these block templates, where they are allowed to
change the nonce and the coinbase field to find a valid PoW
and include their payout Ethereum address. Once a solution
has been found, it has to be submitted by the miner to the
attack contract, which verifies the correctness of the PoW
and that only allowed fields (nonce and coinbase) have been
changed. If the submitted solution is valid, the contract knows
which previous block hash to use to verify the next solution
and so forth. As soon as the attacker becomes aware that a
valid solution was broadcasted in the Ethereum P2P network,
he uses the PoW solution to complete the whole block and
submits it to the Bitcoin P2P network. As in our previous
attack, Blofeld and the collaborating miners have an incentive
to submit solutions timely. The collaborating miners want to
collect an additional bribe ε in case the attack succeeds, and
the attacker wants to get his blocks included in the Bitcoin
main chain to receive the Bitcoin block rewards
Attack phase: Bribed miners now proceed to mine kV + 1
blocks on the attack chain. If additional blocks are found on
the main chain, the attacker can update the attack contract with
new block templates for blocks kV + 2 to N , where N is the
maximum number of attack blocks that can be funded by the
adversary.
Payout phase: Once the attack has ended at time T , the
miners who joined the attack can collect their bribes from
the contract. To accurately pay out bribes, the contract has to
determine which chain in Bitcoin has won the race and is now
the longest chain. Since collaborating miners are competing
for mined blocks, the contract should have received all attack
chain blocks {b′1, . . . , b′T } by them and hence know exactly
the state of the attack branch. Additionally, the attacker who
initialized the contract and provided the funds has an incentive
to feed the main chain, if such a conflicting longer chain
({b1, . . . , bT }) exists, since he would pay an additional ε for
every block otherwise. Therefore there is always some actor
who has an incentive to feed the correct longest chain to the
attack contract.

The attack contract then distinguishes between the two
possible outcomes:
• Attack fails (Main chain wins). In this case the contract

must fully compensate the bribed miners for their attack
chain blocks at most {b′1, . . . , b′N}, which are now stale.
Every collaborating miner who mined and successfully
submitted a block on the attack chain receives the reward
for that block without an additional ε.

• Attack succeeds (Attack chain wins). If the attack chain
wins, then the contract executes the following actions: 1)
Fully compensate the miners of kV main chain blocks
starting from b1 to provide an initial motivation also for
them to switch to the attack chain. Thereby, the reward
plus fee per block is normalized to one. 2) Pay the miner
of every attack chain block, b′1 to b′kV +2 in our example

Ethereum block
Zero or more blocks in between

Bitcoin block Rewarded blockBlock not yet mined

out-of-band tx revision attack:

Failed:

Ongoing:

b0 b'1 b'2

e0 e1

b'k
V

b'k+1 b'k+2 b'N

init

target chain
(B

itcoin)
funding chain
(E

thereum
)

b1 b2 bk
V

bk+1

b0 b'1 b'2

e0

b'k
V

b'k+1 b'k+2 b'N

init

b1 b2 bk
V

bk+1 bTbk+2 bN

eT

pay

1 1 11

b0 b'1 b'2

e0

b'k
V

b'k+1 b'k+2 b'N

init

b1 b2 bk
V

bk+1 bk+2

eT

pay

Successful:
1 1 1

b'T

e2

1+ϵ 1+ϵ 1+ϵ 1+ϵ 1+ϵ

update

deploy

e1

deploy

e1

deploy

txB incl.

tx'B incl.

kB

kB

V

V

V

V

V

V V

V

V

V V

Fig. 3. Blockchain structure and example timeline of our proposed attack.
The attack contract can be deployed before the actual attack starts. After
kV blocks on the target chain have passed, the attack contract is initialized
with kV + 1 block templates. The double-spend transaction(s) are included
in block b′1. The payouts are performed in block eT . The colored blocks are
rewarded by the attack contract, either with their original value (reward + free
normalized to 1) or with an additional ε if the attack was successful. If the
attack succeeds, the first kV blocks on the Bitcoin main chain also have to be
compensated to provide an incentive for the respective miners to also mine
on the attack chain.

(max. till b′N), the full block reward plus an additional
ε as a bribe in Ether.

Upon being invoked with a miner’s cash-out transaction,
the contract checks if the attack has already finished and a
valid chain up to a predefined block height T is known. The
delta between bN and bT (or b′N and b′T respectively) is the
confirmation period kB defined by the attacker. This ensures
that every participant had enough time to submit information
about the longest Bitcoin chain to the contract and that the
blocks 1 to N have received sufficient confirmations according
to an acceptance policy logarithmic in the chain’s length as
specified in [29]. If the acceptance policy is fulfilled, the
contract unlocks the payment of compensations and rewards
to the miners of the associated blocks.

For blocks on the attack chain, in the simplest case all bribed
miners directly provide Ethereum addresses in the coinbase
fields or disclose their public keys directly via pay-to-pubkey
outputs in the coinbase transaction in Bitcoin, as described
and implemented in the Goldfinger attack example in [22].
For the first kV main chain blocks, where miners were not yet

aware of the attack, they must prove to the contract that they
indeed mined the respective block(s). This can be achieved,
e.g. by providing the ECDSA public keys corresponding to
the payouts in the respective coinbase outputs to the smart
contract such that it can check if they match and the then
recompute the corresponding Ethereum addresses.

B. Evaluation with Rational Miners Only (ω = 1)

A lower bound for the required funds of the attacker(s) fB
can be derived analogous to the evaluation in section V by
also adjusting for the security parameter kV defined by the
victim Vincent.
Necessary attack budget: The minimum number of blocks
on the attack chain in a successful attack is kV + 1 i.e. the
number of confirmations required on the main chain, plus one.
A lower bound for the attack budget in Ether fB can thus be
derived due to the condition N > kV which has to hold for an
attack to be feasible. For Bitcoin, a common choice of kV = 6
requiring N to be at least kV − 1. Setting the current block
reward, fees, bribe as in V-B leads to to a budget of 96 BTC:

fB = N · rb + (N − kV) · (rb + ε) + coperational (9)

Costs of a failed attack: The costs of a failed attack are
determined by its duration and thus N s.t. cfail = N · rb +
coperational, which leads to cfail = 95 BTC in our example.
Costs and profitability of a successful attack: Again, if the
attack is successful, it is cheaper. The costs for a successful
attack are given by the kV · rb main chain blocks that have to
be compensated on the attack chain plus the additional N · ε
bribes.

csuccess = kV · rb +N · ε+ coperational (10)

The initial kV compensations are necessary to provide the
same incentive for all miners that have already produced
blocks on the main chain to switch to the attack chain. Since
we assume rational miners, the attack in this scenario is always
successful iff N > kV holds and ε > 0. For Bitcoin, this
means that the costs of a successful double spend with kV = 6
and rb = 13.5 and ε = 1 are ≈ 88.5 BTC. For a successful
attack to be profitable, the value of the double-spend vd
has to be greater than this value. In Bitcoin transactions
carrying more than 88.5 BTC are observed regularly 12. For
comparison, in its cheapest configuration, the whale attack
costs approximately 770 BTC [20], but it operates in a setting
where not all miners are assumed to be rational. Our attack
further serves to highlight the security dependency between
transaction value and confirmation time kV , as also stated
in [29].

C. Evaluation with Altruistic Miners (ω + β = 1)

Adjusting formula 8 for kgap = kV , we can calculate
the success probability of the attack. Figure 4 shows the
probabilities for different values of rational hashrate ω, as well
as different amounts of blocks N these bribed miners can be

12cf. https://www.blockchain.com/btc/largest-recent-transactions

rewarded/compensated for. The number of confirmation blocks
required by victim Vincent is kV = 6. Clearly, the attack
requires N > kV to have a chance of being successful. As
with the classical 51% attack, the attack eventually succeeds
once the bribable hash rate is above the 50% threshold and
the number of payable blocks N grows.

Fig. 4. Attack success probability of a double-spending attack depending
on the amount of blocks N that can be compensated/rewarded and different
values for the rational hashrate ω. The number of required confirmation blocks
by Vincent is set to kV = 6.

Given these probabilities we can calculate the required
number of blocks N that need to be funded s.t. the probability
of success approaches 13 100%, while fixing the values for
kV and ω. Assuming more than ω > 0.5 rational hashrate,
bribing attacks are eventually successful if they can be funded
long enough. The relevant question is how expensive it is to
sustain the attack for a long enough period s.t. the probability
for success is deemed sufficiently high i.e., 99.5% in our case.
Table III shows a comparison against the simulation results of
the whale attack described in [20]. It can be observed that,
in contrast to the whale attack, our attack becomes cheaper
when ω grows large since the required probability is reached
faster and therefore fewer bribes have to be paid. Moreover,
the whale attack has to pay out substantially more funds to
account for the risk rational miners face if the attack fails.
Our approach is hence between ≈ 85% and ≈ 95% cheaper
than the whale attack. Additionally, the costs of our attack in
case it succeeds are even lower than if it fails, even without
accounting for the potential gain from the successful double-
spend. For comparison, we also provide the expected number
of blocks after which the attack should be successful and the
resulting costs if the attack is stopped at that point in time.

a) Cost optimization: The biggest cost in the proposed
attack derives from the compensation of kV main chain blocks
to provide an incentive for all rational miners to switch to the
attack chain. In a blockchain where every block is uniquely
attributable to a set of known miners, and where the overall
hashrate of those miners can be adequately approximated,
the payout of compensations can be further optimized in
various ways. As an example, consider the scenario where

13We used 99.5% as a target success probability in our calculations.

ω Whale costs P2W costs
cfailed

P2W costs
csuccess

csuccess % of
Whale costs N

P2W costs
cexpected

cexpected % of
Whale costs

N
expected

0.532 2.93e+23 6953 596 0.00 515 136 0.00 55
0.670 999.79 554 122 12.25 41 95 9.51 14
0.764 768.09 298 104 13.47 22 92 11.92 10
0.828 1265.14 216 98 7.71 16 90 7.13 9
0.887 1205.00 176 94 7.84 13 89 7.43 8
0.931 1806.67 149 92 5.12 11 89 4.93 8
0.968 2178.58 122 90 4.15 9 89 4.07 7
0.999 2598.64 108 90 3.44 8 89 3.41 7

TABLE III: Comparison of attack costs given in BTC for the whale attack [20] and our attack with kV = 6, rb = 13.5,
coperational = 0.5 and ε = 1.

a small miner, compared to the other miners, is lucky and
mines several blocks within kV . Then it may be cheaper for
the attacker to exclude this miner from being eligible for
compensation since it is unlikely that he will substantially
contribute to the attack chain.

D. Crowdfunding

The attack described above also opens up the possibility to
be crowdfunded. The simplest crowdfunding approach would
be to allow donations as soon as the attack contract has been
deployed. This method allows to collect funds but does not
offer any guarantees for the backers.

A solution which incentivizes multiple attackers to perform
double-spending attacks concurrently would allow to split the
funds for the attack among collaborators. The main challenges
that have to be solved in such a scenario are:
• It has to be ensured that every collaborating attacker, who

invests funds to achieve a double-spend attack, has some
chance that his individual double-spend is successful,
i.e., if the invested value is used by the contract, then
a double-spend attack has to be performed.

• It has to be ensured that the attack cannot be poisoned by
collaborating attackers such that they are able to sabotage
the whole attack for all participants, i.e., it should not be
possible for any participant to cause the attack to fail.

• The attack should not rely on any trusted third party.
On a high level, the stages of the attack are as follows. First,

the initialization transaction only announces that an attack
might happen and the block interval from b1 to bkV that
will be affected. Then, all Bitcoin users who have performed
transactions in block b1 can decide whether or not to invest
in the attack to potentially double-spend their transaction.
The collaborating attackers, i.e., the backers, submit their
double-spending transaction to the contract, together with
some bribing funds in ether that increase the overall funds
fB of the attack 14.

If the funding goal of reverting at least kV + 1 blocks
has been reached, the attack starts as previously described.
Since the attacker who initialized the contract has to take care
of producing new block templates for the chain containing

14An attacker can also specify a fixed rate of funds he wants to collect,
depending on the overall value of the submitted Bitcoin transaction which
should be double-spent.

the double-spend transactions, some method has to be imple-
mented that the transactions of other attackers are assured to
be included in b′1. We describe a method which requires a
collateral from the original attacker (Blofeld) as high as the
funds he wants to collect i.e., fB . In doing so, it can be ensured
that the other attackers only pay if their transaction was really
included in the new chain in block b′1, which can be proven
to the smart contract. Otherwise they are refunded from the
collateral submitted by the initial attacker.

The phases of the attack are as follows:

• Blofeld who initiates the attack, deploys an attack con-
tract in Ethereum and locks his collateral of value fB (as
described in the original attack) with this contract.

• Then he publishes his spending transaction tx′B on the
main network.

• Once kV blocks on the main chain have been mined,
Blofeld initializes the attack contract with his double-
spend tx′B , the block b1 to be forked, and the common
ancestor block b0.

• Everybody who has included a transaction in block b1
is then allowed to submit double-spending transactions
t′B{2,...,x}

including some amount of ether that he or she
is willing to invest in the attack.

• If these backers reach the funding goal of compensating
at least kV + 1 blocks before kV + 1 main chain blocks
have been submitted to the attack contract, then the attack
starts automatically. All invested funds are free to be used
as described in the original attack.

• Once the attack has been started by the attack contract,
Blofeld publishes a block header template to the attack
contract. The Merkle branch of this template includes
all submitted double-spending transactions tx′B{2,...,x}

,
which are i) valid according to information from his full
node ii) backed by some ether.

• Additionally, the attack contract has to require some
freshness information such that Blofeld is unable to
produce blocks before officially starting the attack to rip
compensations increasing his invested value fB1

from
his fellow backers. An example for such a freshness
guarantee would be the inclusion of the latest funding
chain block hash e1 in the block template.

• Then the attack proceeds as originally described.
• When N blocks are mined and published to the attack

contract, the backers who have not witnessed that their
double-spending transaction was included in the attack
chain can now claim their invested ether back from the
attack contract. Therefore, the attack contract automati-
cally allows any backer to reclaim their money if Blofeld
cannot submit a valid Merkle inclusion proof for the
respective double-spending transaction.

In this approach, Blofeld has to provide a collateral as large
as the total funds required for a successful attack fB . If he
behaves honestly, the collateral will be returned to him by the
attack contract once the attack has ended – regardless if it was
successful or failed. The collateral ensures that the initiator
is able to compensate additional backers, in case their funds
have been used for the attack but Blofeld did not include their
double-spending transaction(s).

Moreover, Blofeld is also required to invest funds fB1 into
the double-spending attack. These funds will be consumed
by the attack as in the original attack. This investment by
Blofeld should ensure that he is indeed willing to execute
an attack and also loses funds if he is not able to provide
correct block templates. For example, if the initiator purposely
stalls the attack e.g., by not producing any block templates or
not forwarding them in time to the Bitcoin main network, the
attack will fail. But then he will also lose his invested funds
fB1

. Thus, backers are advised not to invest more Ether than
Blofeld (excluding the required collateral).

E. Available funds

With the possibility to crowdfund attacks, theoretically
multiple double-spends of low value transactions by different
parties could also be made feasible if they together accumulate
enough attack funds (fB). The discrepancy between the value
transferred in one Bitcoin block and the rewards (including
fees) distributed for mining one Bitcoin block, show that
the funds for long range double-spending attacks using this
technique are theoretically available. Over the last year15 the
median value of bitcoins transacted per day (excluding change
addresses) is approximately 780 million USD, whereas the
median mining reward per day including transactions fees is
approximately 11 million USD.

VII. DISCUSSION

Through our comprehensive analysis of related work in the
area of incentive attacks (see Table I), we are able to highlight
unconsidered attack types and present new and improved
techniques that address several of these open questions. Our
quest for devising trustless out-of-band attacks also reveals an
interesting analogy: At an abstract level,the presented attacks
rely on a construction comparable to a mining pool, where
the pool owner defines specific rules for block creation for
the targeted cryptocurrency within a smart contract. Moreover,
every participant must be able to claim their promised rewards
in a trustless fashion, based on the submitted blocks and
state of the targeted cryptocurrency. The construction of an

15Numbers retrieved from https://www.blockchain.com/charts

ephemeral mining relay, presented within this paper, provides
exactly this functionality. Luu et al. [21] also proposes a
mining pool (Smart pool) which itself is governed by a
smart contract. However, its design and intended application
scenarios did not consider use-cases with malicious intent.
Smart pool does not enforce any properties regarding the
content and validity of submitted blocks beyond a valid PoW,
as the intrinsic incentive among participants is assumed to
earn mining rewards in the target cryptocurrency, which is
only possible if valid blocks have been created.

We now discuss possible counter measures and limitations
of the described attacks.

a) Counter attacks: For the victim(s) counter bribing is
a viable strategy against incentive attacks. The difficulty of
successfully executing counter bribing highly depends on the
respective scenario. In the end counter bribing can also be
countered by counter-counter bribing and so forth. Therefore,
as soon as this route is taken, the result becomes a bidding
game. Against transaction exclusion attacks, counter bribing
can be performed by increasing the fee of txV such that it
surpasses the value promised for not including the transaction
16.

If defenders have imperfect information, they may not be
able to immediately respond with counter bribes. In this case
some of the attack chain blocks may have already been mined,
or even take the lead, before they are recognized by defenders.
Counter bribing then necessitates the incentivization of a fork,
and thus a more expensive transaction revision attack, leading
to asymmetric costs in the bidding game. This illustrates an
important aspect of incentive attacks, namely their visibility.
On the one hand, sufficient rational miners of the target
cryptocurrency have to recognize that an attack is occurring,
otherwise they won’t join in and the attack is likely to fail.
On the other hand, if the victims of the attack recognize its
existence, they can initiate and coordinate a counter bribing
attack. So the optimal conditions for incentive attacks arise
if all rational miners have been informed directly about the
attack, while all victims/merchants do not monitor the chain
to check if an attack is going on and are not miners themselves.

The benefit of the herein described attacks is that bribes
are payed out-of-band. Hereby, our attacks are rendered more
stealthy to victims, who may only monitor the target cryp-
tocurrency. It can hence be argued that counter attacks by
victims are harder to execute as they are not immediately
aware of the bribing value that is being bet against them on a
different funding cryptocurrency. We also follow the argument
in [7] that requiring clients to monitor the chain and actively
engage in counter bribing is undesirable, and our out-of-band
attacks further amplifies this problem as clients would have to
concurrently monitor a variety of cryptocurrencies.

Another interesting aspect of counter bribing is revealed
if crowdfunded attacks are assumed. In this case the funds
required to counter bribe can be higher than the invested funds

16Another possible counter attack would be to launch a DoS attack against
the censor, see appendix D for details

of each individual attacker. In a scenario with multiple victims,
organizing coordinated counter bribing is difficult. All victims
would be better off if the attack fails, but for an individual
victim it is cheaper to not take action and hope that others will
fund the counter bribe, leading to a collective action problem.

b) Cross-chain Verifiability: One crucial aspect of our at-
tacks is that a smart contract within the funding cryptocurrency
must be able to validate core protocol and consensus rules of
the target chain, in particular it must be able to determine
the validity of blocks. If this is not possible the attack
cannot be executed trustlessly. For example, it is currently
not possible to execute an incentive attack against Litecoin
using Ethereum as a funding cryptocurrency in a fully trustless
manner, as it is economically unfeasible to verify the Scrypt
hash function within a smart contract. On a high level, the
technical requirements for out-of-band attacks to be considered
trustless are summarized in appendix B.

VIII. CONCLUSION

The analysis of incentive attacks presented in this paper
forms a necessary prerequisite and basis for the comparison
and discussion of related work. We close some of the hereby
identified research gaps by describing and evaluating two new
trustless incentive attacks that achieve new characteristics and
are rendered cheaper than comparable previous approaches.

Hereby, our new attacks, as well as the existing body
of research on incentive attacks, demonstrates that not only
the hashrate distribution among permissionless PoW based
cryptocurrencies plays a central role in defining their under-
lying security guarantees. The ratio of rational miners and
available funds for performing incentive attacks also form a
key component, as rational miners can be incentivized to act
in a Byzantine manner.

Further, our out-of-band attacks highlight that being able
to cryptographically interlink cryptocurrencies increases their
attack surface. Smart contract based incentive attacks introduce
the possibility to align the interests of multiple attackers
who want to perform double-spends during the same time
period, and enable trustless crowdfunding of such attacks.
Moreover, weak transaction confirmation policies of merchants
who accept high value transactions can have a negative impact
on the stability of the system, as successful incentive attacks
against such transactions are more likely from an economically
rational point of view.

Together with the topic of counter bribing, new research
directions are shown that raise fundamental questions on the
incentive compatibility of Nakamoto consensus. All previously
proposed, or in-the-wild observed, incentive attacks, as well
as the attacks described in this paper, indicate that the secu-
rity properties of permissionless PoW based cryptocurrencies
are neither accurately reflected by assuming only rational
actors, nor by ignoring the existence of incentives at all,
i.e., only considering honest and Byzantine miners. Incentive
attacks show that, as soon as rational players are consid-
ered, interesting questions arise whether or not the incentive
structures of prevalent cryptocurrencies actually encourage

desirable outcomes. Additionally, in a world where multiple
cryptocurrencies coexist, it is likely not sufficient to model
them individually as closed systems.

REFERENCES

[1] Average number of transactions per block. https://www.blockchain.com/
en/charts/n-transactions-per-block. Accessed 2019-05-10.

[2] Btc relay. https://github.com/ethereum/btcrelay. Accessed 2018-04-17.
[3] Coinmarketcap: Cryptocurrency market capitalizations. https://

coinmarketcap.com/. Accessed 2019-05-10.
[4] Replace by fee. https://en.bitcoin.it/wiki/Replace by fee. Accessed

2019-05-11.
[5] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth.

Bar fault tolerance for cooperative services. In ACM SIGOPS operating
systems review, volume 39, pages 45–58. ACM, 2005.

[6] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, and P. Wuille. Enabling blockchain innovations
with pegged sidechains, 2014. Accessed: 2016-07-05.

[7] J. Bonneau. Why buy when you can rent? bribery attacks on bitcoin
consensus. In BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin
and Blockchain Research, February 2016.

[8] J. Bonneau. Hostile blockchain takeovers (short paper). In 5th Workshop
on Bitcoin and Blockchain Research, Financial Cryptography and Data
Security 18 (FC). Springer, 2018.

[9] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In IEEE Symposium on Security and Privacy, 2015.

[10] V. Buterin. Chain interoperability, 2016. Accessed: 2017-03-25.
[11] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,

and A. Juels. Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges. arXiv preprint
arXiv:1904.05234, 2019.

[12] C. Decker and R. Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems, pages 3–18. Springer, 2015.

[13] S. Eskandari, S. Moosavi, and J. Clark. Sok: Transparent dishonesty:
front-running attacks on blockchain. 2019.

[14] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology-EUROCRYPT
2015, pages 281–310. Springer, 2015.

[15] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol with chains of variable difficulty, 2016. Accessed: 2017-02-
06.

[16] A. Judmayer, N. Stifter, P. Schindler, and E. Weippl. Pitchforks in
cryptocurrencies: Enforcing rule changes through offensive forking- and
consensus techniques (short paper). In CBT’18: Proceedings of the In-
ternational Workshop on Cryptocurrencies and Blockchain Technology,
Sep 2018.

[17] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena. Exploiting
the laws of order in smart contracts. arXiv:1810.11605, 2018.

[18] J. A. Kroll, I. C. Davey, and E. W. Felten. The economics of bitcoin
mining, or bitcoin in the presence of adversaries. In Proceedings of
WEIS, volume 2013, page 11, 2013.

[19] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. Bar gossip. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 191–204. USENIX
Association, 2006.

[20] K. Liao and J. Katz. Incentivizing blockchain forks via whale transac-
tions. In International Conference on Financial Cryptography and Data
Security, pages 264–279. Springer, 2017.

[21] L. Luu, Y. Velner, J. Teutsch, and P. Saxena. Smart pool : Practical
decentralized pooled mining, 2017. Accessed: 2017-03-22.

[22] P. McCorry, A. Hicks, and S. Meiklejohn. Smart contracts for bribing
miners. In 5th Workshop on Bitcoin and Blockchain Research, Financial
Cryptography and Data Security 18 (FC). Springer, 2018.

[23] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry. Sprites: Payment
channels that go faster than lightning, 2017. Accessed: 2017-03-22.

[24] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008.
Accessed: 2015-07-01.

[25] R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol
in asynchronous networks, 2016. Accessed: 2016-08-01.

[26] J. Poon and T. Dryja. The bitcoin lightning network, 2016. Accessed:
2016-07-07.

[27] M. Rosenfeld. Analysis of hashrate-based double spending, 2014.
Accessed: 2016-03-09.

[28] I. Sergey, A. Kumar, and A. Hobor. Temporal properties of smart
contracts. In Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part
IV, pages 323–338, 2018.

[29] Y. Sompolinsky and A. Zohar. Bitcoin’s security model revisited, 2016.
Accessed: 2016-07-04.

[30] N. Stifter, A. Judmayer, P. Schindler, A. Zamyatin, and E. Weippl.
Agreement with satoshi - on the formalization of nakamoto consensus.
Cryptology ePrint Archive, Report 2018/400, 2018.

[31] J. Teutsch, S. Jain, and P. Saxena. When cryptocurrencies mine their
own business. In Financial Cryptography and Data Security (FC 2016),
Feb 2016.

[32] I. Tsabary and I. Eyal. The gap game. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
713–728. ACM, 2018.

[33] Y. Velner, J. Teutsch, and L. Luu. Smart contracts make bitcoin
mining pools vulnerable. In International Conference on Financial
Cryptography and Data Security, pages 298–316. Springer, 2017.

[34] F. Winzer, B. Herd, and S. Faust. Temporary censorship attacks in
the presence of rational miners. Cryptology ePrint Archive, Report
2019/748, 2019.

[35] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. J.
Knottenbelt. Xclaim: Trustless, interoperable cryptocurrency-backed
assets. Cryptology ePrint Archive, Report 2018/643, 2018. https:
//eprint.iacr.org/2018/643.

APPENDIX A
VARIABLES AND SYMBOLS

Symbol Description

B The attacker that wants to execute the double-spending
attack

V The victim or merchant, e.g., the actor who would lose
money if the double-spending attack is successful

B1, B2, ..., Bx Other accounts/addresses under the control of the attacker(s)
V1, V2, ..., Vx Other accounts/addresses under the control of the victim(s)
txV , txB , tx

′
B , Transactions: i.e., transaction of the victim, transaction of

the attacker, conflicting transaction of the attacker.
fee(txV) Function that returns the fee of given transaction e.g., txV

fB Required initial funds of the attacker
re, rb Funds equivalent to one block reward in Ethereum and

Bitcoin respectively (including fees)
ε Additional reward paid for a block on the attack chain. The

total reward for a block on the attack chain received by a
bribed miner hence is rb + ε

ρ Profit of the attacker
v, vd, ... Value, e.g., value of the double-spend transaction
csuccess Total costs of a successful pay-2-win attack
cfail Total costs of a failed pay-2-win attack

cexpected Total costs of a successful pay-2-win attack finished with
the expected number of blocks

coperational Total operational costs for smart contract deployment and
gas

ccounter Total operational costs to launch a counter bribing attack
e.g., transaction fees, gas, etc.

TABLE IV: Variables and symbols related to actors and costs.

Symbol Description

α Hash rate of the attacker
β Hash rate of all honest miners that are not bribable
ω Hash rate of all rational i.e., bribable miners ω = 1− (α+β)

and each mining entity i controls ωi such that ω =
∑k
i=1 ωi

ωm Hashrate of some rational mining entity, which evaluates the
profitability of accepting bribes.

ωα Estimated hashrate of rational mining entities which will accept
bribes and follow the attackers strategy.

TABLE V: Variables and symbols related to hashrate.

Symbol Description

kV , kB , kgap Number of confirmation blocks till block is considered as
confirmed by the actor which depends on the respective scenario.
This could either be the victim, attacker or given by the desired
interference.

` The length of the attacker chain since the block causing the fork.
N Maximum length of the attack chain during the attack.

Nexpected The expected length of the attack chain for a successful attack,
it holds that N < Nexpected.

ex Some funding chain block at (relative) height x. In our examples
the funding chain is considered to be Ethereum. The notation
ex > ey specifies that ex has been mined after block ey i.e.,
ex has a higher blockheight.

bx Some target chain block at (relative) height x. In our examples
the target chain is considered to be Bitcoin. The notation bx >
by specifies that bx has been mined after block by i.e., bx has
a higher blockheight.

TABLE VI: Variables and symbols related to blockchain
mechanics.

APPENDIX B
TECHNICAL REQUIREMENTS

On a high level the technical requirements which would
allow to trustlessly execute all our attacks can be generalized
by the five main points listed below.

1) Given a block in a block interval (on the target chain)
defined by the attacker, a trustless way to verify that:

a) a certain state transition was performed (e.g., a
transaction was included in the blockchain).

b) a certain state transition was not performed (e.g.,
a transaction was not included).

2) A trustless way to uniquely attribute blocks to miner
addresses, as well as a way to map the latter to corre-
sponding addresses in the funding cryptocurrency.

3) A trustless way to transfer value in the funding cryp-
tocurrency to a uniquely attributed address of a collab-
orating miner (see point 2).

4) A trustless way to determine the state of the target
cryptocurrency after T blocks have been mined on top
of a block pre-defined by the attacker, i.e., the longest
chain. This implies that it is possible to verify the PoW
of the target cryptocurrency in smart contracts on the
funding cryptocurrency.

5) A trustless way to determine the state of the attack on
the target cryptocurrency after T blocks have been mined
on top of a block pre-defined by the attacker, i.e., the
attack chain anchored at this specific block.

APPENDIX C
EVALUATION OF DESYNCHRONIZATION

Publishing new block templates timely is a key requirement
of this attack. In favor of an easier presentation we chose
to rely on the assumption that the difference between block
intervals on the two chains, namely Bitcoin and Ethereum, is
big enough such that before every new Bitcoin block there
will be a new Ethereuem block announcing the new block
template. Although, it is possible for the target and the funding
chain to desynchronize, i.e., that two or more Bitcoin blocks
are mined before a single Ethereum block has been found.

To identify the need to account for such events within the
duration of an attack, we analyze the probability that the block
intervals fluctuate in a way such that Bitcoin blocks are mined
in close succession. In other words: What is the probability
that the two chains (funding and attack chain) desynchronize
during an attack, i.e., that two Bitcoin blocks are mined in
close succession without an Ethereum block in between.

The time between Bitcoin and Ethereum blocks follows
an exponential distribution. Assuming constant difficulty and
overall hashrate, Ethereum has a mean block interval, i.e., an
expected value of 15 seconds (EETH(x) = 15), whereas Bit-
coin has a mean block interval of 10·60 seconds (EBTC(x) =
600). To approximate the probability that the two chains
desynchronize, we first calculate the probability that the time
between two Bitcoin blocks is less than the Ethereum mean
block interval (x = 15):

λ =
1

EBTC(x)
(11)

P (X < x) = 1− e−λ·x (12)
P (X < 15) ≈ 2.47% (13)

The probability that this happens within N Bitcoin blocks i.e.
the probability that the time between two Bitcoin blocks is
smaller than 15 seconds during N total Bitcoin blocks is given
by:

P (N) = 1−
(
1− P (X < 15)

)N−1
(14)

P (32) ≈ 53.93% (15)

This result already shows that it is necessary to provide
templates for more than one Bitcoin block in one Ethereum
block when executing long running attacks.

We are now interested in the numbers of block templates
the attacker has to provide per Ethereum block. Therefore, we
analyze how probable it is that at least n Bitcoin blocks are
mined before one Ethereum block. We approximate this value
by calculating the probability that at least n Bitcoin blocks are
found within the Ethereum mean block interval of 15 seconds.
The Bitcoin block discovery is a Poisson point process, where
the Poisson distribution parameter Λ = E(X = n) = t

EBTC(x)
refers to the expected value of the number of events happening
within t = 15 time. Then the complementary probability of
finding at most n− 1 blocks is given by:

P (X > n) = 1− P (X ≤ n− 1) (16)

P (X ≤ n) = F (x) = e−λ
n−1∑
i=0

λi

i!
(17)

P (X > 1) ≈ 2.47% (18)
P (X > 2) ≈ 0.03% (19)

P (X > 3) ≈ 2.556 · 10−4% (20)

P (X > 4) ≈ 1.595 · 10−6% (21)

Since both chains start at the same point in time, n = 1
already refers to a sequence of two Bitcoin blocks without an
Ethereum block in between. We now calculate the probability

that at least n Bitcoin blocks are found within the mean
Ethereum block interval t during a period of N Bitcoin blocks
in total:

P (n,N) = 1−
(
1− P (N > n)

)d(N−1)/ne
(22)

P (n = 1, N = 32) ≈ 53.930% (23)
P (n = 2, N = 32) ≈ 0.490% (24)
P (n = 3, N = 32) ≈ 0.003% (25)

So when providing three Bitcoin block templates, there re-
mains approximately a 0.490% chance that all of them are
consumed before the next Ethereum block is published.

To further justify these numbers and account for the fact
that Ethereum blocks are exponentially distributed as well, we
implemented a tool to simulate such parallel blockchain chain
executions. Measuring the probability of desynchronization
yields comparable results to our calculations with a mean
Ethereum block interval of 15 section. After 10, 000 runs of
our simulation limited to N = 32 total Bitcoin blocks each,
a chain of at least two consecutive Bitcoin blocks before a
corresponding Ethereum block was found in 53.0% of all
cases. A chain of at least three consecutive Bitcoin blocks was
found in 1.57% of all cases, a chain of at least four consecutive
Bitcoin blocks in 0.08% of all cases. Consecutive chains of
length 5 or longer have never occurred during 10, 000 runs.

A. Block template distribution

Given the above probabilities, the attacker is advised to
publish block templates for multiple blocks in advance (leav-
ing references to previous blocks to be filled in by miners).
Also in practice collaborating miners would want to have at
least a couple of block templates available to ensure that their
hardware does not stall. To ensure that new block templates are
available to rational miners, independently of block intervals
in the funding cryptocurrency, several approaches are possible.
The attacker could, for example, publish a sequence of block
templates where only the first includes the previous block hash
and the other previous block hash values are filled and checked
automatically by the smart contract based on the previously
submitted valid attack blocks.

Other approaches can also be envisioned. In theory, it is
not even necessary that the Ethereum block with the new
block template has been mined before the next Bitcoin block
for which the template has to be used. This is possible if
the attack contract is implemented in a way that accepts
any valid Ethereum transaction signed by the attacker as a
proof that the therein announced new block template for a
specific attack was approved, and is rewarded accordingly.
Then any such transaction can be seen as a guarantee for the
collaborating miners that they will receive a reward if they
mine a block according to the template. At some later point the
transaction defining the target chain block template is included
in the funding cryptocurrency and presents proof to the attack
contract that indeed the respective block on the target chain
was based on a valid template.

APPENDIX D
DOS AGAINST TRANSACTION CENSORSHIP

We consider Bitcoin as a target, however in principle our
transaction censorship attack is also applicable to other types
of cryptocurrencies. (Quasi) Turing complete smart contract
capable cryptocurrencies are arguably more resistant to cen-
sorship than Bitcoin.

We assume, for the remainder of this discussion, that
transaction censorship should take place within Ethereum as
a target cryptocurrency. Then, even if transactions or their
respective side effects can be accurately identified and agreed
upon all miners as unwanted behaviour, there exists the
possibility of denial-of-service attacks that can be launched by
the victim in such a case. The effects of a transaction can be
proxied through multiple layers of smart contract invocations
and interactions. Hereby, the problem arises that miners may
only learn of the unwanted behavior of a transaction by first
evaluating its state changes. If the resulting behavior is to be
censored, miners have to roll back all changes and cannot
collect transaction fees for their efforts. Therefore, the attacker
can waste the resources of every censoring miner without a
loss of funds.

It is impossible to directly overcome this issue without
changing the consensus rules, however by basing the attack
on block templates, the problem is shifted away from the
collaborating rational miners toward the attacker. Hereby, the
attacker may choose to only include simple transactions for
which he is certain that they cannot hide any unwanted activity
e.g., all value transfer transactions, calls to known contracts
such as ERC20 Tokens etc.

APPENDIX E
TRANSACTION ORDERING ATTACK (IN-BAND)

This no-fork attack pays additional rewards to miners for
reordering unconfirmed transactions, comparable to front-
running attacks [11], [13]. In front-running attacks, the ad-
versary increases the chance of his transaction being included
before others by increasing the transaction fee paid to miners.
However, the result is an all pay auction: even if the attack
fails, the high-fee transaction can be included by miners. As
such, the adversary must always pay the fee, independent of
the attack outcome [11]. In contrast, our attack ensures the
adversary pays colluding miners only if the attack was suc-
cessful, i.e. if the desired transaction ordering was achieved.

A. Description

Initialization. The adversary (Blofeld) observes the P2P net-
work and initiates the attack once he sees a victim’s (Vincent)
transaction txV which he wants to front-run (e.g. registering a
domain name or interacting with an exchange). First, Blofeld
publishes his front-running transaction txB . Simultaneously,
he publishes and initializes an attack contract with the identi-
fiers of the two transactions, the desired order (txB < txV),
the block in which the transaction(s) are to be included, and
a bribe ε. Once the contract creation transaction has been
included into a block, (i) the configuration can no longer be

changed and (ii) the bribe is locked until the attack times out.
This is necessary to prevent the attacker from attempting to
defraud colluding miners by altering the payout conditions,
after the attack was executed.
Attack. If the attack is successful, colluding miners generate
a block which has the desired ordering of transactions. Note:
even if the victim attempts to update the original transaction
txV with tx′V , e.g. using replace by fee [4], txV remains
valid and can alternatively be included by miners to invalidate
tx′V . Rational miners will hence include txB and txV in the
specified order, fulfilling the payout conditions, as long as this
results in the highest reward.
Payout. After kB blocks (kB is the blockchain’s security
parameter defined by the attacker in this case), miners can
claim their payouts, whereby the smart contract first checks if
the ordering of the two transactions is as specified.

B. Evaluation

1) Evaluation with Rational Miners Only (ω = 1): First,
we assume a scenario where all miners act rationally, i.e., are
bribable. Miners are incentivized to collude with the adversary,
as the contract guarantees a reward ε > 0 in addition to normal
mining. Participation in the attack does not require to mine on
an alternative fork, hence colluding miners face no additional
risk that their blocks will be excluded from the main chain. It
is also possible for miners to include an unconfirmed attack
contract creation transaction in the same block as the ordering
attack itself and still be certain of payment if their block
becomes part of the longest chain.

2) Evaluation with Altruistic Miners (ω+β = 1): In theory,
this attack is practicable with any hash rate of bribable miners
ω > 0, however the higher the hash rate, the higher the chances
of success. If 2/3 of the hash rate is controlled by rational
miners, the attack is expected to succeed in two out of three
cases. We refer to the Section F in the Appendix for an analysis
where rational miners are additionally incentivized to near-fork
main chain blocks to successfully remove a undesired block
from the chain.

3) Counter Bribing: We distinguish the counter bribing
based on the point in time where the counter attack is
performed.

a) Immediate Counter Bribing: As long as the new block
has not been mined, an effective counter measure against this
attack is to immediately perform counter bribing through the
same attack mechanism. Hereby, attacker and victim engage in
an English auction, as only the winner pays the bribe, instead
of the all-pay-auction observed in other front-running [11].
This defensive strategy assumes that Vincent is actively mon-
itoring the P2P network and immediately becomes aware of
the attack.

b) Delayed Counter Bribing: If Vincent only has an
SPV (Simple Payment Verification [24]) wallet, he may only
recognize the attack after a new block with the intended
ordering of the attacker has already been mined. Since, Vincent
is not in possession of any hash rate, so he cannot directly
launch a counter attack to fork the respective block. Thus,

the costs for a successful counter bribing attack have become
much higher than the costs for the original attacker Blofeld.
Moreover, among the previously described bribing attacks in
Section III, no attack is directly applicable by Vincent in this
scenario. For an analysis on how much it costs to remove one
block from the chain see Appendix F.

C. Details and implementation of tx ordering in-band

There are two methods which allow to implement verifi-
cation of transaction ordering in Ethereum. The first method
only relies on proofs over the transaction trie of a given block
to verify the desired transaction ordering. The second method
tries to verify the desired state.

1) Verify transaction ordering: This methods works via a
transaction trie inclusion proof provided to the attack smart
contract. Since the key in the trie is the index of the transaction
in the block and the value is the transaction hash, the ordering
of any two or more transactions can be proven to a smart
contract in retrospect.

The advantage of this approach is that it is conceptionally
simple, but it bears certain drawbacks. Lets assume the trans-
action hash of the involved target transaction txV changes e.g.,
if a transaction was updated via replace by fee, or a completely
different but conflicting transaction form the same address with
the same nonce has been issued tx′V . This case can still be
captures by an attack contract which also checks the nonce of
the respective transaction. Since the original transaction txV is
still valid and can be included by a complacent rational miner,
all transactions with the same nonce from the same account
become invalid.

A problem arises if the victim publishes another transaction
tx′′V from a different account which has not been included in
the initialization of the attack contract. This transaction might
be semantically equivalent to txV , e.g., it would register the
same name in sENS, but would not be covered in the attack
condition of the contract. Thus, a naive contract only working
with transaction hashes and nonces of known transaction can
be fooled by a victim to pay out bribes although the attack
was not successful because tx′′V has been included before txB
and just txV has been included after txB .

2) Verify operation on certain state: This approach ad-
dresses the issue of interfering transactions mentioned in the
previous section in two different ways.

a) Retrospective check: It is proven to the attack contract
in retrospect hat it has successfully operated on the correct
world-/smart contract state before any funds are unlocked.

Up to Ethereum EIP-150 revision the transaction receipt
also contained the post-transaction state Rσ . 17 This would
have allowed to prove to the attack contract the state before
any transaction as well as the state after a specific transaction.
Unfortunately the post-transaction state was removed from the
transaction receipt for performance reasons.

A currently working generic method for Ethereum around
this would be to require that the racing attack transaction

17The according Ethereum yellowpaper describing this is still available at
http://gavwood.com/Paper.pdf (accessed: 2019-05-04)

has to be at index 0 in the new block mined by the miner.
It would then be possible to prove to the attack contract in
retrospect that the specified transaction at index 0 operated
on a specific world state i.e., the word state of the previous
block, e.g., where the name to register was not registered yet.
The only way to also generically prove that the resulting state
was indeed the required one without any side effects is that
only transactions which are directly relevant to the attack are
included in the new block in the respective order, because then
the resulting world state can be pre-computed. This of course
renders the attack more expensive and less generic.

b) Runtime check: During runtime a smart contract in
Ethereum does not know at which position the transaction
which invoked the contract is location in the current block.
Moreover, it is not possible to query the indices of other
transactions during runtime. An alternative to working with
indices of transactions is working directly with the required
states. The attack contract checks if it is operating on the
correct world state directly before even performing the attack
e.g., check if the name it wants to register is available. If the
attack contract would encounter an error while performing an
attack it could prevent any future payouts of bribes.

In our front running example, the front running transaction
can also be sent to the attack contract directly, which addi-
tionally works as a proxy or dispatcher and only forwards i.e.,
performs the transaction, iff a queriable attack condition is met
i.e., the target contract is in a specific pre-defined state. Since
the state (storage) of a contract cannot directly be accessed
from another contract, only accessible functions, variables
and certain state variables like balance can be accessed.
Note that for publicly accessible variables getter functions are
created automatically. These, runtime checks ensure that no
payments happen if the race is not won i.e,. the attack is not
successful. Summarizing, it can be said if such checks are
possible, the attack becomes more efficient and more complex
attack scenarios can be envisioned.

APPENDIX F
TRANSACTION EXCLUSION (IN-BAND)

To highlight why executing incentive attacks out-of-band
may be desirable for an adversary, we describe an in-band
transaction exclusion attack. Thereby, we outline challenges
an attacker must overcome and describe how existing attacks
are evaluated in the classical setting for bribing attacks.

The purpose of this near- or no-fork attack is it to exclude
one or multiple unconfirmed transactions from their generated
blocks.

A. Description

Initialization. The attacker knows some transaction txV
which he wants to prevent from getting into the main chain.
He then intializes the attack contract at block e−1, specifying
the transaction and the duration N (in blocks) of the exclusion
attack.
Attack. The attack contract will pay an extra ε for every block
mined between block e1 and eN that (i) does not include

Ethereum block
Zero or more blocks in between

Rewarded blockBlock not yet mined

In-band tx exclusion attack:

Failed:

Ongoing:

Successful:

eT
e0 e1 e2 e3 e4 eN

e'3e'2

tx incl.

e'4

tx incl.

eT
e0 e1 e2 e3 e4 eN

e'3e'2

tx incl.

e0 e1 e2 e3 e4 eN

init

init

init

target &
funding chain

 (E
thereum

)

eN+x

pay

pay

Fig. 5. The figure shows a ongoing-, a failed- as well as a successful
Transaction exclusion attack with in-band payments. The attack is initialized
when the attack contract is published in block e1. If the unwanted transaction
has been included, this can be proven to the attack contract as shown in the
failure case in block eN+x. The payouts are performed in block eT . The
colored blocks are rewarded by the attack contract with an additional ε.

transaction txV itself and (ii) does not extend any block that
included transaction txV . That is, if an altruistic miner decides
to include txV in his block ei (i < N), colluding miners must
perform a near-fork, i.e., extend block ei−1 rather than ei, if
they wish to receive rewards.
Payout. Collaborating miners can claim payouts once kB
blocks have passed after the end of the attack, i.e., at a block
eT ≥ eN+kB , where kB is the security parameter defined by
the attacker. Most PoW blockchains use accumulators, such
as Merkle trees, to store and efficiently prove inclusion of
transactions in a block. However, proving non-existence of an
element in a such accumulator is often inefficient. To this end,
the attack contract will reward any submitted block between
e1 and eN , unless the adversary submits an inclusion proof
for txV , before the payouts are claimed in block eT . If the
adversary proves that a block ex included txV , any blocks
extending ex, i.e., ex+1, ex+2, ..., will not receive any payouts.
Figure 5 shows a failed attack where txV was included in
block e3 - thus only blocks up to, but not including, e3 are
rewarded.

More information on the technicalities of this attack when
implemented in Ethereum are presented in Section F-E.

B. Evaluation with Rational Miners Only (ω = 1)

Estimating the costs of such an attack in a scenario where
all miners are rational (α = β = 0 and ω = 1) and have
perfect information about the attack is trivial. In this case, it
is a no-fork attack and the respective transaction would not be
included into the block chain as long as the bribe ε for non-
inclusion surpasses the fee miners can gain from including
transaction, i.e., ε > fee(txV).

Fig. 6. Finite Markov chain for calculating the probability of mining at least
` consecutive blocks with hashrate ω.

C. Evaluation with Altruistic Miners ω + β = 1

If a fraction of miners behaves altruistically, i.e., will not
join the attack independent of profit, rational miners need an
additional incentive to perform near-forks, excluding blocks
containing txV .

a) Probability of success without a fork: As rational
miners find a block with probability ω, the likely hood of
rational miners finding chains of consecutive blocks decreases
exponentially in their length `. For example, given ω = 2

3 the
probability of generating a chain of ` = 6 consecutive blocks
is merely 8.3%. But what if the attack of delaying a certain
reoccurring transaction or set of such transactions at some
point in time within the next N total blocks. Like for example
deny all transaction to a smart contract token to manipulate
the price. The probability for a miner with hashrate ω = 2

3 to
mine at least ` = 6 consecutive blocks at least once within the
next N = 100 total blocks is approximately 97.2%. This can
be calculated for different values of N, ` and ω by computing
the matrix of the finite Markov chain depicted in 6 with N as
exponent as shown in formula 26.

P =

β ω 0 · · · 0

β 0 ω · · · 0
...

...
...

. . .
...

β 0 0 · · · ω

0 0 0 · · · 1

N

·
[
1 0 0 · · · 0

]
(26)

b) Probability of success and costs with near-forks: To
increase the chance of success, the adversary must increase
the bribe ε paid to colluding miners, to reimburse the risk
of loosing block rewards re due to a failed fork. Assume
a block containing txV was mined by altruistic miners. In
this scenario, the attack chain, i.e., the fork produced by
collaborating miners which must not contain txV , is only
one block behind the main chain. As such, the required
bribing funds are significantly lower, when compared to deep
fork bribing attacks. To estimate the bribing costs of this
attack, we revisit the analysis of Whale Transactions from [20]
(specifically, we extend the analysis after Equation 4 in the
aforementioned paper).

A rational miner with hashrate ωm will mine on the attack
chain if he his expected profit is higher than with honest

mining. To make a rational decision on which chain to mine,
he must estimate and compate the hashrate of (i) all miners
expected to join the attack ωα, and (ii) the hashrate of all
altruistic miners extending the conflicting main chain branch
β. Note that ω = ωα + ωm. For simplicity, we normalize the
block reward (incl. transaction fees) to re = 1. The expected
revenue of a rational miner m with hash rate ωm for mining
on the main chain is given by the probability that the main
chain wins multiplied with his share of mining power on the
main chain:

ρ =

(
1−

(
α+ωα
β+ωm

)z+1) · ωm
β + ωm

(27)

where z is the number of blocks the attacker chain is behind
the main chain - in our case z = 1. In contrast, the profit from
mining on the attack chain is given:

ρ′ =

(
α+ωα+ωm

β

)z+1 · ωm
α+ ωα + ωm

· (ε+ 1) (28)

A rational miner m will only join the attack if ρ′ > ρ. We
hence derive the necessary bribe ε as follows:

ε >

(
1−

(
α+ωα
β+ωm

)z+1)
β + ωm

· α+ ωα + ωm(
α+ωα+ωm

β

)2 − 1 (29)

To estimate a worst case lower bound for the necessary
bribe, we set ωα = 0 and a calculate ε for a small rational
miner with hashrate ωm = 0.05. We receive ε ≈ 17 · re,
i.e., if a rational miner m assumes no other miners will join
the attack, a bribe 17 times the value of a block reward is
necessary. We provide a detailed overview of necessary bribing
values ε for different attack constellations (ωα and ωm) in
Table VII in Section F-E. We observe that once ωm + ωα
exceeds 38.2%, a rational miner m is always incentivized to
mine on an attack chain with z = 1, independent of the bribe
value ε (i.e., necessary ε = 0).

Table VII shows the costs for incentivizing in-band transac-
tion exclusion if blocks that include the respective transaction
should be forked by rational miners.

1) Comparison to Existing Attacks: A com-
parable attack allowing arbitrary transaction
exclusion is HistoryRevisionCon [22]. While
HistoryRevisionCon only requires bribing amounts ε
between 0.09375 ·re and 1.4375 ·re (depends on how effective
uncle block inclusion can be optimized), it also requires a
substantial attacker hashrate (α > 1

3). For comparison: if we
assume ω = 0.33 s.t., ωα = 0.28 and ωm = 0.05, our attack
would require ε ≈ 0.603 · re.

The only other comparable transaction exclusion attack is
the Script Puzzle 38.2% attack, which requires α > 38.2% (in
Bitcoin). For comparison, if we assume ω = 0.382, our attacks
requires a bribe value ε close to zero: mining on the attacker
chain becomes the highest paying strategy independent of the
bribe.

ωm = 0.05 ωm = 0.1 ωm = 0.2 ωm = 0.3 ωm = 0.33 ωm = 0.382 ωm = 0.4

ωα = 0.00

β = 0.950
ρ = 0.050
ε = 17.050
ρ′ = 0.050
P = 0.003

β = 0.900
ρ = 0.100
ε = 7.100
ρ′ = 0.100
P = 0.012

β = 0.800
ρ = 0.200
ε = 2.200
ρ′ = 0.200
P = 0.062

β = 0.700
ρ = 0.300
ε = 0.633
ρ′ = 0.300
P = 0.184

β = 0.670
ρ = 0.330
ε = 0.360
ρ′ = 0.330
P = 0.243

β = 0.618
ρ = 0.382
ε = 0.000
ρ′ = 0.382
P = 0.382

β = 0.600
ρ = 0.400
ε = 0.000
ρ′ = 0.444
P = 0.444

ωα = 0.05

β = 0.900
ρ = 0.052
ε = 7.503
ρ′ = 0.052
P = 0.012

β = 0.850
ρ = 0.105
ε = 4.056
ρ′ = 0.105
P = 0.031

β = 0.750
ρ = 0.210
ε = 1.362
ρ′ = 0.210
P = 0.111

β = 0.650
ρ = 0.315
ε = 0.267
ρ′ = 0.315
P = 0.290

β = 0.620
ρ = 0.346
ε = 0.062
ρ′ = 0.346
P = 0.376

β = 0.568
ρ = 0.401
ε = 0.000
ρ′ = 0.512
P = 0.578

β = 0.550
ρ = 0.420
ε = 0.000
ρ′ = 0.595
P = 0.669

ωα = 0.10

β = 0.850
ρ = 0.055
ε = 4.286
ρ′ = 0.055
P = 0.031

β = 0.800
ρ = 0.110
ε = 2.512
ρ′ = 0.110
P = 0.062

β = 0.700
ρ = 0.219
ε = 0.792
ρ′ = 0.219
P = 0.184

β = 0.600
ρ = 0.329
ε = 0.000
ρ′ = 0.333
P = 0.444

β = 0.570
ρ = 0.362
ε = 0.000
ρ′ = 0.437
P = 0.569

β = 0.518
ρ = 0.419
ε = 0.000
ρ′ = 0.686
P = 0.866

β = 0.500
ρ = 0.439
ε = 0.000
ρ′ = 0.800
P = 1.000

ωα = 0.20

β = 0.750
ρ = 0.059
ε = 1.637
ρ′ = 0.059
P = 0.111

β = 0.700
ρ = 0.117
ε = 0.914
ρ′ = 0.117
P = 0.184

β = 0.600
ρ = 0.234
ε = 0.055
ρ′ = 0.234
P = 0.444

β = 0.500
ρ = 0.352
ε = 0.000
ρ′ = 0.600
P = 1.000

β = 0.470
ρ = 0.387
ε = 0.000
ρ′ = 0.623
P = 1.000

β = 0.418
ρ = 0.448
ε = 0.000
ρ′ = 0.656
P = 1.000

β = 0.400
ρ = 0.469
ε = 0.000
ρ′ = 0.667
P = 1.000

ωα = 0.30

β = 0.650
ρ = 0.058
ε = 0.408
ρ′ = 0.058
P = 0.290

β = 0.600
ρ = 0.117
ε = 0.050
ρ′ = 0.117
P = 0.444

β = 0.500
ρ = 0.233
ε = 0.000
ρ′ = 0.400
P = 1.000

β = 0.400
ρ = 0.350
ε = 0.000
ρ′ = 0.500
P = 1.000

β = 0.370
ρ = 0.385
ε = 0.000
ρ′ = 0.524
P = 1.000

β = 0.318
ρ = 0.445
ε = 0.000
ρ′ = 0.560
P = 1.000

β = 0.300
ρ = 0.466
ε = 0.000
ρ′ = 0.571
P = 1.000

ωα = 0.33

β = 0.620
ρ = 0.057
ε = 0.144
ρ′ = 0.057
P = 0.376

β = 0.570
ρ = 0.113
ε = 0.000
ρ′ = 0.132
P = 0.569

β = 0.470
ρ = 0.226
ε = 0.000
ρ′ = 0.377
P = 1.000

β = 0.370
ρ = 0.339
ε = 0.000
ρ′ = 0.476
P = 1.000

β = 0.340
ρ = 0.373
ε = 0.000
ρ′ = 0.500
P = 1.000

β = 0.288
ρ = 0.432
ε = 0.000
ρ′ = 0.537
P = 1.000

β = 0.270
ρ = 0.452
ε = 0.000
ρ′ = 0.548
P = 1.000

ωα = 0.38

β = 0.568
ρ = 0.050
ε = 0.000
ρ′ = 0.067
P = 0.578

β = 0.518
ρ = 0.100
ε = 0.000
ρ′ = 0.180
P = 0.866

β = 0.418
ρ = 0.200
ε = 0.000
ρ′ = 0.344
P = 1.000

β = 0.318
ρ = 0.300
ε = 0.000
ρ′ = 0.440
P = 1.000

β = 0.288
ρ = 0.330
ε = 0.000
ρ′ = 0.463
P = 1.000

β = 0.236
ρ = 0.382
ε = 0.000
ρ′ = 0.500
P = 1.000

β = 0.218
ρ = 0.400
ε = 0.000
ρ′ = 0.512
P = 1.000

ωα = 0.40

β = 0.550
ρ = 0.046
ε = 0.000
ρ′ = 0.074
P = 0.669

β = 0.500
ρ = 0.093
ε = 0.000
ρ′ = 0.200
P = 1.000

β = 0.400
ρ = 0.185
ε = 0.000
ρ′ = 0.333
P = 1.000

β = 0.300
ρ = 0.278
ε = 0.000
ρ′ = 0.429
P = 1.000

β = 0.270
ρ = 0.306
ε = 0.000
ρ′ = 0.452
P = 1.000

β = 0.218
ρ = 0.354
ε = 0.000
ρ′ = 0.488
P = 1.000

β = 0.200
ρ = 0.370
ε = 0.000
ρ′ = 0.500
P = 1.000

TABLE VII: Comparison of minimum bribing attack costs ε for certain attack hashrates ωα and undecided individual miners
ωm. The table also shows the expected reward of m if ωm would be directed towards the attack chain ρ′, as well as the
expected reward ρ if ωm would be directed towards the main chain.

D. Counter Mechanisms

a) Unique transaction specification:: To deny some
transaction from getting into the blockchain, the respective
transaction has to be known. We made the simplifying assump-
tion that the transaction hash is known to the attacker and wont
change. Although, in practice this might not hold true because
of several ways around this restriction: Even if transaction
malleability is not possible for any third party, transactions can
be recreated by the sender s.t. they are semantically equivalent
but their transaction hash differs. Ethereum actively supports
this as replace-by-fee, when a new transaction from the same
account with a higher gas value is available it will be preferred
by miners. The new transaction must can but is not even
required to be semantically equivalent to the original one.

Therefore, the victim can evade the attack if the attack
contract relies on transaction hashes. A possible but less
generic way around this is to evaluate contract states instead
of transaction hashes to determine if the effects of some un-
wanted transaction have made it into the blockchain. Although,
this seams like a promising approach, the feasibility of this
solution highly depends on the individual case as outlined in
Section E-C.

b) Counter Bribing: The most effective counter measure
against the attack is to increase the fee of txV s.t. it surpasses
the value promised by the attack contract. Since the transac-

tion exclusion incentives have to be made public, the attack
cannot be considered stealthy in the target cryptocurrency.
This motivates that the incentivization of the attack happens
out-of-band on a distinct funding cryptocurrency and thus
hidden from clients which only operate and monitor the target
cryptocurrency. Such an attack is described in the Section V

c) Proof a negative: Since we are in an in-band scenario,
the successful execution of the attack relies on a proof that
transaction txV was included to correctly pay out rewards
and detect unwanted inclusion. It can be argued that rational
miners would be disincentivised to include this proof and
collect the rewards for mined blocks anyway. Moreover, the
exact same incentive attack can be used to keep this proof
transaction out of the blockchain. We now show that this is
not an efficient counter attack by introducing and additional
cost gap. To introduce this cost gap between the attack and
its counter attack, the stabilization period between eN and eT
can be increased s.t. it is larger than the period between e1
and eN . Thereby, the counter attack gets more expensive than
the original attack. This leverages the fact that the victim has
to get his transaction into the blockchain before eN , whereas
the attacker of can choose a longer stabilization period.

Nevertheless, an approach that poses more convincing evi-
dence of transaction absence is desirable. An in-band method
that relies on a proof that the transaction txV was indeed

not included in the chain in the respective interval would
be ideal. Thereby, the attacker can be sure that the payment
only happens if the requested condition is fulfilled. In practice
such proves are less efficient in current cryptocurrencies like
Ethereum. A possible way around this is to provide a block
template for every block, which must be used by the miners
to be later able to collect the associated additional reward ε.
Thereby, it can be ensured by the attacker that only wanted
transactions are included as well as their order. The block
template can be provided in a transaction to an attack contract
which encompasses all transaction hashes in their respective
order which should be included in the next block, excluding
his own hash.

Another alternative would be to use out-of-band techniques
and launch the attack form a different smart contract capable
funding cryptocurrency whose miners are not affected by the
attack. Moreover, if the set of miners is distinct, the incentives
of the miners to not include a inclusion prove of txV are less
of an issue. We describe an out-of-band attack which uses
the technique of block templates and also allows for arbitrary
ordering in Section V.

E. Details and implementation of tx exclusion in-band

The two important aspects of this attack are: i) Determine
if the unwanted transaction txV was included, and if so in
which block ii) Correctly reward complacent miners.

1) Reward complacent miners: To collect the reward, a
rational miner has to submit the block header he mined in
the respective range to the attack contract. The attack contract
then checks if this block really lies in the respective interval in
the recent history of the chain. In Ethereum, the last 256 block
hashes can be accessed from within a smart contract, thereby
the smart contract can verify if a submitted block header really
is part of the recent history. From the submitted block header
the contract can also extract the beneficiary / coinbase address
of the respective miner directly.

2) Transaction inclusion proof: The naive way of determin-
ing if txV has been included in a block is to request a Merkle
patricia trie inclusion prove, as described in Section E-C, that
the respective transaction is part of a given block header which
lies in the defined interval. This approach has the drawback
that it will not detect other semantically equivalent transactions
with a different hash.

A way around this in an in-band scenario on Ethereum is
to define state conditions which must be met depending on
the use-case at hand. For example, if you can show me a
transaction to a certain address / contract that is part of a
block in the specified interval than I consider this as a prove
that an unwanted interaction with the respective address /
contract has taken place and do not reward the miners from
that block on. Thereby, care has to be taken to account for
transaction obfuscation via proxy contracts which perform
message calls on behalf of a transaction from an externally
owned account. These, cannot easily be proven to a contract
since the respective transaction has to be evaluated on the
EVM with the correct world-state. Thus, this variant is only

error free if the unwanted transaction has to come from an
externally owned account directly, e.g., as required by certain
Tokens. 18

Therefore, the safest variant is do check if the state change
or condition which should have been triggered by an unwanted
transaction has occurred or not. For example if the balance
of a contract has been raised/decreased, or if certain public
accessible state variable have changed in an undesired way. If
this can be checked by the attack contract before performing
any payouts, it is not possible to collect rewards if the
requested condition has not been fulfilled.

3) Block template in-band: Another way around the previ-
ously outlined problem of proving that an unwanted operation /
transaction has not taken place is to specify exactly what trans-
actions are allowed to take place. Interestingly, this is easier in
an out-of-band scenario than in an in-band scenario since the
attacker has to convincingly ensure the collaborating rational
miners that they will receive their bribes while defining the
content of all blocks in a way that can be proven to the attack
smart contract. At the same time the content of the blocks
also has to define those blocks, which leads to a recursive
dependency since the transaction to the attack contract cannot
define itself because their hash is not known in advance.

18Interestingly, a UTXO model would also be easier to censor if the output
which has to be spent in an unwanted transaction is known.

