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Abstract

Elliptic bases, introduced by Couveignes and Lercier in 2009, give an elegant way
of representing finite field extensions. A natural question which seems to have been
considered independently by several groups is to use this representation as a starting
point for small characteristic finite field discrete logarithm algorithms.

This idea has been recently proposed by two groups working on it, in order to
achieve provable quasi-polynomial time for discrete logarithms in small characteristic
finite fields.

In this paper, we don’t try to achieve a provable algorithm but, instead, investigate
the practicality of heuristic algorithms based on elliptic bases. Our key idea, is to use
a different model of the elliptic curve used for the elliptic basis that allows for a rela-
tively simple adaptation of the techniques used with former Frobenius representation
algorithms.

We haven’t performed any record computation with this new method but our
experiments with the field F31345 indicate that switching to elliptic representations
might be possible with performances comparable to the current best practical methods.

1 Introduction

The discrete logarithm problem (DLP) is a fundamental problem underlying the security
of many cryptographic systems. Given G a finite cyclic group denoted multiplicatively and
g a generator of the group, solving the discrete logarithm problem in G means being able,
for any arbitrary element h ∈ G, to find an integer x such that:

gx = h.

The integer x is defined modulo the order of G and is called the discrete logarithm of h.
Among the groups considered for cryptographic use, we find the multiplicative group

of finite fields. There is a long history of algorithms to address this problem that we do not
recall here. In the case of “small” characteristic fields, tremendous progress was made in
2013 and the years after. They are surveyed in [JP16]. This led to extreme computational
improvements and to two flavors of heuristic quasi-polynomial time algorithms. One of
the fundamental tools used to achieved this result is a special representation of a finite
field extension above Fq, called the Frobenius representation which requires an element θ
satisfying a relation of the form:

θq =
h0(θ)

h1(θ)
,
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where h0 and h1 are co-prime polynomials with very low degree.
A widely believed heuristic assumption is that any finite field extension can be repre-

sented in that way, unless one of the known obstructions applies. These known obstructions
are that h0 and h1 can both have degree ≤ 1. Furthermore, it is clearly not possible to
represent an extension of degree higher than q+ deg(h1). In practice, finding such a repre-
sentation via exhaustive search among suitable polynomials is a trivial matter. However,
proving this assumption seems to be a difficult task.

As a consequence, it is natural to turn to different field representations which can prov-
ably be constructed and try to adapt the discrete logarithm algorithms to work with them.
Elliptic bases, also called elliptic periods [CL09], form a natural candidate for this pur-
pose. Their use for discrete logarithms was independently considered by several groups.
We are aware of two attempts which have been made public. In 2016, in his master’s
thesis [Lid16], Lido proposed a discrete logarithm based on elliptic representations, using
a descent method made of two halves. His presentation states a theorem concerning one
half of the descent and a conjecture for the other half. On June 26th, 2019, Kleinjung and
Wesolowski released a preprint [KW19] on the eprint archive announcing a fully provable
quasi-polynomial time algorithm based on elliptic representation. The next day, Schoof
gave a talk at the conference NutMiC 2019 presenting the work of Lido. He also sent us
a not yet publicly available document [Lid19] that extends [Lid16] and contains a theo-
rem announcing an algorithm to compute logarithms in a finite field F in provable time
(log |F|)O(log log |F|)).

The result announced in [KW19], has a different form. It states that discrete loga-
rithms in Fpn can be computed in provable time (pn)2 log2 n+O(1). Both forms affect a very
large range of characteristic. Indeed, until now, the best provable discrete logarithm al-
gorithms for finite fields had complexity L(1/2). They are thus outperformed as soon as
p < Lpn(1/2− ε), for an arbitrary small ε > 0.

In this paper, we present the work we independently performed on a similar idea. How-
ever, we do not consider the provable aspects. Instead, we focus more on the algorithmic
aspects of heuristic variants of elliptic representation discrete logarithm methods. Our
formulation differs in many details. As such, it might shed a different light on the topic
and help the reader to study the theoretical breakthrough on provable algorithms. As of
now, our proposal remains slightly inferior to the method in [JP14], the fastest currently
known (heuristic) method to compute discrete logarithms in small characteristic. However,
it gets very close to it, while leaving room for improvement in the analysis.

Quick overview of Frobenius representation algorithms. The common strategy of
all heuristic algorithms in the Frobenius representation family is the following.

• A preliminary step, often called the representation phase, we construct a representa-
tion of an extension of degree k of Fq, assuming that:

Heuristic. There exists a small divisor n of k (possibly one), two coprime polynomi-
als h0 and h1 in Fqn [X] of low degree (often of degree at most two) and an irreducible
factor I of h1X

q − h0 having degree k/n.

This gives the representation of the target field Fqk as Fqn [X]/(I).

• Relation generation. Set a small set F of particular elements, small in some sense,
such that F ⊂ Fqk . Collect vectors (ef )f∈F such that:∏

f∈F
fef = 1.
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These vectors create linear relations between the discrete logarithm of factor base
elements since: ∑

f∈F
ef . logg f = 0.

• Linear algebra. Find a solution of the above system. It gives the discrete logarithms
of elements of F (maybe not all). Note that the number of non zero coefficients ef per
relation is very low, let’s say a constant λ. Then it’s possible to compute this phase
with sparse linear algebra: if |F| is an upper bound on the number of unknowns,
then algorithms such as Wiedmann algorithm find solutions in O(λ|F|2) operations.

• Individual discrete logarithm. Also known as the descent phase, here the aim is
to find a relation only involving the target and factor base elements:

h
∏
f∈F

fef = 1.

Since the discrete logarithms of F are known, we can reconstruct logg h by computing
logg h = −

∑
f∈F ef . logg f .

Because of potential dependencies, it’s not easy to see when we have enough relations, but
in practice having a few more relations than factor base elements is usually sufficient.

To turn this into a provable algorithm, it is not only necessary to prove that the
finite field representation can be constructed, it is also required to change the relation
generation and linear algebra. Essentially, one follows the approach of [Pom87], which
consists in decomposing plenty of elements of the form gahb over the factor base. Linear
algebra can then be used to eliminate the contribution of the factor base by combining the
equations which leads to a random identity of the form gAhB = 1 from which the discrete
logarithm can be recovered. Unfortunately, this is much less practical. In particular, there
no longer is an individual logarithm phase in this approach and the full computation has
to be restarted from scratch for every discrete logarithm computation in the same field.

Assuming that the field representation exists, this makes the computation of discrete
logarithms provable. For Frobenius representation algorithms, this type of provable ap-
proach (assuming that the field representation is given) has been studied in [GKZ18, KW18,
GJ18].

Overview of the goal with elliptic representations. Let’s Fpk be the target finite
field in which we want to compute discrete logarithms. To simplify exposition, we assume
p ≥ 5, since the equation of the curves needs to be chosen differently in characteristic 2
or 3. We summarize our construction as follows:

1. Representation. Create an elliptic curve E over Fq (q being a power of p) such
that:

#(E /Fq) = µk,

with µ a natural integer. If k is square, there necessarily exists a k-torsion point
P1 ∈ E . Otherwise, for every prime ` dividing k, let `e` be the largest power of `
dividing k. For each ` with e` > 1, it might be necessary to change E to an isogenous
curve by applying a sequence of `-isogenies in order to guarantee that a point of order
`e` exists. These changes to E suffice to guarantee the existence of P1.

Finally, find a point F ∈ E such that:

π(F ) = F + P1,
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where π is the Frobenius action in the field Fq. In particular, if we note F = (θ, τ)
then we can write Fqk as Fq[θ, τ ].

This almost gives the desired representation of the target field. Indeed, Fq[θ] is
either Fqk or Fqk/2 . In the sequel, we assume that Fq[θ] = Fqk , multiplying k by 2 if
necessary.

Then, since Fpk is a subfield of both Fqk or Fq2k , we see that computing discrete
logarithms in Fq[θ] is sufficient to achieve the desired goal.

2. Commutative Diagram. We now define the full representation we want to use
from a curve C in 3 dimensions obtained as the image of the following rational map:

Φ : E 7→ F3
q

Q 7→ (xQ−P1 , xQ, xQ+P1)

At first, this might seem to be a strange model of an elliptic curve. However, the
intuition is that, with this model, the image of F is a point with a really useful
property: taking the Frobenius of one of its coordinate leads to the following one.
In other words, if Φ(F ) is seen as a point of C in the affine space Fq[U, V,W ] then
it lies on the intersection of the surfaces defined by the two equations U q = V and
V q = W . This property is at the core of our method for creating relations. Starting
from A and B two polynomials in Fq[U, V ], we construct two big polynomials:

AqB −ABq =
∏

α∈P1(Fq)

(A− αB)

in one hand, and:
A(V,W )B(U, V )−A(U, V )B(V,W )

in the other hand. Each polynomial can be considered as an element of the function
field Fq(C ). Writing the divisor associated to each side, we can write down an
equality between the image of each divisor in Fqk . For polynomial themselves, the
image is simply obtained by evaluation at Φ(F ). This can be extended to divisors
as explained in Section 2.2. The equality of the two sides comes from the Frobenius
relations between the coordinates of Φ(F ).

3. Relation collection. We sieve on pairs of polynomials (A,B) such that A = g1+αg3

and B = g1 + βg2 + γg3 where α, β, γ ∈ Fq and g1, g2 and g3 are given polynomials
constructed by linear combination of the monomials U, V, UV and 1. Set the factor
base F as all the divisors of E with height at most 3. On one side

∏
α∈P1(Fq)(A−αB)

will always lead to divisors that can be written as sum of divisors of F , and on the
other side A(V,W )B(U, V )−A(U, V )B(V,W ) have a low enough height so that the
probability that the related divisor D splits in factor base elements is high enough
to get as many relations we want.

Since we only need three degrees of freedom from the four monomials U, V, UV and
1, we choose g1, g2 and g3 all going through a common point. This nicely reduces
the degree of the divisors appearing in the decomposition of the terms A−αB. This
is essential in making the probability of success during the relation collection phase
good enough.

4. Linear algebra and individual logarithm. Thanks to the action of Frobenius,
we can reduce the size of factor base by a factor k. In other words, this reduces the
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effective size of the factor base F to O(q3/k). As a consequence, the cost of the sparse
linear algebra, with O(q) entries per equation, is of O(q7/k2) arithmetic operations.
Note that, when k is chosen close to q, this matches the O(q5) asymptotic complexity
obtained for this step in [JP14].

5. Descent Phase. Finally, we need a descent phase to conclude. We give the necessary
tools to adapt existing methods in this context.

Outline. Section 2 gives algebraic preliminaries for this work.
In this paper, we focus on the algorithmic aspects and describe our practical elliptic

Frobenius algorithm, that can be helpful to fully understand the general idea. Being aimed
at practicality, this algorithm is heuristic. From a performance analysis point of view, our
heuristic approach almost achieves the same efficiency as the best pre-existing practical
algorithm for DLP in small characteristic finite fields. Almost, because there is a glitch
in the analysis of the fast computation of the extended factor base. However, despite this
glitch, we were able to implement and use the elliptic representation approach to compute
logarithms of an extended factor base for the finite field F31345 .

We highlight the heuristics we use as far as we can, in order to clarify the difference
with the provable algorithm of [KW19] or [Lid19].

In Section 3 we give our variation on the representation of the target finite field while
Section 4 details how to get relations. Finally Section 5 deals with factor base extension
and with the individual logarithms phase.

2 A Refresher on the Function Field Sieve Machinery

Many concepts used here originate from the Function Field Sieve (FFS) algorithm [AH99].
The aim of this first section is not to describe FFS itself, but to describes these concepts in
a slightly more general form than the original description of Adleman and Huang article.

2.1 Algebraic preliminaries

Let K = Fq denote a finite field. Let C be a non-singular curve in the n-dimensional
projective space Pn(Fq) defined over K and π denote the Frobenius map on Pn(Fq). We
let K(C ) denote the function field of C over K. More details can be found in [CFA+05]
if needed. A discrete valuation on K(C ) is a map V from K(C ) to Z such that for all
x, y ∈ K(C ) we have:

1. V(xy) = V(x) V(y);

2. V(x+ y) ≥ min(V(x), V(y));

3. V(x+ y) = min(V(x), V(y)) when V(x) 6= V(y).

We define an equivalence relation between valuations by saying that two valuations V and
V′ are equivalent whenever there exists a non zero rational constant α such that for all
x ∈ K(C ), we have V′(x) = α V(x). We recall that a place of K(C ) is an equivalence class
of discrete valuations of K(C ) which are trivial on K. The set of places of K(C ) is denoted
by ΣK(C ). In every place p, there exists a unique valuation whose value group is Z, it is
called the normalized valuation of p and denoted Vp.

We recall that, for a non-singular curve C , there is a one-to-one correspondance between
places of K(C ) and Galois orbit of points on C . The degree of a place p is the number of
points in the corresponding orbit, we denote it by Deg(p).
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The divisor group Div(C ) of C (over K) is defined as the free abelian group over ΣK(C ).
An element D of Div(C ) is expressed as:

D =
∑

p∈ΣK(C)

np(p),

where each np ∈ Z and np = 0 for all but finitely many places p. Since each place
corresponds to a Galois orbit of points, a divisor D can also be given in the alternative
form:

D =
∑

P∈C /Fq

nP (P ),

where each nP ∈ Z, nP = 0 for all but finitely many points and nP = nQ if P and Q
belong to the same Galois orbit of points. A divisor D is said to be prime when D = (p)
for a place p ∈ ΣK(C ).

The degree of a divisor D is defined as:

Deg(D) =
∑

p∈ΣK(C)

npDeg(p) =
∑

P∈C /Fq

nP .

In this paper, a degree-0 divisor that is the difference between a prime divisor and the right
number of times the point at infinity O is defined as an elementary divisor. In particular,
any elementary divisor associated to a point Q ∈ C /Fqd is a divisor of the form:

d−1∑
i=0

πi(Q)− d(O).

A divisor D is called effective when np ≥ 0 for all p. Any divisor D can be uniquely
written as a difference of two effective divisors in the form D = D0 −D∞, where:

D0 =
∑

p ∈ ΣK(C )

np ≥ 0

np(p) and D∞ =
∑

p ∈ ΣK(C )

np < 0

−np(p).

The degree map from Div(C ) to Z is a group morphism. Its kernel is denoted Div0(C )
and called the group of degree-0 divisors of C , it is a subgroup of Div(C ).

We define the map1 Ξ that sends an element f ∈ K(C )∗ to a divisor in the following
way:

Ξ : K(C )∗ 7→ Div(C )

f 7→ Ξ(f) =
∑

p∈ΣK(C)

Vp(f) p.

A divisor associated to a function in the above way is called a principal divisor. The
image of Ξ, i.e. the set of all principal divisors, is denoted Princ(C ). All principal divisors
have degree 0 and Princ(C ) is a subgroup of Div0(C ). Every principal divisor can also be
written as a difference of effective divisors as:

Ξ(f) = Ξ(f)0 − Ξ(f)∞.

The places (or points) that occur in Ξ(f)0 or Ξ(f)∞ are respectively called the zeroes
or poles of f . Note that for two functions f and g of K(C )∗, we have Ξ(f) = Ξ(g) if and
only if there exists an element α ∈ K∗ such that g = α f .

Since Princ(C ) is a subgroup of Div0(C ), we can form the quotient group, which is
called the Picard group (or divisor class group) of C and denoted Pic0(C ). Two divisors
have the same representative in the Picard group if and only if their difference is principal.

1Other authors often use the notation div but we do not want the map to be mistaken with the group.
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2.2 A tool from FFS: sending a degree-0 divisor into a finite field

With these algebraic objects in hand, we can now introduce the main tool that we need
to import from the Function Field Sieve. Let K = Fq be a finite field, L = Fqk be a finite
extension of K and C be as before a non-singular curve defined over K. Let F be a point
of C /L such that the coordinates of F generate L over K. Given an arbitrary element
f ∈ K(C )∗ which does not have F as a pole, we can evaluate f at F and obtain a value
in L. As explained in [AH99], this process can be generalized from functions to a large
subset of divisors of C . Clearly, since α f and f have the same divisor for any α ∈ K, we
need to proceed with care.

First, we define a map Ψ from Princ(C ) to L/K∗ defined as follows:

Ψ : Princ(C ) 7→ L/K∗
D 7→ Ψ(D) = f(F ),

where f is an arbitrary function such that Ξ(f) = D. Since the result is only considered
up to multiplication by an arbitrary constant in K∗, it is independent of the particular
choice of f .

To generalize to more divisors, we now consider a degree-0 divisor D together with
an integer h ∈ N∗ such that hD is principal and h is coprime to the order of L∗/K∗ =
(qk − 1)/(q − 1). For such a divisor, we extend the definition by letting:

Ψ(D) = Ψ(hD)1/h.

In the terminology of [AH99], we evaluate at F the “surrogate” function that we have
associated to D thanks to the multiplication by h. Note that replacing h by any other h′

satisfying the conditions does not change the value of Ψ(D). Furthermore, remark that if
Ψ is defined on D and D′, it is also defined on D + D′ and Ψ(D + D′) = Ψ(D) · Ψ(D′).
Similarly, if Ψ(D) is defined and non-zero, then Ψ(−D) = 1/Ψ(D).

From a computational point of view, if D has a small support, then Ψ(D) can be
efficiently computed by using Miller’s algorithm to compute the evaluation at F of the
function corresponding to hD. See Section 3.3 for more details.

In the Function Field Sieve, this tool is used as part of the commutative diagram that
underlies the construction of multiplicative relations. However, it is not used directly in the
algorithm, only in its correctness proof. Similar, in our elliptic representation algorithm,
the map Ψ is not really necessary to perform computations. However, having it at our
disposal gives a very useful tool for checking the correctness of relations, thus helping to
remove undesirable implementation bugs.

3 Representation of the Target Finite Field

Let q and k respectively be a prime power and the extension degree of the field. Our aim
is to compute discrete logarithms in it. Let’s write p its characteristic. Since we want
to define the extension as Fq[xP ], with xP the abcissa of some point on an elliptic curve,
while the construction naturally writes it as Fq[xP , yP ], there is a small risk of producing
a subextension (missing a last quadratic extension) when k is even. If this happens, it
suffices to replace k by 2k during the initial choice of the elliptic basis. As a consequence,
we can safely ignore this point in the sequel.
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3.1 Choosing the elliptic basis

The representation step of our algorithm starts by forming an elliptic curve over a small
extension of Fq with cardinality a multiple of k. The following result explicits bounds with
respect to q and k for both the extension degree and the multiplying factor.

Theorem 1. If q and k be a prime power and a positive integer, then there exist µ and ν two
integers and an elliptic curve over Fqµ with cardinality νk such that µ ≤ dlog(k2/4)/ log qe+
1.

Proof. Let p denote the characteristic of Fq. We can perform following case by case analysis:

1. First, let us assume that k < 2
√
q. Thus there exist at least two multiples νk and

(ν+1)k of k in the Hasse interval
]
q + 1− 2

√
q, q + 1 + 2

√
q
[
. Furthermore, we may

assume that νk < q + 1.

If p divides k then p cannot divide the trace t = q + 1 − νk. Let us recall now the
following result:

Corollary 1 (of Waterhouse’s theorem [Wat69]). For each value of the characteris-
tic p, for any extension degree n and for every integer t in ]−2

√
pn, 2
√
pn[ such that

t 6≡ 0 mod p, there exists an elliptic curve over Fpn whose number of rational point
is exactly pn + 1− t.

The reader can for example find a proof in [Ugh83]. Note that we can run into some
cases where the characteristic does divide the trace and yet such that there exists
such a curve. Theorem 4 in [Ugh83] gives the exhaustive list of these special cases.

Back to our discussion of the case where p divides k, we see that, Waterhouse’s
theorem yields the existence of an elliptic curve over Fq with cardinality λk, for all
values λk in the Hasse interval. In particular, there exist a curve of cardinality νk.

If p does not divide k then two sub-cases occur. Either q + 1− νk is not a multiple
of p, and Waterhouse’s theorem permits to conclude again that there exists an elliptic
curve over Fq with cardinality νk, or it is. In the second case, p doesn’t divide (ν+1)k
and we obtain a curve with that cardinality.

Either way, when k < 2
√
q we always find a curve over the base field Fq.

2. If k ≥ 2
√
q then there is no guarantee of the existence of two multiples of k in the

Hasse interval. Thus, unless we are lucky, we need to increase the size of the finite
field to get a larger interval. Let µ be the smaller integer such that k < 2

√
qµ.

Applying the previous case on this extended field, we see that there always exists
an elliptic curve over Fqµ with cardinality νk such that νk < qµ + 1 + 2

√
pµ. To

conclude, notice that the additional extension degree µ that we need is (at most)
equal to the ceiling of log(k2/4)/ log q.

Once we have found E , it allows us to define the finite field Fqµk , where µ is the
extra extension degree needed to find E . To lighten notations, we assume without loss of
generality that µ = 1. Indeed, it suffices to redefine a new value for q equal to the previous
value qµ. Thanks to the upper bound on the extension degree, we see that it does not
affect the quasi-polynomial time complexity of the algorithm.

We further assume that E contains a point in Fq of order k. If necessary, apply low-
degree isogenies to the initial curve E until a suitable one is obtained.
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Then construct a point F whose coordinates in the algebraic closure satisfy:

π(F ) = F + P1,

where π is the q-th power Frobenius action. Write the coordinates of F as (θ, τ). From [CL09],
we know that Fqk = Fq[θ, τ ]. Furthermore, from our assumption on k, we have Fqk = Fq[θ].

Note that, when focusing on the practical variation of the algorithm, it is important to
have k as large as possible compared to q. The above proof only guarantees that q = O(k2),
however, in the best cases we can have q = O(k).

3.2 Representing the curve with a different model

We introduce here a model that represents elliptic curves in the three-dimensional affine
space Fq[U, V,W ]. To construct this new model, we start from a curve E together with a
k-torsion point P1 of E /Fq. We emphasize that P1 has all its coordinates in the field Fq.
Let (x1, y1) denote the coordinates of P1 and (x`, y`) the coordinates of P` = ` P1 for
` ∈ [2, · · · , k − 1].

Adding some structure. The idea is to create a new model of E in which we artificially
inject extra desirable properties. Namely, for any point Q ∈ E /F̄q, we represent it by the
triple of abcissae of the points Q−P1, Q and Q+P1 , on the one hand and −Q,P1, Q−P1

on the other hand (see Figure 1).
In this model, there is an easy way to add the π(F ) = F + P1 constraint of the

Couveignes and Lercier [CL09] construction of elliptic bases. Graphically, this is shown on
Figure 2.

Indeed, for point F we see that the triple of coordinates is (xπ−1(F ), xF , xπ(F )). Further-
more, for π(F ) the triple is (xF , xπ(F ), xπ2(F )). As a consequence, the first two coordinates
can be obtained by a simple shift.

Furthermore, it is possible to recover the missing coordinate of π(F ) from the first two,
in a way similar to Montgomery’s ladder technique.

Formal definition of C . Now that we have captured our intuition, we give the equations
of the curve in the new model. First, we recall the definition of the third Semaev polynomial
S3, it is an irreducible and symmetric polynomial of degree-2 in Fq[U, V,W ]. Furthermore,
for any triple of points Q1 = (xQ1 , yQ1), Q2 = (xQ2 , yQ2), Q3 = (xQ3 , yQ3) ∈ E (F̄q) \ {O},
we have:

S3(xQ1 , xQ2 , xQ3) = 0⇔ ∃(e1, e2, e3) ∈ {−1, 1}3, e1Q1 + e2Q2 + e3Q3 = O.

We use this polynomial to describe the image C of the rational map:

Φ : E 7→ F3
q

Q 7→ (xQ−P1 , xQ, xQ+P1)

For every point Q ∈ E /F̄q, we use S3 to rewrite the three simple identities (Q −
P1) − Q + P1 = O, Q − (Q + P1) + P1 = O and (Q − P1) − (Q + P1) + P2 = O. This
shows that the point (xQ−P1 , xQ, xQ+P1) is a common root of the polynomials S3(U, V, x1),
S3(V,W, x1), and S3(U,W, x2). Yet, the variety defined by these 3 equations contains
several components. One of the components is irreducible and has dimension 1 whereas
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E

P1

Q

Q− P1

Q+ P1

xQ

xQ−P1xQ+P1

π

π

Figure 1: Frobenius action on abscissae as we would like.

the others correspond to extraneous points. This irreducible component is the curve C
given by the equations:

S3(U, V, x1) = 0,
S3(U, V, x1)− S3(V,W, x1)

U −W
= 0, S3(U,W, x2) = 0.

In fact C is isomorphic to the initial elliptic curve E . For more details, see Appendix A.

Point in E with coordinates in the target finite field. Let F ∈ E be such that:

π(F ) = F + P1. (1)

Lemma 1. If F ∈ E /F̄q is such that π(F ) = F +P1 then F ∈ E /Fqk . Furthermore, letting
(θ, τ) denote the coordinates of F , we have Fq[θ, τ ] = Fqk . In particular, there exist at least
k rational points verifying the same property.

Proof. Let us compute πk(F ) = πk−1(F +P1) = πk−1(F ) +P1 = · · · = F + kP1. We know
that P1 has precisely order k hence πk(F ) = F . Besides, we note that any point πi(F ) for
i = 1, · · · , k − 1 satisfies Equation (1) too.

As already mentioned, having possibly doubled the value of k in construction, we may
assume that Fq[θ] = Fqk . in our model of curve, the point F is determined by the fact
that S3(θ, θq, x1) = 0. The abscissa θ of F can thus be determined as a root of this
polynomial. Note that the choice of the ordinate τ gives an orientation on the direction of
the Frobenius action. We choose the letter F to name this point as a mnemonic to remind
that it represents our target Finite Field and that it has a special relationship with the
Frobenius map.

3.3 Commutative diagram

From this, we derive the commutative diagram of Figure 3 which serves as the basis for
our elliptic Frobenius representation algorithm. Note that the commutative diagram is

10



E

P1

F

F − P1

F + P1

π

π

θ

τ

Figure 2: Frobenius action on the point F .

above Fqk/F∗q , as a consequence, our algorithm doesn’t compute the part of the discrete
logarithm corresponding to F∗q . However, this field is so small that this missing part can
be easily obtained.

Remark 1. This diagram could be simplified by removing references to the function field Fq(E )
and computing divisors on C directly. However, when using standard computer algebra
tools, it is much simpler to work on divisors with the Weirstrass equation of E .

Explicit maps to Fqk based on Miller algorithm. The first two maps of the diagram
are explicit and the two following ones are canonical injections. Φ∗ is given in Appendix and
Ξ is as defined in Section 2. In addition, we let Ψ denote a multiplicative group morphism
that sends elements of Princ(E ) to Fqk . Yet, only defining Ψ for principal divisors is not
sufficient, since in the relation collection phase we need first to factor divisors in Princ(E )
into elementary divisors before descending them into the finite field. Keep in mind that
elementary divisors have no reason to be principal.

For any divisor in Princ(E ) the first thing to do is to decompose it into elementary
divisors in Div0. Then, we note that since we wish to construct a group morphism that
sends elements of Div0 to Fqk/F∗q , it suffices to describe this morphism for any of these
elementary divisors. Let us consider:

De =
d∑
i=1

πi(Q)− d(O),

where Q ∈ E /Fqd is one of the conjugate points in the degree-d place. Fix a maximum
degree D for the places we consider and let ND be the least common multiple of the
cardinalities of E over each finite field Fqd with 1 ≤ d ≤ D.

11



Fq [U, V ]× Fq [U, V ]
(A,B)

Fq [U, V,W ]
Aq B −ABq =

∏
α∈P1(Fq)

(A− αB)

Fq [U, V,W ]
A(V,W )B(U, V )−A(U, V )B(V,W )

Fq [U, V,W ] /I = Fq[C ] Fq[C ] = Fq [U, V,W ] /I

Fq(E )

Princ(E ) ⊂ Div0(E )

Fq(E )

Princ(E ) ⊂ Div0(E )

Fqk/F∗q

i i

Φ∗ Φ∗

Ξ Ξ

Ψ

Ψ

Factor base elements
are there.

Figure 3: Commutative diagram of our algorithm.

From this, we see that NDDe is a principal divisor, thus there exists a function fDe

in the variables X and Y unique up to multiplication by a constant in Fq such that
div(fDe) = NDDe. We want to use the point F with coordinates in the target finite field
to define it. Since θ and τ are respectively the abscissa and the ordinate of this point, it
seems natural to send X to θ and Y to τ , or, in other words, to evaluate the function on
the point F . However, since fDe is only defined modulo a constant in Fq, the result in
the finite field would change depending on the choice of the function. To annihilate this
constant, we have to divide the evaluation on F by the evaluation on O. Hence to have a
well-defined application Ψ we set

Ψ(De) = (fDe (F −O))1/ND .

However, evaluation at O isn’t really necessary, since we are only interested in values
in Fqk/F∗q . As done for bilinear pairings, this can be efficiently computed using Miller’s
algorithm [Mil04].

Remark 2. In order to raise to the power 1/ND and get a uniquely defined value, we need
to check that ND is invertible modulo the order of F∗

qk
/F∗q. This condition needs to be tested

for all the orders of the curve E in the extension fields Fq,Fq2 , · · · , FqD .
We analyze the condition more precisely in Appendix B and provide a replacement for

Ψ in the case where ND cannot be inverted.

Intuition about Ψ and commutativity of the diagram. This definition matches with
the following intuitive one. To unsure the commutativity of the diagram we need to verify
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that Ψ(Ξ(Φ∗(i(AqB−ABq)))) is equal in the finite field to the element Ψ(Ξ(Φ∗(i(A(V,W )B−
AB(V,W ))))). Our intuition is that requiring in some sense:

U q = V and V q = W

would suffice to prove the commutativity. We point out that one point of the ellip-
tic curve C , namely Φ(F ), precisely follows this restriction. Indeed, Φ(F ) has abscissa
xF−P1 = xπ(k−1)(π(F−P1)) = xπ(k−1)(F ) = π(k−1)(θ), ordinate xF = θ and applicate xF+P1 =
xπ(F ) = π(θ). In a nutshell:

Φ(F ) = [θq
k−1

, θ, θq]

Thus, in the function field Fq(C ), evaluation the functions at Φ(F ) gives the expected
relationship to the Frobenius map. As a consequence, evaluation at F after transporting
back to the function field of E using Φ∗ also gives the desired behavior.

To conclude about the commutativity of the diagram it suffices to note that:

Ψ ◦ Ξ ◦ Φ∗(U q) = (θq
k−1

)q = θ = Ψ ◦ Ξ ◦ Φ∗(V ) mod F∗q

and similarly:
Ψ ◦ Ξ ◦ Φ∗(V q) = θq = Ψ ◦ Ξ ◦ Φ∗(W ) mod F∗q .

Hopefully, since Ψ ◦Ξ ◦Φ∗ ◦ i is a morphism the equality in the finite field between images
of AqB −ABq and A(V,W )B −AB(V,W ) holds too.

Extension of the diagram to bigger fields. As with classical Frobenius representation
algorithm, the commutative diagram can also be used when the coefficients of A and B
are taken in another extension Fqd . In that case, the commutative diagram ends in the
compositum of Fqd and Fqk (again modulo F∗q). The only difference is that the identity in
the finite field is between the images of AqB−ABq and Aπ(V,W )B−ABπ(V,W ), i.e. the
coefficients of A and B need to be acted on by Frobenius.

4 Harvesting Relations

4.1 The usual systematic product

As we can see in the previous diagram, our setting uses a mixture of the classical Function
Field Sieve and of the Frobenius representation algorithms. As in the classical Function
Field Sieve, our algorithm uses function fields instead of polynomials when writing down
multiplicative relations. From Frobenius representation algorithms it inherits the use of
the systematic relation:

Aq B −ABq =
∏

α∈P1(Fq)

(A− αB), (2)

where as in [JP14], when α is the point at infinity of P1(Fq), the term A− αB is used as
a shorthand for B. For simplicity, we also use a bracket notation and define:

[A,B] = A(V,W )B(U, V )−A(U, V )B(V,W ).

We underline that our bracket is Fq-bilinear and antisymmetric, as in [JP14]. Yet, we
warn the reader of the difference between the definition of our bracket and previous ones.
Our bracket is equal to the entire fraction whereas the authors of [JP14] only consider the
numerator of this rational fraction.
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4.2 Choice of A and B

In the commutative diagram of Figure 3 and in the above discussion, we indicate that
relations are obtained from a choice of two bivariate polynomials A and B in U and V .
However, we need to specify how these polynomials are chosen and which monomials they
should contain.

As a preliminary, let us notice that (A,B) and (αA,B) for α ∈ Fq lead to the same
relation. Indeed, (αA)q B − (αA)Bq = α(Aq B − ABq) so the two divisors associated to
the two corresponding functions are equals. Thus A and B are chosen as some kind of
monic polynomials: the coefficient of the higher monomial (in the lexicographic order for
instance) must be equal to 1. Then we note that monomials divisible by (UV )2 are not
useful in A and B. Indeed, when going to Fq[C ], reduction modulo S3(U, V, x1) transforms
these monomials into smaller monomials U2V,UV 2, U2, UV, V 2, U, V and 1. Moreover, it
is natural to consider sets of monomials globally symmetric in U and V .

As a consequence for all those items, given a parameter t ≥ 1 we construct A and B
as linear combinations of monomials from:

Mt =
{
U i, V i, U i V,U V i|i ∈ [0 · · · t]

}
.

EachMt contains 4t distinct monomials2.

4.3 Defining a naive factor base

As shown in Figure 3, we define the factor base as a subset of Div0(E ). We now explain
how this subset is chosen.

Definition 1. Let D be a divisor of Div(V). The height of D denotes the number of
positive points counted with multiplicity. We write it h(D).

It matches with the following explicit definition: if the divisor D is written as
∑

Qi∈V eiQi
we have h(D) =

∑
ei>0 ei. Note that, for any prime or elementary divisor, the height is

equal to the degree of the corresponding place.

Proposition 1. If f1 and f2 are two functions of the function field associated to V then
the following inequalities are verified:

1. h(Ξ(f1f2)) ≤ h(Ξ(f1)) + h(Ξ(f2)).

2. h(Ξ(f1 + f2)) ≤ max(h(Ξ(f1)) + deg g2 , h(Ξ(f2)) + deg g1)
where f1 (resp. f2) has g1 (resp. g2) as denominator.

3. h(Ξ(f1)) ≤ h(Ξ(f2)) if f1 and f2 are polynomials such that f1 divides f2.

Proof. Let fi = ei/gi for i = 1, 2 be the two functions written such that ei and gi are
two polynomials of the function field with no commun factor. Clearly, the function f1f2

has e1e2 as numerator, thus all the zeros of f1f2 are either a zero or f1 or f2. The inequality
of 1. is strict if some simplifications appear (for instance if a zero of f1 is also a pole of f2).

Writing f1 + f2 as (e1g2 + e2g1)/(g1g2) we see that the number of zero of this sum is
upper-bounded by the weighted degree of e1g2 or e2g1. Note again that some simplifications
may appear.

Item 3. is straightforward.
2Not 4(t+ 1) since each of 1, U , V and UV are included twice.
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Left side. Following the ideas of all Frobenius representation algorithms, we define the
factor base such that the images of A − αB in this set are small. Doing this improve
the relation collection phase compared to a classical sieving. Indeed, all elements in the
left part of the diagram will belong to the factor base. The relation collection phase
produces divisors of the form Ξ(Φ∗(i(

∏
(A−αB)))), so, thanks to the fact that we consider

morphisms, it yields a sum of divisors
∑

(Ξ(Φ∗(i(A−αB)))). As explained, we require all
the divisors noted by:

Ξ(Φ∗(i(A− αB)))

to be in the factor base.
Let us find the maximal height they can reach. To do so we set A and B two linear

combinations of monomials inMt and t an integer parameter to define later. All polynomi-
als A−αB are so linear combinations of monomials inMt too. In other words, we are con-
sidering divisors of functions of Fq(E ) of the form Φ∗(

∑
m∈Mt

amm) =
∑

m∈Mt
amΦ∗(m)

where am are constants in the base field. From Proposition 1 we know that the height of
the divisors we obtain in the left part of the diagram are dominated by the largest height
achieved for any Ξ(Φ∗(m)), with m ∈Mt.

Considering h(Ξ(Φ∗(U tV t′))) ≤ t h(Ξ(Φ∗(U))) + t′ h(Ξ(Φ∗(V ))), we see that it suffices
to determine both the height of the divisors associated to the images of U and V in the
function field of E . The most significant monomials will be U tV and UV t.

On the one hand we have Ξ(Φ∗(V )) = Ξ(X) = ([0,
√
b, 1]) + ([0,−

√
b, 1])− 2(O) where√

b is the element3 in F̄q such that its square is equal to b. Hence:

h(Ξ(Φ∗(V ))) = 2. (3)

On the other hand, Ξ(Φ∗(U)) = Ξ((Y + y1)2 − (X − x1)3) − Ξ((X − x1)2). From
Ξ((Y + y1)2 − (X − x1)3) = 2(−P1) + (Q1) + (Q2) − 4(O), where Q1 and Q2 are two
conjugated points of a degree-2 place, and Ξ((X−x1)2) = 2(P1)+2(−P1)−4(O), it comes
Ξ(Φ∗(U)) = (Q1) + (Q2)− 2(P1). We obtain:

h(Ξ(Φ∗(U))) = 2. (4)

Putting Equations (3) and (4) together with the upper-bound, we conclude that the
most significant monomials U tV and UV t have both height 2t + 2. Yet Φ∗(U tV ) and
Φ∗(UV t) do not share the same denominator so to count their respective contribution in
the height of divisors

∑
m∈Mt

amΦ∗(m) we need to add the contribution of the residual
denominator. Namely, since Φ∗(U t) brings the largest denominator, the height of the
divisor of Φ∗(U tV ) does not change, but for the one of Φ∗(UV t) we need to add the number
of zeros corresponding to the denominator of Φ∗(U t/U). We note that there is 2(t−1) such
points. To put it in a nutshell, the most significant monomial is UV t and all divisors on
the left are sum of divisors with a height upper-bounded by 4t = (2t+2)+2(t−1).

To conclude, starting the relation collection phase with t = 1 it is natural to set the
initial factor base as included in the set of divisors of Div0 with height equal or lower
than 4. We emphasize that in this case, all the divisors appearing in the left part belong
to the factor base.

Right side. On the right part of the diagram, divisors are given through the extra
variable W . We can compute the corresponding height exactly as for U . Again it gives:

h(Ξ(Φ∗(W ))) = 2.

3Be careful, here we assume that the characteristic differs from 2. If not, we just consider the corre-
sponding degree-2 place.
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Functions of C Height of the associated divisors in E
1 0
U, V, W 2
UV, V W, UW 4
U + V, V +W, U +W 4
U tV, UV t 2t+ 2
U tV + UV t at most 2t+ 2
U tV t+1W, UV t+1W t, U tV 2W t, UV 2tW 4t+ 4

Table 1: Usual functions of Fq[C ] and their corresponding height in E .

Let us consider the polynomials of Fq[U, V,W ] given on this side and write this time
MVW

t =
{
V i,W i, V iW,V W i|i ∈ [0 · · · t]

}
. Sorting the monomials in the lexicographic

order, we recall that the leading coefficient for both A and B can be chosen equal to 1.
Thus, keeping the leading monomial U tV apart and calling am (resp. bm) the coefficients
in Fq of A (resp. B) we obtain on the right side the polynomial:

[A,B] = A(V,W )B(U, V )−A(U, V )B(V,W )

=

V tW +
∑

m∈MVW
t \{V tW}

amm

U tV +
∑

m∈Mt\{UtV }

bmm


−

U tV +
∑

m∈Mt\{UtV }

amm

V tW +
∑

m∈MVW
t \{V tW}

bmm


Since the monomial U tV t+1W vanishes it yields a linear combination of monomials where
the three that dominate the height of the associated divisor are UV t+1W t, U tV 2W t and
UV 2tW . Indeed, each variables U , V and W contributes the same way, thus, the most
important monomials are those with the highest additive degree. We note then that we have
h(Ξ(Φ∗(UV t+1W t))) = h(Ξ(Φ∗(U tV 2W t))) = h(Ξ(Φ∗(UV 2tW ))) = 4t + 4. Yet, again,
we need to carefully add the zeros raised by the residual denominator. The contribution
of Φ∗(U tV 2W t) is left unchanged but we must add the number of poles of Φ∗(W t/W ) to
the height of the divisor associated to Φ∗(UV t+1W t) and the one corresponding to the
denominator of Φ∗((UW )t(UW )−1) to the height of the divisor associated to Φ∗(UV 2tW ).
From Proposition 1 and since there are respectively 2(t− 1) and 4(t− 1) such points, we
conclude that all the divisors appearing on the right side are twice as large as
factor base elements since they have height equal or lower than 8t = 4t + 4 +
4(t− 1). In particular, when t = 1, this gives divisors of height 8 at most.

Complexity of the linear algebra with a naive factor base. A first and naive choice
of factor base is made of all divisors of height ≤ 4.

However, this factor base is too large to be competitive when compared to the best
Frobenius representation algorithms. To show this, let us briefly analyze the number of
operations needed to perform linear algebra with this factor base. The number of divisors
in this naive factor base is dominated by the number of degree 4 places on the curve E ,
corresponding to polynomials of degree 4 with coefficients in Fq. So the order of the factor
base’s size is dominated by q4. Considering the Frobenius action of Section 4.4 that permits
to divide the size of the factor base by k ≈ q, we obtain a factor base of size O(q3). Since
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Functions of C Height of the associated divisors in E
A(U, V )− αB(U, V ) where α ∈ Fq at most 4t
A(V,W )B(U, V )−A(U, V )B(V,W ) at most 8t

Table 2: Functions appearing on both side of the diagram, and their corresponding heights
in E . A and B are linear combinations of monomials fromMt.

there are q terms in each linear equations, performing a sparse linear algebra step can be
done in O((q3)2q) = O(q7) operations.

As a comparison, we that the first phase of the algorithm in [JP14] only has a O(q6)
complexity. Thus, we need to improve our initial factor base.

4.4 Action of Frobenius and translation by P1

Let d be the largest possible height of an elementary divisor of the factor base. We would
like to explicit how the action of Frobenius on elements of the finite field Fqk is related to
addition of −P1 on the elliptic curve E . Considering the divisors:

DQ =
d−1∑
i=0

(πi(Q))− d(O)

related to the place given by any point Q ∈ E and:

DQ−P1 =
d−1∑
i=0

(πi(Q− P1))− d(O)

related to the translation of Q by −P1. We show that the two discrete logarithms satisfy
a simple relation. More precisely, we have the following result:

Lemma 2. Let Q ∈ E be a point with coordinates in Fqd . We consider the divisors

DQ =

d−1∑
i=0

(πi(Q))− d(O) and DQ−P1 =

d−1∑
i=0

(πi(Q− P1))− d(O)

respectively related to the place given by the point Q in E and the one given by the trans-
lation of Q by −P1. Then:

Ψ(DQ−P1) = π(Ψ(DQ)) ·Ψ((−P1)− (O))dNd .

where Nd is a common multiple of the cardinalities of E over each finite field Fqi ⊂ Fqd

Proof. Let us start from DQ the degree-d divisor. We recall that to have a principal divisor
we need to consider NdDQ. Thanks to Miller algorithm we are able to recover a function fQ
with coefficients in the base field Fq such that NdDQ is the divisor of this function. By
definition we obtain: Ψ(DQ) = fQ(F − O)1/Nd . To simplify the notation let us write
α = fQ(O)1/Nd that is an element in Fq. Hence on the one hand we have:

π(Ψ(DQ)) = π(fQ(F )1/Nd)/π(α)

= fQ(π(F ))1/Nd · α−1 since α ∈ Fq.
(5)

To link this expression to the divisor of π(Q), i.e. to the evaluation of fQ in the point
π(F ) = F + P1 we define the function gQ such that, for all S in E , gQ(S) = fQ(S + P1).
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Let us write the divisor of this new function. Since a zero S (resp. a pole) of gQ is such
that S + P1 is a zero of fQ (resp. a pole), we obtain:

Ξ(gQ) = Nd(
∑d−1

i=0 (πi(Q)− P1)− d(−P1))

= Nd(
∑d−1

i=0 (πi(Q− P1))− d(−P1)) thanks to the fact that P1 lives in E /Fq.
= Ξ(fQ−P1) +Nd(d(O)− d(−P1))
= Ξ(fQ−P1)− dNd((−P1)− (O))

Hence on the other hand we have:

Ψ(DQ−P1) = Ψ(Ξ(fQ−P1))
= Ψ(Ξ(gQ) + dNd((−P1)− (O)))
= Ψ(Ξ(gQ)) ·Ψ((−P1)− (O))dNd

= gQ(F )1/Ndα−1 · (α/gQ(O)1/Nd) ·Ψ((−P1)− (O))dNd

=
mod Fq

gQ(F )1/Ndα−1 ·Ψ((−P1)− (O))dNd

=
mod Fq

fQ(F + P1)1/Ndα−1 ·Ψ((−P1)− (O))dNd

=
mod Fq

π(Ψ(DQ)) ·Ψ((−P1)− (O))dNd from Equations (1) and (5).

We emphasize that the green term is a constant term. Thanks to this action, we are
able to reduce the size of the factor base by a factor k throughout the computations.
Indeed, if we know the discrete logarithm of Ψ(DQ) then we learn for free the discrete
logarithms of Ψ(DQ−P1),Ψ(DQ−P2), · · · ,Ψ(DQ−Pk−1

).

4.5 Getting a smaller factor base

To be able to reduce the size of the initial factor base, and thus to decrease the complexity
of the linear algebra phase, we adapt the idea of systematic factors that was presented
in [JP14] to the elliptic case. The idea was twofold: first extracting some systematic
factors that appear in every equation, second, restrict the search to a sieving space that
induce extra common factors. In this article, we choose to call these extra factors compelled
factors to underline the difference with previous ones.

Left part of the diagram: making P3 a compelled point.

In our case, our aim is to consider a subgroup of the sieving space where A and B are
polynomials such that the associated divisors always present a common (compelled) point.
Here, choose to use the special point P3 = 3P1. As in [JP14] we select three generators
g1, g2, g3 in Fq[U, V ] leading to divisors going through P3. We propose to sieve on pairs
of polynomials (A,B) such that A = g1 + αg3 and B = g1 + βg2 + γg3 where α, β, γ ∈ Fq.
Indeed, if A (resp. B) is a linear combination of those three generators and if P3 is a zero
of Φ∗(i(gj)) for j = 1, 2 and 3 then it is also a zero of the image of A (resp. B) in E . As
a consequence and for the same reason, P3 is a zero of the image of A− αB too, where α
belongs to the base field.

Lemma 3. Let j be an integer in [0, k−1] and assume that P0 is a shorthand for O. Then:

Ξ(Φ∗(U − xj)) = (Pj+1) + (−Pj−1)− 2(P1),
Ξ(Φ∗(V − xj)) = (Pj) + (−Pj)− 2(O),

and Ξ(Φ∗(W − xj)) = (Pj−1) + (−Pj+1)− 2(−P1).
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Proof. Let j be an integer between 0 and k − 1. We recall that xj denotes the abscissa
of Pj ∈ E and x0 = 0. Then by definition:

Φ(Pj) = [xj−1, xj , xj+1]

for all possible values of j. It means that, over the curve C , Φ(Pj) is a zero of U − xj−1,
V − xj and W − xj+1. Going back to the curve E it yields that the point Pj is a zero of
Φ∗(U − xj−1), Φ∗(V − xj) and Φ∗(W − xj+1). Similarly, from:

Φ(−Pj) = [xj+1, xj , xj−1]

we get that −Pj is a zero of Φ∗(U −xj+1), Φ∗(V −xj) and Φ∗(W −xj−1). Besides, writing
Φ∗(U − xj) as ((Y + y1)/(X − x1))2 −X − x1 − xj we see that P1 is a pole of Φ∗(U − xj)
with multiplicity 2, and similarly −P1 is a pole of W − xj with multiplicity 2. From
Φ∗(V − xj) = X − xj we conclude that O is twice a pole too.

Hence as generators we select:

g1 = U − x2,
g2 = V − x3,

and g3 = (U − x2)(V − x3).
(6)

From Lemma 3 we have Ξ(Φ∗(g1))) = (P3) + (−P1) − 2(P1) and Ξ(Φ∗(g2))) = (P3) +
(−P3) − 2(O). Thus Ξ(Φ∗(g3))) = 2(P3) + (−P1) + (−P3) − 2(O) − 2(P1). Clearly the
point P3 is a positive point of each divisor.

Thus, if we start to sieve with a parameter t equal to 1, we obtain divisors on the left
part of the diagram that have a height lower or equal to 4. Since P3 is a positive point
for all these divisors, we are left with divisors that have a height lower or equal to 3. We
conclude with the definition of the reduced factor base:

F = {d ∈ Div(E ) | d is elementary and h(d) ≤ 3} .

Remark 3. The factor base is the same on both sides of the diagram.

As previously, we can upper-bound the cardinality of the factor base by the number
of divisors with height lower than 3, so the number of monic degree-3 polynomials in Fq,
which is q3. Thanks to the Frobenius action, the base is reduces by a factor of k, and the
reduced factor base has size O(q3/k). At the end, assuming that we get enough equations
(we discuss this issue in Section 4.6), linear algebra recovers the discrete logarithms of the
initial factor base elements in O((q3/k)2q) = O(q7/k2) operations. When k is close to q,
this matches the result of [JP14].

Remark 4. Note that by contrast with polynomials, ideals of degree 4t are determined from
4t monomials, instead of 4t + 1. This is unfortunate because it forces us to increase the
degrees to get enough degrees of freedom when generating relations. However, this drawback
is counter-balanced by the reduction of the factor base size obtained by using the action of
Frobenius.

4.6 How to get enough relations with the reduced factor base

Thank to P3 which is a compelled point we know that, on the left part of the diagram,
we directly have divisors that split into factor base elements only. Now the questions are
whereas we manage to easily obtain small height divisors on the right part or not, and how
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many relation we expect to write. We recall that, to be able to perform linear algebra, we
need as many relations as unknowns.

We have around q3/3 unknowns and we sieve on q3 pairs of polynomials (A,B) con-
sisting in linear combinations of g1, g2 and g3 as given in (6). It means that we need a
probability higher than 1/3 to get a relation. Since a degree-d divisor is clearly linked
with an irreducible polynomial of the same degree as seen in Section 2, this probability
is assumed to be the same that a random polynomial of degree d to factor into terms of
degree at most 3.

For degree d = 8, the probability is easy to compute. A polynomial fail to factor into
terms of degree at most 3 when one factor as degree 4 or more. Since there can only be a
single factor when the degree is 5, 6, 7 or 8 and at most two of degree 4. Thus, for large
fields, the probability of success approaches 1−(1/8+1/7+1/6+1/5+3/16+1/32) ≈ 0.147.
Unfortunately, this is much smaller than 1/3.

Right part of the diagram: the two compelled points P2 and P3.

Thus we need to look at the right part of the diagram more carefully. Going back to the
analysis made in Section 4.3, Right part we see that choosing A and B as monic (in some
sense) does not reduce the height of the associated divisor. Hence, for (A,B) a pair of
linear combinations of g1, g2 and g3 as in (6), the divisor:

Ξ(Φ∗([A,B]))

has still a height of 8. Because P3 is a zero of Φ∗(A(U, V )) and Φ∗(B(U, V )), we note
that P3 is a zero of Φ∗([A,B]) too. Yet it is not enough and we need to extract another
compelled positive point of the associated divisor to the image of A(V,W ) (resp. B(V,W ))
over E . We start by underlining that g1, g2 and g3 respectively becomes V − x2,W − x3

and (V −x2)(W−x3), when sending V toW and U to V . Thus according to Lemma 3, the
point P2 = 2P2 is a zero of all the generators, and so a zero of [A,B] as P3. We conclude
that we are left with a divisor of height at most 6. The probability that it splits into a
sum a divisors with height at most 3 is so roughly equals to:

1− (1/6 + 1/5 + 1/4) ≈ 0.383 > 1/3,

as q grows. As a consequence, we heuristically expect to get a linear system with enough
equations to get the discrete logarithms of all elements of F in O(q5) operations.

Heuristic. The heuristic in this linear algebra step and in all the following ones comes
from the fact that we have no argument to prove we really get enough equations. We can
count them and expect that when their number slightly exceeds the number of unknows, we
are able to find a solution. Yet, nothing provably indicates whether the kernel of our matrix
of relations has dimension 1 or not.

5 Extended Factor Base and Individual Discrete Logarithm

We only sketch here the last two main steps of our practical algorithm, the computation
of an Extended Factor Base and the Individual Discrete Logarithm step. Indeed, they are
an adaptation of the techniques that already exist for Frobenius representation algorithms
to our setting.

20



5.1 From divisors of height 3 to divisors of height 4

As done in Frobenius representation algorithms, we extend the initial factor base and now
include all elementary divisors up to height 4. Thanks to the Frobenius action, there are
approximately q4/4k ≈ q3/4 unknowns. The naive approach we showed earlier gives the
desired logarithms at a cost of O(q7) arithmetic operations (or O(q9/k2) when k is away
from q).

Practical speed up with regrouping

To speed up the computation of height 4 divisors, it is possible to decompose the height 4
factor base into small groups, in a way similar to [JP14], in order to perform several
linear algebra steps on these small groups, instead of a single big linear algebra step. In
Appendix C, we give details on how to produce relation in these groups. One technicality is
the interaction of the groupings with the reduction of the factor base size given the action
of Frobenius.

Once the height 4 divisors are obtained, it is a simple matter to continue extending the
factor base to height 5 divisors. For that final step, no additional linear algebra is needed.
It suffices to keep relations where a single height 5 divisors appears, the rest being of lower
degree. See Appendix C for a detailed explanation.

However, for the height 4 extension, the expected number of produced relations seems
to be slightly too low asymptotically to guarantee its success. Nevertheless, we tested the
method on a practical example to check its viability. Namely, for the target finite field
F31345 , we were able to compute logarithms for an extended factor base comprising divisors
of height up to 5. This was done by choosing a curve of (prime) cardinality 269 over F243.
Studying the exact behavior of the height 4 extension to understand this gap is thus a
matter of further research.

5.2 Computing Individual Discrete Logarithms

To solve the discrete logarithm problem in our target finite field, we need not only to know
the logarithms of extended factor base elements but to be able to compute the discrete
logarithm of any arbitrary element. This is the aim of this paragraph. Various descent
phases were previously proposed by various authors, the idea is to show how to adapt to
our context. In practice, one can use the bilinear descent, the classical descent and the
zig-zag descent or a mix of them. Indeed the quasi-polynomial descent of [BGJT14] is
unlikely to be practical for currently accessible computations.

For the classical descent which simply consist in writing the target finite field element
whose discrete logarithm is wanted as a product or quotient of relatively low-degree poly-
nomials in θ, no adaptation is needed. We only need to check that any polynomial in f(θ)
can be injected in the commutative diagram. This is simply done by written the divisor of
f(V ) since Ψ(V ) = θ. When f is irreducible, the corresponding divisor is either the sum of
two elementary divisors of height deg(f) or a single elementary divisor of height 2 deg(f).

We illustrate the adaptation with the bilinear and zigzag descents:

Bilinear descent for our setting. The bilinear descent step is easy to adapt from [JP14].
Remark that we usually need to unbalance the degrees of freedom in A and B, thus choos-
ing different sets of generating polynomials. Instead of constructing the polynomials just
from 1, U , V and UV we built them from higher degree polynomials in Mta and Mtb

respectively. We assume that ta ≥ tb. Let us first analyze the case where we use all these
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monomials, remembering that there are 4ta and 4tb of them. As usual, we force A and B
to be monic and remove the head monomial of B from A. All of the other coefficients are
replaced by a corresponding formal unknown. Thus, the polynomial A contains 4ta − 2
unknowns. If ta 6= tb, B contains 4tb − 1 monomials. If ta = tb, we can remove an extra
unknown from B. Furthermore, we know that the height of factors of the form A− αB is
upper bounded by 4ta. We also know from Table 4.3 that the height of the bracket is at
most 8ta

If we want to adjust the values modulo 4 of the number of degrees of freedom, it is
necessary to use compelled points. More precisely, we can force A and B to go through
one, two or three forced points. This reduces the degrees of freedom by the same amount
on both sides. It also reduces height on the left by the same value and heights on the right
by its double.

As in Frobenius representation algorithms, the coefficients of each monomials in [A,B]
are bilinear (or linear or constant) in the A and B unknowns. To force an elementary
divisor of degree d to appear in [A,B], it suffices to require that the bracket vanishes when
evaluated at each of the d conjugate points corresponding to the associated prime divisor.
This yields a bilinear system of d equations in the A and B unknowns. This equation can
be solved using Gröbner basis techniques exactly as in the case of Frobenius representation.

The only extra (and minor) restriction here is the relation between the number of A
variables and B variables modulo 4.

5.3 Zig-zag descent.

The zig-zag descent seems to be the best option to achieve provable quasi-polynomial
complexity. In particular, it is used both in [KW19] and [Lid19]. As a consequence, we
also show how to adapt it to our setting. As it is more lenghty to describe than the bilinear
descent, we assign a separate section to it.

Short recap on the zig-zag descent.

First the main idea is to adapt the zig-zag descent presented in [GKZ14] to our setting.
Let us give an insight of this descent in the classical settings. We call z our target, which
is an irreducible polynomial in Fq[X] of degree 4 2d = 2t+1. One crucial point of this
method is that for any relation in Fq2 [X] implying degree-d polynomials, one can find a
relation in the subfield Fq[X] at the price of having polynomials of degree twice as large.
Thus, in order to make z appear in a polynomial relation of Fq[X], we write it as a product
of two degree-d conjugated polynomials z̃ and z̃∗ over the extended field Fq2 [X] and we
try to get one relation (in the extended field) involving one of this degree-d polynomials.
Multiplying by the same conjugated relation we would obtain a relation (in the subfield)
where z appears.

Recursively manipulating this trick on a tower of extensions as presented in Figure 4,
we write in fact z as a product of conjugated degree-2 polynomials over Fq2t [X]. Indeed,
this descent method rests upon the existence of an extended field in which any degree-2
polynomials evaluated in θ can be written as product of linear evaluations in θ. Thus at
the end, we get a relation of the form z(θ) =

∏
i Li(θ) where Li are linear polynomials.

To adapt this descent to our settings, a idealized method would be to exhibit a suffi-
ciently large extension of the curve C in which any height-2 divisor can be written not as a
degree-2 place but as a sum of points on this exact extension (and not the larger following

4Indeed, one can use Wan’s theorem [Wan97, Theo 5.1] to ensure that any field element is equivalent
to an irreducible polynomial of degree a power of 2 only slightly larger than the extension degree k.
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Fq2t [X]∏
zi, where zi are degree-2 polynomials

F
q2t−1 [X]∏

zi, where zi are degree-4 polynomials

...

Fq4 [X]∏
zi, where zi are degree-2t−1 polynomials

Fq2 [X]
z̃ · z̃∗, where z̃ and z̃∗ are degree-2t polynomials

Fq [X]
z a degree-2t+1 polynomial

Figure 4: Tower of extensions over the base field Fq in the classical zig-zag descent.

one). This precisely would have translated the requirement that all degree-2 polynomi-
als split in linear polynomials when the extension degree of the field is sufficiently large.
Unfortunately, to the best of our knowledge, this ideal adaptation isn’t possible.

On the technical side, we see that the method is much easier to describe when computing
logarithm in Fqk for an odd extension degree k. Indeed, in that case, the compositum of
Fqk and any extension F

q2i
is simply F

qk2i
. Making this assumption is very convenient to

describe the adaptation to the elliptic representation.

5.3.1 Elliptic zig-zag descent.

We now go back to the elliptic representation setting, with the additional restriction that
the extension degree k is odd.

Points and divisors over extensions. As mentioned in the last paragraph of Section 3,
the commutative diagram in Figure 3 can be used not only over Fq but also over extensions.
We now give more details for Fqd , assuming that d and k are coprime.

This we now use polynomials A and B with coefficients in the larger field Fqd . Every-
thing remains almost identical, except the definition and properties of the bracket. With
a larger field, we use:

[A,B]∗ = Aπ(V,W )B(U, V )−A(U, V )Bπ(V,W ),

where Aπ denotes the polynomial derived from A by raising each coefficient of A to the
power q (while keeping the same monomials). This new bracket [·, ·]∗ is Fq-bilinear (but
not Fqd-bilinear).
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Bootstrapping the descent. Let z ∈ Fqk be our target arbitrary element for which we
want to find a discrete logarithm. Thanks to the diagram of Figure 3, we know that there
exists a polynomial Pol in Fq[U, V ] such that:

z = Ψ(Ξ(Φ∗(Pol(U, V )))).

In fact, there are many such polynomials. We choose ` such that 2` > k and search a
representation by a polynomial Pol in Fq[U, V ] such that:

1. z = Ψ(Ξ(Φ∗(Pol(U, V )))).

2. h(Ξ(Φ∗(Pol(U, V )))) = 2`.

3. Ξ(Φ∗(Pol(U, V ))) exactly corresponds to a place of degree 2`.

Let us call pz such a place in ΣFq(C ). We could lift it to ΣF
q2
` (C ) so that it corresponds

to 2` points. However, for the rest of the method, it suffices to decompose it into degree-8
places. Theses places appear in ΣF

q2
`−3 (C ).

Descending degree-8 places. Using a series of relations based on the bracket [A,B]∗,
there is a way to express the logarithm of the divisor corresponding to a degree-8 place as a
sum of logarithms of divisors of degree at most 4. Once this is done, we can pair conjugates
divisors and go one step down in the tower of quadratic extension. This at most doubles
the height of divisors. Iterating the process, we now encounter places of degree 6 and 8
whose divisors need to be expressed as combination of divisors of degree at most 4. Finally,
at the bottom of the tower, everything can be expressed using divisors of height at most
4, this in turn permit to compute the logarithm of z.

Keeping this strategy in mind we now describe the transformation of logarithm of
divisors into sums of divisors of lower height. More precisely, we first transform degree
8 places as sums using divisors of height at most 6. Places of degree 6 can be expressed
using divisors of height up to 5. Finally place of degree 5 are transformed using divisors
of height up to 4.

The exact degrees appearing in the descent strategy depend on the relative position in
the tower of extension. Except at the lower levels, it is possible to descent directly from
degree 8 to degree 5 and from degree 6 to degree 4. Except at the lower levels, it even
possible to descend from degree 4 to degree 3.

Thus, from a practical point of view,there are two essentially equivalent options for the
descent. Either one starts from a degree-8 place and encounters descent steps from 8 to 5
then 4 and descent steps from 6 to 4, except in the lower levels where longer chains from
8 to 6 then 5 and finally 4 appear. Or one starts from a degree 4 place and encounters
descent steps from 6 to 4 then 3 and steps from 4 to 3. At the lower levels, this approach
gets stuck.

In our presentation, we choose the approach that starts from a degree-8 place. Note
than in the context of provable algorithms, using degree 8 possibly leads to a more difficult
proof.

Degree-5 places. We start with degree 5 places since it is slightly simpler and illustrates
the general idea. We let d be the power of 2 corresponding to our current position in the
tower of extensions.
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C /F
q2t−3∑

(p8)i, where p8

are degree-8 places

C /F
q2t−4∑

(p16)i, where p16

are degree-16 places

...

C /Fq2
p2t−1 + ˜p2t−1 , where p2t−1 and ˜p2t−1

are conjugated degree-2t−1 places

C /Fq
pz a degree-2t place

pz

deg 8deg ≤ 5deg ≤ 4

deg 2, 4, 6, 8deg ≤ 5deg ≤ 4

deg 2, 4, 6, 8deg ≤ 6deg ≤ 5deg ≤ 4

deg 2, 4, 6, 8deg ≤ 6deg ≤ 5

Figure 5: Tower of elliptic curves extensions in the elliptic zig-zag descent. The path
in green represents how we decompose pz in smaller degree places over higher extensions
during the algorithm.
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Again, we create somehow relations from:∏
α∈P1(Fq)

(A− αB) = [A,B]∗ ,

where (A,B) is a pair of polynomials with coefficients in Fqd . For degree 5, the polynomials
are built from monomials inM1, i.e. from 1, U , V and UV . To check whether there are
enough degrees of freedom to force a place too appear, we need to consider how many (non
equivalent) pairs of candidates relations we can try.

Since we use the new bracket instead of [·, ·], the counting changes slightly. Before
considering the property of the bracket, there is a total of 8 coefficients in Fqd , four in
each of A and B. Remark that, for any Λ ∈ Fqd , we have [ΛA,ΛB]∗ = Λq+1 [A,B]∗.
Simultaneously, the left side corresponding to (ΛA,ΛB) is Λq+1

∏
α∈P1(Fq)(A−αB). Since

Λq+1 appears on both sides, we see that (A,B) and (ΛA,ΛB) generate the same equation.
Thus, we can set the leading coefficient of A to 1. This removes one of the coefficients.

In addition, because of the Fq-linearity of the bracket, for any λ ∈ Fq, we have
[A,B − λA]∗ = [A,B]∗ . Thus we can fix one component of the leading coefficient of B
to 0. Then, using [A, λB]∗ = λ [A,B]∗ we can fix one component of another coefficient of
B to 1. Finally, thanks to the relation [A− λB,B]∗ = [A,B]∗ , we can set the correspond-
ing component in A to 0.

This decreases the numbers of degrees of freedom to 7 − 3/d > 5, when d > 1. Thus,
we have enough degrees of freedom available. In the case d = 1, we are in the base field
where the logarithms of the degree-5 places have already been precomputed as part of the
extended factor base.

Let p5 be a place of degree 5 in ΣF
qd

(C ). Using a variation on bilinear descent and
solving a bilinear system of equations in 6 unknowns over the extension field Fqd , we can
obtained a relation involving p5. Since the number of variables is a small constant, this is
a very efficient computation.

The relation can be written in the form:∑
D∈Div |h(d)≤4

D = (p5) +D3

where D3 is a divisor of height 3. This shows that we can descend any divisors of height
5 as a sum of divisors of height at most 4. Note that D3 and the divisors on the left may
not be elementary, however, in that case they decompose into elementary divisors of lower
degrees.

Note that we do not prove here that such a decomposition always exists. Instead out
counting of the degrees of freedom gives heuristic support to this fact. It might be possible
to adapt the proofs of [Lid19] or [KW19] to our specific setting.

Degree-6 places. For degree 6, there are two options depending of the extension de-
gree d.

When d ≥ 4, we can again build relations using only the monomials 1, U , V and UV .
In this case, it gives 7 − 3/d > 6 degrees of freedom. Thus, we can directly descend to a
sum of divisors of height at most 4.

For the remaining cases, d = 2 or d = 1, we need to use monomials fromM2 to provide
more degrees of freedom. However, if we use them all, the height of the left-hand factor
become 8 and the height of the bracket is 16. To control this explosion, it suffices to
fix three (essentially arbitrary) compelled points and keep a basis of all functions going
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through these 3 points. This basis contains 5 polynomials, say g1, . . . , g5. Forming A and
B as linear combinations of the gis induces a systematic factor of total height 3 in every
term A−αB (corresponding to the compelled points). Furthermore, this systematic factor
also appears in the decomposition of the bracket together with an extra systematic factor
also of height 3. This extra factor corresponds to the compelled points translated by −P1.
Thanks to the systematic factors, the height of the left becomes 5 while the height of the
right becomes 10. There is a total of 10 coefficients in A and B, which corresponds to
9− 3/d ≥ 6 degrees of freedom when removing identical relations as in the previous case.
More precisely, we can fix the coefficient of g1 in A to 1, one component of the coefficient
of g1 in B to 0, and one component of g2 to 1 in B and 0 in A.

Solving a bilinear system, we can find coefficients that lead to an equation:∑
D∈Div |h(d)≤5

D = (p6) +D4

where D4 is a divisor of height 4. This expresses the logarithm p6 as a sum of logarithms
of divisors of height at most 5.

Degree-8 places. For degree 8 places, we proceed as in the second method for degree 6.
We use monomials fromM2. With three compelled points as in degree 6, we have 9− 3/d
degree of freedom. This is more than 8 as soon as d ≥ 4. In this case, we can write the
logarithm p8 as a sum of logarithms of divisors of height at most 5.

When d is 1 or 2, we use only two compelled points. We thus have a basis of 6
polynomials and 9−3/d ≥ 8 degrees of freedom. The height after removing the systematic
factors become 6 for the left factors and 12 for the bracket. Thus, in the lower levels of
the tower of extension, we can write the logarithm p8 as a sum of logarithms of divisors of
height at most 6.

Practical (un)efficiency of the approach. In the Frobenius representation zig-zag,
every step down the tower was based on the creation of one relation. As a consequence, at
every level, the total number of elements under consideration was multiplied by O(q).

By contrast, here, we need two levels of relations for each of the middle levels of the
tower. As a consequence, the total number at each level is multiplied by O(q2), which
makes this approach much less appealing in practice.
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A Details on the curve model

In order to understand our model of C , we analyze how points of E are mapped by Φ to
the model C on the three variables U , V and W . We assume for simplicity that E is given
by a reduced Weirstrass equation, but this can be generalized to include characteristic 2
and 3.

Equations of C . We assume that E is given by a reduced Weierstrass equation:

E : Y 2 = X3 + aX + b.

In this case, the third summation polynomial is given by:

S3(X1, X2, X3) = 4σ1(σ3 + b)− (σ2 − a)2,

where the σi are the symmetric polynomials:

σ1 = X1 +X2 +X3,

σ2 = X1X2 +X1X3 +X2X3 and
σ3 = X1X2X3.

Let us first consider the variety given by the equations S3(U, V, x1) = 0, S3(V,W, x1) =
0 and S3(U,W, x2) = 0. To determine its components, let us consider its intersection with
the hyperplane U = W . This intersection is described by S3(U, V, x1) = 0, U = W and
S3(U,U, x2) = 0. From the third equation that is a degree-4 polynomial in U , we know
that U has finitely many values. Thus we want to remove the extraneous points lying in
this hyperplane.

We look so at the components in the complement of this hyperplane and assume that
U 6= W . In this case, since S3(U, V, x1) − S3(V,W, x1) is divisible by U −W we obtain a
lower degree polynomial, namely:

Sδ =
S3(U, V, x1)− S3(V,W, x1)

U −W
.

The variety defined thanks to the equations S3(U, V, x1) = 0, Sδ = 0 and S3(U,W, x2) = 0
is now irreducible. We call it C and prove that it is a genus 1 curve isomorphic to E . To
see that, let us give rational maps between E and C .

Mappings between E and C . In the forward direction, let us consider the rational
map:

Φ : E → C
Q 7→ (xQ−P1 , xQ, xQ+P1)

Every point P in E is such that Φ(P ) ∈ C .
Besides, the images of the three points O, P1 and −P1 are at infinity on C and that,

by homogenization, we may check that there are exactly three points at infinity on C .
As usual, Φ induces a map Φ∗ from the function field Fq(C ) to Fq(E ) (expressed with

the two variables X and Y ) using the following replacement:

Φ∗ : Fq(C ) 7→ Fq(E )

U 7→
(
Y+y1
X−x1

)2
−X − x1,

V 7→ X,

W 7→
(
Y−y1
X−x1

)2
−X − x1.

30



where y1 is the ordinate of the point P1 in E . Developing and using the curve equation,
the images of U and W can be respectively simplified to:

U 7→ x1X
2 + (a+ x1

2)X + a x1 + 2 b+ 2 y1 Y

(X − x1)2
,

W 7→ x1X
2 + (a+ x1

2)X + a x1 + 2 b− 2 y1 Y

(X − x1)2
.

In this form, it is clear that the map can be easily inverted when X 6= x1. Moreover, given
a pair (U, V ) values we can compute the value of W and similarly, from (V,W ) we can
compute U .

When X = x1, we have two possibilities Φ(P1) = (∞, xP1 , xP2) and Φ(−P1) =
(xP2 , xP1 ,∞). These are distinct (unless P1 has order 2), which means that Φ is a bi-
jection and thus an isomorphism.

B Analysis of the invertibility of ND

In this appendix, we analyze the condition that appears in Section 3.3 when explicitly
writing down the definition of the morphism Ψ. Indeed, as previously explained, we need
ND to be invertible in the group where we want to compute discrete logarithms.

This analysis requires us to follow standard practice and first decompose our target
group F∗

qk
, in order to apply Pohlig-Hellman algorithm [PH78]. Thanks to this method it

suffices to compute discrete logarithms in all prime order subgroups of F∗
qk
.

An important technicality is that we would need to first factor qk − 1. Unfortunately,
this would completely dominate the cost of computation. However, to study the invert-
ibility of ND, we do not need to factor qk − 1 fully, the existence of the factorization
suffices.

Let γ be a prime factor dividing qk − 1, it suffices to check that ND 6= 0 mod γ,
for Ψ to be well-defined in subgroups of order a power of γ in F∗

qk
. Since ND is defined as

the least common multiple of the cardinalities of E over each of the finite fields Fqd with
1 ≤ d ≤ D, where D ≤ k is the maximum degree of the places we want to consider, this
gives us an extra condition on E . Namely, it should satisfy the following property:

• For any i = 1, · · · , D, |E /Fqi | 6= 0 mod γ.

Let us study this condition. We denote by t the trace of E over Fq and factor the
characteristic polynomial of the Frobenius of E :

X2 − tX + q = (X − r)(X − s) mod γ

with r and s in Fγ2 . We know that the number of points of E /Fqi is equal to (1−ri)(1−si)
mod γ. Thus, to ensure that the cardinalities of E over the field extensions Fqi , with i in
[1, D], all differ from 0 modulo γ we just need to verify that both ri 6= 1 mod γ and si 6= 1
mod γ. In order to do that, let us first study the order of the product rs = q mod γ.

By definition of γ, we have qk = 1 mod γ. Furthermore, the order of q is strictly
smaller than k modulo γ if and only if γ already divides the order of the multiplicative
group of a subfield of Fqk . In that case, we compute this part of the logarithm by applying
our method to the smallest such subfield.

We now assume that the order of q is precisely k mod γ. Thus, for any i not a multiple
of k, at most one of ri or si can be equal to 1 mod γ. Exchanging r and s if necessary, we
now study the case ri = 1 mod γ. In that case, we have si = qi 6= 1 mod γ. This implies

31



that E (Fqi) contains a γ-torsion point Qγ but not the full γ-torsion E [γ]. Thus, the Tate
pairing provides a non-degenerate bilinear map to the γ roots of unity:

ei :< Qγ > × E (Fqi)/γE (Fqi) 7→ F∗q/
(
F∗q
)(qk−1)/γ

.

Fixing an arbitrary non-zero element from E (Fqi)/γE (Fqi), we obtain a linear map Ψ̃i from
the subgroup generated by Qγ to the γ-th roots of unity.

Possibly after renormalization, Ψ̃i gives a compatible replacement for Ψ that can be
applied to the γ-torsion point. The renormalization consists in replacing Ψ̃i by Ψ̃i

βi , where
βi is the renormalization constant. As a consequence, it is mathematically possible to
extend Ψ to all divisors. One computational caveat is that determining the value of βi can
be expressed as a discrete logarihm problem in the group of order γ. It does not affect the
efficiency of the overall algorithm but prevents independent check on relations containing
divisors of degree i not compatible with the definition of Ψ during the precomputation
phase.

To see how βi can be determined, let us take a place pi of degree i and compute Ψ̃i(pi)
(as usual this it the product of the value for all the conjugate points in pi). Then apply one
step of the descent algorithm to relate pi to places of degrees 6= i which are all compatible
with the computation of Ψ. Multiplying these contributions gives the renormalized value
Ψ̃i(pi)

βi . Thus, if we wish to do so, we can compute βi from the individual logarithms of
these two values.

C Relations for factor base extension

Let us describe our decomposition in groups to extend the factor base to all elementary
divisors of height equal or lower than 4. The idea is to write a partition of q groups with
q2 elements in each and to be able to decrease the height of the divisor associated to the
bracket on the right again. To illustrate the process, we define a first group with the
monomials:

g1 = UV
g2 = U + V
g3 = 1.

Defining then G as all the linear combinations of these three monomials with coefficients
in Fq permits to set our first (special) group as:

G = {Ξ(Ψ∗(g)) | g ∈ G}.

All the divisors in the special group have height lower than 4. We now sieve on pairs of
polynomials (A,B) such that A = g1 +αg2 and B = g1 +βg3 where α, β ∈ Fq. On the left
side it is clear that all polynomials raised in the product belong to G. So all the divisors
in the corresponding sum on the left side have height lower than 4 (see Table 4.3) and
belong to G. On the right side, we are left with a bracket [A,B] leading to a height lower
than 8. Again, the probability that it splits into divisors with a height lower than 3 is too
low. Yet, computing the brackets:

[g1, g2] = VW (U + V )− (V +W )UV = V 2(W − U)
[g1, g3] = V (W − U)
[g2, g3] = W − U

and thanks to bilinearity we obtain that W − U is a common factor of [A,B]. Besides we
note that h(Ξ(Φ∗(W − U))) = 4.
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Removing this constant contribution, we are left with a residual height of 4 on the right
side. If it decomposes into lower height divisors, this gives us a linear equation involving
the logarithms a subset of the divisors in G. With enough such equations, we again use
linear algebra to compute the logarithms of the elements of G.

Note that the probability to find a good relation is 3/4 when q grows. We thus expect
3q2/4 equations in q2/4.

Note that the pairs (A,B) that fail to give an equation are nonetheless useful! Indeed,
a pair (A,B) of sieving polynomials fails if [A,B] leads to a divisor with height precisely 4.
It means that after obtain the logarithm of elements of G we can derive the logarithm of
these extra divisors for free.

Construction of groups with one compelled point. Following the idea of the special
group G, we would like to construct small other groups of divisors that have two properties.
First, for each group, we need to be able to create relations involving only heigh-4 divisors
from this group on the left, possibly with divisors of lower height. Second, we need to
control the splitting probability of the bracket on the right of the equation. We proceed
using compelled points.

How to choose our generators g1, g2 and g3 in this case ? We recall that the naive
height-4 sieving is based on the monomials 1, U, V, UV . Since there is no reason to favor
nor U neither V , we propose to preserve symmetry between the two variables, writing:

g1 = UV + k1U
g2 = UV + k2V
g3 = 1.

where k1 and k2 are in the base field Fq. Defining again groups:

Gk1,k2 = {Ξ(Φ∗(g1 + αg2 + βg3)) |α, β ∈ Fq}

with q2 divisors each, we sieve on pairs of polynomials (A,B) such that A = g1 + αg2 and
B = g1 + βg3 where α, β ∈ Fq. On the left side all divisors have height lower than 4 and
belong to Gk1,k2 . On the right side, we are left with a bracket [A,B] leading to a height
lower than 8. To decrease this height we consider the brackets:

[g1, g2] = k1 [U,UV ] + k2 [UV , V ] + k1k2 [U, V ]
[g1, g3] = VW + k1V − UV + k1U
[g2, g3] = VW + k2W − UV + k2V

Note that [A,B] is a linear combination of these brackets and that the last two ones are
associated to divisors of height lower than 4. Thus, removing a point in Ξ(Φ∗([g1, g2]))
will suffice. Let us look at k1 [U,UV ] + k2 [UV , V ] + k1k2 [U, V ] in details. Calling cf the
coefficient in Fq of the leading monomial5 of [g1, g2] for the denominator of any fraction f ,
we see that we can force k1c[U,UV ] + k2c[UV ,V ] + k1k2c[U,V ] = 0 in Fq. We underline that
for any fixed constant k1 6= −c[UV ,V ]c

−1
[U,V ] there exists a unique k2 such that the previous

equality is verified. It means that we create q − 1 such groups. Besides, this annihilates
the leading monomial so decreases the weighted degree of [g1, g2] and leads to remove a
point in the associated divisor of [A,B]. Hence, we are left with a residual height of 7. We
want the corresponding divisor to be written as a sum of divisors of height 3 at most. The
heuristic probability to get a good relation is so equal to:

1− (1/7 + 1/6 + 1/5 + 1/4) ≈ 0.2405

5Considering the weighted degree in X and Y of each monomial.
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as q tends to infinity.
This is slightly too low for the purpose. As a consequence, we need either to improve

the group construction or to make good use of the equations with a single height-4 divisor
in the bracket. Nevertheless, since 0.24 is close to 1/4, it is conceivable that we can find
enough relations in practice. We decided to test it and we computed all the discrete
logarithms up to height-5 for the target finite field F31345 = F243269 with this method.

Remark 5. It is useful to know that:

[U,UV ] = UV (V −W )
[UV , V ] = VW (V −W )

[U, V ] = V 2 − UW

Interaction with the action of Frobenius. Looking at our groupings, we see that we
have built a total of q different ones (including the special group G. Since each grouping
contains about q2/4, the computations (if successful) gives us about q3/4 logarithms of
height 4. This is much less than the total expected number which is close to q4/4. However,
the action of the Frobenius potentially multiply these logarithms by a factor of k. For
practical, we heuristically assume that this is the case. The fact that we were able to
compute the logarithms of all height-4 divisors for F31345 supports this assumption.

Going to height 5. We continue the extension to height 5 in similar fashion. Since, this
requires more degree of freedom, we no longer need to use compelled points. Instead, we
sieve on more general polynomials of the forms A = UV +aUU+a1 and B = UV +bV V +b1.
On the left-hand side, all factors of the form A−αB have height 4. Thus they decompose
in divisors of height at most 4 and their logarithms can be directly obtained. On the right-
hand side, the bracket has height at most 8. We expect that it contains an elementary
divisor of height 5 with probability close to 1/5. As a consequence, we obtain about q4/5
divisors of height 5 without performing any linear algebra.

Again, thanks to the action of Frobenius, we expect to recover an overwhelming fraction
of divisors of height 5. This turn out to work in practice for our example F31345 .
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