
Dissecting the CHES 2018 AES Challenge

Tobias Damm[0000−0003−3221−7207], Sven Freud, and Dominik
Klein[0000−0001−8174−7445]

Bundesamt für Sicherheit in der Informationstechnik (BSI)
{firstname.lastname}@bsi.bund.de

Abstract. One challenge of the CHES 2018 side channel contest was to
break a masked AES implementation. It was impressively won by Gohr
et al. by applying ridge regression to obtain guesses for the hamming
weights of the (unmasked) AES key schedule, and then using a SAT
solver to brute force search the remaining key space. Template attacks
are one of the most common approaches used to assess the leakage of a
device in a security evaluation. Hence, this raises the question whether
ridge regression is a more suitable choice for security evaluation, espe-
cially w.r.t. portability. We investigate the feasibility of template attacks
to break the presented AES implementation, analyze the leakage of the
device, and based on this mount a template attack on hamming weights
of the key expansion. We then use classical key search algorithms to re-
cover the AES key. By analyzing the leakage and applying dimension
reduction techniques we are able to compress each trace from 650 000
points to only 30 points that are then used to create the templates. Our
experimental results indicate that such classical templates achieve similar
results compared to ridge regression, and in several cases even slightly
outperforming it. According to the organizers, the CTF was aimed to
evaluate the concepts of deep learning and classic profiling. Our final
conclusion is that the challenge traces are not optimal to settle the ques-
tion intended, as the leakage is very strong and local. Therefore it is
very suitable to apply classical machine learning techniques such as tem-
plate attacks or ridge regression, and the difficulty in recovering the key
is more linked to the resulting key search problem than to the actual
attack.

1 Introduction

Cryptographic devices may leak information about the used key in various side
channels. In particular Kocher [Koc96] showed how to extract cryptographic
keys by analyzing the power consumption (resp. electromagnetic emissions) of a
device that executes cryptographic operations. Side channel attacks and coun-
termeasures remain an active research area until today, especially w.r.t. imple-
mentations of the AES cipher. A popular counter-measure to minimize leakage
about the AES key is masking, originally proposed in [AG01]. Masking can either
fully prevent several classes of side channel attacks or make attacks infeasible in
practice.

The CHES 2018 side channel contest CTF included a challenge on AES.
Presented were power traces from a masked AES implementation. The goal was
to recover the key in two settings: In the first setting, both training and attack
traces were recorded with the same device. In the second setting training traces
were provided from three different devices, and the attack traces were recorded
with yet another different fourth device.

Most advanced attack methods require a training step to assess the leakage
of the device. Based on this training step, an attack can be executed. Portability
in this context is a difficult challenge: First, due to the manufacturing process
no two chips are identical, and therefore their power and EM characteristics
may vary. Moreover even when using the same chip, it is difficult for an attacker
to ensure perfect identical environmental conditions when recording training
and attack traces, for example due to varying operating temperatures or supply
currents.

Template attacks [CRR03] remain one of the most popular attack methods
for power or EM side channel attacks and are widely used in the evaluation of
security chips. Another straight forward attack path is to apply linear regression.
Traces are then explanatory variables for some response (i.e. hamming weights
of keys), and the task is to find a relationship between them such that accurate
predictions are possible. Both methods are based on different assumptions w.r.t.
leakage and noise present in a recorded signal:

– Template Attacks assume that the traces can be modeled by a multivariate
Gaussian distribution. Mean and covariance matrices for each targeted value
are approximated by training traces. Then, given one or more attack traces,
possible values are ranked using the maximum likelihood principle.

– Linear Regression. A major point is that the response, e.g. here the hamming
weights of the key schedule, must have a linear relationship with the input
variables – here the trace points. Ridge regression is a particular form of
linear regression where overfitting is prevented by applying regularization
with the L2 norm.

It is difficult to assess which of these theoretical assumptions hold in practice,
especially if we consider the case of portable attacks.

For the CHES challenge, Gohr et al. [GJS19] identified that the AES key
expansion was not masked. They then mounted a linear regression attack –
more specifically ridge regression – on the hamming weight of all 176 key bytes of
the AES key expansion. Traces were compressed (apparently for computational
feasibility) by taking every tenth point of each trace. The result of this attack
step was a ranked list of the nine possible hamming weights of each of the 176
bytes. Since the correct hamming weight was mostly among the top two guesses,
they randomly removed 20 guesses, encoded the remaining 156 top two guesses
as an instance of SAT with respect to the underlying dependencies implied by
the key expansion, and solved this by CryptoMiniSAT [SNC09]. The process has
to be repeated until all wrong top two guesses lie in the removed set and the
remaining 156 top two guesses are correct.

Noteworthy is also that for the success of their ridge regression classifier it
seemed crucial that the compressed trace as a whole, i.e. approximately 65 000
sample points for each trace, were utilized.

This impressive result raises the question whether ridge regression is per se a
better choice in this scenario, and in the portability scenario in general. In par-
ticular we pose the following research questions: 1.) How can the leakage of the
AES key schedule be characterized for this challenge set, in particular is signal
leakage globally present throughout the trace, or more locally present at those
specific time-points where the byte values of the key expansion are computed?
2.) Is ridge regression a better choice, especially in the portability setting? 3.)
Applying ridge regression to very large sample sets can be computationally dif-
ficult, especially in the day to day operations of a security evaluation facility.
Templates can be made very compact, and several computational optimization
methods exist [CK14]. Is the computational effort worth it, or are very compact
templates also a suitable and high-performing tool in this setting? Note that
while the portability challenge for template attacks has been studied, to our
best knowledge no direct comparison between ridge regression and templates
has been investigated, in particular not on this challenge set.

Last, SAT solvers replaced domain specific search algorithms in several ar-
eas. Here we mention model-checking, termination analysis [FGM+07] or very
recently theorem proving [WM18]. The problem encoding to SAT however is
sometimes not straight forward. Hence 4.) we pose the question on whether SAT
solvers are essential for the success of the attack or whether a classical search
algorithm [VBC05] also suffices in this setting.

This paper is structured as follows: In Section 2 we analyze the trace set
w.r.t. to signal leakage and motivate our attack path. In Section 3 we very
briefly recapitulate template attacks and our particular choice of implementa-
tion. In Section 4 we provide experimental results and compare the success of our
mounted attack to the results reported in [GJS19]. We conclude our presentation
in Section 5.

2 Trace Inspection and Leakage Analysis

The CHES 2018 CTF challenge was split into a training phase and a subse-
quently released attack phase containing four and two sets of recorded traces,
respectively. The four sets given for training purposes feature 10 000 traces each
and use 650 000 sample points per trace. Sets 1, 2 and 3 were recorded with
three different devices A, B and C of the same type using known random input
data (plaintext) and known random keys, thus constituting the training data for
the presented challenges. Set 4 contains traces for a fixed known key and known
random input recorded with device C and can be used to prepare and test attack
strategies. Sets 5 and 6 form the attack sets with known (random) input and
an unknown fixed key with a reduced trace count of 1000 traces per set (but
unchanged sample count). While Set 5 was recorded using one of the devices for

which training data exist (device C, Set 3), Set 6 features yet another different
device D, hence forming the portability challenge.

Inspecting the given trace data one finds the same general signal pattern in
all presented data sets. Within each set all traces appear to be aligned reasonably
well to justify no further preprocessing. As this is rarely seen when analyzing
hardware security controllers due to countermeasures typically implemented in
such devices, we assume the devices presented in this challenge to be some sort
of general purpose microcontroller. However, we found a very small subset of
roughly 20 traces in Set 2 to a) appear to be apparently misaligned and b)
exhibit a mismatching set of plaintext, ciphertext and key.

2.1 Leakage Analysis

As mounting template attacks on data sets this huge is computationally infea-
sible, one needs to find a proper subset of Points-Of-Interest (POIs) leaking
information. Although a lot of statistical tests are useful to detect (first-order)
side channel leakage (e.g. p-, s-, t- or χ2-tests), we mainly use the Normalized
Inter-Class Variance (NICV; f-test) based on [BDGN14] as well as Correlation
based POIs (CPOI-test) from [DS16]. Both methods yield comparable results
— which is why we focus on CPOI from now on — and indicate a byte-wise
hamming weight leakage rather than direct value leakage in the given data sets,
as is usually observed in power-based device analysis.

0 100000 200000 300000 400000 500000 600000
Sample Position

0-15 0-15
16-31

32-47 160-175

Plaintext Ciphertext

Fig. 1. Full mean trace of Set 3 (blue), detected plaintext and ciphertext leakage
(green) as well as key expansion leakage grouped as complete AES-128 round keys
(red). Leakage is computed using CPOI.

Figure 1 shows the mean trace of data Set 3 as well as hamming weight
leakage of plaintext, ciphertext and the (sub-)bytes of the expanded 128-bit
AES key. Leakage of the 16 bytes of the AES key as well as the last plaintext
byte is observable in the first few thousand samples and later at the beginning
of the main signal starting at approx. sample 75 000. This lets us assume that
some sort of preprocessing, data loading or communication is done in the first
small block of visible activity. Also, the creation of a masking bit pattern seems
plausible here.

The main signal block exhibits leakage of all 16 bytes of plaintext (twice)
and ciphertext (three times) at the beginning and end, respectively. Most inter-
estingly it also features leakage of all 176 bytes (16 bytes * 11 rounds) of the
expanded AES key. Each byte appears twice as each 16 byte round key block is
repeated once in direct succession. The equidistant appearance of round keys,
with the last round being shorter due to the missing MixColumns step, hints at
a straight forward implementation of the AES 128-bit algorithm with a mem-
ory saving “calculate when needed” key expansion policy. However, as we could
not detect any further significant first-order leakage of intermediate values, the
AES implementation otherwise appears to be properly masked. This leaves the
unmasked key expansion as the main exploitable attack vector, as already noted
by Gohr et al. [GJS19].

The detected leakage of one of the round key double blocks is depicted in
Figure 2a. The first block shows the byte-wise appearance in incremental order
(0, 1, 2, 3, ..), while in the second block all byte positions are reordered to match
the characteristic row-column representation of AES (0, 4, 8, 12, 1, 5, ...). Whether
this last step is carried out for reordering purposes only or applied in conjunction
with further processing (e.g. masking) is unknown. Figure 2b shows a close-up
onto the leakage of two consecutive bytes (42 and 43) on their first occurrence.
Each is characterized by a large peak followed by a few minor peaks in a broader
wing indicating a sort of ring-down. While the main peak has a full width at
half maximum of approx. 150 samples, overall significant leakage is present for
up to 2000 sample points – but with no clear peak structures. Such leakage
mostly overlaps with leakage of neighboring bytes. Although the information
present in the main peaks of the two blocks might suffice to attack most of the
expanded key bytes, we expect the success rate to be significantly increased by
exploiting the full leakage. However, based on this analysis there is no indication
that leakage can be found more globally in the given traces.

A simple attack on two bytes of the expanded key used in Set 5 is showcased
in Figure 3. The mean traces w.r.t. each hamming weight at the appropriate
byte position of training Set 3 are shown at the positions of the two main peaks.
In close vicinity to the peak positions, the mean trace of the attack set closely
matches the expected mean training trace. Although this straight forward ap-
proach is able to successfully retrieve the correct hamming weight for most of
the key bytes, the high count of remaining mismatches still renders subsequent
key search algorithms computationally infeasible. In particular, it is only feasible
if a huge amount of attack traces is available.

204000 206000 208000 210000 212000
Sample Position

32
33
34 4647 32 33 34 46 47

Set 3 mean

(a) 3rd round key byte leakage (bytes 32 to 47)

205500 206000 206500 207000 207500 208000 208500 209000
Sample Position

0.0

0.2

0.4

0.6

0.8

1.0

C
or
re
la
tio

n

Byte 42
Byte 43

(b) HW leakage of bytes 42 and 43

Fig. 2. Key expansion leakage analysis. (a): Leakage of the 3rd round key bytes showing
two occurrences per byte in changing order. (b): Overlapping leakage of individual bytes
starting with a main peak and subsequent broad wing.

0 200 400 600 800 1000 1200

−15

−10

−5

0

5

10

15

20

25
Set 3 mean, HW: 4
Set 5 mean, HW: 4

(a) byte position 0 at around index 87454 and 102675

0 200 400 600 800 1000 1200

−10

−5

0

5

10 Set 3 mean, HW: 4
Set 5 mean, HW: 4

(b) byte position 138 at around index 510479 and 514147

Fig. 3. Training trace mean values w.r.t. each hamming weight at a 300 point window
around the two major CPOI peaks (red, concatenated). The mean of attack Set 5
(green) closely matches the mean of the expected hamming weight (blue). For the
ease of illustration, mean values were smoothed using convolution of a scaled Hanning
window.

2.2 Portability Challenge
The additional issues arising in the portability challenge are indicated in Figure
4. Shown is the same small sample trace section for training data sets 1,2,3
and attack Set 6, each recorded with a different device. Although revealing an
identical general shape, each set features a specific set of characteristics regarding
horizontal alignment and vertical scaling. Fortunately, the internal oscillators of
the inspected devices seem to behave identical for the most part. So applying
a set-wise static offset is a good first approximation to correct for horizontal
misalignment.

Among the trace sets provided for training and attacking, all show a similar
signal variance. However in particular Set 2 deviates from the other sets. Con-
sider Figure 5, which shows one trace each from Set 1, 2, 3 and 6. The traces
are here compressed and only include those sample points with a CPOI leakage
greater or equal 0.04 for key byte expansion position 43. One can observe that
Set 2 has a very different signal amplitude, especially at the hills and valleys
around indices 1250, 1900, 2800 and 3500. However these are exactly those po-
sitions which appear to have high leakage according to their CPOI score. To
compensate for this difference in signal amplitude, we apply row normalization:
Let x = x0, . . . , xm be a single compressed trace. Then define x′ = x′0, . . . , x

′
m

as

x′i = xi −min(x)
max(x)−min(x) .

Note that we range over the points of one trace, i.e. each trace is normalized
independently of the rest of the trace set. Often, as reported in the context of
machine learning, one ranges over the data set itself, i.e. applies column normal-
ization, meaning normalization w.r.t. one sample point over all traces. However
if few attack traces are available, such normalization has little to no effect, and
thus requires the attacker to obtain a significant amount of attack traces for such
normalization to work.

3 Template Attacks

We very briefly recall template attacks. Assume for the simplicity of presentation
that for each possible key value k ∈ S that we want to attack, there are n traces
xki, 1 ≤ i ≤ n, where each trace consists ofm sample points. A template consists
of mean xk and an approximation of the covariance Sk:

xk = 1
n

n∑
i=1

xki, Sk = 1
n− 1

n∑
i=1

(xki − xk)(xki − xk)′

Traces can be modeled by a multivariate normal distribution. Then the proba-
bility density function (pdf) is given by

f(x|k) = 1√
(2π)m det(Sk)

e−
1
2 (x−xk)′S

− 1
2

k
(x−xk).

121600 121800 122000 122200 122400
Sample Position

Set 1 mean
Set 2 mean
Set 3 mean
Set 6 mean

Fig. 4. Excerpt of mean traces from Set 1, 2, 3 and 6 illustrating a small horizontal
misalignment.

0 1000 2000 3000 4000

Set 2
Set 2, scaled

Fig. 5. Selected trace indices at byte position 43 with hamming weight 4 before (top)
and after (below) min-max row normalization. The traces after applying normalization
were additionally shifted down along the y-axis for this illustration.

Suppose we are given one or more attack traces Xa, all recorded while the
device under attack processed the unknown key k′. Then we can compute for
each possible value k a discriminant score based on the pdf and Bayes’ rule as

D(k|Xa) =
(∏a

i=1 p(xi|k)
)
· P (k)∑

kl∈S

(∏a
i=1 p(xi|kl)

)
· P (kl)

,

and identify the most likely value for the unknown k′. It was observed in [CK14]
that several numerical instabilities can be avoided by computing log(D(k|Xi)) –
after all, we are not interested in the real probabilities but rather some discrim-
inant score to distinguish the different key hypothesis. Hence, in our analysis we
omit the constant denominator and use log(D(k|Xa)), namely

∑
xi∈Xa

[
−1

2
[
m log(2π) + log (det(Sk)) + (xi − xk)S−1

k (xi − xk)′
]]

+ log(P (k)).

Further simplifications can be made, by omitting constant terms, by using Spooled
(see below) and assuming P (k) = 1

|S| . Note that the latter is only true if one
attacks key byte values directly. If we assume a random key byte value, then
the probability of the hamming weight h is given by the number of occurrences
among the possible byte values, i.e. P (h) = (8

h)
256 . Because of that and since the

above discriminant is numerically stable, any further computational optimization
in our setting with few attack traces does not yield any advantage.

The invertibility of Sk however is a numerical issue in most template attacks.
One can either use a different covariance estimator, use the pseudo-inverse or
use the pooled covariance matrix Spooled = 1

|S|
∑

k∈S Sk. Theoretically this is
only justified if the matrices Sk are very similar and are independent of the
the candidate k, i.e. if the correlation between sample points does not depend
on k. It is difficult to assess whether these assumptions hold in practice, and
experience shows that even if statistical tests fail or manual inspection does not
hint to equal covariance, the numerical benefits that are obtained by employing a
pooled covariance matrix almost always outweigh potential drawbacks. Therefore
we make use of Spooled.

Due to the distribution of the hamming weights w.r.t. one byte, the assump-
tion that there is a fixed value n of training traces for each candidate k does not
hold in the present setting. Let n1, ...n|S| denote the number of training traces
for each k ∈ S. Then:

Spooled = 1
n1 + ...+ n|S| − |S|

|S|∑
j=1

nj∑
i=1

(xki − xk)(xki − xk)′.

Since we attack the hamming weights of the key schedule, there is in fact a very
uneven distribution of training traces. Consider for example byte 42 of the key
expansion. We have 120 training traces where byte 42 has hamming weight 0,
but 8172 traces with hamming weight 4. Especially if the individual covariance

matrices are not perfectly equal, computing Spooled as above yields a covariance
matrix that is biased towards often occurring hamming weights. Hence we weight
each Sk to account for that. Let N be the maximum among the number of traces
for each k. We then approximate the pooled covariance matrix as

Spooled = 1
N |S| − |S|

|S|∑
j=1

N

nj

nj∑
i=1

(xki − xk)(xki − xk)′.

Another factor is that traces usually contain too many sample points to apply
template attacks efficiently. Hence one typically employs dimension reduction
techniques to compress traces. Linear discriminant analysis has been shown to
be very effective in this setting [BGH+15]. As suggested in [CK14] we compute
eigenvectors and eigenvalues of S−1

pooledSB where SB denotes the between-class
scatter matrix. Note that as above, we use weighting when computing Spooled.
Since eigendecomposition of S−1

pooledSB can also become numerically unstable,
a preferred way is to employ a whitening transformation with respect to the
pooled within-class covariance, i.e. compute S

− 1
2

pooled, and then apply singular
value decomposition on the symmetric matrix S

− 1
2

pooledSBS
− 1

2
pooled. This matrix

has the same eigenvalues uj as S−1
pooledSB , and the transformation matrix can

then be obtained by S
− 1

2
pooleduj , cf. Chapter 4.3.3 in [HTF09]. Note that as cor-

rectly pointed out in [CK18], in general one cannot directly apply singular value
decomposition on S−1

pooledSB , as this matrix is not necessarily symmetric, and
therefore SVD is not equivalent to eigenvalue decomposition of S−1

pooledSB –
which we actually seek to compute. In practice however we observed that di-
rectly applying SVD on S−1

pooledSB is a computational simplification that yields
equivalent results.

4 Experimental Results

4.1 Training on the same device

We applied a template attack as described in the previous section. Altogether
176 templates were created, one for each byte position of the key expansion
separately. Trace Set 3 was used for training, and Set 5 holds the attack traces.

First, we computed correlation points of interest by splitting Trace Set 3
(cf. Figure 6a). Each trace was then compressed by selecting only those indices
where the CPOI score was greater or equal 0.04. This threshold was identified
by manual selection, in particular by considering the two peaks as shown in
Figure 6.

We then applied linear discriminant analysis. Investigating the obtained eigen-
vectors showed that, depending on the key byte position, the first eigenvector
explained around 83 percent (for byte position ≤ 16) resp. up to 90 percent (byte
positions > 16) of variance. The reason for this difference is that for the first
sixteen key byte positions, the key load stage at the very beginning of each trace

0 100000 200000 300000 400000 500000 600000

0.0

0.2

0.4

0.6

0.8

(a) CPOI w.r.t. position 42

206000 208000 210000 212000 214000 216000

0.0

0.2

0.4

0.6

0.8

(b) zoomed around the peak

Fig. 6. Correlation points of interest w.r.t. key byte position 42 of the key expansion.
The orange line indicates a threshold of 0.04.

includes signal leakage, and this part of the trace shows a high signal variance.
Further inspection showed that the remaining eigenvectors appear to contain
mostly noise, and only the first eigenvector was considered. This fits with the
observation made in Chapter 2.1, i.e. that the signal leakage is very local.

As mentioned, all traces seem to be reasonably aligned. Moreover the traces
appear to be very similar, as they are recorded on the same device. Hence, no
additional signal processing – in particular min-max normalization - was applied.
For attacking, we divided the set of attack traces into disjunctive sets of size N
by partitioning traces of subsequent indices into one attack set. For example for
N = 2 we build one attack set of traces with index 0 and 1, one with 2 and 3,
up until one attack set consisting of traces with index 998 and 999.

The results of the template attack are depicted in Table 1. Rows denote the
number of traces within one attack. Columns show the percentage of attacks
that have at most n (for n = 0, 1, 2, 3, 4) top2 errors. A top2 error occurs if the
top2 rank positions do not contain the correct hamming weight. Note that in
our setting, at most four top2 errors are computationally feasible (cf. Table 3).

Table 1. Cumulative top2 rate [%], Set 3 vs Set 5

0 ≤ 1 ≤ 2 ≤ 3 ≤ 4

N=1 2.40 8.70 24.10 40.10 60.80
N=2 32.80 71.40 89.80 97.00 99.40
N=3 66.60 94.90 99.40 100.00 100.00
N=4 80.40 98.00 100.00 100.00 100.00
N=5 88.00 100.00 100.00 100.00 100.00

The result indicates that the device has a strong leakage, and often a single
attack trace suffices to fully extract the key. We anticipate that further optimiza-
tions are possible in this setting – i.e. even better signal alignment by dynamic
time warping – but deemed such micro-optimizations to be not of interest.

4.2 Training on different devices

Here we again applied a template attack as described in the previous section
with 176 templates. Trace Set 1, 2, and 3 were used for training, and Set 6 was
the set of attack traces.

For trace compression we again utilized the correlation points of interest
computed with Set 3. We took the same threshold of 0.04 for index selection.

Since we used trace sets generated by different devices for training, we per-
formed min-max normalization on each trace. After this step of trace compression
we obtained traces that contain between 5000 and 9000 trace points, depending
on the byte position of the key expansion. We then applied linear discriminant

0 1000 2000 3000 4000 5000

Fig. 7. First 30 eigenvectors for byte position 42 of the AES key expansion (top to
bottom) in the portability setting. The first line shows the corresponding CPOI value.

analysis to reduce each trace to 30 points. Figure 7 shows the first thirty eigen-
vectors (i.e. the 30 eigenvectors from S−1

pooledSB with highest eigenvalues; each
plotted along the x-axis) for byte position 42 of the key expansion in relation
to the CPOI score. One can see that while the latter eigenvectors weight spe-
cific peak points related to the CPOI score, the eigenvectors with the largest
eigenvalues consider all trace points. We also experimented with taking different
subsets or more eigenvectors and different selection strategies [CDP15], but this
did not lead to any improvement.

The results are depicted in Table 2. As one can see, we obtain similar, in
some cases even slightly superior results compared to those reported in [GJS19].
But there are also cases, where ridge regression performs better.

Note also, that for a small percentage of all attack traces (row N = 1), one
single attack trace of this subset suffices to successfully recover the key.

As mentioned, in particular Set 2 deviates from the other trace sets w.r.t.
the signal shape. Nevertheless, including these traces for training improves the
overall result, as we confirmed by leaving out Set 2 during training.

We should note that trace compression by CPOI selection seems to be suit-
able for template attacks only: When applying ridge regression1 with leave-one-
out cross validation using values α = 0.1, 1.0, 10.0, 16384 on compressed traces
(i.e. indices with CPOI ≥ 0.04), we did not obtain competitive results.

1 using the Python library sklearn.linear_model.RidgeCV

Table 2. Cumulative top2 rate [%], Set 1, 2, 3 vs Set 6.

Current Result Gohr et al. [GJS19]
0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4

N=1 0.00 0.10 0.60 2.10 4.70 - - - - -
N=2 1.40 9.80 25.00 44.8 62.60 1 8 24 41 57
N=3 14.41 40.84 63.06 85.29 92.19 10 38 63 82 91
N=4 26.00 65.60 85.60 96.00 99.20 31 60 84 96 98
N=5 42.00 80.00 94.00 98.50 99.00 45 83 95 99 100

4.3 Key recovery

To complement template attacks – and eventually solve the CTF challenge –
one needs to recover the correct key from the obtained results. In the case of
perfectly matching (top1) hamming weights for the complete set of 176 key
bytes this task can be considered trivial and is solved in a few milliseconds by
any sound algorithm. However, as also shown in this work, attacks most often
produce ambiguous and erroneous results, raising demand for highly optimized
strategies for key recovery.

As the explicit focus of this work is the feasibility of mounting classical
template attacks on the given data sets, we used the most simple approach
that seemed appropriate for key recovery in this context. Based on the work of
VanLaven et al. [VBC05] we implemented an optimized brute force key search al-
gorithm using the obtained top2-guesses per byte position as input and allowing
for Nerr overall errors. To clarify, our algorithm scans the full scope of possible
AES-128 keys and returns all keys matching our top2 hamming weight guesses
at 176 − Nerr byte positions. For a small amount of tolerable errors (Nerr ≤ 4)
this algorithm performs reasonably well. Table 3 indicates execution times for
a full search running single threaded on an Intel Core i7 8550U@1.8 GHz. Note
that the algorithm is easily parallelized, and on average matching keys are found
in only half the time. Apparently, this direct brute force search, that takes the
implied dependencies from the key expansion algorithm into account, is able to
solve the problem at hand with sufficient effectiveness.

Table 3. Key search execution times for Nerr allowed erroneous top2-guesses (scaled
to single core performance).

Nerr 0 1 2 3 4

time 6 s 190 s 50 min 18 h ≈ 1 week

5 Conclusion

We applied a standard template attack on the CHES 2018 AES challenge. Our
results show that “classical” template attacks are still one of the most powerful
techniques for side channel analysis compared to other methods from the field of
machine learning, such as ridge regression. This holds both for the setting when
training and attack traces can be obtained from the same device as well as in
the portability setting. The advantages of applying standard template attacks
are the competitive results and the rather low computational effort – after all,
traces can be efficiently compressed to only one resp. 30 trace points. A clear
drawback is the manual work involved, i.e. the identification of leakage points and
selecting and applying suitable preprocessing methods. Last, there are certain
implementation caveats one has to be aware of.

All in all, we do not consider the trace sets to be optimally suited for deep-
learning, as such approaches tend to work well especially in those settings, where
non-linear functions have to be approximated and where a lot of training data is
available. We anticipate that since in the current setting linear approximations
seem to be sufficient to characterize the leakage, and since the amount of train-
ing samples for supervised learning is rather low (e.g. in the case for hamming
weight 0), the full potential of deep-learning based approaches is difficult to
showcase. A more thorough comparison of template attacks compared to other
learning based approaches, especially in the portability setting on real security
controllers, is subject to future work.

Acknowledgements We would like to thank Aron Gohr, Sven Jacob, and
Werner Schindler for insightful comments and discussions on an earlier draft of
this paper.

References

[AG01] M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure
against Some Attacks. In Proc. 3rd CHES, pages 309–318, 2001.

[BDGN14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-
channel Leakage and Trace Compression Using Normalized Inter-class Vari-
ance. In Proc. 3rd HASP, pages 7:1–7:9, 2014.

[BGH+15] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and
Olivier Rioul. Less is More - Dimensionality Reduction from a Theoretical
Perspective. In Proc. 17th CHES, pages 22–41, 2015.

[CDP15] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Enhancing Di-
mensionality Reduction Methods for Side-Channel Attacks. In Proc. 14th
CARDIS, Revised Selected Papers, pages 15–33, 2015.

[CK14] Omar Choudary and Markus G. Kuhn. Efficient Template Attacks. In Proc.
12th CARDIS, pages 253–270, 2014.

[CK18] Marios O. Choudary and Markus G. Kuhn. Efficient, Portable Template
Attacks. IEEE Trans. Information Forensics and Security, 13(2):490–501,
2018.

[CRR03] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In Proc. 4th CHES,
pages 13–28, 2003.

[DS16] François Durvaux and François-Xavier Standaert. From Improved Leakage
Detection to the Detection of Points of Interests in Leakage Traces. In Proc.
35th EUROCRYPT, pages 240–262, 2016.

[FGM+07] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René
Thiemann, and Harald Zankl. SAT Solving for Termination Analysis with
Polynomial Interpretations. In Proc. 10th SAT, pages 340–354, 2007.

[GJS19] Aron Gohr, Sven Jacob, and Werner Schindler. CHES 2018 Side Channel
Contest CTF - Solution of the AES Challenges. Cryptology ePrint Archive,
Report 2019/094, 2019. https://eprint.iacr.org/2019/094.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition.
Springer Series in Statistics. Springer, 2009.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proc. 16th CRYPTO, pages 104–113,
1996.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers
to Cryptographic Problems. In Proc. 12th SAT, pages 244–257, 2009.

[VBC05] Joel VanLaven, Mark Brehob, and Kevin J. Compton. A Computationally
Feasible SPA Attack on AES VIA Optimized Search. In Proc. 20th SEC,
pages 577–588, 2005.

[WM18] Sarah Winkler and Georg Moser. MædMax: A Maximal Ordered Comple-
tion Tool. In Proc. 9th IJCAR, pages 472–480, 2018.

