
Optimized implementation of the NIST PQC
submission ROLLO on microcontroller

Jérôme Lablanche1, Lina Mortajine1,3, Othman Benchaalal1, Pierre-Louis
Cayrel2, and Nadia El Mrabet3

1 Wisekey, Arteparc de Bachasson, Bâtiment A, 13590 Meyreuil
{jlablanche,lmortajine,obenchaalal}@wisekey.com

2 Laboratoire Hubert Curien, UMR CNRS 5516,
Bâtiment F 18 rue du Benoît Lauras, 42000 Saint-Etienne

pierre.louis.cayrel@univ-st-etienne.fr
3 Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS,

F - 13541 Gardanne France
nadia.el-mrabet@emse.fr

Abstract. We present in this paper an efficient implementation of the
code-based cryptosystem ROLLO, a candidate to the NIST PQC project,
on a device available on the market. This implementation benefits of
the existing hardware by using crypto co-processor for ECC contained
in a microcontroller to speed-up operations in F2m . Optimizations are
then made on operations in Fn

2m . Finally, the cryptosystem outperforms
the public key exchange protocol ECDH for a security level of 192 bits
showing then the possibility of the integration of this new cryptosys-
tem in current chips. According to our implementation, the CPA-secure
ROLLO-I-128 submission takes 173,6 ms for key generation, 12 ms for
encapsulation and 79.4 ms for decapsulation on an embedded system
including featured with a Cortex M3 core running at 50 MHz.

Keywords: post-quantum cryptography, optimization, embedded system, ROLLO

1 Introduction

In 2016, the National Institute of Standards and Technology (NIST) issued a
report announcing the launch of an international process in order to propose
new cryptographic schemes, resistant to a quantum computer. Since 2017, 69
proposals were accepted to the NIST post-quantum project.
After a year of study, withdrawn and merge schemes, the NIST reduced the
candidates’ list by announcing the second round and the 26 accepted submis-
sions. Among these candidates, 8 signature schemes and 17 public-key encryption
schemes or key-encapsulation mechanisms (KEMs) based their security on hard
mathematical problems in codes, lattices, isogenies or multivariate. In addition
to that, one more signature scheme based on a zero-knowledge proof system has
been submitted.
In this paper, we focus on submissions based on codes. Code-based cryptography



2 Lablanche, Mortajine et al.

was introduced by R. McEliece in 1978 [17] but the McEliece cryptosystem did
not interest the cryptography community due to the use of large key size.
Cryptosystems based on lattices that use reasonable key size and are also quantum-
resistant, have often been preferred over codes for practical implementations: in
2016, Google decides to integrate the lattice-based cryptosystem New Hope [3]
to safeguard Chrome from quantum computers and NTRUEncrypt cryptosys-
tem [11] was accepted as the X9.98 standard for financial transaction protection
in 2011.
However, the development of news cryptosystems based on different codes from
those used in the McEliece cryptosystem as well as the introduction of codes
embedded with the rank metric have resulted in a considerable reduction of key
sizes of code-based cryptosystems and thus reach key sizes comparable to those
used in lattice-based cryptography.
Despite the evolution of research in this field, some post-quantum cryptosys-
tems submitted to the NIST PQC project required a large number of resources
notably concerning the memory which becomes binding when we have to imple-
ment them into constraints environments as micro-controllers.
It is then hardly conceivable to imagine that these cryptosystems may replace
the ones in use today in chips. In that sense, we decided to study the real cost
of a code-based cryptosystem implementation. This study seems to be essential
to prepare the transition to post-quantum cryptography.
For our study, we chose an embedded commercialized system to implement the
targeted cryptosystem.
One of the main criteria for the selection of the cryptosystem has been the RAM
available on the microcontroller to run cryptographic protocols. We first decided
to observe the memory required to store elements for different cryptosystems.
The respective sizes are reported in Table 1. As we have only 4 kB of RAM,
we implement ROLLO submission and more specifically ROLLO-I. Indeed, for
this cryptosystem, the size of the public key and the ciphertext are by far the
smallest. It is not the case for the secret key, but the cryptosystems in Table 1
with a small secret key have very big public key and ciphertext. Operations on
ROLLO-II and ROLLO-III being similar, they could be integrated quickly.

Parameter
Algorithm BIKE HQC RQC ROLLO

scheme number I II III I II III
public key 8188 4094 9033 14754 3510 947 2493 2196
secret key 548 548 532 532 3510 1894 4986 2196
ciphertext 8188 4094 9033 14818 3574 947 2621 2196

Table 1. Size of parameters in bytes to store in RAM for some code-based cryptosys-
tems with security level 5

In view of Table 1, for practical implementation, we then decided to study the
KEM cryptosystem ROLLO-I [18] which parameter sizes are well-balanced.
The second round submission ROLLO is a merge of the first round submis-



ROLLO-I implementation on Cortex M3 3

sions LAKE [6] (renamed ROLLO-I), Locker [5] (renamed ROLLO-II), and
Ourobouros-R [7] (renamed ROLLO-III).

Our contribution. In this paper, we present two practical software implemen-
tations of ROLLO-I. In the best of our knowledge, it is the first implementa-
tions of this cryptosystem on an embedded system. The chosen target features a
CORTEX-M3 processor and 4 kB of RAM are dedicated to cryptographic data.
The first implementation is optimized depending on the memory and the second
is optimized in time.
We finally prove the practicability of such an algorithm on real products by
comparing the execution time with an Elliptic Curve Diffie-Hellman (ECDH)
key exchange that is widely used today and implemented in the same target.

Organization of this paper. This paper is organized as follows. We start with
some preliminary definitions in Section 2. We then present the ROLLO cryp-
tosystem in Section 3 and our optimized implementations in Section 4. Finally,
we expose our results in Section 5.

2 Background

We use the same notations as in [18]. For fixed prime numbers m and n, we
denote by:

q a prime number
Fq the finite field with q elements
Fqm the finite field with qm elements
Fn
qm the vector space that can be identified with the ring Fqm [X]/(P ),

with P a polynomial of degree n
v an element of Fn

qm

M(v) the matrix (vi,j) 1≤i≤n
1≤j≤m

In this section, we recall some generalities on codes, more specifically rank metric
codes. For more details, we let the reader refers to [8,18].

Let k, n two integers such that k ≥ n. A linear code over Fqm of length n and
dimension k is a subspace of Fn

qm of dimension k. It is denoted [n, k]qm .
A linear code can be represented by its generator matrix G ∈ Fk×n

qm as:

C = {x.G, x ∈ Fk
qm}.

If the generator matrix is of the form G =
(
Ik | A

)
with A an (n−k)×k matrix,

we denote that G is under the systematic form.
The code C can also be given by its parity check matrix H ∈ F(n−k)×n

qm as:

C = {x ∈ Fn
qm : H.xT = 0}.



4 Lablanche, Mortajine et al.

Thus, sx = H.xT is called the syndrome of x.
In code-based cryptography, codes can be embedded with two different metrics:
Hamming ?? and rank [9]. As ROLLO cryptosystem is based on codes embedded
with rank metric over Fn

qm , we will leave aside the Hamming metric for the rest
of this paper.
The metric allows us to define distance in codes. In rank metric, the distance
between two words x = (x1, · · · , xn) and y = (y1, · · · , yn) in Fn

qm is defined as

d(x,y) = ‖x− y‖ = ‖v‖ = Rank M(v),

withM(v) = (vi,j) 1≤i≤n
1≤j≤m

and ‖v‖ is called the rank weight of the word v = x−y.

The rank of a word x can also be seen as the dimension of its support given by

Supp(x) = 〈x1, · · ·xn〉Fq . (1)

In order to define codes used in ROLLO cryptosystem, we first need to define
circulant and double circulant matrices.
An n× n circulant matrix is defined as a matrix where each row is rotated one
element to the right depending on the preceding row:

a0 a1 · · · an−2 an−1
an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a1 a2 · · · an−1 a0

 .

We denote the set of circulant matrices of size n over Fqm as Circn(Fqm) ⊂
Mn(Fqm). Thus, there exists an isomorphism

φ : Fqm [X]/(Xn − 1) −→ Circn(Fqm),

n∑
i=0

aiX
i 7−→


a0 a1 · · · an−2 an−1
an−1 a0 · · · an−3 an−2
...

...
. . .

...
...

a1 a2 · · · an−1 a0

 .

A [2n, n]qm linear code C is called double circulant if its generator matrix G is
of the form G = (A1|A2) with A1 and A2 two n× n circulant matrices.

The authors of [18] introduced the family of ideal codes that allows them to
reduce the size of the code’s representation. The generator matrix of this family
is based on ideal matrices.
Given a polynomial P ∈ Fq[X] and a vector v ∈ Fn

qm . An ideal matrix generated
by v is an n× n square matrix defined as:

IM(v) =


v

Xv mod P
...

Xn−1v mod P

 .



ROLLO-I implementation on Cortex M3 5

An [ns, nt]qm code C, generated by the vectors (gi,j)i∈[1,··· ,s−t] ∈ Fn
qm , is an ideal

code if its generator matrix under systematic form is given by:

G =

 IM(g1,1) · · · IM(g1,s−t)

Int
...

. . .
...

IM(gt,1) · · · IM(gt,s−t)

 .

In [18], they restraint the definition of ideal LRPC (Low Rank Parity Check)
codes to (2, 1)-ideal LRPC codes that they used to construct ROLLO cryptosys-
tem.
Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be two vectors
of Fn

qm , such that Supp(h1,h2) = F , and P ∈ Fq[X] be a polynomial of degree
n.
An [2n, n]qm code C is an ideal LRPC code if its parity check matrix is of the
form:

H =

IM(h1)
T IM(h2)

T

 .

The decoding algorithm of LRPC codes presented in Algorithm 1 is described
in [18]. Let E and F be two Fq-subspace of Fqm with respectively basis (e1, · · · , er)
and (f1, · · · , fd). Let s = (s1, · · · , sn) ∈ Fn

qm be a syndrome of an error e of
weight r and such that Supp(e) = E.
Given F and s, the RSR algorithm, presented in Algorithm 1, recovers the sup-
port E of the error e.

Algorithm 1: Rank Support Recovery (RSR) algorithm
Input: A Fq-subspace F = 〈f1, · · · , fd〉, s = (s1, · · · , sn) a syndrome of an error

e, r the error’s rank weight
Output: A candidate E for the support of e

1 Compute the support S of the syndrome s

2 Precompute every Si = f−1
i S for i = 1 to d

3 Precompute every Si,i+1 = Si

⋂
Si+1 for i = 1 to d− 1

4 for i = 1 to d− 2 do
5 tmp← S + F (Si,i+1 + Si+1,i+2 + Si,i+2)
6 if dim(tmp) ≤ rd then
7 S ← tmp
8 end
9 end

10 E ←
⋂

1≤i≤d

f−1
i S

11 return E

In Algorithm 1, the support S is a subspace of EF given by:

EF = 〈{ef, e ∈ E and f ∈ F}〉 ,



6 Lablanche, Mortajine et al.

thus, dim(S) ≤ rd.
In the RSR algorithm, the loop for (line 4 - Algorithm 1) allows to recover the
whole vector space EF in case dim(S) < rd. It is possible that the algorithm
fails and at the end of the loop, S is different of EF , for the failure analysis, we
let the lecturer refers to [18].
In the case S = 〈EF 〉 = 〈e1f1, · · · , erf1, · · · , e1fi, · · · erfi, · · · , erfd〉 , since Si =
f−1i S, we have for all 1 ≤ i ≤ d,

E ⊂ Si ⇒ E =
⋂

1≤i≤d

Si.

In rank metric code-based cryptography, the support recovery is considered as
a hard problem. Indeed, ROLLO cryptosystem bases a part of its security proof
on the 2-Ideal Rank Support Recovery (2-IRSR) [18] problem that consists
in, given a polynomial P ∈ Fq[X] of degree n, vectors x and y in Fn

qm , and a
syndrome s, recovering the support E of (e1, e2) with dim(E) ≤ r and such
that:

e1x+ e2y = s mod P.

Hereafter, we will focus on ROLLO-I submission that presents small parameter
sizes compared to ROLLO-II and ROLLO-III (see Table 1).

3 Target cryptosystem: ROLLO-I

3.1 Presentation

The algorithms described on this section resume the description of the ROLLO
cryptosystem presented in [18].

ROLLO-I is a Key Encapsulation Mechanism (KEM) defined by three proba-
bilistic algorithms: Keygen, Encap and Decap.
This cryptosystem uses a rank-based code in Fqm (LRPC codes) with polyno-
mial operations, we first have to define the two parameters n, m and the two

irreducible polynomials associated P , Pm such that:
{
deg(Pm) = m
deg(P ) = n

.

As seen in the previous section, this KEM mainly depends on the hardness to
retrieve the error’s support used to generate a couple of vectors (e1, e2), if this
support dimension is lower than r.

Algorithm 2: KeyGen
Input: n and m to define the code, d the private key’s rank weight
Output: public key pk = h and private key sk = (x,y)

1 Generate a random support F of rank d.
2 Create one random element sk = (x,y) ∈ F2n

2m from the support F.
3 Compute h = x−1 · y mod P
4 return pk, sk



ROLLO-I implementation on Cortex M3 7

The random generation of support and the generation of an element from a
support are given respectively by Algorithm 5 and 6.
The KeyGen algorithm presented in Algorithm 2 creates randomly the secret
key used in Decap, and the public key used to hide the shared secret.

Algorithm 3: Encap
Input: n and m to define the code, h the public key, r the error’s rank weight
Output: ciphertext c and shared secret K

1 Generate a random support E of rank r.
2 Create two random elements (e1, e2) ∈ F2n

2m from the support E.
3 Compute c = e2 + e1 · h mod P
4 Derive the shared secret K = Hash(E)
5 return c,K

The Encap algorithm presented in Algorithm 3 randomly creates two vectors e1
and e2 depending on one support E used to derive the shared secret using a
hash function.

Algorithm 4: Decap
Input: (x,y) the private key, r the error’s rank weight, d the private key’s rank

weight, c the ciphertext
Output: shared secret K

1 Compute s = x · c mod P
2 Retrieve error’s support: E = RSR(F, s, r)
3 Derive the shared secret: K = Hash(E)
4 return K

The Decap algorithm presented in Algorithm 4 first computes the syndrome of
the received ciphertext c and then uses the Rank Support Recovery Algorithm
presented in Algorithm 1 to retrieve the error’s support.

3.2 Operations

Support generation: As defined in Equation (1) the support of an element
x = (x0, x1, · · · , xn−1) is the basis of the vector subspace generated by the co-
ordinates of x. Therefore, to generate a support in Fn

2m of a given dimension d
we have to generate at random d linearly independent vectors in F2m .

In order to generate a support of dimension d in Fn
2m , we use Algorithm 5.

Element generation from a support: An element x ∈ Fn
2m in rank metric

is characterized by its dimension and its induced support. From a given random
support of dimension d we can get a random element of the same dimension



8 Lablanche, Mortajine et al.

Algorithm 5: Random generation of support
Input: Dimension d
Output: S ∈ Fd

2m support of dimension d

1 for i from 0 to d− 1 do
2 for j from 0 to dm

8
e do

3 Si,j ← random byte (using a TRNG)
4 end
5 Clear 8× dm

8
e −m most significant bits by applying a mask

6 end

7 Apply a row echelon algorithm to the resulting support.
8 return S

by computing n coefficients as linear combinations of the vectors defining the
support.
Thus, an element in Fn

2m can be generated from a support of dimension d with
Algorithm 6.

Algorithm 6: Element generation from support
Input: S ∈ Fd

2m support of dimension d
Output: x ∈ Fn

2m generated from support S

1 for i from 0 to n− 1 do
2 Pick a random integer r in [2, d− 1]
3 xi = Add at random r coefficients in S

4 end

5 return x

Intersection of two sub-spaces:
Let U = 〈u0, u1, · · · , un−1〉 and V = 〈v0, v1, · · · , vn−1〉 be two sub-spaces over
Fn
2m . Considering the two vectors u = (u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1),

elements in Fn
2m , the intersection IU,V = U ∩ V can be computed by following

the Zassenhaus algorithm [16], described with the above steps:

• Create the block matrix ZU,V =

(
M(u)M(u)
M(v) 0

)
;

• Apply the Gaussian elimination on ZU,V to obtain a row echelon form ma-
trix;

• The resulting matrix has the following shape:

M(c) ∗
0 IU,V

0 0

,

with c = (c0, · · · , cn−1) ∈ Fn
2m .



ROLLO-I implementation on Cortex M3 9

3.3 Parameters

The submission of this scheme contains three sets of parameters ROLLO-I-128,
ROLLO-I-192, ROLLO-I-256 corresponding to three different levels of security
achieving respectively 128, 192 and 256 bits of security according to NIST’s se-
curity strength categories 1, 3 and 5 [21], we recall them in Table 3. As described
in Section 3, the parameters n and m correspond respectively to the degrees of
irreducible polynomials P and Pm used to construct the field Fn

qm and the pa-
rameters d and r correspond respectively to the rank of the secret key and the
error.

Algo.
Param.

n m d r P Pm Security level (bits)

ROLLO-I-128 47 79 6 5 X47 +X5 + 1 X79 +X9 + 1 128
ROLLO-I-192 53 89 7 6 X53 +X6 +X2 +X + 1 X89 +X38 + 1 192
ROLLO-I-256 67 113 8 7 X67 +X5 +X2 +X + 1 X113 +X9 + 1 256

Table 3. ROLLO-I parameters for each security level

Therefore, the size of the public key, secret key and ciphertext involved by this
parameters are given in Table 4.

Algo.
Param. Public key Private key Ciphertext Shared secret

ROLLO-I-128 465 930 465 64
ROLLO-I-192 590 1.180 590 64
ROLLO-I-256 947 1.894 947 64

Table 4. Parameter size (bytes)

4 Implementation

4.1 Target platform and memory usage for implementation

For the implementation, we wanted to demonstrate that ROLLO cryptosystem
can be deployed in an existing product, we have chosen an 32-bit secure ARM
Cortex-M3 processor (ARM R© SecurCore R© SC300TM) due to the fact that it is
widely used in the industry. For this reason, we selected the Wisekey MS6001
microcontroller because it was perfectly fitting our needs. This product features
24 kB of RAM and 4 kB are dedicated to cryptographic data, it is equipped with
a Random Number Generator (RNG) and a 32-bit mathematical co-processor
able to perform operations in Fp and Fqm , in practice used for public key cryp-
tography as RSA or ECC. In our implementations, all operations in F2m are



10 Lablanche, Mortajine et al.

then performed using this crypto co-processor in order to speed up them.
Even if low-level implementations cannot be described in this paper since no
standard is available, the algorithms described in Sections 4.3 and 4.4 are im-
plementable on microcontroller containing a crypto co-processor for ECC or by
implementing basic operations in F2m , consisting in multiplication, addition, in-
version and modular reduction.
As the reference implementation, we compute the shared secret by applying the
hash function SHA-512 to the support of the error .

4.2 Target operations for optimization

Firstly, we try to find which operations can be optimized. In this paper, we
do not consider operations over F2m as they are already implemented in the
crypto-processor. Thus, we focused on optimizing the operations over Fn

2m .

Fig. 1. Number of operations in Fn
2m featured on ROLLO cryptosystem.

Figure 1 shows that Gaussian elimination and multiplication in Fn
2m are often

performed in the ROLLO-I cryptosystem.
Gaussian elimination is principally involved in the RSR Algorithm to compute
to the intersection and sum between two vector spaces, and it is performed on
big matrices. Thus, reduce the call of the Gaussian elimination method seems
to be a good optimization. We then decided to focus on the multiplication and
the RSR algorithm in order to optimize them.
The inversion is only performed during the key generation process and does not
favour ephemeral keys. In this way, even if the extended Euclidean algorithm
[15], used to compute the inverse in Fn

2m , is very costly, it is not considered in
this paper.

For the rest of this section, we focus on the optimization of the two main opera-
tions in ROLLO cryptosystem: the multiplication in Fn

2m and the RSR algorithm.
We will then present in Section 4.3 an implementation optimized following the
memory and in Section 4.4 an implementation optimized in time.



ROLLO-I implementation on Cortex M3 11

4.3 Optimized implementation depending on the memory

4.3.1 Multiplication in Fn
2m

Let P be an irreducible polynomial of degree n, and x,y ∈ F2m/(P ) be two
polynomials in F2m of degree strictly lower than n.
The result r of the polynomial product x · y is of degree lower than 2n − 1. In
order to reduce the result, we then have to apply a modular reduction on r by
P . These two consecutive operations imply a major issue in terms of memory
usage: x and y require n ·dm/32e·4 bytes each, and the result r needs the double
of this value.
Therefore, we decided to merge the two algorithms to get one which directly
returns the result after the modular reduction, thus dividing the length of the
result by 2. However, this choice requires the use of a simple polynomial multipli-
cation. We choose the Schoolbook multiplication algorithm that involves O(n2)
multiplications in F2m . Even if the complexity of this algorithm is quadratic, as
the modulo P is parse, it is straightforward to combine modular reduction and
Schoolbook multiplication, as presented in Algorithm 7, and then save memory
usage.

Algorithm 7: Multiplication
Input: x,y ∈ Fn

2m , Pm modulo for F2m , P = (p1, · · · , pn) modulo for Fn
2m

Output: r = x · y
1 for i from 0 to n-1 do
2 for j from 0 to n-1 do
3 tmp← xi · yj mod Pm

4 if i+ j ≥ n then
5 for each pk 6= 0 and k < n do
6 if (i+ j mod n) + k ≥ n then
7 for each pl 6= 0 and l < n do
8 r(i+j+k+l) mod n ← r(i+j+k+l) mod n + tmp

9 else
10 r(i+j+k) mod n ← r(i+j+k) mod n + tmp

11 else
12 ri+j ← ri+j + tmp

13 return r

4.3.2 Rank Support Recovery algorithm

The RSR algorithm, see Algorithm 1, defined in the ROLLO submission needs
to pre-compute some values which be re-used multiple times without having to
re-compute them. The RSR algorithm is by far the most costly operation of the
decapsulation process.
We can compute the average memory cost as follows:

1. Compute the Si will lead us to store r · d ·m bits at most.



12 Lablanche, Mortajine et al.

2. Compute the Si,i+1 will lead us to store (d− 1) · r ·m bits on average.

We decided to completely remove the pre-computation phase steps to save mem-
ory, but the average resulting timing was heavily increased.

4.4 Optimized implementation in time

4.4.1 Multiplication in Fn
2m

The multiplication in Fn
2m is one of the most used operations of this cryptosys-

tem: it’s involved in the computation of the public key, the cipher, and the
syndrome.
The Schoolbook multiplication requires n2 multiplications in F2m , this can be re-
duced by implementing a combination of Schoolbook multiplication and Karat-
suba method [22] as presented in Algorithm 8. Let P = p0 + p1X and Q =
q0 + q1X be two polynomials of degree 1. The result of the product is

P ·Q = p0q0 + (p0q1 + p1q0)X + p1q1X
2.

Naively, we have to compute 4 multiplications and 1 addition. The Karatsuba
algorithm is based on the fact that:

(p0q1 + p1q0) = (p0 + p1)(q0 + q1)− p0q0 − p1q1.

The Karatsuba algorithm takes advantage of this method which leads the com-
putation of PQ to require only 3 multiplications and 4 additions.

Algorithm 8: Karatsuba multiplication
Input: two polynomials f and g ∈ Fn

2m and N the number of coefficients of f
and g

Output: f · g in Fn
2m

1 if N odd then
2 result ← Schoolbook(f ,g, N)
3 return result

4 N
′
← N/2

5 Let f(x) = f0(x) + f1(x)x
N

′

6 Let g(x) = g0(x) + g1(x)x
N

′

7 R1 ← Karatsuba(f0,g0, N
′
) // Compute recursively f0g0

8 R2 ← Karatsuba(f1,g1, N
′
) // Compute recursively f1g1

9 R3 ← f0 + f1
10 R4 ← g0 + g1

11 R5 ← Karatsuba(R3, R4, N
′
) // Compute recursively R3R4

12 R6 ← R5 −R1 −R2

13 return R1 +R6x
N′

+R2x
2N



ROLLO-I implementation on Cortex M3 13

The fourth step requires to divide the polynomial’s degree by 2 and when the
number of polynomial coefficients is odd, the algorithm computes the multiplica-
tion with the Schoolbook method, otherwise, continue to split. As consequence,
we have to add a padding to the polynomials involved in the multiplications with
zero coefficients to make the number of coefficients of the polynomials even.
Finally, we will have a total memory cost of 4 · (n+ k) · dm/32e · 8 bytes with k
the number of zero coefficients added to the polynomials.
We compare the number of multiplications required by the Schoolbook algorithm
and Karatsuba in Figure 2.

Fig. 2. Number of multiplications in F2m in function of the degree

We can see in Figure 2 that the number of multiplications required in the Karata-
suba method is not strictly increasing, this is due to the polynomial division by
2 involved in the method. Thus, when the number of coefficients is equal to a
power of two or a number that we can divide recursively by two, the number of
multiplications is smaller.

Under the memory available for a multiplication in Fn
2m , we can thus choose to

add more or less padding. For example, in ROLLO-I-128 with n = 47 we have
to add one zero coefficient to reach a degree 47 (which induces 48 coefficients);
however, in ROLLO-I-192 with n = 53 we have two possibilities:

• Pad the polynomials with 3 coefficients which leads to 1323 multiplications
in F2m .

• Pad with 11 coefficients to lower the cost to 729 multiplications in F2m .

The second possibility presents 45% fewer multiplications but requires mem-
ory additional cost of 11×d79/32e×4 = 132 bytes per polynomial, including the
different buffers, the additional cost is 528 bytes: regarding the total cost, this
number can be really important and thus we prefer the first choice to balance
between memory and speed.



14 Lablanche, Mortajine et al.

4.4.2 Rank Support Recovery algorithm

Compared to the initial Rank Support Recover algorithm, we chose to remove
the pre-computation part for the benefit of memory usage: this method yields a
higher computation cost.
For our optimized implementation, we decided to perform some pre-computations
taking account of the memory cost constraint. In the Algorithm 9, these steps
are framed and correspond to lines 2 to 10. This algorithm is running in constant
time.

Algorithm 9: RSR (Rank Support Recover)
1 Input: F = 〈f1, · · · , fd〉 a Fq vector subspace of F2m , s = (s1, · · · , sn) ∈ Fn

2m

syndrome of an error e and r the rank’s weight of e
Output: Vector subspace E

2 Compute S = 〈s1, · · · , sn〉
// Recall that Si = f−1

i S
tmp1 ← S1

tmp2 ← S2

tmp3 ← S3

Compute S1,2 = tmp1 ∩ tmp2
for i from 1 to d− 2 do

3 Compute Si+1,i+2 = tmpi+1 ∩ tmpi+2

4 Compute Si,i+2 = tmpi ∩ tmpi+2

5 tmpi%3 ← Si+3

6 end
7 for i from 1 to d-2 do
8 tmp← S + F · (Si,i+1 + Si+1,i+2 + Si,i+2)
9 if dim(tmp) ≤ rd then

10 S ← tmp;
11 end
12 end
13 E ←

⋂
1≤i≤d

f−1
i · S

14 return E

We can estimate the average memory cost of this pre-computation: we will have
at most three Si and 1+2·(d−2) intersections as well as the private key’s support
and the error’s syndrome. By adding the matrix induced by the Zassenhaus
algorithm [16], we have a total memory cost of:

RAMpre−compute = (8rd+ d+ 1 + 2(d− 2))×mb,

with mb the length in bytes for one coefficient in F2m .

The pre-computation part of the RSR algorithm included in the ROLLO sub-
mission had only one issue for our constraints: the memory cost required to store



ROLLO-I implementation on Cortex M3 15

every Si is too high, our solution is to have at most 3 of this Si in memory and
compute every intersection. As consequence, we save (d − 3) · r · d · mb bytes
at most: it represents 1080, 2016 and 4480 bytes for respectively ROLLO-I-128,
ROLLO-I-192, and ROLLO-I-256. Moreover, this modification does not stop the
algorithm from being executed in constant time: it always computes the same
number of intersections.

5 Results and comparison

In this section, we present the performance evaluation of proposed implemen-
tations regarding memory usage and speed. Our implementations were imple-
mented in C. For performance measurements, we used IAR compiler C/C++
with high-speed optimization level and count the cycles with the debugging
functionality of the IAR Embedded Workbench IDE [1].

Memory optimised Speed optimised

Security
Algo. GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 2640 1928 2168 3148 3376 3060
ROLLO-I-192 2972 2156 2748 3520 3508 4248
ROLLO-I-256 4850 3328 4832 5792 4424 7504

Table 5. Memory usage for ROLLO-I (in bytes)

Table 5 provides memory usage during the key encapsulation mechanism accord-
ing to the optimization in terms of memory or in terms of time.

The core is a 32 bits multiplier, it means that every element in Fqm has to be
represented on dm/32e · 4 bytes: for this implementation, an element from Fn

qm

will be represented as n · dm/32e · 4 bytes. Considering this fact, the memory
usage of ROLLO-I-128 and ROLLO-I-192 will only differ because of n, indeed
for ROLLO-I-128, m = 79 and for ROLLO-I-192, m = 89, we thus obtain
d79/32e = d89/32e = 3. In contrast, every element in Fqm for ROLLO-I-256
requires one more 32 bits word, it explains the huge difference of memory usage
between the higher security and the two lowers. Moreover, Table 5 highlights the
fact that the implementation of ROLLO-I-256 needs more than 4kB of RAM, so
it cannot be implemented in our target.
Table 6 provides the number of cycles required by ROLLO-I-128 and ROLLO-
I-192.



16 Lablanche, Mortajine et al.

Memory optimised Speed optimised

Security
Algo. GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 9.7 1.51 10.17 8.68 0.6 3.97
ROLLO-I-192 12.7 2.39 15.29 11.11 0.8 6.63

Table 6. Cycles counts (×106) for ROLLO-I

The key generation process performances are not really impacted by the speed
optimization given that the multiplication is the only operation that has been
changed between the implementations.

Table 7 presents the execution time in milliseconds for ROLLO-I at the 128 and
192 bits security level.

Memory optimised Speed optimised

Security
Algo. GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 194 30.2 203.4 173.6 12 79.4
ROLLO-I-192 254 47.8 305.8 222.2 16 132.6

Table 7. Timings in miliseconds for ROLLO-I

Figure 3 and Figure 4 provide the cycle counts for different operations performed
in ROLLO-I-128 and ROLLO-I-192 that consist of the cipher and syndrome
computation and RSR algorithm. We do not take into account the cycle counts
for operations in Fqm or for SHA-512 that are performed by using the existing
hardware and cryptographic library and they are not been optimized in this
work.

Fig. 3. Operations in ROLLO-I-128 according to memory optimization and time opti-
mization



ROLLO-I implementation on Cortex M3 17

Fig. 4. Operations in ROLLO-I-192 according to memory optimization and time opti-
mization 2

To give a rough idea, we decided to compare ROLLO-I implementation with a
widely used key exchange cryptosystem Elliptic Curve Diffie-Hellman (ECDH) [2].
The elliptic curve multiplication in Zp has already been implemented on the same
platform and also benefits of the crypto co-processor for ECC.
To establish a shared secret between two entities, the ECDH protocol required
2 multiplications in Zp that are executed in parallel by these two entities.
Thus, Table 8 gives the performances of a key agreement for ECDH and ROLLO-
I cryptosystems according to the security level. For the estimation cost of ECDH,
we only consider the two scalar multiplication, we do not into account the nec-
essary time for the exchange of intermediate computation.

Security Algorithm Clock cycle (×106)
128 ROLLO-I-128 4.52

ECDH Curve 256 3.49
192 ROLLO-I-192 7.43

ECDH Curve 384 8.45
Table 8. Performance comparison between ROLLO-I and ECDH for two different
security levels.

This shows that in case ROLLO-I submission should be standardized, it could
be seen as a good alternative to cryptography in use today on embedded devices.

Finally, Table 9 gives indicatively performances in terms of memory and speed
for others post-quantum cryptosystems, candidates to the NIST PQC project.
However, the comparison with our implementation is not possible due to a large
number of parameters that we have to take into account to compute the cycle
counts. Indeed, value provided in Table 9 derive from implementation on dif-
ferent platforms and thus different architecture with different clock frequencies.
Plus, the level of security of cryptosystems quoted is not the same.
Nevertheless, we decided to only give cycle counts and memory usage of cryp-



18 Lablanche, Mortajine et al.

tosystems implemented on ARM CORTEX-M4 microcontrollers in order to re-
duce the architecture differences and give a rough idea of the cost of other
post-quantum cryptosystems.

Key generation Encapsulation Decapsulation
Schemes speed memory speed memory speed memory

ROLLO-I-192 (memory) 12,700k 2,972 2,390k 2,156 15,290k 2,748
ROLLO-I-192 (speed) 11,110k 3,520 800k 3,508 6,630k 4,248

Saber [14] 1,165k 6,931 1,530k 7,019 1,635k 8,115
Saber [12] 895k 13,248 1,161k 15,528 1,204k 16,624

Kyber768 [13] 1,200k 10,544 1,446k 13,720 1,477k 14,880
NewHope [13] 1,246k 11,160 1,966k 17,456 1,977k 19,656

NTRU-HRSS [12] 145,963k 23,396 404k 19,492 819k 22,140

Table 9. Speed (cycles) and memory(bytes) performances for other NIST submissions
on CORTEX-M4.

Conclusion

In this paper, we have shown that a post-quantum code-based cryptosystem
could be implemented in an existing chip with existing hardware. For this prac-
tical implementation, ROLLO-I submission that presents reasonable parameter
sizes has been seen as a good candidate to be implemented on a constraint device
disposing of 4 kB of RAM for cryptographic data. We then provided two imple-
mentations, one optimized in memory usage and one in time that leads us to
provide a comparison with the ECDH protocol that is implemented on the same
target platform and benefits of the same crypto co-processor. This comparison
has shown the good performances of ROLLO-I making it as a good alternative
to replace public key exchange cryptosystems.
For future work, it would be interesting to look out the performances of ROLLO-I
on a full hardware implementation. It would be also interesting to compare this
implementation with other post-quantum cryptosystems implemented on the
same target platform.

References

1. IAR Embedded Workbench. URL: https://www.iar.com/.
2. SEC 1. Standards for Efficient Cryptography Group: Elliptic Curve Cryptography

- version 2.0, 2009. URL: https://www.secg.org/sec1-v2.pdf.
3. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-

quantum Key Exchange—A New Hope. In 25th USENIX Security Sym-
posium (USENIX Security 16), pages 327–343, Austin, TX, 2016. USENIX

https://www.iar.com/
https://www.secg.org/sec1-v2.pdf


ROLLO-I implementation on Cortex M3 19

Association. URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim.

4. Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Olivier Blazy Loïc Bidoux,
Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Car-
los Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-
Pierre Tillich, Gilles Zémor, and Valentin Vasseur. NIST PQC submisssion : BIKE
- Bit Flipping Key Encapsulation, 2017.

5. Nicolas Aragon, Olivier Blazy, Slim Bettaieb, Loïc Bidoux, Jean-Christophe
Deneuville, Adrien Hauteville Philippe Gaborit, Olivier Ruatta, and Gilles Zé-
mor. NIST PQC first round submisssion : LOCKER - LOw rank parity ChecK
codes EncRyption , 2017.

6. Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Adrien Hauteville
Philippe Gaborit, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. NIST
PQC first round submisssion : LAKE - Low rAnk parity check codes Key Ex-
change, 2017.

7. Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Adrien Hauteville
Philippe Gaborit, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. NIST
PQC first round submisssion : Ouroboros-R , 2017.

8. Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, Olivier Ruatta, and Gilles
Zémor. Low Rank Parity Check Codes: New Decoding Algorithms and Applications
to Cryptography. CoRR, abs/1904.00357, 2019. URL: http://arxiv.org/abs/
1904.00357, arXiv:1904.00357.

9. Philippe Delsarte. Bilinear forms over a finite field, with applications to coding
theory. J. Comb. Theory, Ser. A, 25:226–241, 1978.

10. R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, April 1950. doi:10.1002/j.1538-7305.1950.
tb00463.x.

11. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory,
pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

12. Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster Multiplica-
tion in z2m[x] on Cortex-M4 to Speed up NIST PQC candidates. In ACNS, volume
11464 of Lecture Notes in Computer Science, pages 281–301. Springer, 2019.

13. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4.

14. Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and Ingrid Ver-
bauwhede. Saber on ARM CCA-secure module lattice-based key encapsulation on
ARM. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):243–266, 2018.

15. Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997.

16. Eugene Luks, Ferenc Rakoczi, and Charles Wright. Some Algorithms for Nilpotent
Permutation Groups. J. Symb. Comput., 23:335–354, 04 1997. doi:10.1006/jsco.
1996.0092.

17. R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, January 1978.

18. Carlos Aguilar Melchor, Nicolas Aragon, Magali Bardet, Slim Bettaieb, Loïc
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Adrien Hauteville Philippe Ga-
borit, Ayoub Otmani, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. NIST

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
http://arxiv.org/abs/1904.00357
http://arxiv.org/abs/1904.00357
http://arxiv.org/abs/1904.00357
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
http://dx.doi.org/10.1006/jsco.1996.0092
http://dx.doi.org/10.1006/jsco.1996.0092


20 Lablanche, Mortajine et al.

PQC second round submisssion : ROLLO - Rank-Ouroboros, LAKE & LOCKER,
2017.

19. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Olivier Blazy Loïc Bidoux,
Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles Zé-
mor. NIST PQC submisssion : Hamming Quasi-Cyclic (HQC), 2017.

20. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Olivier Blazy Loïc Bidoux,
Jean-Christophe Deneuville, Philippe Gaborit, Gilles Zémor, Alain Couvreur, and
Adrien Hauteville. NIST PQC submisssion : Rank Quasi-Cyclic (RQC), 2017.

21. National Instute of Standards and Technology. Submission Re-
quirements and Evaluation Criteria for the Post-Quantum Cryptog-
raphy Standardization Process, 2016. URL: https://csrc.nist.
gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

22. André Weimerskirch and Christof Paar. Generalizations of the Karatsuba Al-
gorithm for Efficient Implementations, 2006. aweimerskirch@escrypt.com 13331
received 2 Jul 2006. URL: http://eprint.iacr.org/2006/224.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://eprint.iacr.org/2006/224

	Optimized implementation of the NIST PQC submission ROLLO on microcontroller 

