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Abstract

Many cryptographic schemes have been proposed from learning
with errors problems over some rings (Ring-LWE). Polynomial time
quantum reduction from the approximating Shortest Independent Vec-
tors Problem (SIV Pγ) for fractional ideal lattices in any algebraic
number field to the average-case decision Ring-LWE for any modu-
lus over the integer ring in this number field was established in the
Peikert-Regev-Stephens-Davidowitz STOC 2017 paper. However the
hardness of approximating SIV Ppoly(n) in quantum computing was
only a folklore conjecture. In this paper we prove that decision Ring-
LWE for arbitrary number fields can be solved within polynomial time
for infinitely many modulus parameters under a suitable bound on
widths (with respect to the canonical embedding). We construct some
algebraic number fields such that the decision versions of Ring-LWE
with parameters in the range of Peikert-Regev-Stephens-Davidowitz
K − SIV P to Ring-LWE reduction result can be solved within poly-
nomial time. Our results indicate that approximating SIV Ppoly(n) for
fractional ideal lattices in these algebraic number fields can be solved
by a polynomial time quantum algorithm.
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1 Introduction

1.1 SVP and SIVP

A lattice L is a discrete subgroup in Rn generated by several linear in-
dependent vectors b1, . . . ,bm over the ring of integers, where m ≤ n,
L := {a1b1 + · · · + ambm : a1 ∈ Z, . . . , am ∈ Z}. The volume vol(L) of
this lattice is

√
det(B ·Bτ ), where B := (bij) is the m× n generator matrix

of this lattice, bi = (bi1, . . . , bin) ∈ Rn, i = 1, · · · ,m, are base vectors of
this lattice. The length of the shortest non-zero lattice vectors is denoted by
λ1(L). The well-known shortest vector problem (SVP) is defined as follows.
Given an arbitrary Z basis of an arbitrary lattice L to find a lattice vector
with length λ1(L) (see [47]). The approximating shortest vector problem
SV Pf(m) is to find some lattice vectors of length within f(m)λ1(L) where
f(m) is an approximating factor as a function of the lattice dimensionm (see
[47]). A breakthrough result of M. Ajtai [4] showed that SVP is NP-hard un-
der the randomized reduction. Another breakthrough proved by Micciancio
asserts that approximating SVP within a constant factor is NP-hard under
the randomized reduction (see [47]). For the latest development we refer to
Khot [34]. It was proved that approximating SVP within a quasi-polynomial
factor is NP-hard under the randomized reduction. The Shortest Indepen-
dent Vectors Problem (SIV Pγ(m)) is defined as follows. Given an arbitrary
Z basis of an arbitrary lattice L of dimension m, to find m independen-
t lattice vectors such that the maximum length of these m lattice vectors
is upper bounded by γ(m)λm(L), where λm(L) is the m-the Minkowski’s
minimum of lattice L (see [47]). For the hardness results about SV P and
SIV P we refer to [34, 35, 55].

Since the publication of [24], BKZ (block Korkine-Zolotarev) type algo-
rithms with extreme pruning enumerations of large blocksizes 50 − 150 as
subroutines were proposed such that relative ”shorter” lattice bases can be
reduced from arbitrary given lattice bases. BKZ type algorithms in [24, 46]
have been served as main algorithms to get short vectors in high dimension-
al lattices related to Ring-LWE problems and to check the hardness of the
Ring-LWE problems (see [2, 37]).

1.2 Gaussian and discrete Gaussian

Gaussian distribution. Set ρs,c(x) = e−π||x−c||2/s2 for any vector c in Rn

and any s > 0, ρs = ρs,0, ρ = ρ1. The Gaussian distribution around c with
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width s is defined by its probability density function Ds,c =
ρs,c(x)

sn , ∀x ∈ Rn.
n random variables with density functions ρ1, . . . , ρn are said mutually in-
dependent if their joint probability distribution has the density function
ρ =

∏n
i=1 ρn. Notice that Ds,c can be expressed as the product of n indepen-

dent 1-dimension Gaussian distributions. A n dimensional random variable
according to a Gaussian distribution on Rn has the density function

ρ(Σ, c) =
1

(2π)n/2(det(Σ))1/2
e−

1
2
(x−c)·(Σ)−1(x−c)τ ,

where c ∈ Rn and Σ is a positive definite matrix. The coordinate random
variablesX1, . . . , Xn of the n dimensional random variableX = (X1, . . . , Xn)
with the above density function are mutually independent if Σ is a diagonal
matrix.

Discretization. For any discrete subset A ⊂ Rn we set ρs,c(A) =
Σx∈Aρs,c(x) and Ds,c(A) = Σx∈ADs,c(x). Let L ⊂ Rn is a dimension n
lattice, the discrete Gaussian distribution over L is the probability distribu-
tion over L defined by

∀x ∈ L, DL,s,c =
Ds,c(x)

Ds,c(L)
=

ρs,c(x)

ρs,c(L)
.

When c = 0, the discrete Gaussian distribution is denoted by DL,s. We
refer the following properties of discrete Gaussian distributions to [44].
1) If x is distributed according to Ds,c and conditioned on x ∈ L, the con-
ditional distribution of x is DL,s,c.
2) For any lattice L and any vector c ∈ Rn we have ρs,c(L) ≤ ρs(L).

3) Set C = c
√
2πee−πc2 < 1 for any c > 1√

2π
, and n dimensional lattice L

and v ∈ Rn, ρ(L − c
√
nBn) ≤ Cnρ(L), ρ((L + v) − c

√
nBn) ≤ Cnρ(L),

where Bn is the unit-ball centered at the origin.
4 If a e ∈ Rn is sampled according to a Gaussian distribution with width σ,
then the Euclid norm ||e|| of e satisfies ||e|| ≤

√
3nσ with an overwhelming

probability.

Remark 1.1. If x is a continuous random variable over R according to
a Gaussian distribution with the width σ, then ux is a continuous random
variable according to a Gaussian distribution with the width uσ, where u
is a positive integer. Let xdis be the discretization of x valued in Z. Then
the discrete random variable uxdis is not the discretization (ux)dis of the
continuous random variable ux. The density function of the discrete random
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variable uxdis at z ∈ Z−uZ is zero. However the density function of (ux)dis
at z ∈ Z is

e−π( z
uσ

)2

Σy∈ 1
u
Ze

−π( y
σ
)2
.

In particular the density function of (ux)dis is not zero at z ∈ Z− uZ.

If we consider the discrete random variable uxdis module q valued in
(− q

2 ,
q
2 ]

∩
Z and (ux)dis module q valued in (− q

2 ,
q
2 ], the difference is much

bigger. Set uw′ ≡ w mod q, where w and w′ are two integers in (− q
2 ,

q
2 ].

The density function of uxdis at w is

Σ±∞
k=±1e

−π(w
′+kq
σ

)2

Σz∈Ze
−π( z

σ
)2

.

The density function of (ux)dis is

Σ±∞
k=±1e

−π(
w′+ kq

u
σ

)2

Σy∈ 1
u
Ze

−π( y
σ
)2

.

That is, when u is large, (ux)dis module q is very close to a uniform distri-
bution on (− q

2 ,
q
2 ] and uxdis is not.

In the practical scenario of attacking a decisional Ring-LWE problem, the
errors in samples obtained by attackers are discrete random variables over
Z/qZ according to the discretizations of Gaussian distributions. However in
some analysis these errors were treated as continuous random variables. In
particular the width of a linear combination of errors (as discrete random
variables) was treated according to the formula of a linear combination of
continuous random variables satisfying Gaussian distributions. This is not
mathematically rigorous and sometimes far away from a real linear combi-
nation of discrete errors over Z/qZ. We refer to [49] subsection 4.1 and [39]
subsection 2.4.2 for the detail.

1.3 Algebraic number fields

An algebraic number field is a finite degree extension of the rational number
field Q. Let K be an algebraic number field and RK is its ring of integers in
K. From the primitive element theorem there exits an element θ ∈ K such
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that K = Q[x]/(f) = Q[θ] where f(x) ∈ Z[x] is an irreducible polynomial
(see [21]). It is well-known there is a positive definite inner product on the
lattice RK defined by < u, v >= trK/Q(uṽ) where ṽ is its complex conju-

gate (see [8, 16]). Sometimes we use ||u||tr to represent trK/Q(uũ)
1/2. This

is also the norm with respect to the canonical embedding (see [39]). The
number field K is called monogenic, if the ring RK of integers is of the form
RK = Z[x]/(f) = Z[θ]. This is equivalent to that RK has a power base
(see [26]). In this case the discriminant of the number field K (see [21]) is
the same as the discriminant of the minimal polynomial f , ∆K = ∆f . We
recall for a monic degree m polynomial f with m roots θ1, θ2, . . . , θm, then
the discriminant of the polynomial f is ∆f =

∏
i ̸=j(θj − θi)

2. For an ideal
I ⊂ RK if we can find one generator g, this ideal is called a principal ideal
generated by g. Any ideal in RK is a lattice of dimension deg(K/Q). For an
ideal I ⊂ RK, its dual I∨ is defined as I∨ = {x ∈ K, trK/Q(ax) ∈ Z, ∀a ∈ I}.

Let ξn be a primitive n-th root of unity, the n-th cyclotomic polyno-
mial Φn is defined as Φn(x) =

∏n
j=1,gcd(j,n)=1(x − ξjn). This is a monic

irreducible polynomial in Z[x] of degree ϕ(n), where ϕ is the Euler func-
tion. The n-th cyclotomic field is Q(ξn) = Q[x]/(Φn(x)) and the ring of
integers in Q(ξn) is exactly Z[ξn] = Z[x]/(Φn(x)) (see [58]). For example
when n = 2m, the n-th cyclotomic polynomial is Φ2m(x) = x2

m−1
+1. When

n = p is an odd prime Φp(x) = xp−1 + xp−2 + · · ·+ x+1 and when n = pm,

Φpm(x) = Φp(x
pm−1

) = (xp
m−1

)p−1 + · · ·+ xp
m−1

+ 1.

The cyclotomic number fieldQ[ξn] is a monogenic field. The discriminan-
t of the cyclotomic field (also the discriminant if the cyclotomic polynomial
Φn) is

(−1)
ϕ(n)
2

nϕ(n)∏
p|n p

ϕ(n)
p−1

.

For example when n = 2m the discriminant is 2(m−1)2m−1
. When n = p is

an odd prime the discriminant is (−1)
p−1
2 pp−2. Hence

∏
(ξj − ξi)

2 = (−1)
ϕ(n)
2

nϕ(n)∏
p|n p

ϕ(n)
p−1

,

where ξ1, ξ2, . . . , ξϕ(n) are n-the primitive roots of unity, from the equality
∆Q[ξn] = ∆Φn .
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1.4 LWE and Ring-LWE

LWE.

Let n be the security parameter, q be an integer modulus and χ be an
error distribution over Zq. Let s ∈ Zn

q be a secret chosen uniformly at
random. Given access to d samples of the form

(a, [a · s+ e]q) ∈ Zn
q × Zq,

where a ∈ Zn
q are chosen uniformly at random and e are sampled from the

error distribution χ, the search LWE is to recover the secret s. In general χ
is the discrete Gaussian distribution with the width σ. Here a · s = Σaisi is
the inner product of two vectors in Zn

q .

Write the d coefficient vectors a1, . . . ,ad as columns of a matrix A ∈
Zn×d
q , Then the search LWE problem LWEn,q,d,χ is to recover the secret

from Aτ · s + e = b mod q from public (A,b). Here τ is the transposition
of a matrix and (s, e) is an unknown vector.

Solving decision LWEn,q,d,χ is to distinguish with non-negligible proba-
bility whether (A,b) ∈ Zn×d

q × Zd
q is sampled uniformly at random, or if it

is of the form (A,Aτ · s+ e) where e is sampled from the distribution χ.

Here [a ·s+e]q is the residue class in the interval (− q
2 ,

q
2 ]. We refer to [54]

for the detail and the background. When q is prime and polynomial bound-
ed by poly(n), there is a polynomial-time reduction between the search and
decision LWE (see [54]).

For this LWE without ring structure, the following reduction results (see
[54, 48, 15]) give reductions from approximating SVP to LWE.

Reduction from GapSV PÕ(nq/σ) to search LWEn,d,DZ,s
.

Regev [54]. If q = poly(n) and σ >
√
n/(2π), then there exists a quan-

tum polynomial time reduction from worst-case GapSV PÕ(nq/σ) the search
LWEn,q,d,DZ,σ

.

Peikert [48]. If q ≥ 2n/2, σ >
√
n/(2π) and d = poly(n), then there

exists a classical polynomial time reduction from worst-case GapSV PÕ(nq/σ)
to search LWEn,q,d,DZ,σ

.
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Brakerski-Langlois-Peikert-Regev-Stehlé [15]. If If q ≤ poly(n), σ >√
n/(2π) and d = poly(n), then there exists a polynomial time classical re-

duction from worst-case GapSV PÕ(nq/σ) in dimension
√
n to search LWEn,q,d,DZ,σ

.

Hence if the hardness of LWE is based on the hardness of approximating
SVP, the ratio nq

σ has to be small, for related result we refer to [42]. On the
other hand, the equivalence of Decision LWE and Search LWE was proved
in [54] (Lemma 4.2 in [54]) when 2 ≤ q ≤ poly(n) and q is a prime. (or see
[2], Lemma 3).

Ring-LWE.

If the Zn
q is replaced by Pq = P/qP where P = Z[x]/(f), f(x) is a monic

irreducible polynomial of degree n in Z[x], this is the polynomial learning
with errors problem. The inner product a · s = Σaisi is replaced by the
multiplication a · s in the ring Pq. The error distribution χ is defined as the
discrete Gaussian distributions with respect to the basis 1, x, x2, . . . , xn−1

(see [26, 27]).

If the Zn
q is replaced by (RK)q = RK/qRK where RK is the ring

of integers in an algebraic number field K, this is the Ring-LWE, learn-
ing with errors problem over the ring RK. The secret s is in the dual
(RK

∨)q = RK
∨/qRK

∨ and a ∈ RKq is chosen uniformly at random. The
inner product a · s = Σaisi is replaced by the multiplication a · s in (RK

∨)q.
The error e is in (RK

∨)q = RK
∨/qRK

∨. In this case the width of error
distribution is defined by the trace norm on K ⊗ R via the canonical em-
bedding (see [39, 17]). This is called the dual form of Ring-LWE problem
. When s ∈ (RK)q and e ∈ (RK)q are assumed it is called the non-dual
form of Ring LWE problem. As indicated in [17, 18, 26] these two forms of

Ring-LWE problem are equivalent with a scale factor |∆K|
1
n on the width

of the Gaussian distribution of errors.

The following reduction result is from [39, 40].

Hardness reduction for Ring-LWE 1: Let K be the m-th cyclotom-
ic field of degree n = ϕ(m). Let α = α(n) > 0 and q = q(n) ≥ 2, q ≡ 1
mod m be a polynomial bounded prime such that αq ≥ ω(

√
logn). Then

there exists a polynomial time quantum reduction from GapSV PÕ(
√
n/α) (or

GapSIV PÕ(
√
n/α)) on any ideal lattices in RK to the decision Ring-LWE
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over RK given l samples, with the discrete Gaussian distribution with width
qα( nl

log(nl))
1/4.

Here we know that the approximating factor is Õ(

√
nq( nl

log(nl)
)1/4

σ ) where

σ = qα( nl
log(nl))

1/4 is the width of the Gaussian distribution. As explained

in [39, 25] when K is Galois and q is a prime number that splits into prime
ideals in RK with poly(n) algebraic norms, the decision version and the
search version of the Ring-LWE problem over RK are equivalent.

For efficient implementation of recent cryptography breakthrough fully
homomorphic encryption (FHE) and cryptographic multilinear mappings in
[30, 31] it was suggested based on the hardness of Ring-LWE problems over
integer rings in cyclotomic number fields with degree ϕ(n) = 2k−1, n = 2k

(see [43]). For more cryptographic primitives based on Ring-LWE we refer
to [40, 41, 51, 50, 48, 54].

The following reduction was proved in [39] section 4 for general number
fields. For the detail of the discrete Gaussian sampling problem K−DGSγ

for fractional ideals and the reduction from Õ(
√
n
α )-approximate SIVP to

K−DGSγ , we refer to [39].

Hardness reduction for Ring-LWE 2: Let K be an arbitrary num-
ber field of degree n. Let α = α(n) > 0 and q = q(n) ≥ 2 be such that
αq ≥ ω(

√
logn). Then there exists a probabilistic polynomial-time quantum

reduction from K − DGSγ to the search version R − LWEq,Ψ<α, where

γ =
ηε(I)·ω(

√
logn)

α for some negligible ε = ε(n). Here K−DGSγ is the dis-
crete Gaussian sampling problem. I is any ideal and ηε(I) is the smoothing
parameter of I.

Actually this was extended to decision Ring-LWE in [52] in the following
results (Theorem 6.2 and Corollary 6.3 in [52]).

Hardness reduction for Ring-LWE 3: Let K be an arbitrary number
field of degree n and R = RK. Let α = α(n) ∈ (0, 1), and let q = q(n) be
an integer such that αq ≥ 2ω(1). Then there exists a polynomial-time quan-
tum reduction from K−DGSγ to average-case, decision R−LWEq,Υα, for

any γ = max{ η(I)·2
α·ω(1) ,

√
2n

λ1(I)
}. Here K−DGSγ is the discrete Gaussian sam-

pling problem. I is any ideal lattice and η(I) is the smoothing parameter of I.
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Hardness reduction for Ring-LWE 4: Let K be an arbitrary number
field of degree n and R = RK. Let α = α(n) ∈ (0, 1), and let q = q(n) be an
integer such that αq ≥ 2ω(1). Then there exists a polynomial-time quantum
reduction from K−SIV Pγ to average-case, decision R−LWEq,Υα, for any

γ = max{ η(I)·2
α·ω(1) ,

√
2n

λ1(I)
} ≤ max{ω(

√
nlogn/α),

√
2n}. Here K−SIV Pγ is the

Shortest Independent Vector Problems for any fractional ideal lattice in K.
I is any ideal lattice and η(I) is the smoothing parameter of I.

Remark 1.2. First of all the hardness of approximating SVP to some
almost polynomial factors under the randomized reduction was proved for
all lattices ([32, 35, 55]), while the hardness of some Ring-LWE is based
on SV Ppoly(n) or SIV Ppoly(n) for fractional ideal lattices as proved in the
above result (see [54, 48, 39, 52]). People do not have any evidence that
approximating SVP for ideal lattices is hard or not (see [51, 54]). Secondly
the approximating factor has to be small if we want the hardness of LWE
or Ring-LWE from the hardness of SV Ppoly(n) or SIV Ppoly(n), since when
the approximating factor is as large as exponential of lattice dimensions, the
LLL algorithm can be used to give the desired lattice vectors (see [42]).

Remark 1.3. The Gaussian distribution depends on coordinates and
the norm. We need to pay special attention to coordinates (or the basis
with which coordinates are obtained) and the norm used when we say the
”width” of a Gaussian distribution. The ”canonical embedding’ was used to
define the Gaussian distribution on K ⊗R (see [39, 40, 51, 17]). We recall
the analysis in [17]. Set Φ : K −→ H the canonical embedding defined on
the number field K = Q[x]/(f) where f is a degree n irreducible polynomial
over Q and α1, . . . , αn in C are n roots of f . We refer the definition of the
space H to Subsection 2.2 in [40]. Set Nf the inverse of the Vandermonde

matrix (αj−1
i )1≤i,j≤n and B the following matrix. Is1 0 0

0 1√
2
Is2

1√
2
Is2

0 1√
2
Is2

1√
2
Is2


Here there are s1 real roots of f and 2s2 conjugate complex roots of f . Hence
s1 + 2s2 = n. Let r = (r1, . . . , rn) where r1, . . . , rn are n positive real num-
bers. If xi, i = 1, . . . , n, is sampled independently from the Gaussian distri-
bution with width ri, then coordinate vector with respect to the polynomial
base 1, x, . . . , xn of K ⊗ R from the Gaussian distribution with parameter
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r (with respect to the canonical embedding Φ) is Nf ·B · (x1, . . . , xn)τ . Set
||Nf ||2 = max

||Nf ·x||
||x|| where x ∈ Rd takes all non-zero vectors. In the case

r = (σ′, . . . , σ′), if in the dual form of the Ring-LWE problem we set the
width of the Gaussian distribution with respect to the canonical embedding
is σ, then σ′ ≤ ||Nf ||2 · |∆K|

1
n · σ. Here ∆K is the discriminant of the alge-

braic number field K.

In the plain LWE over Zn
q , if the secret s is chosen uniformly at random

from {−1, 0, 1}n or {0, 1}n, the corresponding LWE is called binary LWE.
The binary LWE was introduced and some hardness results were proved in
[15, 45]. In [5] a lattice decoding attack on this binary LWE was presented.
It was proved that the worst-case GapSVP of some lattices of dimensions
n/logq can be reduced to binary LWE in [15, 45].

1.5 Known attacks

We refer to [12, 33] for the attack to LWE from the Blum-Kalai-Wasserman
algorithm and its improvement. In [42] a probabilistic polynomial time
algorithm was given to recover the secret key of LWE over Zn

q when nq
σ

is very large. On the other hand Ring-LWE problems over integer rings
of some algebraic number fields or polynomial rings Pn

q were attacked in
[25, 27, 19, 20, 17, 19]. In [51, 17, 18] the above attack was analysed. The
attacks can succeed because the width of the Gaussian distribution over
K⊗R is too small, often smaller than a constant not depending on q only
depending on the lattice dimension d, or the shape of the Gaussian distri-
bution on Pq with respect to the base 1, x, . . . , xu−1 is too ”skewed” (see
[51, 18]).

When the width is too small, with high probabilities the errors are within
some range z+(−1

2 ,
1
2) with a fixed integer z, the Ring-LWE can be reduced

to an errorless problem (see [51]). One of the attack in [25, 27, 19, 20, 17, 19]
is based on a homomorphism RK −→ RK/qRK = Fqµ , where qRK is an
ideal over q and µ is one or two. Then the Ring-LWE can be ”transformed”
to a LWE over Fqf . If the ”error distribution”over Fqf from the errors sam-
pled according to some Gaussian distribution is concentrated, then it leads
to a complexity O(q3n) attack. Over 2-power cyclotomic integer rings, the
above ”error distribution” is indistinguishable from the uniform distribution
(see [20], section 4). Then their attack can not be applied to cyclotomic in-
teger rings. Their method can also be applied to some polynomial LWE

10



problems as described in [26, 27].

In [22] approximating SV P with approximating factor 2O(
√

nlogn) for
principal ideals in cyclotomic integer rings with n = pm can be found from
an arbitrary generator (see [11, 7, 8, 9, 10]) within polynomial time by an
efficient bounded distance decoding algorithm for the log-unit lattice. Thus
the [56] version of FHE can be broken within sub-exponential complexity
or quantum polynomial complexity. This work was extended in [23] and
[53] such that sub-exponential complexity algorithms with sub-exponential
pre-processing for approx-SVP in ideal lattices have been achieved.

The bounded distance decoding problem (BDD) for a lattice L is as fol-
lows. Given any x to find a lattice vector v ∈ L such that ||x − v|| ≤ B
where B is a fixed bound. In many applications B = γλ1(L) is assumed.
Attacks on LWE and Ring-LWE by bounded distance decoding with prun-
ing were given in [38, 5]. For algebraic attacks on LWE we refer to [1]. As
indicated in [45], a polynomial time algorithm to find the secret key in the
binary LWE can be obtained by the method in [1] when n2 samples are
available. For binary LWE and Ring-LPN (learning parity with errors over
ring) we refer to [33] for sub-exponential attacks.

We refer to [16, 57] for recent developments in solving Ring-LWE under
some conditions about samples and secret distributions.

2 Our contribution

2.1 Main results

Polynomial time quantum reductions from approximating SIV Ppoly(n) for
fractional ideal lattices in any algebraic number field to the average-case
decision Ring-LWE problem for any modulus over the integer ring in this
number field was established in [52]. In this paper we show that for modulus
parameter q such that f(q) ≡ 0 mod q, the decision Ring-LWE problems
over integer rings in some algebraic number fields can be solved efficiently.
However this condition is not so restrictive as the first glance. Because the
defining equation f(x) can be replaced by f(x + h) where h can be any
integer. Therefore any factor of f(h) where h is an arbitrary integer, can be
the modulus parameter satisfying this condition.
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Let f(x) ∈ Z[x] be an irreducible polynomial with degree n and K =
Q[x]/(f) be an algebraic number field such that the ring of integers in K
is RK = Z[x]/(f). That is, the number field K is monogenic. We consider
the non-dual form of the Ring-LWE problem over RK. Let q be a modulus
parameter. a and s are taken uniformly in RK,q = RK/qRK and the error e
is taken in RK,q according to a discrete Gaussian distribution. The sample
from the Ring-LWE over RK is (a,b), a ·s+e = b mod q. Let θ be a root of
f in the algebraic closure of Q and then K = Q(θ) and the ring of integers
in K is RK = Z[θ]. We can set the error vector e = e0+e1θ+· · ·+en−1θ

n−1,
where e0, e1, . . . , en−1 are discretizations from continuous random variables
over real numbers satisfying the Gaussian distribution width σ′. Let the
width of the Gaussian distribution with respect to the canonical embedding
be σ. Then σ′ ≤ ||Nf ||2 · |∆K|

1
n · σ = ||Nf ||2 · |∆f |

1
n · σ. Here ∆f is the

discriminant of the polynomial f . We refer to [39, 17, 18] for the detail.

The main results of this paper are as follows.

Theorem 2.1. Let K, RK and the non-dual form of Ring-LWE problem
be as above. Assume that
1) K = Q[x]/(f) is monogenic;
2) f and q satisfy f(q) ≡ 0 mod q;
3) q and the width σ′ are bounded by nc where c is a fixed positive integer;
4) q ≥ n and q3/2+ϵ ≤ σ′ where ϵ is an arbitrary small positive real number.
Then when n is sufficiently large, for a non-negligible probability 1

q ≥ 1
nc of

secrets s, the decision version of the above non-dual form of Ring-LWE over
RK can be solved within a polynomial time O(n2c).

In the above result the Ring-LWE is transformed to one-dimensional
case, however the condition that σ′ is polynomially bounded is essentially
necessary. In Theorem 2.1 the width σ′ is coordinate-depending, we need
the following result in which the condition is about the width with respect
to the canonical embedding.

Theorem 2.2. Let K, RK and the non-dual form of Ring-LWE problem
be as above. Assume that
1) K = Q[x]/(f) is monogenic;
2) q ≥ n is a factor of f(h) for some integer h, we denote the polynomial
fh = f(x+ h);
3) q is bounded by nc and the width σ with respect to the canonical em-
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bedding satisfies q3/2+ϵ

min ||Nfh
|||∆f |

1
n

≤ σ ≤ nc

||Nfh
||2·|∆f |

1
n
, where min ||Nfh || =

min
||Nfh

·x||
||x|| , ϵ is an arbitrary small positive real number and c is a fixed

positive integer.
Then when n is sufficiently large, for a non-negligible probability 1

q ≥ 1
nc of

secrets s, the decision version of the above non-dual form of Ring-LWE over
RK can be solved within a polynomial time O(n2c).

Corollary 2.1. Let K, RK and the non-dual form of Ring-LWE prob-
lem be as above. Assume that
1) K = Q[x]/(f) is monogenic;
2) q ≥ n is a factor of f(h) for some integer h;

3) q, ||Nfh ||2, |∆f |
1
n and q3/2+ϵ

min ||Nfh
|||∆f |

1
n

≤ σ are bounded by nc, where ϵ is

an arbitrary small positive real number and c is a fixed positive integer.
Then when n is sufficiently large, for a non-negligible probability 1

q ≥ 1
nc of

secrets s, the decision version of the above non-dual form of Ring-LWE over
RK can be solved within a polynomial time O(n6c).

Corollary 2.2. Let Kn = Q[x]/(fn), RKn be a sequence of monogenic
algebraic number fields and their rings of integers, with their degrees tending
to the infinity, and c be a fixed large positive integer. We assume that
1) There exists a sequence of modulus parameters qn satisfying n ≤ qn ≤ nc

and qn is a factor of fn(hn) for some integer hn, we denote the polynomial
fn(x+ hn) by gn(x);

2) ||Ngn ||2 and |∆fn |
1
n are bounded by nc.

Then the approximating SIVP for fractional ideals in Kn with a polynomial
factor can be solved within a polynomial time (in n) quantum algorithm.

In Theorem 2.2, Corollary 2.1 and 2.2 the key point is if we could find
a polynomially bounded q as a factor of f(x + h), can the ||Nf(x+h)||2 be
polynomially bounded?

In many cases the condition 2) in Theorem 2.2 can be satisfied for in-
finitely many modulus parameter q. For example when Kt = Q[x]/(Φ2t),
where Φ2t = x2

t−1
+ 1 is the 2t-th cyclotomic polynomial, then for any odd

prime modulus parameter q ≡ 1 mod 2t, there exists a integer h such that
h2

t−1
+ 1 ≡ 0 mod q (see Proposition 2.10 in page 13 of [58]). Therefore

there exists a 1 ≤ h ≤ q − 1 such that h2
t−1

+ 1 ≡ 0 mod q. Then we have
the following result from Theorem 2.2.

13



Corollary 2.3. Let K = Q[x]/(Φn) where n = 2t, RK = Z[x]/(Φn) and
the non-dual form of Ring-LWE over RK be as above, c be a fixed positive
integer, n ≤ q ≤ nc be a odd prime modulus parameter satisfying q ≡ 1 mod
n. We assume that the width σ with respect to the canonical embedding sat-

isfies q3/2+ϵ

(|h|+1)n/2
√
n
≤ σ ≤ nc

2(|h|+1)n/2
√
n
, where ϵ is an arbitrary small positive

real number.
Then when n is sufficiently large, for a non-negligible probability 1

q ≥ 1
nc of

secrets s, the decision version of the above non-dual form of Ring-LWE over
RK can be solved within a polynomial time O(n2c).

Let fn(x) = xn + un ∈ Z[x], n = 2t, where u is an positive integer, if
un has a prime factor with exponent 1, it is an irreducible polynomial in
Z[x] from the Eisenstein criterion. There exists an odd prime un satisfying
n ≤ un ≤ 3n and un ≡ 3 mod 4 from the Dirichlet density Theorem. As
stated in [26, 17] the number field Kn = Q[x]/(fn) is a monogenic field.

Then ∆Kn = ∆fn = nnun−1
n and |∆fn |

1
n = nu

n−1
n

n . In this case Nfn can
be nd can be calculated explicitly as in [17]. The two important quantities
||Nfn ||2 and minNfn are polynomially bounded. We have the following re-
sult from Corollary 2.1.

Corollary 2.4. Let Kn = Q[x]/(fn) where n = 2t, RKn = Z[x]/(fn)
and the non-dual form of Ring-LWE over RKn be as above, c be a fixed pos-
itive integer. We take un as the modulus parameter. Assume that the width
σ with respect to the canonical embedding satisfies 3n1+ϵ ≤ σ ≤ nc, where ϵ
is an arbitrary small positive real number.
Then when n is sufficiently large, for a non-negligible probability 1

n of secrets
s, the decision version of the above non-dual form of Ring-LWE over RK

can be solved within a polynomial time O(n4c).

It is clear that we can choose a suitable constant positive integer c such
that the above case of solvable decision Ring-LWE is in the parameter range
of Hardness reduction for Ring-LWE 4 in Subsection 1.4. From Corollary
2.2 and Hardness reduction for Ring-LWE 4 we have the following result.

Corollary 2.5.The approximating SIVP for fractional ideals with some
polynomial factors in Kn = Q[x]/(fn) as in Corollary 2.4 can be solved
within a polynomial time (in n) quantum algorithm.

14



2.2 Comparison with previous works

In Theorem 2.1 conditions on the width do not lead to the case that the
width σ′ of the error distribution e0, . . . , en−1 is too small or skew such
that the instance can be reduced to the errorless case. In previous works
[19, 20, 26] the width of error distribution is too small or skew such that the
RING-LWE can be reduced to the errorless case. The distinguishing from
the uniform distribution was realized by χ statistic test or by a theoretical
argument as in [26, 17, 51]. In this paper the distinguishing is proved by
a probability argument. In Corollary 2.4 our bound on the width σ with
respect to the canonical embedding for solvable Ring-LWE is much bet-
ter than the same bound in the Crypto 2015 paper [26]. The parameters in
Corollary 2.4 are in the range of hardness reduction results in Subsection 1.4.

2.3 Cryptographic implications

Almost all lattice-based crypto-systems are based on Ring-LWE problems
over cyclotomic integer rings Z[x]/(Φ2t). The security is established from the
conjectured quantum hardness about approximating SIV Ppoly(n) or SV Ppoly(n)

for ideal lattices in Z[x]/(Φ2t). More generally it was widely conjectured that
the SV Ppoly(n) for ideal lattices in general algebraic number fields is hard,
we refer to [41].

Corollary 2.2 suggests that approximating SIVP problems for fraction-
al ideals in some algebraic number fields with special number-theoretical
structures are not hard in quantum computing. Corollary 2.4 gave a se-
quence of number fields in which SIV Ppoly(n) can be solved by a polynomial
time quantum algorithm. In Theorem 2.2 and Corollary 2.2 the requirement
about the width σ with respect to the canonical embedding is a bound by a
polynomial of n, the main difficult part is to bound ||Nfh ||2 in Theorem 2.2
and ||Ngn ||2 in Corollary 2.2. Algebraic number fields satisfying conditions
1) and 2) in Corollary 2.2 are in the range of Hardness reduction 3 and 4,
and their SIV Ppoly(n) is not hard in quantum computing, as illustrated in
Corollary 2.4-2.5. Hence we believe that the hardness of Ring-LWE and
approximating SIV Ppoly(n) or SV Ppoly(n) for fractional ideals depends es-
sentially on concrete number-theoretical structures of number fields. From
the point of cryptographic view people need a strong evidence or a proof
for the hardness of SIV Ppoly(n) (SV Ppoly(n)) for ideal lattices in Q[x]/(Φn),
n = 2t. In this respect Corollary 2.3 shows that when σ is exponentially
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small the Ring-LWE over these cyclotomic integer rings is easy for infinitely
many primes. We give more results about cyclotomic number fields in Sec-
tion 6.

3 Preparation

3.1 Matrix form

For a Ring-LWE problem over the integer ring Z[θ], where K = Q[θ] is a
monogenic number field, a · s can be expressed as (1, θ, . . . , θn−1) · Aτ · s,
where a = a0+a1θ+· · ·+an−1θ

n−1, s = s0+s1θ+· · ·+sn−1θ
n−1. Here we al-

so refer a = (a0, a1, . . . , an−1) ∈ (Z/qZ)n, s = (s0, s1, . . . , sn−1)
τ ∈ (Z/qZ)n.

Aτ is the matrix form of the multiplication of a in K. The entries of the
matrix A are from the coefficients of the polynomial f and a. The com-
putation of A is from the relation f(θ) = 0 reducing the term θj , j ≥ n
to a linear combination of lower power terms 1, θ, . . . , θn−1. We have the
following result.

Theorem 3.1. The matrix Aτ has n distinct eigenvalues a0 + a1θt +
· · ·+ an−1θ

n−1
t with eigenvector Ut = (1, θt, . . . , θ

n−1
t ), where θ1, . . . , θn are

n roots of f(x). That is, we have

Ut ·Aτ = (a0 + a1θt + a2θ
2
t + · · ·+ an−1θ

n−1
t )Ut.

Proof. We have Ut ·Aτ · s = a · s = (a0 + a1θt + · · ·+ an−1θ
n−1
t )(s0 +

s1θt + · · ·+ sn−1θ
n−1
t ) = (a0 + a1θt + · · ·+ an−1θ

n−1
t )Ut · s for any possible

s, since θt is a root of the polynomial f . Then

(Ut ·Aτ − (a0 + a1θt + · · ·+ an−1θ
n−1
t )Ut) · s = 0

for any possible s. Thus Ut ·Aτ − (a0 + a1θt + · · ·+ an−1θ
n−1
t )Ut = 0. The

conclusion is proved.

Theorem 3.2. Let q be a positive integer such that w ∈ Z/qZ is
a root of f(x) module q. Set w = (1, w, . . . , wn−1). Then w · Aτ ≡
(a0 + a1w + a2w

2 + · · ·+ an−1w
n−1)w mod q.
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Proof. Since f(w) ≡ 0 mod q, then taking the congruence module q,
wj , j ≥ n can also be represented as a linear combination of lower pow-
er terms 1, w, . . . , wn−1 by the same relation as f(w) = 0 mod q. We have
w·Aτ ·s ≡ (a0+a1w+· · ·+an−1w

n−1)(s0+s1w+· · ·+sn−1w
n−1)mod q. That

is for any s ∈ (Z/qZ)n, we have (w·Aτ−(a0+a1w+· · ·+an−1w
n−1)w)·s ≡ 0

mod q. Then w ·Aτ ≡ (a0 + a1w + a2w
2 + · · ·+ an−1w

n−1)w mod q.

We consider the Ring-LWE over the cyclotomic integer ring Z = Z(ξn) =
Z[x]/(Φn), where ξn is a primitive n-th root of unity. For an elemen-
t a ∈ Z[ξn] with the form a = a0 + a1ξn + · · · + ad−1ξ

d−1
n and a secret

s = s0 + s1ξn + · · · + sd−1ξ
d−1
n ∈ RK/qRK, where d = ϕ(n). a · s can be

expressed as (1, ξn, . . . , ξ
d−1
n ) · Aτ · s. Here Aτ is the matrix form of the

multiplication a· in K = Q[x]/(Φn).

Set a0j = aj for j = 0, . . . , d−1. Set Σd−1
j=0a1jξ

j
n = ξn·a, . . . , Σd−1

j=0ad−1,jξ
j
n =

ξd−1
n · a, where · is the multiplication in K. Then a · s = Σd−1

j=0sjξ
j
n · a =

Σd−1
j=0sj(Σ

d−1
l=0 ajlξ

l
n). Hence

a · s = Σd−1
l=0 (Σ

d−1
j=0sjajl)ξ

l
n.

The matrix A is (alj)0≤l≤d−1,0≤j≤d−1. That is the j-th row of the matrix A
is the expansion with the base (1, ξn, . . . , ξ

d−1
n ) of the element ξjn · a.

For example when n = 2m, d = 2m−1, the cyclotomic polynomial Φ2m(x) =
x2

m−1
+ 1. Then ξdn = −1 and ξjna = −ad−j − ad−j+1ξn − · · · − ad−1ξ

j−1
n +

a0ξ
j
n+ · · ·+ad−j−1ξ

d−1
n . Thus the matrix A is a d×d matrix of the following

form. 
a0 a1 a2 · · · ad−1

−ad−1 a0 a1 · · · ad−2

· · · · · · · · · · · · · · ·
−a2 −a1 −a0 · · · a3
−a1 −a2 −a3 · · · a0


3.2 Probability theory

For the discretization to Z of Gaussian distribution with the width σ, the
probability at x is

pσ,discrete(x) =
e−( x

σ
)2

1 + 2e−( 1
σ
)2 + 2e−4( 1

σ
)2 + 2e−9( 1

σ
)2 + · · ·+

.

17



Then after taking module q, the probability at x ∈ (− q
2 ,

q
2 ] is

Pσ,discrete,modq(x) =
e−( x

σ
)2 +Σ∞

k=1(e
−(x+kq

σ
)2 + e−(x−kq

σ
)2)

1 + 2e−( 1
σ
)2 + 2e−4( 1

σ
)2 + 2e−9( 1

σ
)2 + · · ·+

.

Theorem 3.3. Let q = q(n) be a positive integer sequence tending to the
infinity. Suppose that e is a continuous random variable over R satisfying
the Gaussian distribution of polynomially bounded width σ ≥ q

3
2
+ϵ where ϵ is

an arbitrary small positive real number. Then the discrete random variable
over Z/qZ from e satisfies that when q is sufficiently large,

Pσ,discrete,modq(0) ≤
1

q
− c1q

σ2

for a fixed positive constant c1.

Proof. The probability at x ∈ Z/qZ = (− q
2 ,

q
2 ]

∩
Z,

Pσ,discrete,modq(x) =
e−( x

σ
)2 +Σ∞

k=1e
−(−kq+x

σ
)2 +Σ∞

k=1e
−( kq+x

σ
)2

1 + 2e−( 1
σ
)2 + 2e−4( 1

σ
)2 + 2e−9( 1

σ
)2 + · · ·+

.

Here we denote the denominator by D(0) and the numerator by N(x).

We haveD(0)−Σq−1
j=0e

−(x−j
σ

)2 = Σ∞
k=1e

−(−kq+x
σ

)2Σq−1
j=0e

−(−kq−j+x)2+(−kq+x)2

σ2 +

Σ∞
k=1e

−( kq+x
σ

)2Σq−1
j=0e

−(kq−j+x)2+(kq+x)2

σ2 = Σ∞
k=1e

−(−kq+x
σ

)2Σq−1
j=0e

− j(2kq−2x+j)

σ2 +

Σ∞
k=1e

−( kq+x
σ

)2Σq−1
j=0e

j(2kq−j+2x)

σ2 .

We set x = 0 in N(x) then

D(0)− Σq−1
j=0e

−( j
σ
)2 = Σ∞

k=1e
−( kq

σ
)2(Σq−1

j=0e
− j(2kq+j)

σ2 +Σq−1
j=0e

j(2kq−j)

σ2 ).

We expand Σq−1
j=0e

− j(2kq+j)

σ2 and Σq−1
j=0e

j(2kq−j)

σ2 as follows.

Σq−1
j=0e

− j(2kq+j)

σ2 = q−Σq−1
j=0

j(2kq+j)
σ2 +Σq−1

j=0

(− j(2kq+j)

σ2 )2

2 +Σq−1
j=0

(− j(2kq+j)

σ2 )3

6 +· · ·+

Σq−1
j=0

(− j(2kq+j)

σ2 )m

m! + · · ·

Σq−1
j=0e

j(2kq−j)

σ2 = q + Σq−1
j=0

j(2kq−j)
σ2 + Σq−1

j=0

(
j(2kq−j)

σ2 )2

2 + Σq−1
j=0

(
j(2kq−j)

σ2 )3

6 + · · · +

Σq−1
j=0

(
j(2kq−j)

σ2 )m

m! + · · ·.
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Then Σq−1
j=0e

− j(2kq+j)

σ2 +Σq−1
j=0e

j(2kq−j)

σ2 = 2q− (q−1)q(2q−1)
3σ2 +· · ·+Σq−1

j=0(
(− j(2kq+j)

σ2 )m

m! +

(
j(2kq−j)

σ2 )m

m! ) + · · ·.

Hence we have D(0) + (q − 1 − Σq−1
j=1e

−( j
σ
)2) = qN(0) − (q−1)q(2q−1)

3σ2 ×

Σ∞
k=1e

−( kq
σ
)2+Σ∞

k=1[e
−( kq

σ
)2Σq−1

j=0
j2(4k2q2+j2)

σ4 ]+Σm≥3Σ
∞
k=1[Σ

q−1
j=0(

(− j(2kq+j)

σ2 )m

m! +

(
j(2kq−j)

σ2 )m

m! )× e−( kq
σ
)2 ].

Lemma 3.1. 1) Let s be an non-negative integer and q be a fixed pos-

itive real number. Then Ds = Σ∞
k=1e

−( kq
σ
)2ks satisfies c(σq )

s+1 ≤ Ds ≤
Cs2(σq )

s+1, where c and C are two universal positive real constants.
2) When σ

q is sufficiently large,

Σ∞
k=1e

−( kq
σ
)2 < 2Σ∞

k=1e
−( kq

σ
)2(

kq

σ
)2

Proof. Let Sm,s = Σ√
m−1σ

q
≤k<

√
mσ

q
ks be the sum of ks for k satisfying

(m− 1) ≤ (
k

σ
)2 ≤ m

Then
Σ∞
m=1Sm,se

−m ≤ Ds ≤ Σ∞
m=1Sm,se

−(m−1)

On the other hand it is well-known from Faulhaber’s formula (Bernoulli’s
formula)

ns+1

s+ 1
≤ Σn

k=1k
s ≤ ns+1

Then it is clear we have

1

m
(
σ

q
)s+1 ≤ Sm,s ≤ m

s+1
2 (

σ

q
)s+1

Then the conclusion 1) follows directly.

We can compute Σ
0< kq

σ
)2≤1

e−( kq
σ
)2 by considering 1

m+1 < (kqσ )2 ≤ 1
m for

m = 1, 2, . . . , as follows. Set Sm the number of positive integers satisfying
σ

q
√
m+1

< k ≤ σ
q
√
m
, then

Σ
0< kq

σ
)2≤1

e−( kq
σ
)2 ≤ Σ∞

m=1e
− 1

m+1Sm
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The same method can be used to compute Σ
n< kq

σ
)2≤1+n

e−( kq
σ
)2 [2(kqσ )2 − 1]

for n = 1, 2, . . . , as follows.

Σ
n< kq

σ
)2≤1+n

e−( kq
σ
)2 [2(

kq

σ
)2 − 1] ≥ Σ∞

m=1(2n− 1 +
1

m+ 1
)e−n− 1

mSm

Then the coefficient of σ
q on the left side is smaller then the coefficient of σ

q
on the right side. The conclusion 2) is proved.

Lemma 3.2. For a fixed positive integer m

Σ∞
k=1e

−( kq
σ
)2 [Σq−1

j=0(
(− j(2kq+j)

σ2 )m

m!
+

( j(2kq−j)
σ2 )m

m!
)] ≤ 3m+1m

(m− 1)!
· qm

σm−1

Proof. It is clear Σ∞
k=1e

−( kq
σ
)2(Σq−1

j=0

(− j(2kq+j)

σ2 )m

m! ) ≤ 2·3mm2

m! · qm+m+1

σ2m ·
(σq )

m+1 from Lemma 3.1. Then the conclusion follows directly.

When m ≥ 3,

Σ∞
k=1e

−( kq
σ
)2(Σq−1

j=0(
(− j(2kq+j)

σ2 )m

m!
+

( j(2kq−j)
σ2 )m

m!
)) ≤ C

q(m−1)ϵ+m−3
2

where C is a universal positive constant and σ = q
3
2
+ϵ, ϵ > 0.

It is obvious q − 1− Σq−1
j=1e

−( j
σ
)2 ≤ Σq−1

j=1(
j
σ )

2 ≤ q3

3σ2 . Here the inequality
ex ≥ 1 + x is used.

Thus in the above expansion D(0) + (q − 1 − Σq−1
j=1e

−( j
σ
)2) = qN(0) −

(q−1)q(2q−1)
3σ2 ×Σ∞

k=1e
−( kq

σ
)2+Σ∞

k=1[e
−( kq

σ
)2Σq−1

j=0
j2(4k2q2+j2)

σ4 ]+Σm≥3Σ
∞
k=1(Σ

q−1
j=0

(
(− j(2kq+j)

σ2 )m

m! +
(
j(2kq−j)

σ2 )m

m! ))× e−( kq
σ
)2 , we have

Σ∞
k=1e

−( kq
σ
)2Σq−1

j=0

j2(4k2q2 + j2)

σ4
≥ Σ∞

k=1e
−( kq

σ
)2(

kq

σ
)2
4q3

3σ2
.

Then q3

σ2Σ
∞
k=1e

−( kq
σ
)2 is the largest term and we estimate its coefficient from

Lemma 3.1 2). Hence we have

D(0)− c1
q2

σ
≥ qN(0)

for some positive constant c1. The conclusion of Theorem 3.3 follows directly.
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3.3 Gautschi’s bound on the ∞ norm of inverses of Vander-
monde matrices

Let
V(x1, . . . , xn) = (aij)1≤i≤n,0≤j≤n−1 = (xji )1≤i≤n,0≤j≤n−1

be a Vandermonde matrix and V−1 be its inverse. Here x1, . . . , xn are
distinct complex numbers. The following result in [29] Theorem 4.4 is useful
to give bounds on ||Nf ||∞. We recall that the

||A||∞ = max
1≤νn

Σn
µ=1|aνµ|

, where A = (aνµ)1≤ν≤n,1≤µ≤n. It is clear
1√
n
||A||∞ ≤ ||A||2 ≤

√
n||A||∞.

Gautschi Theorem. Set p(x) =
∏n

i=1(x− xi). Suppose that xn+1−i =
x̄i, where x̄i is the conjugate of xi, and xn+1

2
= 0 if n is odd. If Re(xi) ≥ 0

or Re(xi) ≤ 0 for all i = 1, . . . , n. Then

|p(−1)|
mini{ |1+xi|2

|1−|xi|| |p
′(xi)|}

≤ ||V−1||∞ ≤ |p(−1)|
mini{ |1+xi|2

1+|xi| |p
′(xi)|}

if Re(xi) ≥ 0 for all i = 1, . . . , n and

|p(1)|
mini{ |1−xi|2

|1−|xi|| |p
′(xi)|}

≤ ||V−1||∞ ≤ |p(1)|
mini{ |1−xi|2

1+|xi| |p
′(xi)|}

if Re(xi) ≤ 0 for all i = 1, . . . , n, where the minimum is taken over all i
with 1 ≤ i ≤ n

2 .

4 Proofs and Algorithms

4.1 Proof of main results

Proof of Theorem 2.1. Let w be a root of the equation f(x) ≡ 0 mod q.
From Theorem 3.1 we have w ·Aτ ≡ (a0 + a1w+ a2w

2 + · · ·+ an−1w
n−1)w

mod q, where w = (1, w, . . . , wn−1). Then for an unknown secret vector s,
w·Aτ ·s ≡ (a0+a1w+a2w

2+· · ·+an−1w
n−1)(s0+s1w+· · ·+sn−1w

n−1)mod q.
From the sample (A,b) satisfyingAτ ·s+e ≡ bmod q, w·Aτ ·s+w·e ≡ w·b
mod q. That is, (a0+a1w+a2w

2+· · ·+an−1w
n−1)(s0+s1w+· · ·+sn−1w

n−1)+
(e0 + e1w + · · ·+ en−1w

n−1) ≡ b0 + b1w + · · ·+ bn−1w
n−1 mod q. Then the
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equality e0+ e1w+ · · ·+ en−1w
n−1 ≡ b0+ b1w+ · · ·+ bn−1w

n−1 mod q holds
for secret vectors satisfying s0+ s1w+ · · ·+ sn−1w

n−1 ≡ 0 mod q. Since q is
bounded by a polynomial function of n, then for a non-negligible probability
1
q of secret vectors, e0 + e1w + · · ·+ en−1w

n−1 ≡ b0 + b1w + · · ·+ bn−1w
n−1

mod q.

Since w = q is a root of f(x) ≡ 0 mod q, then if (a,b) is a sample from
the Ring-LWE euqation, e0+e1q+ · · ·+en−1q

n−1 ≡ b0+b1q+ · · ·+bn−1q
n−1

mod q, that is, e0 ≡ b0 mod q for a non-negligible probability 1
q of secrets.

We only need to test if b0 mod q is a uniform distribution on (− q
2 ,

q
2 ]

∩
Z.

From Theorem 3.3 e0 as a discrete random variable differing with the unifor-
m distribution with a term c1q

σ′2 at zero. Then the Ring-LWE can be solved
by testing the probability of b0 at zero. This can be achieved by testing
O(n2c) samples within O(n2c) time. The conclusion is proved.

Proof of Theorem 2.2. It is clear that K = Q[x]/(fh) and RK =
Z[x]/(fh). Then fh(0) ≡ 0mod q and the condition 1) and 2) in Theorem 2.1

are satisfied. The conclusion follows from min ||Nfh |||∆
1
n
f ≤ σ′ ≤ ||Nfh ||2σ

and Theorem 2.1 directly.

Proof of Corollary 2.1 It follows from Theorem 2.2 directly.

Proof of Corollary 2.2. This statement follows from Corollary 2.1
and Hardness reduction for Ring-LWE 4.

Proof of Corollary 2.3. We consider the polynomial Φ2t,h = (x +

h)2
t−1

+ 1. It is clear h ≤ −2 or h ≥ 2. Then the polynomial Φ2t,h satisfies
the condition of the Gautschi Theorem. The conclusion follows from the
estimation about ||NΦ2t,h

||2 in the Gautschi Theorem.

Proof of Corollary 2.4. As computed in [26, 17], the number field
Kn = Q[x]/(fn) is a monogenic field. We have ∆Kn = ∆fn = nnun−1

n .

It is easy to check n roots of fn are u
1
n
n ζj , where ζj , j = 1, 2, . . . , n, are

n roots of xn + 1 = 0. From Subsection 3.3 of [17], ||Nfn ||2 = 1√
n

and

min ||Nfn || = 1
√
nu

n−1
n

n

. The conclusion follows directly from Corollary 2.1.

Proof of Corollary 2.5. This conclusion follows from Corollary 2.2
directly.
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4.2 The algorithm

For given samples (a,b), we test the probability of (b)q ≡ b0 mod q. If it is
not from the Ring-LWE equation a · s+ e = b, it is 1

q . If the sample is from

the equation a · s + e = b, then for a probability of 1
q of s, the probability

P ((b)q = 0) ≤ 1
q − c1q

σ′2 . This can be tested from O(n2c) samples within

O(n2c) time.

Here we should notice that the time consuming of the above algorithm
depends on the polynomially bounded width σ′, because the non-negligible
difference is c1q

σ′2 .

5 Values of irreducible polynomials in Z[x]

The possible modulus parameters satisfying the condition 2) in Theorem 2.2
have to be factors of f(h) for some integer h. We recall some results to show
that this condition is not a strong restriction on modulus parameters.

First of all the following result in page 13 of [58] indicates that in cy-
clotomic polynomial case, the probability that a prime modulus parameter
satisfying the condition 2) in Theorem 2.2 is 1

n .

Proposition 5.1. Let n be a positive integer and p be an odd prime
satisfying that p is not a factor of n. Then there exists an integer h such
that Φn(h) ≡ 0 mod p if and only if p ≡ 1 mod n.

The following Bouniakowsky conjecture made in 1857 [13] also suggests
that there are infinitely many prime modulus parameters satisfying the con-
dition 2 in Theorem 2.2.

Bouniakowsky conjecture. Let f(x) ∈ Z[x] be an irreducible poly-
nomial satisfying gcd(f(1), f(2), . . . , ) = 1, then there are infinitely many
integers m such that f(m) is prime.

The following result in [6] suggests that the prime factors of f(m) are
quite large.
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Proposition 5.2. Assume that the abc conjecture is true. Suppose that
f(x) ∈ Z[x] has no repeated roots. Fix ϵ > 0. Then

∏
prime−factor−p−of−f(m) p ≫

|m|deg(f)−1−ϵ, where the constant implied by ≫ depends on f and ϵ.

6 Ring-LWE and SIV Ppoly(n) for cyclotomic num-
ber fields

We consider the family of cyclotomic number fieldsQ[ξp] = Q[x]/(Φp) where
Φp(x) = xp−1 + xp−2 + · · ·+ x+1, p is an odd prime tending to the infinity.
In this case the degree is n = p− 1, Φp(1) = p is a prime number. Consider
f(x) = Φp(1 + x), then f(0) ≡ 0 mod p. From Theorem 2.2 we have the
following result.

Corollary 6.1. If the width σ with respect to the canonical embedding
satisfies

p3/2+ϵ

2p−1p
p−2
p−1

≤ σ ≤ pc

2p · p
p−2
p−1

where c is an arbitrary fixed positive integer and ϵ is an arbitrary small pos-
itive real number, for the modulus parameter p, the Ring-LWE over Z[ξp]
can be solved within polynomial time O(n2c) for a non-negligible probability
1
p of secrets.

Proof. We get an estimation about ||Nf ||2 and min ||Nf || from the

Gautschi bound in Subsection 3.3. The condition σ ≤ pc

2p−1·p
p−2
p−1

should be

satisfied such that σ′ is upper bounded by a polynomial of n = p−1. Hence
the width with respect to the canonical embedding has to be very small
when n = p− 1 tends to the infinity.

For general cyclotomic number fields the following result transform the
hardness of SIV Ppoly(n) to a problem about number-theoretic properties of
cyclotomic polynomials.

Theorem 6.1. If there is a sequence of cyclotomic polynomials Φmn,
where mn tending to the infinity, a sequence of prime numbers qn tending
to the infinity and a sequence of integers hn, satisfying
1) qn ≡ 1 mod mn and Φmn(hn) ≡ 0 mod qn;
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2) qn ≤ mc
n, |Φmn(hn + 1)| ≤ mc

n if hn ≥ 1 or |Φmn(hn − 1)| ≤ mc
n if

hn ≤ −1, where c is a fixed positive integer;
then SIV Ppoly(n) with some polynomial approximating factor for fraction
ideals in cyclotomic number fields Kn = Q[x]/(Φmn) can be solved by a
polynomial time (in mn) quantum algorithm.

Proof. It is clear |∆Φmn
|1/mn ≤ mn from the formula in subsection 1.3.

From Proposition 2.10 in page 13 of [58], the condition qn ≡ 1 mod mn

implies the existence of non-zero hn such that Φmn(hn) ≡ 0 mod qn. It is
clear that the condition in the Gautschi bound is satisfied since hn+ξmn has
a non-negative real part of hn ≥ 1 or a non-positive real part if hn ≤ −1.
The conclusion follows from Theorem 2.2 and the estimation of ||NΦmn,hn

||2
directly. Here Φmn,hn is the polynomial Φmn(x+ hn).

7 Conclusion

Though the hardness of SIV Ppoly(n) or SV Ppoly(n) for ideal lattice are wide-
ly conjectured and this folklore conjecture has been served as the base of
the security of lattice-based crypto-systems, there is no conclusive result
about this problem since the active development of lattice-based cryptogra-
phy. From the hardness reduction results proved in [52] the approximating
SIV Pγ for fractional ideals in any algebraic number field can be reduced
to the average decision Ring-LWE. In this paper we proved that decision
versions of Ring-LWE over integer rings of arbitrary number fields with a
suitable condition on the width can be solved within polynomial time for
infinitely many modulus parameters. Hence we construct some monogenic
number fields such that SIV Ppoly(n) for ideal lattices in these number fields
are not hard in quantum computing. This gives an strong evidence that the
hardness of Ring-LWE and related SIV Ppoly(n) for ideal lattices essential-
ly depends on concrete number-theoretic structures of an algebraic number
field.
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rational coefficients, Math.Ann., 261, 513-524, 1982.

[37] R. Lindner and C. Peikert, Better key sizes (and attacks) for LWE-
based encryption, CT-RSA, 2011, LNCS 6558, 319-339, 2011.

[38] M. Liu and P. Q. Nguyen, Solving BDD by enumeration, CT-RSA,
2013, LNCS 7779,293-309, 2013.

28



[39] V. Lyubashevsky, C. Peikert and O. Regev, On ideal lattices and learn-
ing with errors over rings, J. ACM, 60(6), 1-43, nov., 2013, preliminary
version, Eurocrypt 2010.

[40] V. Lyubashevsky and C. Peikert and O. Regev, A toolkit for ring-LWE
cryptography, Eurocrypt 2013.

[41] V. Lyubashevsky, Ideal lattices, tutorial in MIT,
http://people.casil.mit.edu/joanne/idealtutorial.pdf

[42] K. Laine and K. Lauter, Key recovery for LWE in polynomial time,
Cryptology ePrint Achive, 2015/176.

[43] D. Micciancio and O. Regev, Lattice-based cryptography, Book chap-
ter in Post-quantum Cryptography, D. J. Bernstein and J. Buchmann
(eds.), Springer (2008).

[44] D. Micciancio and O. Regev, Worst-case to average-case reduction
based on Gaussian measures, FOCS 2004.

[45] D. Micciancio and C. Peikert, Hardness of SIS and LWE with small
parameters, Crypto2013.

[46] D. Micciancio and M. Walter, Practial, predictable lattice basis reduc-
tion, Eurocrypt 2016.

[47] D. Micciancio and S. Goldwasser, Complexity of lattice problems, A
cryptographic perspective, Kluwer Academic Publishers.

[48] C. Peikert, Public-key cryptosystmes from the worst case shortest lat-
tice vector problem, STOC 2009, 333-342.

[49] C. Peikert, An efficient and parallel Gaussian sampler for lattices,
Crypyo 2010, 80-97.

[50] C. Peikert, A decade of lattice cryptography, iacr e-print, 2015/939,
2015, now Publishers Inc., 2016.

[51] C. Peikert, How (not) to instanaite Ring-LWE, Cryptology ePrint
Achive, 2016/351.

[52] C. Peikert, O. Regev and N. Stephens-Davidowitz, Pseudorandomness
of Ring-LWE for any ring and modulus, STOC 2017.

29



[53] A. Pellet-Mary, G. Hanrot and D. Stehle, Approx-SVP in ideal lat-
tices with pre-processing, Cryptology ePrint Achive, 2019/215, 2019,
Eurocrypt 2019.

[54] O. Regev, On lattices, learning with errors, random linear codes, Jour-
nal of ACM, 56, no.6, 2009.

[55] O. Regev, On the complexity of lattice problems with polynomial ap-
proximation factor, 475-496, The LLL algorithm, survey and applica-
tion, edited by P. Q. Nguyen and B. Vallée, Springer, 2010.

[56] N. Smart and F. Vercauteren, Fully homomorphic encryption scheme
with relatively small key size and ciphertext sizes, PKC 2010.

[57] K. Stange, Algebraic aspects of solving Ring-LWE, includin ring-
based improvement in the Blum-Kalai-Wasserman algorithm, Cryptol-
ogy ePrint Archive, Report 2019/183, 2019.

[58] L. Washington, Introduction to cyclotomic fields, Graduate Texts in
Mathematics 83, Springer-Verlag 1997.

30


