
TICK: Tiny Client for Blockchains
Wei Zhang∗, Jiangshan Yu†, Qingqiang He∗ and Nan Guan ∗

∗The Hong Kong Polytechnic University, China
†Monash University, Australia

‡Corresponding email: ss-wei.zhang@connect.polyu.hk

Abstract—Currently, a lightweight blockchain client cannot
verify a transaction directly. Rather, it generally considers a
transaction to be valid and finalized if there are six confirmations
on this transaction. This is not desired for micro-payments where
payees may opt for zero-confirmation.

When a payee chooses to accept zero-confirmation trans-
actions, it needs to verify the validity of the transaction. In
particular, one of the steps is to verify that the input of the
transaction is not previously spent. This requires the payee
to either trust some full nodes to perform the verification,
or download the entire blockchain in order to perform the
verification locally. The former is less secure as anyone can be a
full node, it cannot be blindly trusted; the latter is not desired
since a blockchain is large in size and is ever growing.

We propose TICK, a Tiny Client for blockchains, to solve
this problem. TICK advances blockchain client in the following
aspects. First, TICK allows a mobile device to efficiently and
cryptographically verify whether an input of a transaction is
previously spent or not. Second, TICK can be adapted without
changing the current implementation of the blockchain, such as
Bitcoin. Rather, it only requires miners to put an extra hash
value in the free field of a block. Last, as a side effect, rather
than requiring new miners to download the entire blockchain to
perform mining, the TICK design allows new miners to download
only a small portion of data to start mining.

We implement TICK for Bitcoin, and provide an experimental
evaluation on its performance by using the current Bitcoin
blockchain data. Our result shows that the proof for verifying
whether an input of a transaction is spent or not is only less
than 2KB. The verification is very fast – a mobile client only
needs to compute a few dozens of hash values. In addition, to
start mining, new miners only need to download a few GB data,
rather than downloading over 200 GB data.

I. INTRODUCTION

Since the start of Bitcoin [1], especially since its fast
growth in 2013 and 2014, blockchain has emerged as a very
attractive technology that promises tremendous potential for
creating new applications and business models. One of the
most exciting aspects of blockchain technology is that it is
entirely decentralized, rather than controlled by one central
point [2]. The lack of a single authority makes the system
fairer and considerably securer. Although Bitcoin is the most
successful application of blockchain, blockchain technology
has potential in a wide range of application areas beyond
cryptocurrencies, such as finance [3], healthcare [4], reputation
system [5].

As a decentralized system, all the nodes in the system
collect data such as transactions from the underlying peer-
to-peer network, verify their correctness and group them as a

block. Then the generated block is broadcast to other nodes
by a gossip protocol, and eventually all the nodes maintain all
the transaction history locally and agree on a unique order in
these transactions. As a result, it imposes a heavy requirement
on the storage capacity of blockchain nodes. For example, the
size of transaction history of Bitcoin and Ethereum are 200 GB
and 554.67 GB, respectively. Such a huge storage requirement
makes applying blockchains on storage-limited devices (e.g.,
mobile devices) almost impossible. With consideration of the
indispensability of mobile payment in our daily life, sup-
porting mobile payment is essential for the development and
popularity of blockchains. Therefore, the storage requirement
should be reduced in order to adapt to the mobile devices.

To break the barriers caused by the heavy storage require-
ments, instead of downloading the whole transaction history,
most blockchains support the lightweight client, also known
as the light client. The light client only needs to download
the block headers and use the simplified payment verification
(SPV) to verify transactions. On the surface, the light client is
more applicable for mobile devices, but it still has several
limitations. On one hand, although only maintaining block
headers can significantly reduce the storage requirement, its
data size still increases linearly with the number of blocks
without any limitations. Therefore, with the growth of the
blockchain height, there is also a risk of exceeding the storage
capacity of mobile devices. On the other hand, currently, when
users issuing transactions, users have to wait for at least 6
confirmations (i.e. the block containing the transactions is
followed by at least 5 blocks in the chain), before considering
your transaction is permanently recorded. However, in many
cases, a payee cannot wait for an hour to confirm a trans-
action, and therefore the zero-confirmation transaction [6] is
proposed and considered by many Bitcoin merchants. That is,
merchants may consider to accept micro transactions with no
confirmation in the blockchain, as this provides a faster way to
manage small-value transactions. However, since no miner has
verified this transaction yet, it is vital for the merchants to at
least verify the validity of the transaction. Unfortunately, the
light client can not validate transactions as it only maintains
all the block headers, and thus it can not perform such fast
payment for micro transactions.

Miners play an important role in the proof-of-work (POW)
based blockchains, they compete for the right to generate the
new block and then get a reward. During the competition,
miners validate transactions and audit the whole blockchain,

which can guarantee the system’s security. In principal, if an
attacker can control more than 51 percent computing power, it
can control the system. Therefore, more miners in the system,
controlling more than 51 percent computing power is more
difficult and the system is more stable. However, in existing
blockchains, only a full node who maintains all the transaction
history can be a miner. As mentioned above, a full node
needs to download the full transaction history in advance.
However, downloading such a huge amount of data is time
and storage consuming which may generally take several days.
Consequently, the system may lose some potential miners,
which is a big loss for the system.

In this paper we propose TICK, a Tiny Client for
blockchains. In TICK, we add an ordered data structure
[7], [8], called as UTXO tree, to maintain all the unspent
coins. The unspent coin, also known as Unspent Transaction
Output UTXO in blockchains, is the only sources of input for
the following transactions [9]. With the UTXO tree, instead
of checking the transaction history, transaction verification
can be implemented by checking the presence or absence
of all inputs in the UTXO tree, in the size of O(log N).
Consequently, a light client only needs to download a fixed
number of block headers rather than all the block headers, and
thus the storage requirement of a light client is constant and
very small, make it suitable for mobile devices. In addition,
the proposed light client can validate transactions through
request proofs to the full node, and thus make it possible
for mobile devices to implement fast payment with zero-
confirmation micro transactions. In TICK, a miner can start
to mine while only downloading a fixed number of blocks
and the UTXO tree. Compared with the conventional system,
the miner downloads much less data without sacrificing its
functionality. Our contribution can be summarized as follows:

• We propose TICK, the first blockchain system that
gives the ability of transaction verification to light client.
Zero-confirmation fast payment, which is essential for
blockchains, needs the ability to validate transactions.
In contrast with existing light client, the proposed
light client can implement fast payments without any
third party.

• In TICK, a light client only needs to download a con-
stant and small size of data. Mobile devices generally
have low storage capacity, therefore the applications for
mobile devices should cost less storage space and the
cost should be relatively constant. Different from the
existing light client, the proposed light client maintains
a constant low size of data which is more suitable for
mobile devices.

• TICK reduces the data size that a miner needs to down-
load before mining. In conventional blockchains, a miner
needs to download the whole transaction history which
may cost several days and consume hundreds of GB
memory. But in TICK, a miner can start to mine while
only downloads several GB of data.

Our work is applicable for all UTXO-based blockchains.

However, for simplicity, we demonstrate how it works by using
Bitcoin as an example. We collect the Bitcoin data since its
genesis block created in 2009 to date (29th March 2019).
Experimental results show that, in TICK a light client only
needs to download 672 bytes data which is tiny in contrast with
the 43MB data of Bitcoin, and the data size is constant rather
than that of Bitcoin which is linearly increased. Moreover,
the light client in TICK can validate transactions through
requesting proof from the full node. In past two years, the
size of proof is less than 2KB which is small and constant. In
TICK, different from Bitcoin which needs user downloading
around 200GB data before starting to mine, a miner can start
to miner while only downloads around 2GB data. As a result,
the time cost and storage cost are both smaller than Bitcoin.

II. RELATED WORK

In order to reduce the blockchain storage overhead, block
summarization are proposed in several works [10], [11]. The
main idea behind the block summary is that instead of storing
all the blocks, nodes can store the change in a sequence of
blocks (called block summary). This summary can store all the
input resources for the given blocks and the total change that
was introduced by these blocks. But the compression ratio of
the block summarization method not high enough for mobile
devices. For example, in Bitcoin, they achieve a compression
ratio of 0.54, as a result, a node still needs to download around
100 GB data.

Kiayias et al. proposed a sublinear light client [12], called
proofs of proof-of-work (PoPoW), which allows light client to
download a logarithmic number of blocks. They also proposed
a non-interactive PoPoW (NIPoPoW) protocol [13] that allows
succinct proofs but is with the same proof complexity as
in [12]. However, both these two methods only work if a
fixed difficulty is assumed for all blocks. However, such
an assumption is infeasible for most proof-of-work based
cryptocurrency blockchain systems. For example, in Bitcoin,
the block difficulty exponentially increases over the network’s
lifetime in the past decade [14].

Flyclient [15] is a concurrent work proposing a light client
for blockchain. In their work, the light client also only needs
to download a logarithmic number of block headers to syn-
chronize the blockchain. However, users in Flyclient cannot
verify the validity of transactions without downloading all
transactions of size O(N).

There are some works that protect the privacy of light client
which are orthogonal to our method. In order to verify
transactions, a light client needs to request data from full node
through a peer to peer network. However, such a payment ver-
ification may leak considerable information about the clients,
thus defeating user privacy that is considered one of the main
goals of decentralized cryptocurrencies. In work [16], [17],
they use available trusted execution capabilities, SGX enclaves
and Trusted Execution Environment to protect the user privacy.

III. PRELIMINARIES

Using Bitcoin as an example, we briefly introduce the
UTXO based blockchains in Section III-A. Then we show its
limitations in Section III-B and discuss the reasons for these
limitations in Section III-C.

A. Bitcoin

Bitcoin [1] is the first and still the most popular cryp-
tocurrency system. Using Bitcoin, users can issue transactions
without any powerful central authorities. Bitcoin includes two
types of transactions: the coinbase transaction and the standard
transaction. Coinbase transactions, the first transaction of each
block, create new coins from nothing by the miner. Standard
transactions, the most common one, record the coin transfer
between the payer and the payee. In Bitcoin, an account is
in essence a public-/private-key pair. We show the structure
of a standard transaction in Fig. 1. A standard transaction
contains a Txid, at least one input and at least one output,
where Txid is the unique ID of the transaction and it can be
used to uniquely identify the transaction. An output contains
value which denotes the coins received by the payee, and
the scriptPubKey which is the public key of the payee.
Therefore, when the transaction is recorded on the blockchain
permanently, all the nodes agree that the payee receives value
coins through the transaction. An input contains Txid, vout
and signature, where signature is singed by the payer with
its private key and used to make sure the transaction is issued
by the payer himself. The combination of Txid and vout can
be used to uniquely identify a previous output belonged to
the payer. Therefore, when the transaction is recorded on the
blockchain permanently, all the nodes agree that the referred
output is consumed by the payer in the transaction. For
example, if we have the following input:

(Tx20, 3, signature)

then the referred output is the output3 of Tx20. Therefore,
the coin received in output3 of Tx20 is consumed, and it
can not be referred by other inputs. A coinbase transaction
is only slightly different from standard transaction data. The
main difference is its single ”blank” input. Therefore, we do
not introduce the coinbase transaction in detail.

Transactions are included into blocks by miners and then
hashed as parts of a Merkle tree. Before grouping transactions
into block, miners should verify them and make sure each
of them is valid. This process is also known as the famous
mining process. In a transaction, each input refers outputs of
previous blocks to indicate the payed coins in the transaction,
meanwhile the referred output can not be referred by other
inputs. The output that does not referred by any input is
also called as Unspent Transaction Output (UTXO). Therefore,
when a new transaction is issued, the major job of transaction
verification is to make sure the referred outputs are UTXO.
In Bitcoin, the transaction verification is implemented through
the following four steps.

1) The transaction is issued by the payer.

Txid

in

out

Input1 (Txid,vout,signature)

Output1 (value,scriptPubKey)

Output2 (value,scriptPubKey)

Input2 (Txid,vout,signature)

Input3 (Txid,vout,signature)

Output3 (value,scriptPubKey)

Output4 (value,scriptPubKey)

Fig. 1: A standard transaction

2) In each transaction, the sum of value of all the outputs is
no larger than the sum of value of all the referred outputs.

3) The referred output is existing.
4) The referred output does not referred by other inputs.

Among these four steps, the first one can be easily performed
by checking the signature of each input. The completion of
the last three steps needs to check the transaction history.
Specifically, the 2nd step needs to check wether all the referred
outputs are exist in previous transactions or not; the 3rd step
needs to compute the sum of values of all the referred outputs;
the 4th step needs to make sure that all the referred outputs
are not referred by any inputs of the following transactions.

Since the mining process is not coordinated by any central
party, different miners may generate different blocks at the
same time and the new generated block may be added after the
same block. Therefore the blockchain may fork into multiple
chains. To agree on the same chain consistently with other
nodes, each node downloads all blocks in every chain and
picks the one with the highest total difficulty to follow. Using
this strategy, it is shown that, in the long run, the network will
agree on a single chain [18], [19], [20], known as the main
(valid) chain. In Bitcoin, a block is considered on the block
permanently if there are 5 blocks behind it. Also a transaction
is agreed by all the nodes after 6 confirmations.

In a block, transactions are stored in a Merkle tree. We
show a template Merkle tree in Figure 2. In order to differ
from another Merkle tree defined in the following, we call
the Merkle tree that stores transactions as transaction tree.
In the transaction tree, the leaf nodes are transactions and the
non-leaf nodes are the hash of its children nodes. The hash
of the tree, root hash, is stored in the block header. Then
the block header is hashed as Prev Hash, which is stored
in the next block header. So that, any modifications to the
transaction history will lead to a different root hash value and
different Prev Hash in the next block. So any modification
to the transaction history can be detected by comparing the
computed root hash with the root hash stored in the block
header. The Prev Hash is also considered as the pointer that
connects the block with its previous block, and through the
pointer different blocks are connected together as a blockchain.

Tx0 Tx1 Tx2 Tx3

Hash0 Hash1 Hash2 Hash3

Hash01 Hash23

Root HashPrev Hash

Additional dataBlock
header

Fig. 2: A Merkel tree

In Bitcoin, full node is the one that stores all the blocks and
it should has a huge storage space. Obviously, the full node
can verify transactions as it contains all the transaction history.
However, the data size of the whole transaction history is
huge, and it is hard to be deployed on the storage-limited
mobile devices. In order to reduce the storage requirement,
Bitcoin also supports the light client which only stores the
headers of each block. However, the light client can not verify
transactions, while it can only use the Simplified Payment
Verification (SPV) protocol to perform the first 3 steps of
transaction verifications. For the example shown in Fig. 2,
if a light client wants to know whether Tx0 is in the block, it
requests Tx0 verification to a full node, which in turn replies
hash values of Hash1 and Hash23. These return hash values,
also called as critical hashes of Tx0, are sufficient for the
light client to reconstruct the merkel tree and compute the root
hash. If the computed root hash equals to the root hash stored
in the block header, the light client is convinced that Tx0 is
in the block. Therefore, it can verify an output is in Tx0 (step
3) and get value of it (step 2), but it can not verify whether
the output is referred by any inputs of following transaction
(step 4).

B. Limitations

Mobile payment is indispensable in our daily life, and
supporting mobile payment is important for blockchains. In
order to deploy the blockchain on mobile devices, light client
which only stores each block’s block header is proposed.
Compared with the full node, although it has a significantly
less storage requirement, it also has some limitations. On one
hand, due to the lack of information on transaction history,
it can not validate transactions. As discussed above, through
the SPV protocol, a light client can validate that a transaction
is in a particular block, but it can’t validate that it hasn’t
been redeemed by a subsequent block. More specifically,
it can not verify whether an output is a UTXO or not.
But the transaction verification is essential for fast payment.
Unfortunately, the transaction verification in light client is
insufficient and it cannot perform the fast payment. On the
other hand, although light client needs less the storage space
compared with full node, the required storage space still
increases linearly with the number of blocks. For example, the
Ethereum blockchain has more than 7.4 million blocks [21]
and each block header is 528 bytes. Consequently, a light client

in Ethereum should store more than 3.7 GB of data and the
size increases 528 bytes every 13 seconds. Therefore, with the
development of the blockchain system, the number of blocks
increases fast and there exists a risk of that the data size of
light client may exceed the storage capacity of mobile devices.
In summary, when applying the light client on mobile devices,
there exist the following limitation.

Limitation 1. The light client can not validate transactions,
so that light client can not perform fast payment. Moreover, its
data size increases linearly and unlimitedly with the number
of blocks, which is infeasible for the storage-limited mobile
devices.

Another limitation of the blockchain system is that it only
allows the full node participating in the mining process. How-
ever, becoming a full node requires the user downloading the
full transaction history which is time-consuming and storage
space consuming. For example, the size of the whole trans-
action history in Bitcoin and Ethereum is more than 200 and
2.2TB [22], [21] respectively. Such a huge amount of data is
infeasible for storage-limited devices and may consume a huge
amount of memory space. More importantly, even a user with
enough storage capacity also needs several days to synchronize
its local blockchain, and then cause a long delay. Note that,
Mining is an important part of the blockchain system which
ensures fairness and keep the blockchain network stable and
secure. More miners in the blockchain system, more stable and
more secure the system is. However, such a long delay and a
high storage requirement may makes the system losing some
potential miners, which is big harm to the system’s security
and stability. To summarize, such a huge amount of data that
a miner needs to store may bring the following limitation.

Limitation 2. A miner must download the full transaction
history, which is time-consuming and storage space con-
suming. Consequently, it not only makes the storage-limited
devices impossible to be a miner, but also may lose many
potential miners due to its high storage requirement and long
synchronization time.

C. Discussion

The root cause of Limitation 1 and Limitation 2 is that
the size of data (full transaction history) for the transaction
verification is too large. The miner needs to verify transactions,
so that it must store all the transaction history. The light client
needs to check whether a transaction is in the block or not, so
that it must store all the block header, and even so it still can
not validate transactions. However, as mentioned in Section
III-A, not all the information in the transaction history is
useful for transaction verifications. Among all the outputs of
the transactions recorded on the blockchain, only the output
that is a UTXO can be used for the following transaction.
Specifically, if a referred output is a UTXO, it must exist in
previous blocks (step 3) and must not be spent (step 4) yet,
and through check the unspent output we can get its value
(step 2). So, for transaction verification, these outputs that

are not UTXO are redundant and do not need to maintain.
Therefore, to verify transactions, we only need to maintain all
the UTXOs.

IV. METHODOLOGY

As discussed in Section III-B, conventional blockchains
have many limitations due to its huge size of the transaction
history. In this section, we propose TICK to break these limita-
tions. In contrast with the conventional light client which data
size linearly increases over time, the data size of a light client
in TICK is significantly less and constant. Consequently, the
proposed light client is more applicable to mobile devices. In
addition, the proposed light client can verify transactions, and
thus the light client is given the ability to perform fast pay-
ment. In TICK, different from the conventional blockchains,
the miner does not need to download all the transaction history,
and thus the storage requirement of the miner is significantly
less. As a result, miners can save a huge amount of storage
space and plenty of time.

A. Overview

In this section, we present the overview of TICK. In
TICK we introduce a new data structure to maintain all the
UTXOs and a new hash value which is 32 bytes in the block
header. TICK can be adapted without changing the current
implementation of the blockchains, and it only requires users
to put the added data in the free field.

Input

Output

Output Input

Output

...

refer Output

Transaction (Txn)

Output(UTXO) Input

Transaction (Txm)

refer

refer

Fig. 3: UTXO in transaction history

As discussed in Section III-B, some transaction history
is redundant for transaction verification. Among all outputs
in the transaction history, only outputs that are UTXOs
are necessary. More importantly, in the transaction history,
only a small part of outputs are UTXOs [23]. Therefore,
instead of downloading all the transaction history, a node
can verify transactions if it only stores all the UTXOs. For
example, backward traversing an output, the reference list
among outputs and inputs can be obtained as shown in Fig.
3. In the list, only the latest output (output in Txm) is a
UTXO, and all the past transactions are redundant for the
transaction verification. Therefore, in this paper, we build a
tree to maintain all the UTXOs for the transaction verification.

We denote the tree that stores all the UTXOs as UTXO
tree. It is an ordered Merkel tree, and its leaves are lexico-
graphically ordered UTXOs. The UTXO tree allows one to
insert, delete and modify its data. Note that, maintaining the
UTXO tree does not need to modify the block structure of the
conventional blockchains. Then the root hash of the UTXO

tree is stored in the block header as a part of it. When adapting
TICK in existing blockchains, the root hash of the UTXO
tree can be stored in the free field of each block. Therefore,
any malicious modifications to the UTXO tree will lead to a
different Prev Hash in the next block and will be detected.
Since the UTXO tree is an ordered data structure, the user can
efficiently check whether an output is in it or not. If an output
is in the UTXO tree it is a UTXO, otherwise it is not a UTXO.
Therefore, a node can verify transactions with the UTXO tree
rather than all the transaction history. The overview structure
of the proposed blockchains is shown in Fig. 4. We do not
maintain UTXO trees for each block, on the contrary, at a
point, there is only one UTXO tree stored in the full node.
The UTXO tree records all the UTXOs at the point of the
birth of the latest block. When the new block is generated, we
can get the new UTXO tree through function Update, also the
UTXO tree of past blocks can be obtained through function
Rollback, where these functions are detailed in Section IV-B.

With the UTXO tree, a miner does not need to download
all the transaction history and it only needs to download
a preferred small number of recent blocks and the UTXO
tree from a full node. Since the UTXO tree maintains all
the UTXOs, the miner can verify transactions and starts to
mine. As a result, the required storage space of the miner is
significantly less than that of a full node. Similarly with the
miner, since all the UTXOs are summarized and its digest is
stored in each block header. The light client does not need
to store all the block headers to verify transactions, and it
only needs to download a preferred small number of recent
block headers from a full node. Denoting the number of block
headers or blocks that a light client or a miner wants to
download as k, the user can determine the value of k according
to its storage capacity, but the user needs to make sure that at
least one block in the main chain is downloaded. For example,
in Bitcoin, k can not be less than 6.

B. Full node

A key component of TICK is the UTXO tree which stores all
the UTXOs in lexicographic order. In TICK, the transaction
verification of miners and light clients relies on the UTXO
tree. Therefore, compared with conventional blockchains
which use all the transaction history to verify transactions,
TICK can significantly reduce the storage requirement of
miners and light clients. When the current blockchains, i.e.,
Bitcoin adapt TICK, it only needs to extract all the UTXOs
from the whole transaction history and build the UTXO tree.

The UTXO tree is an ordered Merkel tree. Its leaves are
UTXOs, and all the leaves are ordered depending on their hash
value. The value of each non-leaf node is the hash value of its
children nodes. For example, we show a template UTXO tree
TUTXO in Fig. 5. TUTXO contains 4 UTXOs: UTXO1, UTXO2,
UTXO3 and UTXO4. They are sorted depending on their hash
value: Hash(1) < Hash(2) < Hash(3) < Hash(4). Note
that, the UTXOs can also be sorted with other values, i.e.,
issue date, and that can be determined by the system designer.
In this paper, we use the hash value to illustrate our method.

 Block 1 Block N

Prev Hash
Additional

data

Root hash of
Transaction

tree

Root hash
of UTXO

tree

Transaction
tree

 Block N-1

UTXO tree

Prev Hash
Additional

data

Root hash of
Transaction

tree

Root hash
of UTXO

tree

Transaction
tree

UTXO tree

Prev Hash
Additional

data

Root hash of
Transaction

tree

Root hash
of UTXO

tree

Transaction
tree

UTXO tree

Fig. 4: Overview of TICK

 Hash(1,2,3,4) (Root hash)

UTXO1 UTXO2

Hash(1) Hash(2)

Hash(1,2)

UTXO3

Hash(3)

UTXO4

Hash(4)

Hash(3,4)

< < <

Fig. 5: UTXO tree TUTXO

The hash value of the root is stored in the block header as
the digest of the UTXO tree. Since the UTXO tree is ordered
lexicographically, it supports efficient proof that some data is
absent from the tree. In addition, as a Merkel tree, the UTXO
tree supports efficient proofs that they contain specific data.
Both proofs of absence and presence require an amount of
data proportional to the logarithm number of UTXOs in the
tree. Table I shows some methods that a UTXO tree supports.

TABLE I: The methods supported by TUTXO.

Method Input Output
Size TUTXO Number of UTXOs in TUTXO

Root TUTXO The root value of the UTXO tree
TUTXO

PoP (TUTXO,UTXO) Proof of Presence: The proof that
UTXO is in the UTXO tree TUTXO.

PoA (TUTXO,UTXO) Proof of Absence: The proof that
any UTXO is absent from the
UTXO tree TUTXO.

We give some examples based on Figure 5 to show how the
proof can be done with a UTXO tree TUTXO.

Example of proof of presence To prove that a particular
output is a UTXO, the full node needs to prove that the output
is in TUTXO. Then the full node needs to provide the critical
hashes of UTXO1 to compute the root of the tree, the path of
the output in TUTXO and the value of the output.

PoP(TUTXO,UTXO1) = (ω,Hash(2),Hash(3, 4), value)

where ω = l, l represents the path from the root to UTXO1, and
l (resp. r) indicates the path to the left (resp. right) child. value

represents the value of the output. So, given UTXO1 and the
proof PoP(TUTXO,UTXO1), one can verify the proof by re-
constructing the root value HT = H(H(H(1),H(2)),H(3, 4)),
where H() is the hash function that returns the hash value of
inputs. If the computed root hash equals to the root hash stored
in the block header, the proof is valid.

Example of proof of absence To prove that a particular
output is not a UTXO, the full node needs to prove that the
output is absent from TUTXO by performing the following
steps.

• Locate node UTXOi such that its hash value is lexico-
graphically the largest one smaller than output.

• Locate node UTXOj such that its hash value is lexico-
graphically the smallest one greater than output.

• Prove that UTXOi and UTXOj are present in TUTXO, and
they are siblings (so no node is placed in between of
them). The former is proved by using proof of presence
of UTXOi and UTXOj, and the latter one can be verified
by checking the path to UTXOi and UTXOj. Therefore:

PoA(TUTXO,UTXOx) =

(PoP(TUTXO,UTXOi),PoP(TUTXO,UTXOj))

In the system, a full node only maintains one UTXO tree
of the latest block. It records all the UTXOs when the latest
block is added on the chain. When a new block is generated,
the UTXO tree can be updated through the Update function
defined as follows.

ALGORITHM 1: Update(TUTXO, block)
1: for every Tx in block do
2: for every input in Tx do
3: delete the referred UTXO from TUTXO
4: end for
5: for every output in Tx do
6: add the output into the proper position of TUTXO
7: according to its hash value.
8: end for
9: end for

10: Re-construct TUTXO.

The Update function is performed with each transaction
Tx in the new block. For each Tx, the Update function first

deletes all the outputs referred by Tx from TUTXO, and then
adds all the new outputs introduced by Tx to the TUTXO.
After examining all the Tx in the new block, it updates the
corresponding hash value and gets the root hash of the new
TUTXO. The root hash is then stored in the generated block
header. A full node only contains one UTXO tree which
maintains all the UTXOs at the latest blocks. However, there
may be some splits in the chain, the latest block is not
definitely on the main chain eventually. In order to track the
main chain and get the TUTXO on other splits, we define the
Rollback function in the follows to get the TUTXO of previous
blocks. Similarly with the Update function, the Rollback
function just does the opposite. Combined with the Update
function, TUTXO of different blocks at different splits can be
obtained.

ALGORITHM 2: Rollback(TUTXO, block)
1: for every Tx in the block do
2: for every output in Tx do
3: delete the corresponding UTXO from TUTXO.
4: end for
5: for every input in the Tx do
6: add the referred output into the proper position of

TUTXO.
7: end for
8: end for
9: Re-construct TUTXO.

Compared with the full node in the conventional blockchain
system, the storage overhead is only the one hash value (i.e.,
the root hash of the UTXO tree) which is 32 bytes for each
block and the UTXO tree. For example, by now, the size of the
UTXO tree in Bitcoin is around 4 GB which is significantly
less than its original size 200 GB [22]. Generally, a full node
has large storage capacity and such a storage overhead is
relatively slight for full node.

C. Miner

In conventional blockchains, only the full node can partici-
pate in the mining process, because the transaction verification
needs the whole transaction history. Therefore, a node needs
to download a huge amount of data which is time-consuming
and storage consuming. In addition, such a huge storage
requirement makes performing the mining process on storage-
limited devices near impossible. Consequently, the system may
lose some potential miners and lose the chance to enhance the
security of the system. In TICK, except to be a full node, a
miner has an additional option. It only needs to download a
part of the transaction history and then can start the mining
process. And the size of data that a miner needs to download
is significantly less than the data size of a full node.

The structure of the proposed miner is shown in Fig. 6.
A miner needs to download a UTXO tree and a preferred
number of recent blocks from the full nodes. In order to track
the main chain, among all the stored blocks, there must exist

 Block N-k+1 Block N

Prev Hash
Additional

data

Root hash of
Transaction

tree

Root hash
of UTXO

tree

Transaction
tree

UTXO tree

Prev Hash
Additional

data

Root hash of
Transaction

tree

Root hash
of UTXO

tree

Transaction
tree

UTXO tree

Fig. 6: Structure of miner

at least one block on the main chain. In the example, the miner
downloads k blocks and a UTXO tree of the latest block Block
N. The value of k can be determined by the miner according
to its storage capacity. When a new block is generated on the
longest chain, in principal the oldest block on the main chain
can be deleted. Therefore, the size of data that a miner needs
to maintain is relatively constant.

In TICK, the mining process includes the following 4 steps.
a Solve a puzzle.
b Generate the hash value of the previous block header.
c Verify all the transactions that they want to group in the

new block.
d Build the UTXO tree for the new block.

Among these 4 steps, the combination of the first 3 steps is the
mining process of the conventional POW-based blockchains.
Step d is used to update all the UTXOs and build the UTXO
tree for the new block. Since the miner stores the UTXO
tree and the latest block, it can verify transactions (step c),
generate the hash value of the latest block header (step b)
and update the UTXO tree (step d). Apparently, step a can
also be implemented by the proposed miner. Therefore the
miners do not lose any functionality, as it can still validate
transactions, contribute computing power to the system and
ensure the stability of the system. Meanwhile, the TICK can
save a huge amount of memory spaces for miners.

D. Light client
In TICK, instead of downloading all the block headers, the

light client only needs to download a preferred number of
recent block headers. Therefore, the required storage space is
constant and significantly less than conventional blockchains.
Moreover, the proposed light client can validate transactions
by requests proofs from the full node, and then makes it
possible to perform fast payment on the light client.

 Block N-k+1 Block N

Prev Hash
Additional

data

Root hash of
Transaction

tree

Root hash
of UTXO

tree

Prev Hash
Additional

data

Root hash of
Transaction

tree

Root hash
of UTXO

tree

Fig. 7: Structure of Light client

The structure of the proposed light client is shown in
Fig. 7. Instead of downloading all the block headers as the

conventional light client, similarly with the miner proposed in
section IV-C, the proposed light client only needs to download
a preferred small number of block headers from a full node.
In order to track the main chain, similarly with the proposed
miner, the light client also needs to download at least one
block headers from the main chain. Compared with the
original light client, it has two advantages: 1. its storage
requirement is constant and much less than the conventional
light client; 2. it can validate transactions.

In TICK, to validate a transaction, the light client sends the
objective output to the full node and gets the proof of PoP or
PoA, and then checks the correctness of the responded proof.
In more detail, as presented in Figure 8:

• Firstly, the light client gets the hash value β of the latest
block header, and groups it with the hash value of the
objective output that he wants to verify as a message m.
Then the light client sends m to the full nodes.

• When the full node receives the message, it first locates
the objective block according to the received β, and
constructs the UTXO tree TUTXO of the block. Since the
UTXO tree is an ordered data structure, the full node
uses a search algorithm to check whether the output is
in the UTXO tree. If the output is in the UTXO tree, the
full node generates the proof of presence PoP(TUTXO,
output) and replies the proof to the light client. If not,
the full node generates the proof of absence PoA(TUTXO,
output) and replies the proof to the light client.

• When the light client receiving the proof, it first computes
the root hash of the UTXO tree according to the received
proof. If the computed root hash equals to the root hash
stored in the block header. The light client considers that
the receiver proof is correct, otherwise, the received proof
is considered as wrong. In case of the received proof
is right, the output is a UTXO if the received proof is
PoP(TUTXO, output), otherwise, it is not a UTXO.

After receiving all the proofs, for a transaction, if all the
referred output are proved to be UTXOs, we compute the
sum of values of them. If the sum of values of all the referred
outputs is no larger than the sum of values of outputs, the
transaction is valid.

During the transaction verification, the light client needs
to communicate with the full node, therefore consumes
bandwidths. When the light client sending message to the
full node, the consumed bandwidth is the size of m which is
2∗32 bytes as the size of β and the hash value of the objective
output are both 32 bytes. When the light client receiving
messages from the light client, the consumed bandwidth is
the size of the PoA or PoP. Assuming the number of UTXOs
in the UTXO tree is n, the size of PoP is log2 n ∗ 32 +
(log2 n)/8 + 8 bytes and the size of PoA is double that of
PoP, where log2 n ∗ 32 is the size of critical hash values,
(log2 n)/8 is size of the path and 8 is the size of the value.
As a result, the size of PoA and PoP is relatively constant,
and it increases 32 bytes every time the number of UTXOs
doubled.

Light client Full node

o β = H(Block header)

o o = output

m = (β,o)

o Locate the specific block B according to

β.

o Re-construct UTXO tree at block B.

o Search o from the UTXO tree.

o If o is in the UTXO tree, reply PoP.

o Eles, reply PoA.

PoP/ PoA

o Computes the root hash according

to the received hash value.

o If the computed root hash equals to

the stored root hash, performs the

transaction verification.

Fig. 8: light client

V. PERFORMANCE EVALUATION

In this section, we implement TICK for the actual Bitcoin
blockchain to evaluate its performance. Our evaluation is based
on the Bitcoin data since its genesis block created in 2009 to
date (29th March 2019), so when we mention now in this
section we refer to March 29th, 2019. The evaluation mainly
focuses on the reduced storage requirement for the miner
and the light client. In addition, we also show the overhead
incurred by our method and evaluate whether the overhead is
reasonable in terms of the gained improvement. The overhead
includes the storage overhead to the full node for storing added
data and the bandwidth overhead to the light client during
transaction verification.

Miner In TICK, in contrast with Bitcoin which needs a
miner downloading the full transaction history, a miner only
needs to download a fixed number of blocks and a UTXO
tree. Since in Bitcoin a block is permanently recorded on
the blockchain if there are five blocks before it, when we
implement TICK on Bitcoin we assume a miner downloads
6 blocks. The comparison between the size of the data that a
miner needs to download in TICK and the conventional Bitcoin
blockchain is shown in Fig. 10. According to the Figure, the
size of data that a miner needs to download in Bitcoin system
is around 200 GB so far, which is far above the storage
capacity of common mobile devices. More importantly, the
size of the data increases fast with the development of the
Bitcoin blockchain. Particularly, the size increases 29 percent

in the past year, and with this development speed the size will
be doubled in 3 years.

201
0

201
2

201
4

201
6

201
8

��
�

0

300

600

900

1200

1500

1800

2100

�	
��
��

��

Fig. 9: UTXO size

In TICK, a miner needs to download all the UTXOs and
6 blocks. The change of block size is shown in Fig. 11.
According to its change trend, we can see that the block
size is around 1 MB in the past three years. Therefore, the
total size of 6 blocks is around 6 MB which is very small
and relatively constant. The change of the size of UTXOs is
shown in Fig. 9. According to the Figure, by now the size
of the UTXOs is around 2 GB. So totally, in our system a
miner only needs to download 2 GB + 6 MB data which is
significantly less than the data that a miner needs to download
in Bitcoin. Therefore, when a new user joins the network as a
miner, they only needs to download several GB of data rather
than hundreds of GB data which can save lots of time and lots
of storage space. More importantly, the size of UTXOs only
increases 5 percentage in the past year which is significantly
less than Bitcoin system’s 29 percentage. As a result, the
gained performance improvement of our method is becoming
more and more over time. Consequently, TICK can attract
more users to join the network as miners, and further makes
the system more stable and securer.

201
0

201
2

201
4

201
6

201
8

���

0
20
40
60
80

100
120
140
160
180

	�
�

��

��

���
�������

Fig. 10: Storage requirement of miner

Light client In Bitcoin, a light client should download all
the block headers, and the number of block headers that a

201
0

201
2

201
4

201
6

201
8

��
�

0

300

600

900

1200

�	
��
��

��

Fig. 11: Size of blocks

light client needs to download is 569339 by now. Furthermore,
it needs to download one more block header every 10 minutes.
In contrast, a light client in TICK only needs to download at
least 6 block headers. Since the comparison between these two
data sizes are trivial, we do not shown the comparison between
them and the change trend of them. Apparently, TICK can save
a large amount of memory space. More importantly, The size
of data that a light client needs to download in our system is
constant, which is important for storage-limited devices as it
can avoid the additional storage consumption over time.

201
0

201
2

201
4

201
6

201
8

��
�

0.1562

0.2562

0.3562

0.4562

0.5562

0.6562

0.7562

�	
��
��

��

Fig. 12: Size of PoP

In Bitcoin, the light client can not validate transactions. But
in TICK, since the full node uses a UTXO tree to maintain all
the UTXOs and a full node can efficiently check whether an
output is in the UTXO tree or not, the light client can validate
transactions through request proofs from the full nodes. A
light client first sends the output that he want to verified to
a full node. If the output is in the UTXO tree, the full node
replies the proof of PoP, otherwise the full node replies the
proof of PoA. Since the size of PoA is twice of the size of
PoP, we only show the size of PoP in Fig. 12. By now,
the size of PoP is around 0.8 KB, and the size of proof
of PoA is around 1.6 KB, which are both small. Moreover,
the size of the proof is logarithm number of UTXOs, and it
only increases one hash value (32 bytes) when the number

of UTXO is doubled. According to the change trend of the
UTXOs shown in Fig. 9, the size of UTXOs only increases
5 percentage in the past year, and with this speed the size of
UTXOs will be doubled after 14 years. So the proof size is
relatively constant in a long period.

Full node Our method brings significant performance im-
provement for light clients and miners. But for the full node,
it may introduce the storage overhead. The full node needs to
maintain the UTXO tree, and generates proof for light client.
According to the size of UTXOs shown in Fig. 9, the size of
UTXOs is 2 orders of magnitude less than the size of data
of a full node (2GB against 200 GB). Therefore, the storage
overhead caused by the UTXO tree is relatively slight. In
addition, a full node needs to generate a proof for transaction
verification. In the process, a full node needs to locate an
output from the UTXO tree. In order to locate an element
from a binary tree, it may need to search log2 n times, where
n denotes the number of elements in the tree. According to
the number of UTXOs shown in Fig. 9, it at most needs to
perform the search operation 27 times. The computational cost
is relatively less compared with the computational cost of the
puzzle solving. In addition, a full node is often deployed on a
platform with high computational and storage capacity, so the
computational cost and the storage cost is relatively slight for
a full node.

VI. CONCLUSION

In conventional blockchains all the nodes maintain the full
transaction history in order to keep the stable of the system.
Therefore, the node should have a high storage capacity. In
order to reduce the storage requirement, the light client which
stores all the block headers is proposed. However, although
it has less storage requirement, it can not validate transac-
tion, and thus the light client can not perform fast payment.
Therefore, users need to wait for six confirmations after its
transaction is recorded. Actually, in the transaction history,
lots of data are redundant for transaction verification, and
only small portion of them, all the UTXOs, are useful when
validating unconfirmed transactions. Therefore, we propose
TICK which adds a new data structure, UTXO tree, to maintain
all the UTXOs. With the UTXO tree, user can efficiently
check whether an output is a UTXO or not and further
validate transactions. In TICK, instead of maintaining all the
block headers, a light client only needs to maintain a constant
number of block headers, and it can validate transactions
through sending request to a full node. Therefore, the data
that a light client needs to maintain is constant and less.

As a side effect, miners in TICK do not need to download
all the transaction history. It can start to mine while only
downloads a preferred small number of blocks and the UTXO
tree. The size of the download data is significantly less than
the data of the whole transaction history. Therefore, TICK can
help miners to save time and memory space, and further can
attract more users joining the system as miners. Thus makes
the system more stable and securer.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] “The internet of trusted things - kaleido insights,”

http://www.kaleidoinsights.com/reports/internet-of-trusted-things-
blockchain/, (Accessed on 03/25/2018).

[3] A. Tapscott and D. Tapscott, “How blockchain is changing finance,”
Harvard Business Review, vol. 1, 2017.

[4] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in e-Health Networking, Applications and Services (Healthcom),
2016 IEEE 18th International Conference on. IEEE, 2016, pp. 1–3.

[5] R. Dennis and G. Owen, “Rep on the block: A next generation reputation
system based on the blockchain,” in Internet Technology and Secured
Transactions (ICITST), 2015 10th International Conference for. IEEE,
2015, pp. 131–138.

[6] C. Chen, “The mathematically secure way to accept zero confirmation
transactions,” Cryptocoin news, vol. 13, 2014.

[7] J. Yu, V. Cheval, and M. Ryan, “DTKI: A new formalized PKI with
verifiable trusted parties,” Comput. J., vol. 59, no. 11, pp. 1695–1713,
2016.

[8] J. Yu, M. Ryan, and C. Cremers, “DECIM: detecting endpoint compro-
mise in messaging,” IEEE Trans. Information Forensics and Security,
vol. 13, no. 1, pp. 106–118, 2018.

[9] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-
Joancomartı́, “Analysis of the bitcoin utxo set,” in International Confer-
ence on Financial Cryptography and Data Security. Springer, 2018,
pp. 78–91.

[10] A. Palai, M. Vora, and A. Shah, “Empowering light nodes in blockchains
with block summarization,” in 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS). IEEE, 2018, pp.
1–5.

[11] U. Nadiya, K. Mutijarsa, and C. Y. Rizqi, “Block summarization and
compression in bitcoin blockchain,” in 2018 International Symposium
on Electronics and Smart Devices (ISESD). IEEE, 2018, pp. 1–4.

[12] A. Kiayias, N. Lamprou, and A.-P. Stouka, “Proofs of proofs of work
with sublinear complexity,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 61–78.

[13] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-
of-work.” IACR Cryptology ePrint Archive, vol. 2017, no. 963, pp. 1–42,
2017.

[14] “Difficulty - blockchain.” https://www.blockchain.com/en/charts/difficulty,
(Accessed on 03/25/2019).

[15] L. Luu, B. Buenz, and M. Zamani, “Flyclient super light
client for cryptocurrencies,” accessed 2018-04-17.[Online]. Available:
https://stanford2017 . . . , Tech. Rep.

[16] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “Bite: Bitcoin lightweight client privacy using trusted
execution,” IACR Cryptology ePrint Archive 2018, XXXX, Tech. Rep.,
2018.

[17] K. Wüst, S. Matetic, M. Schneider, I. Miers, K. Kostiainen, and
S. Capkun, “Zlite: Lightweight clients for shielded zcash transactions
using trusted execution,” in International Conference on Financial
Cryptography and Data Security. Springer, 2019.

[18] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2015,
pp. 281–310.

[19] L. Kiffer, R. Rajaraman et al., “A better method to analyze blockchain
consistency,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 729–744.

[20] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643–673.

[21] “Ethereum blocks.” https://etherscan.io/blocks/, (Accessed on
03/25/2019).

[22] “Blockchain charts: Bitcoin’s blockchain size,” https://blockchain.info/
charts/blocks-size/, (Accessed on 03/25/2019).

[23] J. Herrera-Joancomart, “Another coin bites the dust: An analysis of dust
in utxo based cryptocurrencies.”

