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Abstract. The side-channel community has recently investigated a new approach,
based on deep learning, to significantly improve profiled attacks against embedded
systems. Previous works have shown the benefit of using Convolutional Neural
Networks (CNN) to limit the effect of some countermeasures such as desynchronization.
In comparison to Template Attacks, deep learning techniques can deal with traces
misalignment and the high dimensionality of the data. The pre-processing phases
are no longer mandatory. However, the performance of attacks highly depend on
the choice of each hyperparameters that compose a CNN architecture. Hence, we
cannot perfectly harness the potential of deep neural networks without a clear
comprehension of the networks inner-workings. In order to reduce this gap, we
propose to clearly explain the role of each hyperparameters during the feature selection
phase by using some specific visualization techniques such as Weight Visualization,
Gradient Visualization and Heatmap. By highlighting which features are retained
by filters, Heatmaps come in handy when a security evaluator tries to interpret and
understand the efficiency of CNN. We propose a methodology for building efficient
CNN architectures in terms of attack efficiency and network complexity, even in the
presence of desynchronization. We evaluate our methodology on public datasets with
and without desynchronization. In each case, we outperform the previous state-of-the-
art CNN models while significantly reducing the network complexity. Our networks
are up to 25 times more efficient than previous state-of-the-art while their complexity
is up to 31810 times smaller. Our results show that CNN networks do not need to be
too complex for getting good performance in the side-channel context.
Keywords: Side-Channel Attacks · Deep Learning · Architecture · Weight Visualiza-
tion · Heatmap · Feature selection · Desynchronization

1 Introduction
Side-Channel Analysis (SCA) is a class of cryptographic attack in which an adversary
tries to exploit vulnerabilities from a system by analyzing its physical properties, such as
power consumption [KJJ99] or electromagnetic emanations [AARR03], to reveal secret
information. During its execution, a cryptographic implementation manipulates sensitive
variables which directly depend on the secret. Through its attack, an adversary tries to
recover these information by finding some leakage related to the secret. One of the most
powerful type of SCA attacks are profiled attacks. In this scenario, an adversary has access
to a test device from which he knows the intermediate values of the target variable. Then,
he is able to estimate the conditional distribution associated to each sensitive variable. On
a target device containing a secret to retrieve, he can predict the proper sensitive value
using multiple traces and reveal the secret. In 2002, the first profiled attack was introduced
by [CRR03], but their proposal was limited by the computational complexity. Very similar
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to profiled attacks, the application of machine learning algorithms was inevitably explored
in the side-channel context [HGM+11, BL12, HZ12, LBM14, LPMS18].

Recently, some papers have shown the robustness of Convolutional Neural Networks
(CNNs) to the most common countermeasures, namely masking [MPP16, MDP19a] and
desynchronization [CDP17]. They are at least as efficient as classical profiled attacks. One
of the main advantage is that they do not require pre-processing. A CNN consists of two
parts namely a convolutional part, which goals is to locate which features impact the most
the classification, and a fully-connected part, that aggregates the most relevant features,
in order to correctly classify each trace. Nonetheless, finding a suitable architecture is
one of the most challenging problems in deep learning because we have to properly set
parameters that compose the network to obtain a good efficiency. Two types of parameters
exist: trainable parameters and hyperparameters. Trainable parameters are non-parametric
variables that are internal to the model and are automatically estimated during the training
process. Hyperparameters are parametric variables that we need to be set before applying
a learning algorithm. The hyperparameters can be decomposed into two categories:

• Optimizer hyperparameters that are related to the optimization and training process
(learning rate, batch size, number of epochs, optimizer, activation functions, weight
initialization, . . . );

• Model hyperparameters, that are involved in the structure of the model (number of
hidden units, number of layers, length of filters, number of convolutional blocks, . . . ).

Depending on the choice of these values, the performance of the network differs a lot.
Both types of hyperparameters affect each others, they both need to be correctly selected.
Choosing correct model hyperparameters is the first step towards obtaining an optimal
neural network. Our work focuses on building efficient and suitable architectures. Our
results would of course benefit from also selecting suitable optimizer hyperparameters that
have been investigated in previous literature [CDP17, KPH+19].

Contributions. In this paper, we focus on the explainability and interpretability of model
hyperparameters that compose the convolutional part of a CNN, which is the part that aims
at revealing the most relevant features. In side-channel attacks, the information that helps
the decision-making is defined by the PoIs which are revealed by leakage detection tools
such as Signal-to-Noise Ratio (SNR) [MOP07]. Then, by accurately recovering these points,
we can significantly reduce the complexity of the classification part because the aggregation
phase will be much easier. To evaluate the impact of each model hyperparameter, we
apply visualization techniques, such as Gradient Visualization [MDP19b] in order to get a
global evaluation of how the network selects its features to predict the sensitive variable.
However, we observe that this technique is not sufficient when we want to interpret only
the convolutional part of the network. Hence, we propose to apply two new visualization
techniques widely used in the deep learning field which are Weight Visualization and
Heatmap. These tools help us to evaluate the impact of each model hyperparameters such
as the number of filters, the length of each filter and the number of convolutional blocks
in order to find a suitable architecture, by minimizing its complexity while increasing its
attack efficiency. Then, we propose a methodology for building efficient CNN architectures.
We confirm the relevance of our methodology by obtaining state-of-the-art results on the
main public datasets. Through this new methodology, we are also able to find a better
tradeoff between the complexity of the model and its performance allowing us to improve
the learning time.

Paper Organization. The paper is organized as follows. Section 2 is dedicated to the
presentation of the convolutional neural network and particularly the convolutional part.
After the introduction of classical feature selection techniques in Section 3, we present two
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new visualization tools applied to the SCA context in Subsection 3.2 and Subsection 3.3.
In Section 4, we highlight the impact of each model hyperparameters on the convolutional
part. Then, we propose a methodology for building a efficient architecture depending on
the countermeasures implemented. The new methodology is applied on public datasets to
obtain state-of-the-art results in Section 5.

2 Preliminaries
2.1 Notation and terminology
Let calligraphic letters X denote sets, the corresponding capital letters X (resp. bold
capital letters) denote random variables (resp. random vectors T) and the lowercase x (resp.
t) denote their realizations. The i-th entry of a vector t is defined as t[i]. Side-channel
traces will be constructed as a random vector T ∈ R1×D where D defines the dimension of
each trace. The targeted sensitive variable is Z = f(P,K) where f denotes a cryptographic
primitive, P (∈ P) denotes a public variable (e.g. plaintext or ciphertext) and K (∈ K)
denotes a part of the key (e.g. byte) that an adversary tries to retrieve. Z takes values in
Z = {s1, ..., s|Z|}. Let us denotes k∗ the secret key used by the cryptographic algorithm.

2.2 Profiled Side-Channel Attacks
When attacking a device using a profiled attack, two stages have to be considered: a building
phase and a matching phase. During the first phase, an adversary has access to a test
device on which he can control the input and the secret key of the cryptographic algorithm.
He uses this knowledge to find the relevant leakages depending on Z. To characterize the
points of interest (PoIs), the adversary generates a model F : RD → R|Z| that estimates
the probability Pr[T|Z = z] from a profiled set T = {(t0, z0), . . . , (tNp−1, zNp−1)} of
size Np. The high dimensionality of T can be a problem for building a leakage model.
Popular techniques use dimensionality reduction, such as Principal Components Analysis
[APSQ06] or Kernel Discriminant Analysis [CDP16], to select PoIs where most of the secret
information is contained. Once the leakage model is generated, the adversary estimates
which intermediate value is processed thanks to a predicting function F (·) designed by
the adversary. By predicting this sensitive variable and knowing the input used during
the encryption, the adversary can compute a score vector, based on F (ti), i ∈ [0, |Na| − 1],
for each trace included in a dataset of Na attack traces. Then, log-likelihood scores are
computed to make predictions for each key hypothesis. The candidate with the highest
value will be defined as the recovered key.

Metric in Side-Channel Attacks. During the building phase, the adversary wants to find
a model F that optimizes the secret key recovery by minimizing the size of Na. In SCA, a
common metric used is called guessing entropy (GE) [SMY09] that defines the average
rank of k∗ through all key hypotheses. Let us denote g(k∗) the guessing value, associated
with the secret key. We considered an attack successful when the guessing entropy is
permanently equal to 1. The rank of the correct key gives us an insight into how well our
model performs.

2.3 Neural Networks
Profiled SCA can be formulated as a classification problem. Given an input a neural
network aims at constructing a function F : Rn → R|Z| that computes an output called a
prediction. To solve a classification problem, the function F has to find the right prediction
y ∈ Z associated with the input t with high confidence. To find the optimized solution, a
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neural network has to be trained given a profiled set of N pairs (tip, yip) where tip is the
i-th profiled input and yip is the label associated with the i-th input. In SCA, the input of
a neural network is a side-channel measurement and the related label is defined by the
corresponding sensitive value z. To construct a function F , a neural network is composed
of several simple functions called layers. Three kinds of layers exist: input layer (composed
of input t), output layer (gives an estimation of the prediction vector y) and one or multiple
hidden layers. First, the input goes through the network to estimate the corresponding
score ŷip = F (tip). A loss function is computed that quantifies the classification error of F
over the profiled set. This stage is called forward propagation. Each trainable parameters is
updated in order to minimize the loss function. This is the backward propagation [GBC16].
To accurately and efficiently find the loss extremum, an optimizer is used (e.g. Stochastic
Gradient Descent [RM51, KW52, BCN18], RMSprop, Momentum [Qia99], Adam [KB15],
. . . ). These steps are processed until the network reachs a sufficient local minimum. The
choice of hyperparameters is one of the most challenging problems in the machine learning
field. To find them, some techniques exist such as Grid-Search Optimization, Random-
Search Optimization [BB12, PGZ+18, BBBK11] but none of them are deterministic. This
paper focuses on understanding model hyperparameters in order to build efficient neural
network architectures for side-channel attacks.

2.4 Convolutional Neural Networks
A Convolutional Neural Network (CNN) is specific type of neural network. In this paper,
we choose to simplify its presentation by considering that it can be decomposed into
two parts: a feature extraction part and a classification part (see Figure 1-a). Features
selection aims at extracting information from the input to help the decision-making. To
select features, a CNN is composed of stacked convolutional blocks that correspond to
n2 convolutional layers (denoted γ), an activation function (σ) and one pooling (denoted
δ) layer [ON15]. This feature recognition part is plugged into the classification part of
n1 Fully-Connected (FC) layers (denoted λ). Finally, we denote s the softmax layer (or
prediction layer) composed of |Z| classes. To sum up, a common convolutional network
can be characterized by the following formula:

s ◦ [λ]n1 ◦ [δ ◦ [σ ◦ γ]n2 ]n3 . (1)

2.4.1 Convolutional layer

The convolutional layer performs a series of convolutional operations on its inputs to help
the patterns recognition (see Figure 1-b). During the forward propagation, each input
is convoluted with a filter (or kernel). The output of the convolution shows temporal
instants that influence the classification. These samples are called features. To build a
convolutional layer, some model hyperparameters have to be configured: length of kernels,
number of kernels, pooling stride and padding.

• Length of filters – Kernels are generated to identify features that could increase the
efficiency of the classification. However, depending on their size, filters reveal local or
global features. Smaller filters tend to identify local features while larger filters focus
on global features. In Figure 1-b, an example is given where the length of filters is
set to 3.

• Stride – It indicates the step between two consecutive convolutional operations.
Using small stride corresponds to the generation of an overlapping between different
filters while a greater stride reduces the output dimension. By default, the stride is
set to 1 (see Figure 1-b).

• Padding – Let a and b be two vectors, the dimension of the convolution between
these two vectors will be dim(a~b) =

(
dim(a)−dim(b)

stride + 1
)
[GBC16] where ~ refers
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Figure 1: (a) - CNN architecture for side-channel attacks (red area: feature selection part
; blue area: classification part). (b) - Operations in convolutional blocks (convolutions,
activation, average pooling)

to the convolution operation. In some cases, a subsampling can be generated. To
avoid this phenomenon and loose information, we can use padding that adds a
"border" to our input to keep the same dimension after the convolutional operation.
By default, two kinds of padding are used: valid padding and same padding. Valid
padding means "no-padding" while same padding refers to a zero-padding (the output
has the same dimension as the input). In Figure 1-b, an example is given where we
select a same padding. Indeed, two 0 values are added at the endpoints of the vector
in order to get an output vector of dimension 6.

After each convolutional operation, an activation function (denoted σ) is applied to
identify which features are relevant for the classification. As explained in [KUMH17], the
scaled exponential linear unit function (SeLU) is recommended for its self-normalizing
properties. The SeLU is defined as follows:

selu(x) = λ

{
x if x > 0,

α(exp(x)− 1) if x 6 0. (2)

It pushes neuron activation towards zero mean and unit variance in order to prevent the
vanishing and exploding gradient problems. This activation function is used by default in
our architectures.

2.4.2 Pooling layer

Pooling layer is a non-linear layer that divides the dimension of the input such that the
most relevant information is preserved. To apply its down sampling function, a pooling
window and a pooling stride have to be configured. Usually, these variables have the
same value to avoid overlapping. The window slides through the input values to select a
segment to be applied to the pooling function. In deep learning, two pooling functions are
commonly used:

• MaxPooling – The output is defined as the maximum value contained in the pooling
window.
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• AveragePooling – The output is defined as the average of the values contained in the
pooling window. In Figure 1-b, we show an example of this function applied to a
1-D input with pooling_window = pooling_stride = 2.

2.4.3 Flatten layer

The flatten layer concatenates each intermediate trace of the final convolutional block
in order to reduce the 2-D space, corresponding to the dimension at the end of the
convolutional part, into a 1-D space to input into the classification part. Let us denote
M the input of the flatten layer such that M ∈Mn,d(R) where n denotes the number of
output after the last convolutional block and d denotes the number of samples for each
these outputs such that:

M =



t0[x0] t0[x1] t0[x2] · · · t0[xd−1]

t1[x0]
. . . · · · · · ·

...

t2[x0] · · ·
. . . · · ·

...
...

...
...

...
...

tn[x0] · · · · · · · · · tn−1[xd−1]


(3)

where (ti)06i6n is the i-th intermediate trace and (xj)06j6d the j-th sample of the trace.
The output of the flatten layer is a concatenated vector C that can be constructed:

• Column-wise – C =
[
t0[x0], t1[x0], t2[x0], ......., tn−1[xd−1]

]
,

• Row-wise – C =
[
t0[x0], t0[x1], t0[x2], ......., tn−1[xd−1]

]
.

2.4.4 Fully-Connected Layers

Once the convolutional part has selected features, the Fully-Connected (FC) (denoted
λ) layers recombine each neuron to efficiently and accurately classify each input. FC
layers can be compared to a MultiLayer Perceptron (MLP) where each neuron has full
connections to all activations of the previous layer (see Figure 1-a).

In this paper, we propose a way to select appropriate model hyperparameters in order
to find a suitable network architecture.

3 Evaluation of features selection
Due to the black-box nature of neural networks, it can be challenging to explain and
interpret its decision-making. In order to overcome this problem, some visualization
techniques were developed [vdMH08, ZF14, SVZ14, ZKL+16] but their application in the
SCA context is not exploited enough. As shown in the following papers [MDP19b, HGG19,
PEC19], these techniques could be useful in SCA to evaluate the ability of a network to
extract the points of interest.

3.1 State of the art
Signal-to-Noise Ratio. Signal-to-Noise Ratio (SNR) [Man04, MOP07] is one of the most
useful tools in SCA to characterize temporal instants where sensitive information leaks.

Unfortunately, in presence of countermeasures such as desynchronization, estimation of
PoIs becomes much more complex. Indeed, desynchronization disturbs the detection of
PoIs by randomly spreading the sensitive variable over time samples.
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Visualization techniques. Gradient Visualization computes the derivatives of a CNN
model with respect to an input trace such that the magnitude of the derivatives indicates
which features need to be modified the least to affect the class score the most. This
technique is helpful for identifying the temporal instants that influence the classification.
Comparing these points to PoIs, we are able to interpret the learning phase of a network
[MDP19b].

Layer-wise Relevance Propagation is introduced in [BBM+15] and applied in [HGG19]
in the side-channel context. LRP propagates the prediction score through the network
until the input layer by indicating the relevant layers. In [HGG19], the authors use this
technique for the purpose of underlining which temporal instants influence the most the
learning process.

Limitations. These proposals aim at interpreting a CNN decision by finding each temporal
instant of the trace which contributes the most towards a particular classification. However
these techniques are not useful in order to understand how the convolutional or the
classification part selects its feature. Indeed, they only give a global interpretation of how
a network perform. However, in the case where the network is not able to find the right
PoIs, we cannot evaluate the faulty part (convolutional or classification). A more precise
technique should be used to interpret each part independently. To reduce this issue, we
propose to apply Weight Visualization and Heatmaps to provide information related to
the convolutional part.

3.2 Weight visualization
One way to interpret the performance of a network is to visualize how it selects its features.
As explained in introduction, one common strategy is to visualize the trainable weights to
interpret the recognition patterns. This method was introduced in [BPK92] as a framework
useful when dealing with spatial information. During the training process, the network
evaluates the influencing neurons which generate an efficient classification. If the network
is confident in its predictions, it will associate large weights to these neurons. In deep
learning, this technique is usually used for evaluating features extracted by the first layers
of a deep architecture [HOWT06, LBLL09, OH08, HOT06]. The role of the convolutional
part is to select the relevant time samples (i.e. PoIs) that compose a trace for allowing an
efficient classification. Therefore, by applying the weight visualization, we propose a new
tool that estimate the performance related to the convolutional part.

As we defined in Subsection 2.4, the flatten operation sub-samples each intermediate
trace following an axis. By concatenating the output of the flatten layer following the
columns (see Equation 3), we keep timing information to be able to reveal leakages
and interpret it (see Figure 2-a). If the feature selection is effective, the neurons where
information leaks will be evaluated with high weights by the training process. Then,
by visualizing the weight of the flatten layer, we can understand which neurons have a
positive impact on the classification and thus, thanks to the feedforward propagation, we
can interpret which time samples influence the most our model.

Let us denote n[flatten +1]
u the number of neurons in the layer following the flatten,

n
[flatten−1]
f the number of filters in the last convolutional blocks and dim

[flatten−1]
traces the

dimension associated with each intermediate trace after the last pooling layer. Let us
denote W [flatten] the weights corresponding to the flatten layer such that dim(W [flatten]) =
(dim[flatten−1]

traces × n
[flatten−1]
f ). Let us denote W vis

m ∈ Rdim
[flatten−1]
traces a vector that allows

visualizing the weights related to the m-th neurons of the layer following the flatten:

W vis
m [i] = 1

n
[flatten−1]
f

(i+1)×n[flatten−1]
f∑

j=i×n[flatten−1]
f

|W [flatten]
m [j]| (4)
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[flatten - 1] [flatten] [flatten + 1]

m = 0

...
...

(a) (b)

Figure 2: Methodology for weight visualization ((a) - concatenation of each intermediate
trace following their temporal axis ; (b) - computes the average of W vis

0 to get a temporal
correspondence)

where i ∈ [0, dim[flatten−1]
traces ].

Then, let us denote W vis ∈ Rdim
[flatten−1]
traces a vector that allows visualizing the mean

weight related to each neuron of the layer [flatten +1] such that:

W vis[i] = 1
n

[flatten +1]
u

n[flatten +1]
u ∑
m=0

W vis
m [i] (5)

where i ∈ [0, dim[flatten−1]
traces ].

In other words, first, we reduce the dimension of W [flatten] so that its dimension
corresponds with the temporal space defined by dim[flatten−1]

traces . This reduction is made by
averaging the weights, associated to the same point of intermediate traces (see Figure 2-b).
Finally, in order to obtain a more precise evaluation, we have to compute the average of
mean weight associated to each neuron in order to evaluate the confidence of the network
for revealing PoIs. An example of weight visualization is given in Appendix B Figure 7.

3.3 Heatmap
Even if the weight visualization is a useful tool, we are not able to understand which
feature is selected by each filter. One solution is to analyze the activation generated by
the convolution operation between an input layer and each filter. Introduced in [ZF14],
Heatmaps (or feature maps) help to understand and interpret the role of each filter for
generating suitable CNN architectures. By applying this technique in the side-channel
context, we propose a new tool for interpreting the impact of filters and thus we can adapt
the network according to their features selection.
Let us denote n[h]

f the number of filters for the h-th layer of the convolutional part, input[h]

the input(s) associated with the h-th convolutional block such that input[0] corresponds to
the side-channel trace and output[h−1] = input[h]. Then, the convolution between input[h]

and the n[h]
f filters returns n[h]

f intermediate traces. We denote H [h] the heatmap (or
feature map) associated to the h-th layer such that:

H [h] = 1
n

[h]
f

n
[h]
f∑
i=0

(input[h] ~n[h]
f )[i] (6)

Then, we can evaluate which neurons are activated by the filters of each convolutional
layer and understand how the features are selected (see Figure 3).

The weight visualization and the heatmaps are two tools that helps to explain and
interpret more clearly the selection of features. Using these techniques to understand the
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1 Pool[h]

1

H[h]

Layer[h+1]

Convolutional layer[h]

Figure 3: Heatmap

internal layers of a CNN, a methodology to build suitable neural network architectures
can be defined in the presence of desynchronization.

4 Methodology for efficient CNN architectures
In this section, we analyse the effect of each model hyperparameters in the convolutional
part of a CNN and propose a methodology for building efficient architectures. Using the
presented visualization techniques, we can understand how each hyperparameter impacts
the efficiency of the CNN and how it should be tweaked in the presence of desynchronization.

4.1 Dataset
To illustrate and explain as much as possible the effect of each hyperparameters, we
consider an unmasked implementation of AES-128 on the Chipwhisperera (8-bit XMEGA
Target). Our experience is done with 45000 power traces of 3000 points. The targeted
operation is Z = Sbox[P1 ⊕ k∗] where P1 denotes the first byte of the plaintext and k∗
denotes the secret key. The measured SNR equals 2.28 (see Appendix A).
The CNN implementation is done in Python using the keras library [C+15] and is run on
a workstation equipped with 8GB RAM and a NVIDIA GTX1060 with 8GB memory. We
use the Categorical Cross-Entropy as loss function because minimizing the cross entropy is
equivalent to maximizing the lower bound of the mutual information between the traces and
the secret variable [MDP19a]. The optimization is done by the Adam [GBC16] approach
on batch size 50 and the learning rate is set to 10−3. As explained in Subsection 2.4, we
use the SeLU activation function to avoid the vanishing and exploding gradient problems.
For a better weight initialization, we use the He Uniform initialization [HZRS15]. This
choice is motivated by the fact that it provides good results in terms of classification. We
use 40000 traces for the training process, 5000 traces for the validation and 20 epochs are
used. Finally, in order to accelerate the learning phase, we pre-process the data such as all
trace samples are standardized and normalized between 0 and 1 [GBC16]. In this section,
we only focus on the pattern selection made by the convolutional part and not on the
attack exploitation.

4.2 Length of filters
In this section, we demonstrate that increasing the filter length causes entanglement and
reduces the weight related to a single information and therefore, the network confidence.

ahttps://newae.com/tools/chipwhisperer/

https://newae.com/tools/chipwhisperer/


10 Methodology for Efficient CNN Architectures in Profiling Attacks

i+m

2n

i+m

n

Po
w

e
r 

co
n
su

m
p
ti

o
n
 (

V
)

C
o
n
v
o
lu

ti
o
n

(a)

(b)

Figure 4: Convolution between a trace t and filter W of size n ((a) - trace; (b) - convolution
operation between t and W )

To this end, we need an assumption such that there exist only a small dataset E =
{x0, x1, ..., xl} of time samples such that Pr[Z|T] = Pr [Z|T[x0], ...,T[xl]] where l <<
dim(T). Let us denote W ∈ Rn a filter of length n. The convolution operation between a
trace t and a filter W following the equation:

(t ~W )[i] =
n∑
j=0

(
t
[
j + i− n

2

]
×W [j]

)
(7)

such that
t
[
j + i− n

2

]
×W [j] =

{
αj × t

[
j + i− n

2
]

if j ∈ E,
ε otherwise. (8)

where ε ≈ 0 and αj denotes the weight related to the index j.
Let assume one filterW of size n such thatW = {α0, α1, ..., αn} is optimized for maximizing
the detection of l PoIs. Denote t a trace such that (t ~W )[i] covers the l relevant points
and (t ~W )[i+m] covers less than l relevant points. Because W maximize the detection
of the l PoIs, then,

(t ~W )[i] > (t ~W )[i+m] (9)

Figure 4 gives an example of this operation. Four relevant information can be extracted
from the input trace (see red crosses). In this figure, we show the result of two convolution
operations (t ~W )[i] (see blue cross) and (t ~W )[i+m] (see green cross) that share the
same information related to the highest relevant leakage. Consequently, when entanglement
occurs the convoluted samples share the same relevant information. Therefore, in our
example, the highest PoI is spread over the two convoluted samples. By increasing the size
n of the filters, we increase the entanglement, consequently, more PoIs are shared between
these convoluted points. Thus, the relevant information is spread over 2n convoluted
samples. This phenomenon can be observed in the Appendix B Figure 7. If we want to
precisely define the temporal space where leakages occur, we recommend to minimize the
length of the filters in order to reduce the risk of entanglement.
Let two filters W ∈ Rn and W ∗ ∈ Rm such that n > m. Assume that these filters share a
same PoI denoted xl. In other words, the PoI is respectively shared by n samples (when
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W is applied) and m samples (when W ∗ is applied). Let αoptl be the weight related to the
PoI when xl is assigned to a single convoluted sample. Then,

(t ~W )[i] = (n− 1)× ε+
αoptl

n
× t[xl] (10)

and,

(t ~W ∗)[i] = (m− 1)× ε+
αoptl

m
× t[xl]. (11)

Therefore, the weight related to (t ~W ∗)[i] is higher than αopt
l

n . As conclusion, increasing
the length of the filters also reduces the weight related to a single information because
entanglement occurs.
We propose to illustrate these properties through an example. We apply different archi-
tectures to our Chipwhisperer dataset in order to efficiently evaluate the impact of the
filter’s length. We select a range of lengths (see Appendix B) and visualize the weights to
experimentally verify this claim. The smaller the length, the less the relevant information
is spread. Appendix B Figure 7 shows that the weight visualization succeeds in recovering
the leakage localization. Indeed, the PoIs correspond to the relevant information detected
by the SNR (see Appendix A). The number of samples is divided by 2 because of the
pooling stride of 2 that we use in the first convolutional block. As explained, small filters
allow a better extraction of information because the PoIs are not shared with a lot of
convoluted samples. While using larger filters generate entanglement and provide the
detection of "global features".
By visualizing the heatmap associated to the length 1 (see Appendix B Figure 8), we
note that the filters try to maximize the extremum of each trace in order to exploit the
most of relevant information that is contained in the extremum of each trace. After the
convolution, the network can extract PoIs much easier.

4.3 Number of convolutional blocks
In this section, we provide an interpretation of the number of convolutional blocks. We

compare the pooling functions that can be denoted as f [h] : Rn[h] → R
n[h]

pooling_stride[h] where
h corresponds to the hth convolutional block. We theoretically show that the role of
these functions is to reduce the trace dimension while the most relevant features are
preserved. Let t[h] be the input of the hth convolutional block and W [h] ∈ Rn the filter
related to the hth convolutional block. Let ps[h] be the pooling stride related to the
hth convolutional block. Assume that the jth convoluted sample (t[h] ~W [h])[j] covers
l[h] relevant information from the hth convolutional block. The resulted l

[h]
conv relevant

convoluted samples are covered by the ith pooling sample AvgPool(t[h] ~W [h])[i]. Finally,
the (i+m)th pooling sample AvgPool(t[h] ~W [h])[i+m] covers (l+m)[h]

conv PoIs such that
the first l[h]

conv leakages are shared with AvgPool(t[h] ~W [h])[i]. Assume that the most
relevant leakage, denoted x

l
[h]
conv,opt

, is included in both situation. Then,

AvgPool[h](σ(t[h] ~W [h])))[i] =
i+ps[h]∑
j=i

σ(t[h] ~W [h])[j]
ps[h]

= 1
ps[h]

i+ps[h]∑
j=i

σ

(
n∑
k=0

t[h]
[
k + j − n

2

]
×W [h][k]

)

≈ 1
ps[h]

l[h]
conv∑
j=0

σ

 l
[h]
j∑

k=0
k∈E

(
α

[h]
k × t[h]

[
k + j − n

2

]) .
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Because k ∈ E, α[h]
k × t[h][k] represent the most relevant features in the trace t then,

α
[h]
k × t[h][k] > 0. Following the SeLU function (see Equation 2), we can simplify our

solution such that,

1
ps[h]

l[h]
conv∑
j=0

σ

 l
[h]
j∑

k=0
k∈E

(
α

[h]
k × t[h]

[
k + j − n

2

]) = λ

ps[h]

l[h]
conv∑
j=0

l
[h]
j∑

k=0
k∈E

(
α

[h]
k × t[h]

[
k + j − n

2

])
.

Moreover,

AvgPool[h](σ(t[h] ~W [h])))[i+m] =
i+m+ps[h]∑
j=i+m

σ(t[h] ~W [h])[j]
ps[h]

= 1
ps[h]

i+m+ps[h]∑
j=i+m

σ

(
n∑
k=0

t[h]
[
k + j − n

2

]
×W [h][k]

)

≈ λ

ps[h]

(l+m)[h]
conv∑

j=0

l
[h]
j∑

k=0
k∈E

(
α

[h]
k × t[h]

[
k + j − n

2

])
.

then,
AvgPool[h](σ(t[h] ~W [h])))[i+ 1]−AvgPool[h](σ(t[h] ~W [h])))[i] =

λ

ps[h]

(l+m)[h]
conv∑

j=(l+1)[h]
conv

l
[h]
j∑

k=0
k∈E

(α[h]
k × t[h]

[
k + j − n

2

]
).

Therefore, using an average pooling has the advantage that the unshared information are
preserved. However, when the pooling stride ps[h] is large, the relevant information is
reduced. As consequence, using a lot of convolutional blocks impact the leakage detection
because the information is divided by pooling stride after each convolutional block.
In the case where the MaxPooling is used, then,

MaxPool[h](σ(t[h] ~W [h])))[i] = max(σ(t[h] ~W [h])[j] | j ∈ {i, ..., i+ ps[h]})
= x

l
[h]
conv,opt

and,
MaxPool[h](σ(t[h] ~W [h])))[i+m] = max(σ(t[h] ~W [h])[j] | j ∈ {i+m, ..., i+m+ ps[h]})

= x
l
[h]
conv,opt

then,
MaxPool[h](σ(t[h] ~W [h])))[i+m]−MaxPool[h](σ(t[h] ~W [h])))[i] = 0.

When MaxPooling is used, if two consecutive pooling computation share the same optimal
leakage x

l
[h]
conv,opt

, then this information is spread over the pooling samples. As explained
in Equation 10 and Equation 11, if the same relevant information is spread over lots of
samples, then the related weight decreases. Furthermore, because only x

l
[h]
conv,opt

is selected,
all other leakages are discarded. Thus, we can lose information that seem less important
while it is essential for the detecting relevant points. For this reason, we recommand using
Average Pooling as much as possible because no relevant points are discarded.
Furthermore, incrementing the number of convolutional blocks reduce the trace dimension
while preserving relevant information associated with the leakages. Indeed, in most cases,
dim

[h]
t = dim

[h−1]
t

pooling_stride[h−1] . Then, we reduce by a factor pooling_stride[h−1] the distance
between the relevant points. Hence, the impact of desynchronization is reduced by the same
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factor. It will be much easier, for the network, to characterize the desynchronization. By
adding more convolutional blocks, we can drastically reduce the impact of desynchronization
by choosing a suitable pooling_stride[h].
These properties show that the pooling functions reduce the trace dimension while the
most relevant samples are preserved. To illustrate these properties, we apply an average
pooling or a max pooling (see Appendix C) to the Chipwhisperer dataset. Surprisingly,
the detection of PoIs is more or less the same. For the first layers, the network seems to
be more confident in it features detection when average pooling is applied. While, for
much deeper network, the max pooling seems to be more suitable. However, in both cases,
we can see that, the deeper the network, the less confident it is in its feature detection.
In the presence of desynchronization, a trade-off should be found in order to detect the
desynchronization and preserve maximum information related to the relevant points.

4.4 Methodology
Let us assume a Device Under Test (DUT) in which L leakages are detected using classical
leakage detection such as SNR. Let us denote the following variables:

• N [h]: the maximum amplitude of desynchronization after the h-th convolutional
block (such that N [0] is the desynchronization associated with the input traces and
N [h] = N [h−1]

pooling_stride[h−1] ),

• pooling_stride[h]: the pooling stride associated to the h-th convolutional block,

• D[h]: the trace dimension after the h-th convolutional block (such that D[0] is the
input dimension) and in most cases, D[h] = D[h−1]

pooling_stride[h−1] .

4.4.1 Synchronized traces

Following the observation made in Subsection 4.3, adding convolutional blocks reduce the
distance between the features in order to facilitate the detection of desynchronization.
When we want to build an architecture such that traces in the training, validation and
test sets are synchronized (i.e. N [0] = 0), we don’t need to configure more than one
convolutional block. Indeed, using more than one convolutional block has two main
drawbacks. First, in the case where PoIs are close to each other temporally, adding
convolutional blocks increases the risk of entanglement. As we shown in Subsection 4.2, the
entanglement can generate a spreading of relevant information through the convoluted time
samples. Secondly, because of the pooling (see Subsection 4.3), some information can be
lost: the same most relevant feature can be spread over the samples (MaxPooling) or each
relevant information can be reduced following the pooling stride value (Average Pooling).
When no desynchronization occurs, we recommend to set the number of convolutional
blocks to 1.
In [MPP16] and [PSB+18], authors show that MLP can be a good alternative when an
adversary is looking to build a suitable architecture when traces are synchronized. However,
MLPs are only composed of fully-connected layers. A CNN is viewed as a MLP where only
each neuron of the layer l is linked with a set of neurons of the layer l − 1 [Kle17]. In the
side-channel context, only few samples are needed for the decision-making. Using a CNN
with small filter size helps to focus its interest in local perturbation and drastically reduces
the complexity of the networks. CNNs are recommended with the smallest length of filters
possible (i.e. 1). Moreover, thanks to the validation phase, an evaluator can estimate which
length is the best in its context. Finally, the number of filters depends on the "imbalanced"
sampling representation. For a set of synchronized traces, the distribution is uniform then
using few filters is recommended (i.e. 2, 4, 8).
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4.4.2 Desynchronization: Random delay effect

Let us denote N [0] the maximal amplitude of the random delay effect. We define
NtGE(modelN [0]) the number of traces that a model, trained on desynchronized traces,
needs in order to converge towards a constant guessing entropy of 1 on test traces. Let us
denote Ttest this set of traces such that:

NtGE(modelN [0]) := min{ttest | ∀t ≥ ttest, g(k∗)(modelN [0](t)) = 1}. (12)

Adding desynchronization does not reduce information contained in a trace set. However,
the secret retrieval is more challenging. Through this section, we want to find a methodology
such that we optimize a modelN [0] where the associated NtGE(modelN [0]) is as close as
possible to NtGE(model0). In other words, we want to find modelN [0] such that:

min
modelN

(|NtGE(model0)−NtGE(modelN [0])|). (13)

To build a suitable architecture, we propose to use a new methodology that helps the
desynchronization detection and the reduction of trace samples in order to focus the
network on the leakages (see Figure 5). We divide our convolutional part into three blocks
(an example is given in Appendix E):

• As shown in Subsection 4.2, the first layer aims at minimizing the length of the filters
in order to minime the entanglement between each PoIs and extract the relevant
information. Reducing the length of the filters helps the network to maximize the
extremum of a trace in order to easily extract secret information. Then, we suggest
setting the filters’ length, of the first convolutional block, to 1 in order to optimize
the entanglement minimization. The first pooling layer is set to 2 in order to reduce
the dimension of the trace and help the desynchronization detection.

• The second block tries to detect the value of the desynchronization. By applying
filter length of size N [0]

2 , we focus the interest of the network on the detection of
the desynchronization of each trace. The network gets a global evaluation of the
leakages by concentrating its detection on the leakage desynchronization and not
on the leakages themselves. Then, we set the pooling_layer[1] to N [0]

2 to maximize
the reduction of the trace dimension while preserving information related to the
desynchronization.

• The third block aims at reducing the dimensionality of each trace in order to focus
the network on the relevant points and remove the irrelevant ones. In the case
where our traces have L PoIs, then, only L time samples help the network to make a
decision. By dividing our trace in L different parts, we force the network to focus its
interest on this information. Indeed, each part contains the information related to a
single spread leakage. This process reduces the dimensionality of each trace by L
such that each point of the output of the convolutional block defines a leakage point
(see Appendix E). Furthermore, applying this technique limits the desynchronization
effect because we force the network to concentrate the initial desynchronized PoIs
into a single point.

5 Experimental results
In the following section, we apply our methodology on different publicly available datasets.
The methodology is applied on both unprotected and protected implementations. We
compare the performance of our architecturesb with state-of-the-art results. For a good

bhttps://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA

https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA
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1

1

1

Minimizing entanglement

Desynchronization detection

Average Pooling
Pooling_stride[1] = 2

Filter_size[2] = N[0] /2
Average Pooling
Pooling_stride[2] = N[0] /2

Filter_size[1] = 1

PredictionFC layersFlatten
Average Pooling
Pooling_stride[3] = D[2] / L

Filter_size[3] = {1, 3, 5}

Dimensionality reduction

Figure 5: Architecture for desynchronized traces

estimation of NtGE , the attack traces are randomly shuffled and 100 NtGE are computed
to give the average value for NtGE . We denote N̄tGE this average over the 100 tests.
Because the attack efficiency is not the only metric, we also compare the complexity of
our architectures with the state-of-the-art.

5.1 Datasets
We use four different datasets for our experiments. All datasets correspond to imple-
mentations of Advanced Encryption Standard (AES) [DR02]. The datasets offer a large
variety of use-cases: high-SNR unprotected implementation on a smart card, low-SNR
unprotected implementation on a FPGA, low-SNR protected with a random delay desyn-
chronization, low-SNR protected implementation with first-order masking [SPQ05] and
desynchronization with a random delay.

• DPA contest v-4 is an AES software implementation with a first-order masking
[BBD+14]c. Knowing the mask value, we can consider this implementation as
unprotected and recover directly the secret. In this experiment, we attack the
first round S-box operation. We identify each trace with the sensitive variable
Y (i)(k∗) = Sbox[P (i)

0 ⊕ k∗] ⊕M where M denotes the known mask and P
(i)
0 the

first byte of the i-th plaintext. The measured SNR equals 4.33 (see Appendix D
Figure 11).

• AES_HD is an unprotected AES-128 implemented on FPGA. Introduced in
[PHJ+19]d, the authors decided to attack the register writing in the last round
such that the labellisation of the i-th trace is Y (i)(k∗) = Sbox−1[C(i)

j ⊕ k∗] ⊕ C
(i)
j′

where C(i)
j and C(i)

j′ are two ciphertext bytes associated to the i-th trace, and the
relation between j and j′ is given through the ShiftRows operation of AES. The
authors use j = 12 and j′ = 8. The measured SNR equals 0.01554 (see Appendix D
Figure 12).

• AES_RD is obtained from an 8-bit AVR microcontroller where a random delay
desynchronization is implemented [CK09]e. This countermeasure shifts each trace
following a random variable of 0 toN [0]. This renders the attack more difficult because
of the misalignment. Similarly to DPA-contest v4, the sensitive variable is the first
round S-box operation where each trace is labeled as such Y (i)(k∗) = Sbox[P (i)

0 ⊕k∗].
The measured SNR equals 0.0073 (see Appendix D Figure 13).

chttp://www.dpacontest.org/v4/42_traces.php
dhttps://github.com/AESHD/AES_HD_Dataset
ehttps://github.com/ikizhvatov/randomdelays-traces

http://www.dpacontest.org/v4/42_traces.php
https://github.com/AESHD/AES_HD_Dataset
https://github.com/ikizhvatov/randomdelays-traces
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• ASCAD is introduced in [PSB+18] and is the first open database f that has been
specified to serve as a common basis for further works on the application of deep
learning techniques in the side-channel context. The target platform is an 8-bit AVR
microcontroller (ATmega8515) where a masked AES-128 is implemented. In addition,
a random delay is applied to the set of traces in order to make it more robust against
side-channel attacks. The leakage model is the first round S-box operation such that
Y (i)(k∗) = Sbox[P (i)

3 ⊕ k∗]. As explained in the paper, the third byte is exploited.
The measured SNR equals 0.007 (see Appendix D Figure 14).

Remark on the learning rate. During the training phase, for each architecture, we use
a technique called One Cycle Policy [ST17, Smi17, Smi18] that helps choosing the right
learning rate. The learning rate (LR) is one of the most challenging hyperparameter to
tune because it defines the learning time and the robustness of the training. If it is too
small, the network is going to take a long time to learn. If it is too high, each learning
step will go over the loss minimum. The One Cycle Policy gives very fast results to train
complex models. Surprisingly, using this policy we can pick much larger learning rates
and significantly improve the learning time while preventing overfitting.

5.2 Results on synchronized traces
As explained in Subsubsection 4.4.1, only 1 convolutional block is set for each network.
Following our methodology, we want to locate local perturbations that generate confusion
during the classification of the network. Thus, the length of the filters is set to 1. Finally,
the number of filters and the dense layers that compose the classification part should
be managed depending on the system. Moreover, to accelerate the learning phase, we
pre-process each dataset such as all trace samples are standardized and normalized between
0 and 1 [LBOM12].

5.2.1 DPA-contest v4

DPA-contest v4 is the easiest dataset because we consider it without countermeasures
and the relevant information leak a lot. Thus the extraction of sensitive variables is
straightforward for the network. To generate our CNN, we divide the dataset into three
subsets such as 4000 traces are used for the training, 500 for the validation set and 500 for
attacking the device. Only 2 filters are used and the classification part is composed of one
dense layer of 2 nodes. Finally, we set our learning rate to 10−3. The network is trained
for 50 epochs with a batch size of 50.
Visualizations help to evaluate the training process (see Appendix F Figure 16). As
explained in section Subsection 3.2, the weight visualization shows that the convolutional
part is accurately set because the PoIs are extracted. Furthermore, by looking at the
gradient visualization, we can consider that the classification part is also accurately working
because the PoIs detected at the end of the network are the same as those recognized by
the weight visualization. Thus, no information is lost between the convolutional part and
the end of the network.
We compare our result with [PHJ+19] in which the authors published the best performance
on DPA-contest v4 by using deep learning techniques. The results related to N̄tGE seem
to be similar. However, when we compare the complexity of the networks, we verify
that the complexity associated with our network is 6 times lower than the previously
best architecture. By reducing the complexity of the network, we remarkably reduce the
learning time (see Table 1). As conclusion, our network is more appropriate.

fhttps://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD
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Table 1: Performance comparison on DPA-contest v4
State-of-the-art Our methodology

([PHJ+19]) (Subsection 4.4)
Complexity (trainable parameters) 52112 8782
Guessing Entropy N̄tGE 4 3
Learning time (seconds) 1000 23

5.2.2 AES_HD

We use 75000 measurements such that 50000 are randomly selected for the training process
(45000 for the training and 5000 for the validation) and we use 25000 traces for the attack
phase. We set the number of filters to 2. Because the PoIs should be accurately revealed,
we minimize the classification part with 1 dense layer of 2 neurons. Finally, we set our
learning rate to 10−3. The training runs during 20 epochs with a batch size of 256.
From the Appendix F Figure 17, we can conclude that our model is not optimized. Indeed,
the weight visualization shows us that the selection of features is effective because our
network is able to find the relevant leakage points. When we look at the SNR value
(see Appendix D Figure 12), the sensitive information leaks between samples 950 and
1200. That corresponds to the features that the convolutional layer detects. However, by
visualizing the gradient, the global learning made by our network is not able to significantly
recognize the relevant points. Through these visualization techniques, we are able to
identify which part of the network needs to be optimized. Currently, there is no tool
that allowing an interpretation of the classification part in order to improve its efficency.
However, even if the classification part is not powerful, our network performs much better
than the state-of-the-art.
We compare our results with the architecture proposed in [KPH+19] where they get the
best performance on this dataset. In average, N̄tGE reaches 25000 traces. By applying our
methodology, we drastically improve this result. First, the new architecture is 31810 times
smaller in terms of number of parameters. Now, only 31 seconds are necessary to train the
network. Finally, our network outperforms the ASCAD network by getting N̄tGE around
1300 (see Table 2).

Table 2: Performance comparison on AES_HD
State-of-the-art Our methodology

([KPH+19]) (Subsection 4.4)
Complexity (trainable parameters) 104401280 3282
Guessing Entropy N̄tGE 25000 1300
Learning time (seconds) 6075 31

5.2.3 ASCAD with N0 = 0

Following the previous studies, we can find a suitable architecture for the ASCAD database.
For generating our network, we divide the dataset of ASCAD into three subsets: 45000
traces for the training set, 5000 for the validation set and 10000 for the attack phase.
We initialize the number of filters to 4. Then, two dense layers composed of 10 neurons
complete the network. Thanks the one cycle policy, we are able to configure our learning
rate in the range

[
5× 10−4; 5× 10−3]. The network is trained for 50 epochs with a batch

size of 50.
We compare our result with the original paper [PSB+18]. Surprisingly, we can notice that
the network detects more PoIs than the mask and the masked value. Through the weight
visualization, we can evaluate that the network recognizes relevant information related
to the mask and the masked values, however a sensitive area (between samples 380 and
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450) is detected by the network while nothing appears on the SNR. As the DPA-contest
v4 experiment, the weight visualization and the gradient visualization are similar. The
classification part appears optimized because no feature information is lost between the
end of the convolutional part and the prediction layer.
When we compare the new performance, we notice that our new network is 3930 times
less complex than the original paper. Finally, in terms of performance, we find a simpler
network that achieves N̄tGE in 191 traces while the original network reaches the same
performance for 1146 traces (see Table 3).

Table 3: Performance comparison on ASCAD with N0 = 0
State-of-the-art Our methodology

([PSB+18]) (Subsection 4.4)
Complexity (trainable parameters) 66652444 16960
Guessing Entropy N̄tGE 1146 191
Learning time (seconds) 5475 253

5.3 Results on desynchronized traces

Once we have shown that our methodology seems efficient on synchronized traces for
unprotected AES and 1st-order masked AES, we decide to experiment our methodology
on systems that implement a random delay desynchronization.

5.3.1 AES_RD

The dataset consists of 50000 traces of 3500 features each. For this experiment, we
use 20000 traces for the training set, 5000 for the validation set and 25000 for attack-
ing the device. Because desynchronization is generated, we have to use more than one
convolutional block. Following Subsubsection 4.4.2, we recommend using three convo-
lutional blocks. Concentrating the attention of the network into the PoIs is helpful in
order to reduce the desynchronization effect. Our new architecture can be set follow-
ing the Figure 5. Each hyperparameter is set as follows: for the first convolutional
block, we set filter_size[1] = 1, pooling_stride[1] = 2, number_filters[1] = 8. For the
second convolutional block, we configure filter_size[2] = 50, pooling_stride[2] = 50,
number_filters[2] = 16. Finally, the hyperparameters of the third convolutional block
are filter_size[3] = 3, pooling_stride[3] = 7, number_filters[3] = 32. Then, two fully-
connected layers composed of 10 neurons define the classification part. Thanks to the one
cycle policy, we are able to set our learning rate in the range

[
10−4; 10−3]. The network is

trained for 50 epochs with a batch size of 50.
To evaluate the feature selection, we visualize the heatmaps associated with each layer in
the convolutional part. Through the Appendix F Figure 19, we can evaluate the filters’
selection by analyzing the heatmaps. As defined in Subsubsection 4.4.2, our methodology
reduces the dimension of each trace in order to focus the features selection on the relevant
points. Other points are discarded. Then, the information aggregation is easier for the
classification part.

When our methodology is applied, we drastically reduce the impact of the desyn-
chronization and the performance related to the network will be less impacted by this
countermeasure. By comparing N̄tGE with the state-of-the-art [KPH+19],our performance
is similar. However, the complexity related to our network proposal is greatly reduced (40
times smaller).
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Table 4: Performance comparison on AES_RD
State-of-the-art Our methodology

([KPH+19]) (Subsection 4.4)
Complexity (trainable parameters) 512711 12760
Guessing Entropy N̄tGE 10 5
Learning time (seconds) 4500 380

5.3.2 ASCAD

Finally, we test our methodology on a system that implements random delay and 1st
order-masked AES. We evaluate our methodology when N [0] = 50 and N [0] = 100. As in
Subsubsection 5.2.3, we split our dataset into three subsets: 45000 traces for the training
process, 5000 for the validation set and 10000 traces for allowing the attack.

Random delay: N [0] = 50. By applying our new methodology, we want to generate
a suitable architecture following Subsubsection 4.4.2. Thanks to Appendix F Figure 18,
we can set L = 3 because three global leakage areas appear. For the first convolutional
block, we set filter_size[1] = 1, pooling_stride[1] = 2, number_filters[1] = 32. For
the second convolutional block, we configure filter_size[2] = 25, pooling_stride[2] =
25, number_filters[2] = 64. Finally, the hyperparameters of the third convolutional
block are filter_size[3] = 3, pooling_stride[3] = 4, number_filters[3] = 128. The best
performance is obtained when we configure three fully-connected layers with 15 neurons.
We apply a range of learning rate between

[
5× 10−4; 5× 10−3] and we set the number of

epochs to 50 with a batch size 256.
To illustrate that the convolutional part is well customized, we visualize the heatmaps for
evaluating the features selection. Through these heatmaps (see Appendix F Figure 20), we
can notice that the network recognizes some influent patterns for the classification. Most
of these patterns seem to correspond to the different leakages revealed by Appendix F
Figure 18.
By applying this our methodology on this dataset, we remarkably outperform the state of
the art. In the original paper, Prouff and al. don’t reach a constant guessing entropy of 1
with 5000 traces. However, by applying our methodology, we converge towards a constant
guessing entropy of 1 for 244 traces while the complexity of our networks is divided by 763.
As a reminder, the performance related to the network trained with synchronized traces
converges towards a guessing entropy of 1 with around 200 traces. Thus, we succeed at
drastically reducing the impact of the random delay effect. Obviously, the network can be
optimized with random search optimization, data augmentation or noise addition.

Table 5: Performance comparison on ASCAD with N [0] = 50
State-of-the-art Our methodology

([PSB+18]) (Subsection 4.4)
Complexity (trainable parameters) 66652444 87279
Guessing Entropy N̄tGE > 5000 244
Learning time (seconds) 5475 380

Random delay: N [0] = 100. Finally, we apply our methodology on an even more
complex system implementing a random delay with N [0] = 100. For the first convolutional
block, we set filter_size[1] = 1, pooling_stride[1] = 2, number_filters[1] = 32. For
the second convolutional block, we configure filter_size[2] = 50, pooling_stride[2] = 50,
number_filters[2] = 64. Finally, the hyperparameters of the third convolutional block are
filter_size[3] = 3, pooling_stride[3] = 2, number_filters[3] = 128. Thanks to the one
cycle policy, we define our learning rate in the range

[
10−3; 10−2] for allowing a robust
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training and reaching a good local minimum. As previously, our network is trained during
50 epochs with a batch size 256.
Thanks to the visualization tools (see Appendix F Figure 21, we can interpret our network
and conclude that it is suitable for our evaluation because the gradient visualization and
heatmaps are similar and show the same relevant points as the SNR.
Our network is widely less complex than the architecture introduced in the original
ASCAD paper and N̄tGE is outperformed. Indeed, we converge towards a constant
guessing entropy of 1 with 270 traces while the original paper couldn’t converge with
5000 traces. Furthermore, by reducing the complexity, we are able to train our network
much faster. By comparing this performance with Subsubsection 5.2.3, we note that our
methodology awfully reduce the impact of the desynchronization. Indeed, the performance
of the two models is similar. As consequence, our methodology removes the effect of the
random delay countermeasure.

Table 6: Performance comparison on ASCAD with N [0] = 100
State-of-the-art Our methodology

([PSB+18]) (Subsection 4.4)
Complexity (trainable parameters) 66652444 142044
Guessing Entropy N̄tGE > 5000 270
Learning time (seconds) 5475 512

6 Conclusion

In this paper, we study the interpretability of Convolutional Neural Networks. We interpret
the impact of different hyperparameters that compose the feature selection part in order
to generate more suitable CNN. To evaluate it, we introduce two visualization tools called
Weight visualization and Heatmaps that help analyzing which patterns are influent during
the training process. These patterns are similar to PoIs that are well-known in the side-
channel context.
We show theoretically the effect of the length of filters and on the number of convolutional
blocks and using these visualization techniques in order to verify our demonstrations.
These visualization techniques help us in order to find a methodology for generating
appropriate CNN architecture according to the countermeasures implemented. When an
evaluator wants to generate a network for synchronized traces, we recommend using only
one convolutional block and minimizing the length of the filters for accurately identifying
the relevant information. However, in the case where desynchronization is applied, we
introduce an architecture that enables the network to focus its features selection on the
PoIs themselves while the dimensionality of the traces is reduced. This helps to drastically
reduce the complexity of the CNN.
Our methodology is applied on 4 datasets that offer a large variety of use-cases. For
all of them, our methodology outperforms the state-of-the-art. Indeed, our attacks are
performed much faster and each new architecture is less complex than the state of-the-art.
Thus, this paper shows that the networks needed for performing side channel attacks don’t
need to be complex. This methodology is not focused on optimizer hyperparameters and
could benefit from techniques such as the data augmentation [CDP17] or adding noise
[KPH+19].
In some cases, we show that the aggregation of information through the classification part
could be difficult. Future works could study this issue to generate suitable fully-connected
layers. Finally, more complex systems with dynamic desynchronization or in presence of
higher order masking scheme could be analyzed.
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A Signal to Noise Ratio (Chipwhisperer dataset)

Figure 6: Signal to Noise Ratio related to the Chipwhisperer dataset

B Architectures for Hyperparameter

Table 7: Networks (length of filters)
Hyperparameters value
nb_blocks 1
nb_filters 2
length_filter [1,3,5,7,9,11,13,15,17,19,21,23,25,50,75,100]
nb_FC_layers 1
nb_neurons_FC 4

length = 1 length = 9

length = 75length = 23

Figure 7: Impact of the filters length in the PoIs detection using weight visualization

length = 1

H[1]
trace

Figure 8: Heatmap of the first convolutional block H [1] with length 1
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C Number of convolutional blocks : Pooling

Table 8: Networks (number of convolutional block)
Hyperparameters value
nb_blocks [1,2,3,4,5]
nb_filters 2
length_filter 1
nb_FC_layers 1
nb_neurons_FC 4

nb_blocks = 1 nb_blocks = 2

nb_blocks = 3 nb_blocks = 4

nb_blocks = 5

Figure 9: Impact of the number of convolutional blocks in the PoIs detection (Average
Pooling) using weight visualization

nb_blocks = 1

nb_blocks = 3 nb_blocks = 4

nb_blocks = 5

nb_blocks = 2

Figure 10: Impact of the number of convolutional blocks in the PoIs detection (Max
Pooling) using weight visualization
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D Signal to Noise Ratio for experimental datasets

Figure 11: SNR for DPA-contest v-4 dataset

Figure 12: SNR for AES_HD dataset

Figure 13: SNR for AES_RD dataset

Figure 14: SNR for ASCAD dataset
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E Methodology for generating architecture (desynchronized
traces)
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F Performance visualization
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Figure 16: DPA-contest v4 (a) Guessing entropy result ; (b) Weight visualization ; (c)
Gradient visualization
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Figure 17: AES_HD (a) Guessing entropy result ; (b) Weight visualization ; (c) Gradient
visualization
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Figure 18: ASCAD (traces synchronized) (a) Guessing entropy result ; (b) Weight
visualization ; (c) Gradient visualization
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Figure 19: AES_RD (a) Guessing entropy ; (b) Output 2nd convolutional layer ; (c)
Output 3rd convolutional layer ; (d) Output 3rd convolutional block
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Figure 20: ASCAD dataset with N [0] = 50 (a) Guessing entropy ; (b) Output 2nd
convolutional layer ; (c) Output 3rd convolutional layer ; (d) Output 3rd convolutional
block
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Figure 21: ASCAD dataset with N [0] = 100 (a) Guessing entropy ; (b) Output 2nd
convolutional layer ; (c) Output 3rd convolutional layer ; (d) Output 3rd convolutional
block
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