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Abstract—In this work we apply the systematic approach
of game-based security specifications and proofs by reductions,
to the design and evaluation of public key infrastructure (PKI)
schemes. The importance of rigorous definitions and reduction-
based proofs for cryptographic primitives is well-recognized, but
this approach has not yet been applied to PKI schemes, despite
their importance and pervasive use. This is most problematic
in case of the advanced PKI properties such as transparency,
revocation transparency and non-equivocation, which are non-
trivial to define, analyze and prove.

In response, we propose the first Public Identity Infrastructure
(PII) framework that offers rigorous yet flexible game-based
security for PKI schemes. We show the feasibility of the PII
framework by presenting United-π, a simple, efficient and prov-
ably secure ‘proof of concept’ PKI scheme, that provably achieves
all security properties we define.

Index Terms—

I. INTRODUCTION

The security of our online infrastructure critically depends
on the ability to securely distribute public keys. For example,
the SSL/TLS protocol [2] underlines all secure (HTTPS)
connections on the Internet providing authentication and en-
cryption for domain validation and end-to-end security. For the
client’s browser to establish a secure connection to a server,
the server must provide a digital certificate binding the server’s
identity to the provided public key. Such a certificate must be
issued by a certificate authority (CA) trusted by the browser,
either directly (a root CA) or indirectly (an intermediate CA).
Unfortunately, current browsers trust hundreds of such CAs,
any of which can issue a fake certificate that an attacker
can subsequently use for website spoofing and man-in-the-
middle attacks, possibly leading to identity theft, surveillance,
compromises of personal and confidential information, and
other serious security breaches. Over the years, we have seen
many failures of the currently deployed CA-based system.
For example, hackers stole the master keys of CAs [3], [4]
and issued fake certificates for major websites and the CAs
themselves abused their powers by improperly delegating their
certificate-issuing authority [5].

A number of browser-based stopgap solutions, such as
pinning certificates for specific websites [6] or following
the “trust-on-first-use” (TOFU) model and trusting the first
encountered certificate [7], were proposed, alongside more
systematic attempts to improve the PKI such as Certifi-

cate Transparency [8], [9], Enhanced-CT [10], Sovereign
Key [11], CONIKS [12], AKI [13], PoliCert [14], ARPKI [15],
DTKI [16], CoSi [17], IKP [18], CertCoin [19], PB-PKI [20],
Catena [21], CertLedger [22], and more. These proposals are
designed to achieve additional, ‘stronger’ security properties
as compared to X.509, such as non-equivocation and trans-
parency.

Considering the wide use and importance of PKIs, and the
known failures, it is remarkable that the security properties
of PKIs have not been formally defined - and hence, also
not proven - although the importance of provable-security is
widely recognized. A possible explanation to this situation is
the fact that most currently-deployed PKIs are based on the
X.509 standard [23], which focuses on the basic security goals
of accountability and revocation accountability. Both goals are
simple and intuitive, and for X.509, follow immediately from
the security of the underlying signature scheme. However,
recent PKI schemes have more advanced goals, such as trans-
parency and non-equivocation. Defining and proving security
for these properties is more challenging; yet, similarly to
X.509, no formal definitions or proofs are typically published.
This makes it challenging to securely build systems, which
depend on PKI schemes and their advanced features, and to
compare and select a scheme that best fits a specific application
or scenario.

Indeed, when we explored the ‘PKI landscape’ (see Sec-
tion II), we found that while many PKI systems have similar
ideas and goals, they are surprisingly non-trivial to compare
against one another. In the absence of an agreed-upon list of
formally-defined goals and requirements for a PKI scheme,
existing systems establish their own security goals, which are
often not well-defined and tied to a specific implementation.
Inconsistent terminologies, different security and communi-
cation models, additional entities, and explicit and implicit
assumptions, all further complicate such comparisons. Inter-
estingly, certain PKI schemes do not provide properties that
other systems consider necessary, even when they are straight-
forward to support, while other schemes achieve stronger
properties without explicitly claiming them. Lastly, the lack of
a formal framework for security of PKI schemes makes it hard
to define new security properties, e.g, pertaining to privacy.
It also prevents a modular design of schemes that achieve
such new and advanced properties, by provable reductions to
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simpler, already-analyzed scheme.
Our goal is to lay a solid foundation for PKI by presenting

the Public Information Infrastructure (PII) framework, with
well-defined correctness, safety and liveness requirements,
allowing for reduction-based proofs of security. The PII frame-
work reflects the goals of recent, advanced PKI proposals,
and yet it is general enough to allow future work to define
additional requirements and properties.

We use the term PII instead of the traditional term PKI for
two reasons. First, the security properties we focus on are not
specific to the certification of public keys and apply to the
certification of any type of public information; this was also
done in X.509, with the introduction of attribute certificates.
Second, similarly to other PKI proposals, PII focuses on se-
curity against corrupt CAs, but not on limiting the certificates
a particular CA is authorized for. This is in contrast to
PKIX [24] and other ‘classical’ PKI schemes, which focus
on naming and other constraints for the certificates that a
CA is authorized to issue. Such constraints are important, as
they limit the scope of damages by a corrupt CA, and may
be applied to any PII scheme as a complementary security
measure.

To define the PII framework, we reviewed and analyzed
a number of existing PKI schemes, as well as considered
applications built upon or along-side existing PKIs, to ensure
that the PII framework reflects current applications while
remaining flexible to accommodate future uses and exten-
sions. This allowed us to develop game-based definitions
for what we identified as the main security requirements
for PKI/PII schemes, namely: accountability, ∆-transparency,
non-equivocation, revocation accountability and ∆-revocation
transparency. We briefly explain these requirements, and map
them to existing PKIs in section II and Table I.

Our PII framework does not attempt to address all PKI
issues, but to provide a foundation to eventually do so. The
set of requirements we propose should not be viewed as
final and complete. Indeed, we intentionally designed this
framework to be able to accommodate additional requirements
and alternative definitions. Considering that this area has been
a research focus for many years resulting in numerous designs,
often taking different approaches and focusing on different
issues, it would be overly optimistic to hope for one-size-fits-
all solution. Instead, our goal is to open up, facilitate and
suitably guide a debate and a collaborative effort to arrive at
a framework with best-fitting requirements (or sets of require-
ments) and models. This may be compared to the extensive and
ongoing efforts in defining different definitions and variants for
various cryptographic schemes, e.g., signature and encryption
schemes. There are important ‘advanced’ aspects of PKIs,
which we leave, for this reason, to future work, e.g., privacy
and cross-certification.

We aimed to provide a solid, precise but also flexible
foundation. In particular, our framework supports different
communication and adversary models. Furthermore, the PII
framework includes not just correctness and safety properties,
but also liveness properties, which are harder to capture

formally, but important in practice. Our framework may be
adopted to define security for other advanced cryptographic
schemes or systems.

We show the practicality of our PII framework by presenting
United-π, an efficient, provably-secure secure implementation
of an PII framework. Our analysis and reduction-based proofs
of security of United-π, prove the feasibility and applicability
of our framework. While United-π is a ‘proof of concept’ PKI,
it is efficient, and offers a simple yet flexible design.

In summary, this paper makes the following contributions:
(i) Public Identity Infrastructure (PII) framework: a rigorous,
flexible game-based security requirements that encompasses
correctness, safety and liveness properties of PKI (and more
generally, PII) schemes; (ii) United-π, a provably-secure
PII construction: an efficient, usable ‘proof-of-concept’ PKI
scheme with reduction-based proofs of the PII properties;
and (iii) Systematization of Knowledge: a review of the PKI
landscape and a comparison of the security properties of
current schemes.

The paper is organized as follows. Section II reviews the
PKI landscape and compares proposed schemes. Section III
presents the execution model for PII. Section IV presents the
Public Identity Infrastructure (PII) scheme and its correctness,
safety and liveness requirements. In Section V, we present
United-π, a provably-secure PII system; its proof sketches
are included in Appendix A while rigorous proofs in the full
version of this work [25]. We conclude and discuss future
work in Section VII.

The paper is organized as follows. Section II reviews the
PKI landscape and compares proposed schemes. Section III
presents the adversary and system framework, allowing flexi-
bility, e.g., synchronous and asynchronous models. Section IV
presents the Public Identity Infrastructure (PII) scheme and its
correctness, safety and liveness properties. In Section V, we
present United-π, a provably-secure PII system; its analysis
is in Section A. We conclude and discuss future work in
Section VII.

For a quick first reading, the reader may want to first skip
Section III and all but the first two subsections of section IV.

II. THE PKI LANDSCAPE

In this section, we discuss the main PKI schemes proposed
and deployed so far, and their security properties. Then, we
map the security properties offered by these schemes to the
properties identified in our framework (see Table I).

A. X.509, PKIX and ‘Basic’ PKI Safety Properties

The basic goal of a PKI scheme is to ensure authenticity of
certificates. Certificates are issued and endorsed by Certificate
Authorities (CAs). An honest CA issues a certificate only after
it verifies that the entity requesting the certificate is eligible
to receive it. The ITU X.509 specification [23] defines the
main entities, properties and functionalities of a PKI as well
as the specific format for certificates. A typical certificate
contains an identifier and some public information (normally
a public key), and a signature generated by a CA over the
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certificate’s information, where the signature serves as the
CA’s endorsement of the mapping defined in the certificate.
From version 3, X.509 supports certificate extensions which
most current deployments use. The most widely used set of
extensions is the IETF’s PKIX [24], defined for use in Internet
protocols, and its refinements for specific protocols, such as
TLS [26] and S/MIME [27]. An important part of every PKI
is the validation process, allowing relying parties, individuals
or entities, to determine if a given certificate is valid in order
to decide if to rely on its contents. Typically, a certificate is
valid if it is unexpired, the certificate’s signature is valid, and
most importantly, the signature was generated by a trusted,
‘authorized’ CA, as defined for that PKI.

Accountability (ACC). The most fundamental security prop-
erty of a PKI (and PII) scheme is accountability (ACC for
short), i.e., the ability to identify the CA that issued a
given certificate. Accountability provides a retroactive defense
against a corrupt CA. In most PKI schemes, including X.509
and PKIX, accountability is achieved by having the CA
digitally sign certificates, i.e., a CA is accountable for any
certificate signed using the CA’s private key. CA account-
ability, in this sense, includes unauthorized use of the CA’s
private key, e.g., due to exposure or penetration, as well as
issuing a certificate to an impersonator. Note that we use
the term accountability as a technical, well-defined property,
which does not necessarily have any specific legal or financial
implications. The widely-used notion of accountability is
rather straightforward and we explicitly define it, we believe
for the first time, in Section IV-D.

Revocation accountability (ReACC). A certificate can be
considered valid only after its issue date and until its expiration
date, both of which are specified in the certificate. The
issuing CA, however, can invalidate a certificate before its
expiration date by revoking it. A user can request to have their
certificate revoked for a variety of reasons, including a loss or
compromise of the private key corresponding to the public key
endorsed in the certificate. The two main revocation mecha-
nisms in X.509 and PKIX are the certification revocation lists
(CRLs) [28] and online certificate status protocol (OCSP) [29].
While the premise of revocation seems straightforward, it
is surprisingly non-trivial to formulate its properties. Again,
we are not aware of any existing such definition. We define
two security requirements related to revocation, revocation
accountability (ReACC, provided by X.509 and discussed
next) and revocation transparency (∆ReTRA, not provided by
X.509, and discussed in Section II-B).

Revocation accountability ensures accountability of the re-
voked certificates and as such, it is similar to the accountability
of issuing certificates. Namely, this property ensures that a
client will not have their certificate revoked without a legiti-
mate reason (e.g., their request), unless the CA is malicious,
or an attacker corrupts or tricks the CA.

B. Beyond X.509: Advanced PKI Safety Requirements

In Section II-A, we discussed accountability and revocation
accountability, the two basic PKI properties provided by X.509

and PKIX. We now discuss more recent PKI schemes and
their additional security requirements in terms of the properties
we propose in PII: ∆-transparency (∆TRA), ∆-revocation
transparency (∆ReTRA), and non-equivocation (NEQ). See
definitions of these requirements in Section IV-D.

Transparency (∆TRA). Accountability, as described above,
mainly serves as a deterrent against misbehavior and only of-
fers retroactive security by punishing a CA ‘caught’ misbehav-
ing, e.g., issuing a fraudulent certificate. For many years this
reactive measure was viewed as a sufficient defense, under the
assumption that CAs were highly respectable and trustworthy
entities who would not risk, intentionally or otherwise, being
implicated in issuing fraudulent certificates. However, repeated
cases of compromised or dishonest CAs have proven this
assumption to be overly-optimistic. It turned out that punishing
CAs is non-trivial: beyond negative publicity, any punishment
was arbitrary, short-lived and overall ineffective [30]–[33].
Furthermore, ‘punishment’ could only be applied after the
damage was already done and discovered - if it was discovered
at all. An attacker or corrupt CA could reduce the risk of being
caught by minimizing the exposure of the fraudulent certifi-
cate. Except for efforts such as the Perspectives Project [34], or
the EFF SSL Observatory [35] that aim to gather and inspect
all SSL certificates used in practice, the burden of detecting
any fraudulent activity is mostly on the victim that receives
a fraudulent certificate since browsers are not equipped with
mechanisms to detect many types of fraudulent certificates,
much less to report them to any ‘enforcement agency’, if one
existed.

This significant issue has motivated more recent PKI de-
signs, where certificates are transparently published to allow
third parties (e.g., trusted ‘monitors’) to inspect and detect
any fraudulent certificates. This design ensures that once a
fraudulent certificate is issued by some corrupt authority, their
misbehavior would eventually be detected and that fraudulent
certificates could be found before they are misused.

We refer to this property as ∆-transparency. Transparency
prevents a CA from ‘silently’ generating fraudulent yet
validly-formed certificates, and exposing them only to selected
victims during an attack. Transparency requires a certificate
to include, or come with, a commitment of ∆-transparency,
where some party is accountable to publish the certificate, im-
mediately or within a specified time frame ∆. By demanding
a proof of transparency, a PKI system can ensure detection
of conflicting or fraudulent certificates issued by a corrupt or
compromised CA, and empowers clients to detect and resolve
any discrepancies regarding their certificates.

All schemes we analyzed but X.509 offer transparency,
which is typically achieved through append only public logs,
where a certificate is valid only if it appears in the public logs.
Certificate Transparency (CT) [8] and Enhanced-CT [10] use
Merkle trees for the logs, while CertCoin [19], PB-PKI [20],
Catena [21] and CertLedger [22] use blockchain-based public
logs (public ledgers).

Non-equivocation (NEQ). Transparency is still a reactive
defense: it does not prevent a corrupt CA from issuing a
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fraudulent certificate, but only ensures that such behavior will
eventually be detected. In other words, while transparency
ensures detection, it does not ensure prevention. In partic-
ular, consider the goal of non-equivocation, i.e., preventing
the issuance of multiple, concurrently valid certificates that
map the same identifier to different public information (e.g.,
public keys). Non-equivocation can prevent a corrupt CA from
issuing a fake certificate for an already-certified identifier, e.g.,
domain name; hence, it could prevent, rather than merely
detect, man-in-the-middle attacks impersonating existing se-
cure domains [36]. A system that achieves transparency, but
not non-equivocation, would detect such attack, but may not
be able to prevent it. Non-equivocation is typically achieved
through the use of logging and public ledgers (e.g., CoSi [17],
Catena [21], CertCoin [19]).

Revocation transparency (∆ReTRA). Revocation account-
ability does not ensure that revocation would be performed
correctly. Consider a scenario where a client asks to have her
certificate revoked, but a corrupt CA does not properly revoke
the certificate and as a result, some (or all) relying parties are
kept unaware of the revocation and still consider the certificate
as valid. Obviously, such behavior may endanger the client in
many scenarios, e.g., when the corresponding private key was
obtained by an attacker. Revocation transparency (∆ReTRA)
ensures that if a CA revoked a certificate, then all authorities
should be aware of the revocation (within bounded time),
preventing such undesirable scenarios. Many systems [10]–
[16], [19] provide ∆ReTRA and it is an explicit goal of
Revocation Transparency (RT) [9].

Certificate-status Freshness. Interestingly, X.509 provides
a different but related property to revocation transparency,
which we refer to as certificate-status freshness. X.509’s two
revocation mechanisms, CRLs and OCSP, include a times-
tamp in their responses, using which, relying parties may
decide whether to trust the certificate, i.e., if the response is
‘fresh’ enough. More concretely, the relying party considers
an X.509 certificate as valid only if it received a valid and
sufficiently recently-issued (‘fresh’) CRL or OCSP response,
indicating that the certificate was not revoked. Note that some
relying parties may neglect to validate (the freshness of)
the corresponding CRLs or OCSP responses, allowing for
attacks using exposed but revoked keys; e.g., such failures
are known for browsers. We find certificate-status freshness
a rather straightforward and intuitive notion, which is easy
to achieve; therefore, we do not formalize it as a separate
property.

C. Current PKI Schemes and the PII Framework

Indisputably, achieving provable security is a complex task.
Therefore, in this work, we strive to alleviate this burden by
formalizing the meaning of a provably-secure PKI/PII system
and providing a framework that both existing and future
systems can use to achieve provable security in a simplified
manner. Hence, instead of ‘reinventing the wheel’, we design
PII in a way that embraces, complements and reflects current

PKI designs, rather than trying to redefine or fundamentally
alter what a PKI system is or should be.

We have methodically examined the existing ‘PKI land-
scape’ by identifying and analyzing current PKI systems, both
those deployed and proposed in the literature. As a result,
in addition to correctness and liveness requirements, we have
identified five fundamental safety requirements (discussed in
Sections II-A and II-B, and formally presented in Section IV)
that a PKI system should provide.

We note that we aimed to be as careful and comprehensive
as possible in deciding which PKI systems to include in our
analysis (and Table I) but due to space constraints, we focused
on deployed systems and other representative schemes.

First, following our discussion of the ‘basic’ PKI security
properties in Section II-A, we observe that most systems,
with the exception of Certcoin, PB-PKI, and Catena, aim
to achieve accountability. Both Certcoin and PB-PKI build
on top of Namecoin [], which is a decentralized namespace
system rather than a centralized, CA-oriented system, where
the CAs grant identifiers to clients. Instead, due to the fully
decentralized nature, anyone can claim an identifier so long it
is available and consequently, there is no need to hold anyone
accountable for the process of assigning identifiers. Catena, on
the other hand, is a witnessing (logging) scheme that allows
to witness public-key directories using the Bitcoin blockchain.
As a result, accountability of issuing certificates is handled by
the directories themselves.

Interestingly, many systems directly focus on more ad-
vanced properties, such as transparency and non-equivocation,
and treat certain properties (e.g., accountability and revocation)
as intrinsic to PKI and do not always explicitly state them. This
phenomenon is especially apparent in case of revocation. Many
systems [17]–[21] do not directly address revocation at all, or
do not state the details of how revocation should be handled,
by whom and under which conditions and simply treat it as
an extension of issuing certificates. PKI systems, that use the
X.509 notion of a certificate, implicitly rely on the X.509
revocation mechanisms (CRLs and OCSP). This approach is
somewhat understandable due to the pervasiveness of X.509
but it also establishes the X.509 revocation mechanisms are
the status quo of revocation despite its known weaknesses. In
Table I, we label accountability and revocation accountability
as intuitively true for all systems, except for Certcoin, PB-
PKI and Catena, since these properties and the corresponding
proofs are rather straightforward to reconstruct. Note that
CONIKS, Certcoin and PB-PKI do allow clients that own
certificates to revoke them, but revocation can also be done
by an adversary that compromised the client’s secret keys, or
alternatively, the client may unable to perform revocation if
the secret keys are lost.

Transparency, on the other hand, is a property that all
systems, except for X.509, support. This is likely in response
to one of the main weaknesses of X.509 widely abused in
practice, i.e., a lack of a mechanism to effectively propagate all
issued certificates among CAs and clients. As Table I indicates,
all analyzed systems have informal security arguments for
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System [reference]
Safety requirements Liveness

Comments and additional PKI properties
ACC ∆TRA NEQ ReACC ∆ReTRA requirements

1 X.509 and PKIX, with CRL or OCSP G# n/s n/s G# n/s G# Certificate-status freshness
2 CT [8] with RT [9] G# � n/s G# � G# Proofs for logging properties [37]
3 Enhanced-CT [10] G# � ? � G# � G#
4 Sovereign Key [11] G# � ? � G# � G#
5 CONIKS [12] G# � ? � G# � G# Privacy
6 AKI [13] G# � ? � G# � G#
7 PoliCert [14] G# � n/s G# � G#
8 ARPKI [15] G# � n/s G# � G# Symbolic proofs
9 DTKI [16] G# � ? � G# � G# Symbolic proofs, anti-oligpoly
10 CoSi [17] G# � � n/s n/s G#
11 IKP [18] G# � � n/s n/s G#
12 CertCoin [19] and PB-PKI [20] n/s � � n/s n/s G#
13 CertLedger [22] G# � � � � G#
14 Catena [21] n/s � � n/s n/s G#
15 United-π (this work)       

TABLE I: PKI security requirements.  - reduction-based proof, G# - intuitively true, � - security arguments (a proof may
require assumptions), n/s - not supported, ? - detection but not prevention

transparency, except for CT, ARPKI and DTKI, all of which
provide more substantial security analyses. We note, however,
that the properties and their proofs are not specific to PKIs
per se. Rather, they focus on a specific way of achieving
a secure PKI. Specifically, Dowling et al. [37] formalized
security properties and provided reduction-based proofs for
logging schemes such as CT, that cover two classes of security
goals involving malicious loggers and malicious monitors.
ARPKI and DTKI, on the other hand, verify their core security
properties using automated symbolic proofs via the Tamarin
prover [38]. We view this approach as an important effort but
not as a replacement for game-based security, however.

We define non-equivocation as an active measure that pre-
vents the existence of two conflicting certificates, e.g., two
certificates with the same identifier mapping to two different
public keys, and a number of systems [17]–[22] provide this
property as such. Other systems [10]–[13], [16], however, pro-
vide only detecting such conflicting certificates while referring
to this property as non-equivocation. This example further
illustrates the need for a well-defined set of requirements and
their definitions.

Unlike revocation accountability, revocation transparency is
more complicated, both to formalize and achieve. Typically,
revocation mechanisms do not intuitively indicate that they
provide revocation transparency, even if some form of prop-
agation of revocation information is implemented. Given that
these mechanisms are more complex and subtle, they need
explicit definitions and analyses. Therefore, for all systems
that support revocation transparency [9]–[16], [19], we decided
against using the ‘intuitively true’ symbol. Several systems
do not discuss revocation transparency at all, such as X.509
and [17]–[21], even though is certain cases (especially [17] it
would be realatively easy to achieve). CT originally did not
have a built-in support for revocation transparency, and it was
only later formalized in [9].

Lastly, security requirements for cryptographic schemes

often consider only safety requirements; however, in practice,
liveness is essential but not always ensured. Liveness implies
that operations terminate within bounded time or eventually;
e.g., whenever a certificate is issued (or revoked), the process
will terminate. In the case of PKI/PII schemes, liveness usually
seems easy to achieve but it is difficult to formalize, analyze
and prove. Indeed, we believe that liveness ‘intuitively holds’
for all proposed PKI schemes as indicated in Table I, however,
none of the proposals identify liveness as a goal, and certainly
none define it rigorously or prove that it holds. We correct
this situation by presenting a liveness requirement that covers
processing certificates, and specifically in this case, issuing,
revoking and ‘upgrading’ certificates (see Section IV-E).

D. Out of Scope: Constraints on Certificates

The X.509 standard and the PKI schemes based on it,
most notably PKIX [24], define additional basic and naming
certificates constraints which are used, in addition to the previ-
ously discussed checks, to determine if a particular certificate
is valid. These constraints do not apply to the root CAs,
i.e., the CAs which are trusted directly by the relying party.
Rather, they apply to the intermediate CAs endorsed by the
root CAs. These constraints are specified in a certificate and
play an important role in defining CAs and constraining their
authority. The basic constraints indicate if the specific entity is
a CA and whether it can designate other entities as CAs. The
naming constraints, on the other hand, restrict the identifiers
(name spaces) that a specific CA can issue certificates for;
without such constraint, a CA can issue a certificate for any
identifier. While these constraints limit the impact of a corrupt
CA, they do not detect or prevent misbehavior, which is the
focus of this work and of recently proposed PKI schemes.
Specifically, these constraints may prevent a CA from issuing
some certificates, e.g., to a domain not assigned to it, but
they do not provide defenses against a corrupt CA issuing
certificates with incorrect information within the domains
assigned to it or not revoking a certificate despite a user’s
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request, for example. Consequently, we focus on defenses
against a corrupt CA which is complementary to the efforts
to impose constraints on the certificates issued by a CA.

III. ENTITIES AND EXECUTION MODEL

In this section, we define the execution model for the
PII framework. The PII execution model is unique in its
flexibility, supporting a variety of network, synchronization
and adversary models. In particular, the PII execution model
allows synchronous, partially synchronous or asynchronous
communication models, and adversarial models ranging from
passive eavesdropper to active MitM adversaries. The method-
ology of such a flexible execution model may be applicable
to other systems beyond PKI/PII schemes.

A. Entities and Their State.

In PII, there are two types of entities: authorities and
clients, also referred to as relying parties. Clients rely on
the authorities to obtain and manage their certificates and for
any other certificate-related requests and queries. Authorities
are responsible for the entire certificate life cycle, where the
main events of issuing, upgrading and revoking certificates are
driven by the clients’ requests. For simplicity and generality,
the model treats all authorities equally, although this does not
prevent implementations where authorities have specific roles
(e.g., CA, RA, logger, auditor, etc.). We denote the set of all
authorities in the system as N = {1, . . . , n}, where n is the
number of all authorities.

Authorities may interact with one another to perform certain
actions. Each authority has local clock, as well as a local
state S, e.g. containing issued certificates, and the following
information:
• S.ι: the unique-identifier of the entity.
• S.PrivInfo: private (secret) information.
• S.PubInfo: public information.
Each authority supports several operations. Most of these

operations are specific to PII/PKI schemes, and defined later.
Below, we define three not PII-specific operations, performed
locally by each authority: Gen, Time and Incoming.
• Gen(1κ) → (PrivInfo,PubInfo): The Gen algorithm

allows to initialize the authority and generate the nec-
essary set up information (e.g., cryptographic keys) for
each individual authority. The algorithm takes as input
a security parameter 1κ and outputs private information
PrivInfo and public information PubInfo.

• Time(S, clk)→ (S′, {mi}i∈N, out): The Time algorithm
performs operations which are time-dependent. The al-
gorithm takes as input a local state S and local clock
clk. The algorithm outputs the modified state S′, a set of
messages {mi}i∈N for other entities and output out.

• Incoming(S, clk, {m̃i}i∈N) → (S′, {mi}i∈N, out): The
Incoming algorithm process and handles incoming mes-
sages from other authorities. The algorithm takes as input
a local state S, a local clock clk and a set of messages

{m̃i}i∈N. The algorithm outputs the modified state S′, a
set of messages {mi}i∈N, and output out.

In addition to these three ‘local’ operations, we define
a system initiation operation, GroupGen, which generates
common public information, such as a system-wide public
key or a set of ‘root’ public keys. The GroupGen operation is
invoked as a part of our execution model; to implement this in
a real system, GroupGen could be run by a trusted third party,
or using an appropriate multi-party computation protocol. The
GroupGen algorithm takes as input security parameter 1κ, set
of authorities N, the number of malicious authorities f < n,
and a set of public information {PubInfoi}i∈N. GroupGen
has only one output, the public group information PubInfo.
Namely, GroupGen(1κ,N, f, {PubInfoi}i∈N)→ PubInfo.

B. Execution Model.

The execution model is defined by the ExecA,P algorithm
(see Algorithm 1), where A and P represent the adversary and
the implementation of PII, respectively. This algorithm takes
as input a security parameter 1κ, the set of authorities N and
the number of malicious authorities f .

The Exec algorithm begins with an initialization phase
(lines 1-7). During the initialization phase, the Gen algorithm
is first used to initialize the local state of all authorities,
followed by the GroupGen algorithm, which generate the
public information PubInfo, shared by all authorities. Finally
(line 7), the adversary is invoked, providing it with all public
information, and allowing it to set the inputs for the first round
of the execution phase.

The execution phase (lines 8-9) is a loop of rounds, with
incrementing round number t. In each round, each authority
i ∈ N handles three events. First (8.2.1), we invoke one
of the functions of P , as selected by the adversary; the
function P.Algti is selected by the variable Algti , which the
adversary sets in line 7 (initialization) or 8.3 (execution). This
is intended for invoking the algorithms in PII which are not
executed by the execution process directly (i.e., excluding Gen,
GroupGen, Time, and Incoming). Second (8.2.2), we invoke
the P.Incoming algorithm to handle incoming messages m̃t−1

i,j

from other authorities j ∈ N (in previous round t − 1). Next
(8.2.3), we invoke the P.Time algorithm to handle time-based
events. Each of the algorithms is provided with access to the
current local state and clock of the appropriate authority, and
after it is finished executing, it outputs a modified state for that
authority as well as a set of messages for other authorities
(possibly empty). We complete the round by invoking the
adversary (line 8.3), who receives as input all the messages
sent in this round {mi,j}i,j∈N, and determines which messages
would be received in the next round {m̃t

i,j}i,j∈N; this allows a
MitM adversary, or to enforce m̃t

i,j = mi,j for eavesdropping
adversary. The execution rounds repeat until the adversary
decides to abort.

When the adversary aborts the execution (line 9), the
execution concludes, and outputs (line 11) four values:
[t, OutA, ι, R], where t is the number of rounds in the execu-
tion, OutA is the adversary’s output, ι is a specific (honest)
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authority, and R is the run, namely, the ‘transcript’ of the
execution (line 10). Authority ι was chosen by the adversary
in the beginning of the execution (line 1), before any other
operation was invoked. Further, we mark the local state of
the chosen authority ι (line 3). While asking the adversary to
pick ι does not impact the execution of ExecA,P , it enables a
simple and coherent presentation of definitions and arguments,
like the safety requirements of PII in Section IV-D and the
liveness requirements in Section IV-E.

Algorithm 1 ExecA,P(1κ,N, f)

// Ask the adversary to pick an honest authority from N

1: ι← A(N)

// Initialize local variables for all authorities
2: ∀i ∈ N : S0

i ← ⊥, Clk
0
i ← 0,

(
S0
i .PrivInfo, S0

i .PubInfo
)
← P.Geni (1κ)

// Mark the authority chosen by the adversary
3: S0

ι .chosen = >
// Generate public group information

4: PubInfo ←
(
P.GroupGen(1κ,N, f, {S0

i .PubInfo}i∈N), {S0
i .PubInfo}i∈N

)
5: ∀i ∈ N : S0

i .PubInfo ← PubInfo

// Initialize the round indicator t and adversarial state S0
A

6: t← 0, S0
A ← ⊥

// Invoking the adversary before the first round
7: [{Alg1

i , Inp
1
i , Clk

1
i }i∈N, {m̃

0
i,j}i,j∈N, S

1
A]← A(1κ, S0

A, ι,PubInfo)

// Execution phase:
8: repeat

8.1: t← t+ 1

8.2: ∀i ∈ N :

// Invoke instructions for the current round

8.2.1:
(
S1, {m1

i,j}j∈N, Out1
)
← P.Algti

(
St−1
i , Clkti , Inp

t
i

)
8.2.2:

(
S2, {m2

i,j}j∈N, Out2
)
← P.Incoming

(
S1, Clk

t
i , {m̃

t−1
i,j }j∈N

)
8.2.3:

(
Sti , {m

3
i,j}j∈N, Out3

)
← P.T ime

(
S2, Clk

t
i

)
// Aggregate all outputted values during round t into a single set

8.2.4: Outti ← Out1 ∪Out2 ∪Out3, (∀j)mi,j =
⋃3
`=1 m

`
i,j

// Adversary sees and controls messages, and selects operations for next round
8.3: [{Algt+1

i , Inpt+1
i , Clkt+1

i }i∈N, {m̃ti,j}i,j∈N, S
t+1
A ,

Abort, OutA]← A(1κ, {mi,j}i,j∈N, StA)

// Repeat, until the adversary indicates termination via the Abort indicator
9: until Abort 6= ⊥

// Output:

10: R←


{
Algt̂i , Inp

t̂
i , Out

t̂
i , Clk

t̂
i

}
i∈N

,

{
mt̂i,j , m̃

t̂

i,j

}
i,j∈N


t̂∈{1...t}

// The algorithm outputs the number of rounds t, output values chosen by the
adversary OutA, the target honest authority ι chosen by the adversary and
aggregation of all execution details R.

11: Return [t, OutA, ι, R]

C. Adversary, Communication and Synchronization Models

The execution model provides a significant flexibility, al-
lowing its use for schemes designed for different communi-
cation, synchronization and adversary models, e.g., MitM vs.
eavesdropping adversary. This is achieved by defining a model
predicate M over runs, which returns true if, and only if, the
run conforms with the model. Here are some examples:
Synchronous model: a run is valid only if the Clkti are

synchronized, i.e., for every i, j, t holds Clkti = Clktj .
Bounded-delay reliable communication: a run is valid only

if every message sent is received within (say) one time

unit, i.e., if m ∈ mt
i,j then for some t′ > t holds m ∈

m̃t′

i,j and Clkt
′

j ≤ Clktj + 1.
Eavesdropper adversary: a run is valid only if messages are

transmitted correctly, i.e., there is a one-to-one mapping
Π between the set of messages sent by i to j (

⋃
tm

t
i,j)

and the set of messages received by j from i (
⋃
t m̃

t
j,i).

IV. PII FRAMEWORK

In this section, we describe the Public Identity Infrastruc-
ture (PII) framework. We first provide an overview of the
framework and then define the correctness, safety and liveness
requirements.

A. Certificates and Functionalities

A PII scheme P associates an identity identifier id with
some public information pub. The association of (id, pub) is
achieved through a certificate, and authorities issue certifi-
cates, add attributes to certificates, or revoke certificates in
response to clients’ requests using algorithms PII defines (see
Section IV-B). A certificate ψ contains:

ψ = (id, pub, sd, ed, ρ)

where:
• ψ.id: identifier of the entity for which ψ was issued.
• ψ.pub: public information associated with ψ.id, e.g., a

cryptographic public key.
• ψ.sd: start of certificate validity period.
• ψ.ed: end of certificate validity.
• ψ.ρ: certificate’s attributes and details.

– ψ.ρ[attr].σ: ‘attestation’ that ψ has attribute attr.
– ψ.ρ[attr].ι: identity of the authority who attests for
attr.

– ψ.ρ[attr].clk: the local time when the attr attribute
was added to ψ.

When a client wishes to obtain a certificate to associate
some id with some pub, she contacts some authority ι ∈ N.
Authority ι verifies the legitimacy of the client’s request,
and if warranted, produces a certificate ψ using the P .Issue
algorithm. We stress that this verification process is not
prescribed by PII. We assume that each implementation of PII
will specify this verification process and define any additional
constraints on CAs (e.g., naming constraints). The P .WasValid
algorithm can be used to check if a given certificate is valid.
This algorithm does not depend on any state so it can be
used by any part in PII, and each implementation can define
its specific P .WasValid to reflect its notion of a certificate
validity. In PII, authorities also support the P .Query algorithm,
which outputs a list of all valid certificates issued for some
id, if such certificates are known to the authority.

Once a certificate is issued, it can be then upgraded using
the P .Upgrade algorithm to receive an attribute, i.e., an
‘added-on’, signed ‘endorsement’ of a certificate, such as
signed certificate timestamp (SCT) in the Certificate Trans-
parency PKI [39]. We denote the entire set of possible
attributes as AttrSet and each implementation may define
its own AttrSet, providing for flexibility and customization.
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We define AttrSet = {ACC,∆TRA,NEQ,REV,∆ReTRA}
to support the safety requirements of accountability, ∆-
transparency, non-equivocation, revocation accountability, and
∆-revocation accountability, respectively. Each attribute re-
flects some property of a certificate and carries a specific
meaning in terms of its security. For example, a certificate
with the ACC attribute is accountable, that is, the issuing
authority can be identified. A ∆-transparent (∆TRA attribute)
certificate can be assumed to be known to all honest authorities
in the system after some point in time defined by ∆ while
an unequivocal (NEQ attribute) certificate carries a guarantee
that another valid certificate for the same identifier will not be
issued unless the initial one was expired or revoked. We view
revocation as an attribute too and discuss it next.

An authority may invalidate a certificate before its expira-
tion date using the P .Revoke algorithm, which generates a
revoked certificate ψr, i.e., a certificate that has a revocation
attribute added that indicates the level of revocation: (REV
for accountable revocation and ∆ReTRA for ∆-transparent
revocation, or both). As before, each implementation should
define its specific revocation rules. An expired certificate
need not be revoked. The P .IsRevoked algorithm is used to
check the revocation status of a certificate: if ψ is revoked,
then P .IsRevoked returns its revoked version ψr; if ψ is
not revoked, then P .IsRevoked also returns a proof of non-
revocation until the current time; otherwise, the algorithms
returns ⊥.

Pending Certificates. In our execution model, all PII al-
gorithms return an immediate response once invoked. How-
ever, there are three algorithms that might not be able to
immediately return a final response: the P .Issue algorithm, the
P .Revoke algorithm, and the P .Upgrade algorithm. These al-
gorithms might not be solely depended on local operations; for
example, they might require interaction with other authorities
before they are able to decide whether to issue/revoke/upgrade
a certificate. Therefore, we introduce the notion of pending
certificates. Namely, when one of these three algorithms is
unable to produce the immediate final (expected) response,
the algorithm produces a pending certificate ψp instead, which
contains a commitment that specifies when the final response
will be ready with respect to a finite, system parameter ∆.
At some time after the ∆ time period has passed, the client
requests the authority for the final response. The authority
executes the P .Upgrade algorithm with the pending certificate
ψp as an input, and delivers to the client the output of
P .Upgrade, which is the final output. The final output is either
the ‘real’ certificate, i.e., the expected non-pending upgraded
certificate, or, the output is ⊥, i.e., the request was declined.
We emphasize that whether ψp was generated by the P .Issue,
P .Revoke, or the P .Upgrade algorithm, the final response can
only be obtained using the P .Upgrade algorithm.

B. PII Algorithms

Each scheme P defined in the PII framework provides the
following algorithms:

P = (Gen,GroupGen, Issue,Upgrade,WasValid,

Query,Revoke, IsRevoked,Time, Incoming)

PII follows the execution model described in Section III,
which defines Gen and GroupGen (for key generation), Time
(for handling time-based events) and Incoming (for handling
incoming messages).

We start by describing the stateless WasValid algorithm.
WasValid(ψ, [attr, tms]) → >/Pending/⊥: The algorithm

takes as input a certificate ψ, optional attribute attr and
an optional timestamp tms. If ψ is a valid certificate and
has the attr attribute (or if no attr is provided), then the
algorithm outputs >. If ψ has the attr attribute but in
a pending state, the algorithm outputs Pending. If tms
is used, then the output is with respect to some point in
time defined by tms. This also applies to checking if the
certificate is expired (that is, tms is outside of the sd and
ed dates). In any other case, the algorithm outputs ⊥.

WasValid is stateless, hence, it may be run by everyone,
including relying parties, the adversary, and in particular, can
be used in security games to enforce validity requirements. All
other algorithms always receive as input the local state S and
current local clock clk, and output the modified state S′ and
output messages {mi}i∈N. To avoid clutter, we abuse notation
and do not explicitly write these inputs and outputs, but only
other inputs and outputs, which are unique to each algorithm.
We now describe the remaining algorithms: Issue, Upgrade,
Revoke, IsRevoked and Query.

Issue(id, pub, sd, ed) → ψ/ψp/⊥: The algorithm takes as
input an identity id, public information pub, start date sd
and end date ed, and outputs a certificate ψ for (id, pub)
that is valid after sd and before ed. The algorithm
may also output a pending certificate ψp, if it cannot
immediately issue the certificate, e.g., if it needs to check
with other authorities. If the operation fails, e.g., due
to discovery of conflicting certificate, then the algorithm
returns ⊥.

Upgrade(ψ, attr, [α]) → ψ’/ψp/⊥: The algorithm takes
as input a certificate ψ, an upgrade attribute attr and
additional optional information α. If the upgrade request
is valid, the algorithm outputs an upgraded certificate ψ’
based on ψ with the attr attribute. If the algorithm re-
quires further operations, the algorithm outputs a pending
certificate ψp. If the input is a pending certificate ψp,
then after the ∆-defined time, the algorithm returns a
final version ψ of ψp. If the upgrade fails, the algorithm
returns ⊥.

Revoke(ψ) → ψr/ψp/⊥: The algorithm takes as input a
certificate ψ, and outputs a revoked certificate ψr, a
pending-revoked certificate ψp, or failure indicator ⊥.

IsRevoked(ψ) → ψ’/ψr/⊥: The algorithm takes as input a
certificate ψ. If ψ is known to be a valid non-revoked
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certificate, the algorithm outputs ψ’, which is identical to
ψ along with a proof of non-revocation until the current
local time. If ψ was already revoked, the algorithm returns
the revoked certificate ψr. In any other case, the algorithm
returns ⊥.

Query(id) → {ψ}/⊥: The algorithm takes as input an
identity id and returns the set of certificates {ψ} that
are associated with id. If such certificates do not exist,
the algorithm returns ⊥.

C. Correctness Requirements

We next describe the PII correctness requirements for is-
suing, revoking, upgrading, and the revocation status check
operation. The requirements specify that if an operation does
not fail (return ⊥), then it should produce the requested output
as specified by each algorithm. We first state that the results
of the issue operation is a ‘correct’ certificate, namely a
certificate with the requested core. Given a certificate ψ, its
core is Core(ψ) = (ψ.id, ψ.pub, ψ.sd, ψ.ed), i.e., the entire
certificate except for its attributes. It is also convenient to
denote Core(⊥) = ⊥.

Requirement 1. Correctness of certificate issuance.

(∀ id, pub, sd, ed;ψ ← P.Issue(id, pub, sd, ed) s.t. ψ 6= ⊥)⇒
[(P.WasValid(ψ) 6= ⊥) ∧ (ψ.id = id) ∧ (ψ.pub = pub)]

Requirement 2. Correctness of certificate revocation.

(∀ ψ ; ψr ← P.Revoke(ψ) s.t. Core(ψ) = Core(ψr))⇒
P.WasValid(ψr,REV) 6= ⊥

Requirement 3. Correctness of certificate upgrade.(
∀ ψ, attr, α;ψ’← P.Upgrade(ψ, attr, α) s.t.

Core(ψ) = Core(ψ’)
)
⇒ P.WasValid(ψ’, attr) 6= ⊥

Correctness of certificate revocation status should return
either a revoked or a non-revoked certificate, with same core.

Requirement 4. Correctness of certificate revocation status.

(∀ ψ ; ψ’← P.IsRevoked(ψ) s.t. Core(ψ) = Core(ψ’))⇒
P.WasValid(ψ’,REV) ∨ P.WasValid(ψ’,NR)

D. Safety Requirements

We now define the PII safety requirements. For each
requirement ξ, we define a corresponding experiment
SafetyExpξ,MA,P , where model M is as described in sub-
section III-C, and use it to define the requirement using the
following ‘generic’ definition.

Definition 1. A PII scheme P satisfies requirement ξ under
model M, if for every PPT adversary A and for every set N
holds:

Pr
[
SafetyExpξ,MA,P (1κ,N) = 1

]
∈ Negl(1κ)

Requirement 5. Accountability (ACC). Adversary A wins in
the accountability experiment SafetyExpACC,M

A,P if it pro-
duces an accountable certificate ψ which is valid, yet the

specified issuing authority ψ.ρ[ACC].ι did not issue ψ. See
Algorithm 2.

Algorithm 2 SafetyExpACC,M
A,P (1κ,N, f)

// Execute the adversary
1: [t, OutA, ι, R]← ExecA,P(1κ,N, f)

// Did A follow the model?
2: if M (R) = ⊥ then Return ⊥

// Extract the algorithms and inputs from the execution

3:
{
Algt̂i , Inp

t̂
i

}
i∈N,t̂∈{1...t}

← R

// The adversary outputs the certificate ψ
4: ψ ← OutA

5: Return:

// ψ is a valid accountable certificate and was issued by the honest authority ι
5.1: P.WasValid(ψ,ACC) ∧ ι = ψ.ρ[ACC].ι ∧ ι ∈ N−Corrupted (R) ∧

// However, ι did not issue ψ

5.2: @ t̂ s.t. Algt̂ι = P.Issue ∧ Inpt̂ι = (ψ.id, ψ.pub, ψ.sd, ψ.ed)

The SafetyExpACC,M
A,P (1κ,N, f) game initializes the ex-

periment by calling the Exec algorithm, which simulates the
adversary. In return, the Exec algorithm outputs the number
of rounds t simulated in Exec, adversary output OutA, an
authority identifier ι, and R, which is the ‘transcript’ of the
simulation (lines 1,3). The experiment verifies that the run
followed the model M (line 2); if not, abort with output ⊥.

For a run which follows the model, we ‘parse’ R to find

the operations and inputs
{
Algt̂i , Inp

t̂
i

}
i∈N,t̂∈{1...t}

(line 3),

and use ψ to denote the certificate returned by the adversary
in OutA (line 4).

The adversary wins if ψ is a valid accountable certificate
issued by the honest authority ι (line 5.1), yet ι was never
instructed to execute the P .Issue algorithm along with the
inputs ψ.id, ψ.pub, ψ.sd, ψ.ed (line 5.2). Note that we use
Corrupted(R) to denote the set of authorities corrupted
during R.

Requirement 6. ∆-Transparency (∆TRA). Adversary A wins
in the ∆-Transparency experiment SafetyExp∆TRA,M

A,P , if it
produces a valid certificate ψ, which is transparent on time
ψ.ρ[∆TRA].clk, yet there is an honest authority ι that is not
aware of ψ after time ψ.ρ[∆TRA].clk+ ∆. See Algorithm 3.

Algorithm 3 SafetyExp∆TRA,M
A,P (1κ,N, f)

1: [t, OutA, ι, R]← ExecA,P(1κ,N, f)

2: if M (R) = ⊥ then Return ⊥

3:
{
Algt̂i , Inp

t̂
i , Out

t̂
i , Clk

t̂
i

}
i∈N,t̂∈{1...t}

← R

4: ψ ← OutA

5: Return:

// ψ is a valid transparent certificate and both ι and ψ.ρ[∆TRA].ι are honest
5.1: P.WasValid(ψ,∆TRA) ∧ ι, ψ.ρ[∆TRA].ι ∈ N−Corrupted(R) ∧

// Honest authority ι is not aware of ψ although it should
5.2: Clktι ≥ ψ.ρ[∆TRA].clk + ∆ ∧

5.3:
[
Algtι, Inp

t
ι

]
= [P.Query, ψ.id] ∧

5.4: @ψ’ ∈ Outtι s.t. Core(ψ) = Core(ψ’)
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Transparency: Requirement 6 presented in Algorithm 3.
The SafetyExp∆TRA,M

A,P (1κ,N) game executes adversary A
using Exec, verifies that A followed the model M, and ex-
tracts the execution details as described in SafetyExpACC,M

A,P .
The adversary wins the game if three requirements are

met. First, ψ must be a valid transparent certificate (line
5.1). Second, authority ι and the transparency issuer of ψ
are honest authorities (line 5.1). Notice that the game checks
that the transparency issuer is honest and not the issuer of
the certificate itself (i.e., accountability issuer), since even if
the issuer of the certificate is corrupt, this does not prevent
the transparency issuer from broadcasting the certificate to the
rest of the authorities. The third requirement is that there is
an honest authority ι that is not aware of the transparency of
ψ on time t (lines 5.2-5.3). This requirement is validated by
verifying that on time t authority ι was instructed to perform
P.Query with ψ.id, but the output of this invocation did not
contain a transparent certificate based on ψ, and was sometime
after the time that ψ was supposed to be transparent. Since
the P .Query algorithm outputs all certificates associated with
ψ.id, this is a proof that an honest authority is not aware of
ψ.

Requirement 7. Non-equivocation (NEQ). Adversary A wins
in the NEQ experiment SafetyExpNEQ,M

A,P if it produces two
valid, non-revoked certificates ψ, ψ’ for the same identifier
(ψ.id = ψ’.id) and for overlapping validity periods, where
each certificate has different public information (ψ.pub 6=
ψ’.pub). See Algorithm 4.

Algorithm 4 SafetyExpNEQ,M
A,P (1κ,N, f)

1: [t, OutA, ι, R]← ExecA,P(1κ,N, f)

2: if M (R) = ⊥ then Return ⊥

3:
{
Outt̂i

}
i∈N,t̂∈{1...t}

← R

4: ψ ← OutA

5: ψ’← Outtι

6: Return:

// ψ and ψ’ are both non-equivocal certificates with same identifier
6.1: P.WasValid(ψ,NEQ) ∧ P.WasValid(ψ’,NEQ) ∧ ψ.id = ψ’.id ∧

// ψ and ψ’ have overlapping validity periods, different PubInfo
6.2: ψ.sd < ψ’.sd < ψ.ed ∧ ψ.pub 6= ψ’.pub ∧

// The run did not include a revocation of ψ
6.3: (@t′ ≤ t, j)

(
ψr ← Outt

′
j ; P.WasValid(ψr,REV) ∧ Core(ψr) = Core(ψ)

)

Non-equivocation: Requirement 7 presented in Al-
gorithm 4. The SafetyExpNEQ,M

A,P (1κ,N) game executes
adversary A using Exec, verifies that A followed the
model M, and extracts the execution details as described in
SafetyExpACC,M

A,P .
The adversary wins the game if three requirements are met.

First, ψ and ψ’ must be valid certificates (ψ provided by
the adversary and ψ’ by some ι, lines 4-5) with the non-
equivocation attribute (line 6.1). Second, both certificates have
overlapping validity periods (line 6.2). Third, ψ must also be
a non-revoked certificate (line 6.3).

Requirement 8. Revocation accountability (ReACC). Adver-

sary A wins in the ReACC experiment SafetyExpReACC,M
A,P if

it produces a valid revoked certificate ψr issued by an honest
authority ψr.ρ[ACC].ι, where ψr.ρ[ACC].ι did not revoke ψr.
See Algorithm 5.

Algorithm 5 SafetyExpReACC,M
A,P (1κ,N, f)

1: [t, OutA, ι, R]← ExecA,P(1κ,N, f)

2: if M (R) = ⊥ then Return ⊥

3:
{
Algt̂i , Inp

t̂
i

}
i∈N,t̂∈{1...t}

← R

4: ψr ← OutA

5: Return:

// ψr was issued by an honest authority and ψr is a valid revoked certificate
5.1: P.WasValid(ψr,REV) ∧ ι = ψr.ρ[ACC].ι ∧ ι ∈ N−Corrupted(R) ∧

// However, a revoke instruction was not invoked on ι
5.2: @ t̂ s.t. Algt̂ι = P.Revoke ∧ Inpt̂ι = ψ ∧ Core(ψ) = Core(ψr)

Revocation Accountability: Requirement 8 presented
Algorithm 5. The SafetyExpReACC,M

A,P (1κ,N) game exe-
cutes adversary A using Exec, verifies that A followed the
model M, and extracts the execution details as described in
SafetyExpACC,M

A,P .
The adversary wins the game if two requirements are met.

First, ψr must be a valid revoked certificate and authority that
revoked ψr must be an honest authority (line 5.1). The second
requirement is that the authority that is claimed to revoke ψr
did not revoked it (line 5.2).

Requirement 9. Revocation transparency (∆ReTRA).
Adversary A wins in the ∆ReTRA experiment
SafetyExp∆ReTRA,M

A,P if it produces a valid certificate
ψr which is revoked on time ψr.ρ[∆ReTRA].clk, yet there
is an honest authority ι that is not aware of ψr after time
ψr.ρ[∆ReTRA].clk + ∆. See Algorithm 6.

Algorithm 6 SafetyExp∆ReTRA,M
A,P (1κ,N, f)

1: [t, OutA, ι, R]← ExecA,P(1κ,N, f)

2: if M (R) = ⊥ then return ⊥

3:
{
Algt̂i , Inp

t̂
i , Out

t̂
i , Clk

t̂
i

}
i∈N,t̂∈{1...t}

← R

4: [ψr, x, t̂]← OutA

5: Return:

// ψr is a valid revoked certificate with the revocation transparency attribute
5.1: P.WasValid(ψr,REV) ∧ P.WasValid(ψr,∆ReTRA) ∧

5.2: ι, ψr.[∆ReTRA].ι ∈ N−Corrupted(R) ∧

// Honest authority ι is not aware of ψ although it should
5.3: Clkt̂ι ≥ ψr.ρ[∆ReTRA].clk + ∆ ∧

5.4:
[
Algtι, Inp

t
ι

]
= [P.Query, ψ.id] ∧

5.5: @ψ ∈ Outtι s.t. Core(ψr) = Core(ψ) ∧ P.WasValid(ψ,REV)

Revocation Transparency: Requirement 9 presented
Algorithm 6. The SafetyExp∆ReTRA,M

A,P (1κ,N) game exe-
cutes adversary A using Exec, verifies that A followed the
model M, and extracts the execution details as described in
SafetyExpACC,M

A,P .
The adversary wins the game if four requirements are met.

First, ψp must be a valid transparency pending certificate (line
6.1). Second, authority x and the transparency issuer of ψp
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must be an honest authority (line 6.2). Notice that the game
checks that the transparency issuer is honest and not the issuer
of the certificate itself (i.e., accountability issuer), since even if
the issuer of the certificate is corrupted, this does not prevent
the transparency issuer from broadcasting the certificate to the
rest of the authorities. The third requirement is that there is
an honest authority x that is not aware of the transparency
of ψp on time t (line 6.3). This requirement is validated by
verifying that on time t authority x was instructed to perform
P .Query with ψp.id, but the output of this invocation did not
contain a transparent certificate based on ψp (line 6.3). Since
the P .Query algorithm outputs all the certificate associated
with ψp.id, this is a proof that an honest authority is not
aware of ψp. The fourth and final requirement ensures that
time t was sometime after the time that ψp was supposed
to be transparent ψ.ρ[∆TRA].t (line 6.4). This requirement
ensures that the evidence the adversary obtained of winning
the game is indeed relevant, since until time ψ.ρ[∆TRA].t not
all honest authorities are required to know ψp.

E. Liveness Requirement

Liveness requires that operations complete, eventually or in
bounded time, and with appropriate outputs. Since we defined
the scheme as a set of algorithms, they all immediately return
with some value; however, we allowed pending responses,
which require later an upgrade to the final outcome. Pending
responses are required to handle cases where some cooperation
and communication between authorities is required to com-
plete the operation successfully, e.g., to ensure transparency
or non-equivocation.

Therefore, for PII to ensure liveness, it should ensure that
such pending responses are, in due time, resolved. However,
clearly, this can only be guaranteed in runs which satisfy some
liveness conditions, such as, a sufficient number of benign
authorities and reliable, bounded-delay communication. Let
LiveCattr be the liveness-conditions predicate over runs, s.t. if
LiveCattr(R) = >, then operations should complete success-
fully.

In PII, the only operation that upgrades certificates from
‘pending’ is the P .Upgrade algorithm. Upgrading is applied
to pending certificate ψp with respect to a specific attribute,
and different attributes may have different liveness conditions.
We denote the liveness condition of attribute attr by LiveCattr.

Requirement 10. Liveness of pending certificate upgrade for
attribute attr. For every valid pending certificate ψp as input
to P.Upgrade on an honest authority ι, that the LiveCattr
algorithm decides satisfies the liveness criteria, the algorithm
outputs a valid upgraded certificate ψ’. See Algorithm 7.

V. United-π: A PROVABLY-SECURE PII SYSTEM

We now describe the United-π system, a provably-secure
’proof-of-concept’ PII scheme. United-π is designed for sim-
plicity rather than efficiency or deployability. In particular,
United-π requires |N| > 3f , while, at the same time, adopting
an ‘extreme’ system model, as described next, although in this

Algorithm 7 LivenessExp
Upgrade,LiveCattr,M
A,P (1κ,N, f)

1: [t, OutA, ι, R]← ExecA,P(1κ,N, f)

2: if M (R) = ⊥ then Return ⊥

3:
{
Algt̂i , Inp

t̂
i , Out

t̂
i

}
i∈N,t̂∈{1...t}

← R

4: [ψ, attr, α]← Inpιt

5: Return:

// ι is an honest authority and P .Upgrade was invoked on ι on round t
5.1: ι ∈ N−Corrupted(R) ∧ Algtι = P.Upgrade ∧

// ψ is a valid pending certificate that its pending period is over
5.2: P.WasValid(ψ, attr) = Pending ∧ Clktι ≥ ψ.ρ[attr].clk + ∆

// The liveness criteria was met, however, no progress was made, i.e., ι did not
upgrade ψ

5.3: LiveCattr(R) ∧ P.WasValid(Outtι, attr) 6= >

system model, it is easy to achieve an alternative implemen-
tation with |N| > 2f and with better efficiency.

United-π provably meets all PII requirements (see Ap-
pendix A for sketches of the proofs and the full version of
this work [25] for rigorous proofs and definitions).

A. System Model M
United-π assumes a synchronous model with reliable com-

munication and synchronized clocks, i.e., all sent messages are
received in one time unit. The adversary is a standard active
adversary, that might control up to f compromised authorities
out of the N authorities, as long as |N| > 3f .

In United-π, the only upgrade operation that involves pend-
ing certificates is non-equivocation. Hence, the liveness criteria
for non-equivocation upgrade LiveCNEQ(R) is that at least
3f + 1 authorities out of N approved a pending certificate
and they did so before ∆ time has expired.

B. Underlying cryptographic schemes

United-π uses three underlying cryptographic schemes:
public-key encryption, signatures and threshold-signatures.
These are all standard cryptographic schemes with multiple
known implementations, including provably-secure construc-
tions from basic primitives. We briefly recall the definitions of
these schemes, however, for their security properties, see the
citations.

An encryption scheme E = (Gen,Enc,Dec) consists of the
following probabilistic algorithms:
• Key generation Gen(1κ) → (dk, ek), with input a secu-

rity parameter 1κ and outputs: private decryption key dk
and public encryption key ek.

• Encryption Enc(ek,m) → c, with inputs public key ek
and message m, and output ciphertext c.

• Decryption Dec(dk, c) → m, with inputs private key dk
and ciphertext c, and output message m.

A signature scheme S = (Gen,Sign,Ver) consists of the
following probabilistic algorithms:
• Key generation Gen(1κ)→ (sk, vk), with input security

parameter 1κ and output private signing key sk and public
verification key vk.

• Signing Sign(sk,m) → (σ), with input private signing
key sk and a message m, and output signature σ.
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• Verification Ver(vk,m, σ) → (>/⊥), with inputs public
verification key vk, message m and signature σ, and
output: true (>) if σ is a valid signature over m, otherwise
false (⊥).

A robust (t,n)-threshold-signature scheme T S =
(Gen,Sign,Combine,Ver) [40], [41] consists of the following
probabilistic algorithms:
• Key-generation Gen(1κ, n, t) → (tvk, {tski}ni=1), with

inputs security parameter 1κ, total number of entities n,
the threshold value t < n, and outputs verification key
vk and n secret shares {ski}ni=1 of the signature key.

• Signing Sign(tski,m)→ σi, with input secret share key
tski and message m, and output partial signature σi.

• Combining Combine({σi}) → σ/⊥, with input set of
partial signatures {σi} and output signature σ or failure
⊥.

• Verification Ver(tvk,m, σ) → (>/⊥), with input group
verification key vk, messages m and threshold signature
σ, and output > or ⊥.

C. United-π: Overview

The simplest form of a valid certificate in United-π is an
accountable certificate; authorities directly issue certificates
with the ACC attribute.

In United-π, upon request for transparency upgrade, the
authority immediately outputs a transparent certificate without
a need for a pending intermediate response. The authority im-
mediately broadcasts the upgraded certificate; since United-π
assume synchronous model with reliable communication, by
the end of the following round, all authorities are aware
of the transparent certificate, as required (with ∆ = 1).
Note that a malicious authority could fail to perform this
broadcast; the transparency requirements in current PKIs does
not prevent this, e.g., consider a malicious logging-authority in
CT that fails to disseminate a certificate. A stronger version of
transparency could be defined (and supported), but we avoided
this in this work to maintain focus and clarity.

Similarly to the ‘issue’ operation, upon a request to revoke a
certificate, the authority simply adds to the certificate the REV
attribute. To upgrade the certificate to ∆ReTRA, the authority
also needs to broadcast the certificate, with the ∆ReTRA
attribute, similarly to the transparency upgrade.

United-π achieves all of the aforementioned attributes using
a standard signature scheme, where certificate ψ has attribute
attr if ψ.ρ[attr].σ is a valid signature over ψ and attr signed
by ψ.ρ[attr].ι. Every authority can provide certificates with
these attributes; recall that relying parties are expected to ig-
nore certificates or attributes where the signer is not authorized
- the ‘authorization’ aspect, e.g., naming-constraints, is not part
of the framework.

However, to achieve non-equivocation, a sufficient number
of honest authorities must cooperate - which is why we use
the term united (for United-π). In United-π, non-equivocation
is achieved using threshold signatures. Namely, the NEQ
attribute requires that |N| − f honest authorities would gener-
ate a verifiable group signature over ψ, including the NEQ

attribute. Assuming that |N| > 3f , this ensures that there
is no other unequivocal certificate (i.e., a certificate with the
NEQ attribute) for the same id. Efficiency and threshold could
be easily improved, but United-π is only a proof of concept
designed for simplicity, not efficiency.

The process of non-equivocation upgrade in United-π is as
follows. When authority i is requested to upgrade certificate
ψ with the NEQ attribute, the authority first returns, and
broadcasts the pending certificate. Upon receiving a NEQ-
pending certificate, an authority checks for any conflicts,
i.e., any certificate known to it with the same identifier but
conflicting public information, which also has NEQ- or NEQ-
pending- attribute. If there is no conflict, then the authority
uses its share of the threshold-signing key to send back a
partial-signature for the certificate upgraded with the NEQ
(non-pending) attribute. If a conflict is detected, then the
conflicting-certificate is sent in response, which aborts the
upgrade process, returning failure (⊥). Note that the model
ensures this will be done within ∆ = 2 time units.

Upon receiving a sufficient set of partial signatures, i.e., con-
taining at least |N| − f properly-signed partial signatures, and
not receiving any conflicting certificate, the authority generates
and returns the certificate with the properly-threshold-signed
NEQ attribute.

Note, that systems that use United-π can decide for them-
selves what type of certificates they are willing to support.
That is to say, that although non-equivocation is the strongest
property suggested by United-π, systems can definitely accept
and trust certificates which are ‘only’ accountable, transparent
or pending; however, they should take into consideration the
proportional security guarantees. Furthermore, systems might
consider using such certificates as ‘temporary’ certificates
which might be considered less trusted, but can be useful until
a certificate becomes unequivocal.

D. United-π Algorithms

Gen(1κ) (Algorithm 8). This algorithm receives as input
security parameter 1κ, and uses it to generate cryptographic
encryption and signing keys.

Algorithm 8 Gen(1κ)

// Generate decryption/encryption key pair using the secure encryption scheme E
1: (dk, ek)← E.Gen(1κ)

// Generate signing/verification key pair using the secure signature scheme S
2: (sk, vk)← S.Gen(1κ)

// Output key pairs
3: Return (PrivInfo = (dk, sk),PubInfo = (ek, vk))

GroupGen(1κ,N, f, {PubInfoi}i∈N) (Algorithm 9). This al-
gorithm receives as input security parameter 1κ, the set N,
maximal number of faulty parties f , and public information
PubInfoi = (eki, vki) for every authority i ∈ N. It first uses
T S.Gen to generate group verification key tvk and |N| partial
signature key secret shares tski. Then, it computes a hint
hi = E .Enc(PubInfoi.ek, tski) which is the encrypted partial
secret share tski. The algorithm concludes by outputting the
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public information, which consists of the set of hints hi, the
group verification key vk, and the set of public keys eki, vki.

Algorithm 9 GroupGen(1κ,N, f, {PubInfoi}i∈N)

// Generate a group verification key tvk and partial signing keys tski
1: (tvk, {tski}|N|i=1)← T S.Gen(1κ, |N|, |N| − f)

// Encrypt partial signing key tski such that only authority i can decrypt it
2: H = {hi ← E.Enc(PubInfoi.ek, tski)}i∈N

// Output the public information and individual hints
3: PubInfo ← (tvk, {PubInfoi}i∈N, H)

4: Return PubInfo

Issue(id, pub, sd, ed) (Algorithm 10). Inputs are the certifi-
cate details: identity id, public information (incl. key) pub,
and start, end dates sd, ed. Output is the certificate ψ.

Algorithm 10 Issue(id, pub, sd, ed)

Comment: An honest authority invokes issue only if the client that request ownership
over id is eligible for id and the authority is authorized to issue certificates for id.

// Generate a basic certificate
1: σ = S.Sign(S.PrivInfo.sk, (id, pub, sd, ed,ACC, clk))

2: ρ← {(ACC, (σ, S.ι, clk))}

3: ψ ← (id, pub, sd, ed, ρ)

// Add the new certificate to the local state
4: S.certs += (ψ.id, ψ)

5: Return ψ

Query(id) (Algorithm 11). Once a certificate appears in the
local state it can be queried using the Query algorithm. Given
an identifier id, the algorithm returns all certificates locally
associated with id.

Algorithm 11 Query(id)

// Check if there are certificates associated with id
1: if id in S.certs then return S.certs[id]

// Otherwise
2: Return ⊥

Revoke(ψ) (Algorithm 12) - used to revoke a valid cer-
tificate ψ prematurely. Returns a revoked-version ψr of ψ if
it can be revoked or was already previously revoked, and ⊥
otherwise. The algorithm first makes sure that the certificate
is a valid certificate and that it is allowed to revoke it. In
United-π, we require that certificates are revoked by their
issuers; other implementations may require differently. Then,
the algorithm checks if the certificate might have been already
revoked. if this is the case, the revoked certificate is returned.
If not, the algorithm revokes the certificate by adding to the
certificate a signed revocation proof, and stores the revoked
certificate in the local state.

IsRevoked(ψ) (Algorithm 13) - returns ψr if ψ was revoked,
a non-revoked-certificate ψ’ if not revoked, and ⊥ if ψ is not
a valid not expired certificate issued by this authority.

Note: sending/broadcasting messages. Recall that our exe-
cution model (Algorithm 1) allows an algorithm running in one
authority i, to specify messages mi,j to be sent to authority
j. We next describe Upgrade(ψ, attr, [α]), which is the first -
and one of few - algorithms in United-π that send messages.

Algorithm 12 Revoke(ψ)

// Verify that ψ was issued by the authority and ψ is a valid, not expired certificate
1: if ψ.ρ[ACC].ι 6= S.ι ∨ P.WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ S.certs[ψ.id] s.t.

P.WasValid(ψr,REV) ∧ Core(ψ) = Core(ψr)

2.1: Return ψr

3: ψr ← ψ

// Revoke ψ
4: data← (Core(ψ),REV, clk)

5: σ ← S.Sign(S.PrivInfo.sk, data)

6: ψr.ρ[REV]← (σ, S.ι, clk)

// Add ψr to the local state
7: S.certs[ψr.id] += ψr

8: Return ψr

Algorithm 13 IsRevoked(ψ)

// Verify that ψ was issued by the authority and ψ is a valid, not expired certificate
1: if ψ.ρ[ACC].ι 6= S.ι ∨ P.WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ S.certs[ψ.id] s.t.

P.WasValid(ψr,REV) ∧ Core(ψ) = Core(ψr)

2.1: Return ψr

3: ψ’← ψ

// Add the non-revocation proof to ψ’
4: data← (Core(ψ),NR, clk)

5: σ = S.Sign(S.PrivInfo.sk, data)

6: ψ’.ρ[NR]← (σ, S.ι, clk)

7: Return ψ’

For simplicity, United-π sends most messages m to all entities,
which we write as Broadcast(m).

Upgrade(ψ, attr, [α]) (Algorithm 14): receives as input a
certificate ψ, attribute attr and optionally additional informa-
tion α, and, if possible, upgrades ψ with attr, α. If ψ was
already previously upgraded with attr, the algorithm outputs
the upgraded certificate.

United-π supports three types of upgrades: transparency
(∆TRA), revocations transparency (∆ReTRA), and non-
equivocation (NEQ). To upgrade ψ with ∆TRA or ∆ReTRA
attribute, the algorithm simply signs ψ with the corresponding
attribute and sends ψ to all authorities. However, upgrading a
ψ with a NEQ attribute is more tricky, since we must ensure
non-equivocation.

We designed United-π to ensure non-equivocation using
a simple, albeit inefficient, method. Namely, the algorithm
requires the approval of the rest of the (non-malicious) au-
thorities in N. Therefore, the algorithm generates a pending
certificate (as discussed in Section IV-A), and broadcasts ψ
to the rest of the authorities (as a certificate that wants to be
unequivocal). The rest of the non-equivocation upgrade logic
is handled by the P .Incoming algorithm. When P .Upgrade
receives as input a pending non-equivocation certificate ψ, the
algorithm outputs the final upgraded certificate, if such exists.
If the upgrade failed, the algorithm outputs ⊥.

To check if a certificate is valid or has an attribute,
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Algorithm 14 Upgrade(ψ, attr, [α])

// Verify that ψ is a valid, not expired certificate
1: if P.WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If there is already a matching pending or upgraded certificate, return it. A pending
certificate is ‘upgraded’ to non-pending by the Incoming function - Upgrade does
not need to do this.

2: if ∃ψ’ ∈ S.certs s.t. Core(ψ) = Core(ψ’) ∧ P.WasValid(ψ’, attr)

2.1: Return ψ’

3: ψ’← ψ

4: switch attr

// Transparency upgrade
4.1: case ∆TRA ∨ ∆ReTRA

// Add the transparency proof to ψ’
4.1.1: data← (Core(ψ), attr, clk)

4.1.2: σ = S.Sign(S.PrivInfo.sk, data)

4.1.3: ψ’.ρ[attr]← (σ, S.ι, clk)

4.1.4: Broadcast(ψ’)

// Non-equivocation upgrade for a non-pending certificate
4.2: case (NEQ ∧ P.WasValid(ψ,NEQ) = ⊥)

// Add the PendNEQ attr to ψ’
4.2.1: data← (Core(ψ),PendNEQ, clk)

4.2.2: σ = S.Sign(S.PrivInfo.sk, data)

4.2.3: ψ’.ρ[NEQ]← (σ, S.ι, clk)

4.2.4: Broadcast(ψ’)

// Non-equivocation upgrade for pending certificate
4.3: case NEQ ∧ P.WasValid(ψ,NEQ) = Pending

// If upgrade time (∆ = 2) did not pass, return the pending certificate
4.3.1: if clk < ψ.ρ[NEQ].clk + ∆ then return ψ

// Upgrade time passed already yet still ‘pending’: failure
4.3.2: Return ⊥

// Add the certificates to the local set of certificates
5: S.certs[ψ.id] += {ψ,ψ’}

6: Return ψ’

the P.WasValid(ψ, [attr, tms]) algorithm is used (see Algo-
rithm 15). The algorithm first checks if the inputted certificate
is a valid certificate. In United-π, a valid certificate is a
certificate that was issued by an authority which is authorized
to issue a certificate for the namespace that ψ.id belongs to.
In other words, the certificate must have a valid accountability
(ACC) attribute. Hence, the algorithm verifies that authority
that issued the accountability attribute is authorized using the
Authorized algorithm and that the proof of accountability is
cryptographically valid. If the inputted attr argument has
a value which is different than ACC, the algorithm now
examines whether the certificate has the attr attribute. Namely,
the algorithm checks whether the certificate contains valid
cryptographic proofs (according to the requested attr) and
output > or ⊥ accordingly.

The P.Time algorithm is not required in United-π, since in
United-π there are no time-based events.

The P.Incoming algorithm handles all incoming messages
(see Algorithm 16). In United-π, there are three possible
incoming messages: (1) a certificate broadcast , (2) a non-
equivocation rejection, and (3) a non-equivocation approval.
When a certificate arrives, it is added to the local set of cer-
tificates. If the arriving certificate is pending non-equivocation,
the algorithm checks against the local state whether there is

Algorithm 15 WasValid(ψ, [attr, tms])

1: χ← ψ.ρ[ACC]

// Verify that χ.ι (the issuer of ψ) is authorized to issue ψ and that the accountability
proof is cryptographically valid. These are the basic validity requirements in
United-π

2: if Authorized(χ.ι, ψ.id) 6= > ∨ tms < ψ.sd ∨ tms > ψ.ed ∨

S.Ver(S.PubInfoχ.ι.vk, (Core(ψ),ACC, χ.clk), χ.σ) 6= >

2.1: Return ⊥

// If no attribute was supplied or the attribute is accountability, return true
3: if attr = ⊥ ∨ attr = ACC then return >

4: η ← ψ.ρ[attr]

// For the non-equivocation attribute
5: if attr = NEQ

// Check if ψ is pending
5.1: if S.Ver(S.PubInfoη.ι.vk, (Core(ψ),PendNEQ, η.clk), η.σ)

5.1.1: Return Pending

// Certificate is not pending, check if the group proof is cryptographically valid
5.2: Return T S.Ver(S.PubInfo.vkU , (Core(ψ),NEQ), η.σ)

// For the rest of the attributes
6: if attr ∈ {∆TRA,∆ReTRA,REV,NR}

// Check that the proof is cryptographically valid
6.1: Return S.Ver(S.PubInfoη.ι.vk, (Core(ψ), attr, η.clk), η.σ)

7: Return ⊥

a conflicting certificate. Such conflicting certificate can be
either an existing unequivocal certificate or a pending non-
equivocation certificate. If there is no conflict, the algorithm
sends back a partial signature approving the non-equivocation
upgrade.

When the algorithm receives a partial signature, it stores
the partial signature locally; when enough partial signature
have arrived, we combine them using the threshold signa-
ture scheme’s T S.Combine algorithm. If the T S.Combine
algorithm was successful, the algorithm stores the upgraded
certificate.

VI. ANALYSIS

In this section, we prove that United-π achieves PII’s
security and liveness properties. Due to space constraints, we
include here only sketches of the proofs and the definitions
of the model M and of the liveness conditions. For rigorous
proofs and definitions, see Appendix A.

A. Accountability, Transparency, Revocation Accountability
and Revocation Transparency

Claim 1. If United-π uses a secure signature scheme S, then
it achieves {ACC,∆TRA,ReACC} and ∆ReTRA.

Proof sketch. Assume, to the contrary, that there exists an
adversary A that negates the claim that United-π achieve
property ξ ∈ {ACC,∆TRA,ReACC,∆ReTRA}. Namely:

Pr[SafetyExpξ,MA,United-π(1κ,N, f) = 1] 6∈ Negl(1κ)

‘Winning’ in experiment SafetyExpξ,MA,United-π requires that
P.WasValid(ψ, ξ) returns true. From the implementation of
P .WasValid as described in Alg. 15, this requires that

S.Ver(S.PubInfoη.ι.vk, (Core(ψ), ξ, η.clk), η.σ) = >
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Algorithm 16 Incoming(M)

// Process each of the messages
1: for each m′ ∈M

// If m′ is a broadcasted certificate
1.1: if ψ ← m′ s.t. P.WasValid(ψ)

// Add the certificate to the local state
1.1.1: S.certs[ψ.id] += ψ

// If ψ is pending non-equivocation
1.1.2: if P.WasValid(ψ,NEQ) = Pending

// If a conflicting certificate is known, return it to abort
1.1.3: if ∃ψ’ ∈ S.certs s.t. ψ.id = ψ’.id ∧

Core(ψ) 6= Core(ψ’) ∧ P.WasValid(ψ’,NEQ) 6= ⊥

// Prepare a rejection response with the conflicting certificates
1.1.4: res ← (ψ,ψ’)

// No conflicting certificate - approve the request for non-equivocation
1.1.5: else

// Send partial signature
1.1.6: res ← (ψ, σ = T S.Sign(S.PrivInfo.tsk, (Core(ψ),NEQ)))

1.1.7: Send res to authority ψ.ρ[NEQ].ι

1.1.8: else if (ψ, σ)← m′ s.t. P.WasValid(ψ,NEQ) = Pending

S.toUpgrade[ψ.id] += σ

// Check to see if enough semi-proofs have arrived
1.1.9: if |S.toUpgrade[ψ.id]| < |CAs| − f then continue

// Enough semi-proofs have arrived - try to combine them
1.1.10: ψ’← ψ

1.1.11: ψ’.ρ[NEQ].σ ← T S.Combine(S.toUpgrade[ψ.id])

// Check if the upgrade was successful
1.1.12: if P.WasValid(ψ’,NEQ) then S.certs[ψ’.id] += ψ’

for η = ψ.ρ[ξ].
This allows us to use A to construct an adversary A’ that

breaks the existential unforgeability of S- a contradiction to
the assumption the S is secure. Namely, A’ runs against
the existential unforgeability experiment of S; let v be the
public key that A’ receives (as result of key generation
(s, v) ← S.Gen(1κ) by the experiment). A’ runs the Exec
algorithm with United-π and A, and with two modifications.
First, A’ modifies the P .Gen algorithm such that the public
verification key of authority ι (the honest authority chosen by
the adversary) is the public verification key v received from
the unforgeability experiment; for other authorities and other
functions of United-π, there is no change, and in particular, A’
‘knows’ all the other private keys (except s, which should be
used to sign for ι). Second, A’ replaces every call to S.Sign
needed to be performed by authority ι, with a matching oracle
call to Ss in the unforgeability experiment. A’ takes the output
of the adversary ψ ← OutA, and outputs (m,σ) such that:

m = (Core(ψ), ξ, ψ.ρ[ξ].clk) and σ = ψ.ρ[ξ].σ

Following the output of A’, we get

S.Ver(v,m, σ) ≡ S.Ver(S.PubInfoη.ι.vk, (Core(ψ), ξ, η.clk), η.σ)

Namely, A’ was given a public verification key v and was
able to generate a message m and a valid signature σ over
m, without knowing v’s matching secret signing key s, thus
contradicting the existential unforgeability of S.

Therefore, when using a secure signature scheme, PII
achieves property ξ.

B. Non-Equivocation

Non-equivocation in United-π depends on the security of
encryption scheme E and of threshold signature scheme T S .
Hence, we split our argument into two steps. We first define
an execution model where non-equivocation relies solely on
a secure threshold signature T S (Def. 2) and show that
United-π securely achieves non-equivocation under this model
(see Claim 12). Then, we show that the security argument also
holds under the original Exec execution model, see Claim 13.

Definition 2. Execution model Exec’A,United-π(1κ,N, f) is a
variant of the Exec execution model described in Alg. 1 with
United-π and an adversary A, where instead of giving the
‘real’ output of the P .GroupGen algorithm to the adversary
(Alg.1 line 6), we give the adversary an encryption of zero (or
any known string). Namely, in Exec’A,United-π(1κ,N, f), the
execution model generates a special PubInfo for the adversary,
by substituting line 2 of Alg. 9 with the following line:

H = {hi ← E .Enc(PubInfoi.ek, ‘0’)}i∈N

Experiment SafetyExp′ is identical to experiment
SafetyExp, except for the use of Exec’ instead of
Exec. We say that a PII scheme achieves non-equivocation’
if for every PPT A holds:

Pr[SafetyExp′
NEQ,M
A,United-π(1κ,N, f) = 1] ∈ Negl(1κ)

Claim 2. If United-π uses a secure threshold signature scheme
T S , then either United-π achieves non-equivocation’, as
defined above, or T S is not a secure threshold signature
scheme.

Proof sketch. Assume to the contrary that there exists an effi-
cient (PPT) adversary A that negates the claim that United-π
achieve non-equivocation’, i.e.:

Pr[SafetyExp′
NEQ,M
A,United-π(1κ,N, f) = 1] 6∈ Negl(1κ)

We next show that this means that we can use A to construct
a PPT adversary A’ that breaks the unforgeability of T S .

Let (v, {si}i∈N) ← T S.Gen(1κ, |N|, f). A’ executes
Exec’A,United-π algorithm, using A,United-π as ‘black box’,
with two modifications. First, A’ modifies the GroupGen
algorithm by replacing the public group verification key vk
with the generated public verification key v. Second, A’
replaces every call to T S.Sign in the Upgrade and Incoming
algorithms with a matching oracle operation to T S . A’
takes the output of the adversary ψ ← OutA, and outputs
(m,σ) s.t. m = (ψ,NEQ) and σ = ψ.ρ[NEQ].σ.

To ‘win’ in the SafetyExp′ experiment, the conditions
in lines 6.1 to 6.3 of the experiment must hold. In partic-
ular, we should have two certificates, ψ and ψ’, with the
same identifier ψ.id = ψ’.id but different public informa-
tion, i.e., ψ.pub 6= ψ’.pub, which are both ‘valid’, i.e.,
P.WasValid(ψ,NEQ) ∧ P.WasValid(ψ’,NEQ). Hence we
have:

T S.Ver(v,m, σ) ≡ T S.Ver(S.vk, (ψ,NEQ), ψ.ρ[NEQ].σ)
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T S.Ver(v,m, σ) ≡ T S.Ver(S.vk, (ψ’,NEQ), ψ’.ρ[NEQ].σ)

We will show how A’ ‘wins’ the forgery experiment of T S .
United-π uses parameters |N| for the number of shares and
|N|−f for the threshold, i.e., exactly |N|−f shares are required
to construct a valid group signature; recall that |N| > 3f .
The only place in United-π where authorities use their share
of the group signing key, is in line 1.1.4 of the Incoming
algortihm 16, where an authority generates a share for an NEQ
certificate ψ. However, this line is executed only if the check
in 1.1.3 passes, i.e., there is no conflicting certificate ψ’ in
the S.certs repository, with same public information, different
identifier - and a valid or pending NEQ attribute. Namely, each
honest authority would only execute line 1.1.4, i.e., generate
their partial group-signature, for either ψ or ψ’, not for both.
Let nψ (nψ’) denote the number of honest authorities partially-
signing ψ (resp., ψ’). Then surely nψ + nψ’ ≤ |N| − f .
Assume, WLOG, that nψ ≥ |N| − 2f , which will mean
that there are sufficiently signed signature-shares to combine
into a validly-signed version of ψ with the NEQ attribute. It
follows that nψ’ ≤ |CAs| − f − (|CAs| − 2f) = f ; hence
the total number of shares of signatures for ψ’ is at most 2f
(nψ’, plus f malicious authorities). But we used threshold of
|N| − f > 3f − f = 2f ; hence, there are not enough partial
signatures to combine into a valid NEQ certificate-upgrade for
ψ’.

Since we assumed, to the contrary, that A is able to get
both of these NEQ certificates, it follows that we can use
it to generate a threshold signature - without the threshold
number (|N| − f ) of partial-signatures. Therefore, when using
a secure threshold signature scheme T S , United-π achieves
non-equivocation under the Exec’A,United-π model.

Claim 3. If United-π uses a secure encryption scheme E and
secure threshold-signature scheme T S , then it achieves non-
equivocation.

Proof sketch. The difference between the Exec and the
Exec’ models is that the adversary has an advantage in Exec,
because it also receives the encrypted secret information
generated by GroupGen using a secure encryption scheme
E . Claim 12 shows that United-π is secure under the Exec’
model, since T S is secure; we now show that the security
under the Exec model also holds.

Assume to the contrary that although E is secure; there
exists an adversary A that negates the claim that United-π
achieve non-equivocation under the Exec model, namely:

Pr[SafetyExpNEQ,M
A,United-π(1κ,N, f) = 1] 6∈ Negl(1κ)

Since the only difference between Exec and Exec’ is the use
of E to encrypt the individual secret information, it means that
A uses this advantage to win the experiment. Moreover, this
means that we can use A to construct an adversary A’ that
breaks the indistinguishability experiment of E .

Recall the indistinguishability experiment of E with an
adversary A. The experiment randomly chooses b ∈ {0, 1}.
If b = 0, we execute A under the Exec’A,United-π model, and

if b = 1, we execute A under the ExecA,United-π model. The
adversary wins the game if it outputs b′ such that b = b′.

Consider an adversary A’ that simulates A, and outputs b′ =
1 if A wins the SafetyExpNEQ,M

A,United-π(1κ,N, f) experiment
(since we conclude it is an execution under the Exec model,
where A has an advantage), and outputs b′ = 0 otherwise
(since it is probably an execution under the Exec’ model).
Consequently, if such A exists then we are able to construct
A’ that wins the aforementioned indistinguishability experi-
ment with a non-negligible probability, thus contradicting the
indistinguishability of E .

Therefore, United-π achieves non-equivocation (also under
the Exec model).

C. Liveness

Claim 4. United-π achieves liveness of pending certificate
upgrade for attribute attr.

Proof sketch. Assume to the contrary that United-π does not
achieves liveness of pending certificate upgrade for attribute
attr. In United-π, the only case when a pending certifi-
cate is issued is when upgrading a certificate with the non-
equivocation attribute. Therefore, there exists an adversary A
where

Pr[LivenessExp
Upgrade,LiveCNEQ,M
A,United-π (1κ,N, f) = 1] 6∈ Negl(1κ)

Thus, following experiment LivenessExp
Upgrade,LiveCNEQ,M
A,United-π ,

it means that although the liveness criteria LiveCNEQ(R) was
met, an upgraded certificate was not issued by an honest
authority ι. However, if LiveCNEQ(R) = >, this means that
at least 3f + 1 authorities out of N sent approvals to ι
and they did so before ∆ time has expired. Since there are
only f malicious authorities, ι had enough partial proofs to
combine and create the upgraded certificate before ∆ expires
and would have generated a valid combined proof of non-
equivocation. Therefore, since ι is an honest authority, ι
would have outputted an upgraded certificate on any time
Clktι ≥ ψ.ρ[attr].clk + ∆, thus contradicting the assumption
that such A exists.

Therefore, when using a secure signature scheme, United-π
achieves liveness of pending certificate upgrade for attribute
attr.

VII. CONCLUSIONS AND FUTURE WORK

Public key infrastructure (PKI) is critical to the security
of many systems. The ability to define and prove security
requirements for PKIs is important, especially that over the last
several years, there have been significant progress in design of
PKIs, and their security properties has become more complex
and non-trivial to understand, formalize, analyze, and prove.

In this work we present a framework which allows to
define precisely security requirements for PKI schemes - and
we show that these definitions are usable, by presenting a
United-π, a simple, ‘proof of concept’ PKI system, satisfying
all requirements presented. We hope that our work can provide
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good foundation and starting point for such collaborative effort
by the cryptographic and security communities, to ‘debug’ and
extend these definitions, improve upon them and extend them
- as was the case for other basic cryptographic schemes, e.g.,
encryption. Some of these extensions are already mentioned
in this work, e.g., a strong-transparency requirement, that will
ensure publication of a certificate, beyond ensuring account-
ability for failure of publication (as in Certificate Transparency
and other existing schemes). Other directions for further re-
search include (1) analysis of existing (and new) PKI schemes
with respect to our framework, and in particular, designing
optimized variant of United-π, which was presented in a sim-
plified, sub-optimal design and (2) adopting the framework to
define and study security properties of other complex systems,
(3) extending the framework to support secure compositions,
e.g. following UC [42], and specifically [43] (which present a
basic UC model for certification).
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APPENDIX A
ANALYSIS OF United-π

In this section, we provide reduction-based proofs showing
that United-π achieves its safety and liveness properties. We
first show that United-π achieves accountability, transparency,
revocation accountability and revocation transparency by re-
duction to the existential unforgeability of a secure signature
scheme. We then show that United-π also achieves non-
equivocation by reduction to the existential unforgeability of
a secure threshold signature scheme. We conclude by showing
that United-π achieves the liveness properties of PII.

A. Preliminaries

We briefly recall the definitions of the security games for
secure encryption and signature schemes used by United-π
(see Section V-B). We start with the definition of CPA-
indistinguishability of a secure encryption scheme E .

Definition 3. An encryption scheme E = (Gen,Enc,Dec) is
CPA-indistinguishable (CPA-IND), if for every PPT adversary
A:

Pr[ExpCPA−INDA,E (1κ) = 1] ∈ Negl(1κ)

where ExpCPA−INDA,E (1κ):
1) (dk, ek)← E .Enc(1κ).
2) Adversary A chooses two messages m0,m1.
3) The game randomly chooses b ∈ {0, 1}.
4) A receives vk and c = E .Enc(sk,mb) and outputs a value

b’ ∈ {0, 1}.
A wins the game if b = b’.

We now recall the definition of existential unforgeability of
a secure signature scheme S.

Definition 4. A signature scheme S = (Gen,Sign,Ver) is
existentially unforgeable if for every PPT adversary A:

Pr[ExpEUA,S(1κ) = 1] ∈ Negl(1κ)

where ExpEUA,S(1κ):
1) (sk, vk)← S.Gen(1κ)
2) Adversary A receives vk and has an oracle access to
S.Sign to sign any message it desires.

3) A outputs message m and signature σ.
A wins the game if S.Ver(vk,m, σ) = > and A did not use
the oracle access on m.

We now recall the definition of existential unforgeability of
a secure (t,n)-threshold-signature scheme.

Definition 5. A (t,n)-threshold-signature scheme T S =
(Gen,Sign,Combine,Ver) is existentially unforgeable, if there
is no PPT adversary A that controls up to t players and has
an oracle access to T S that can produce a cryptographically

valid group signature on any previously unsigned message m.
Namely, for every adversary A:

Pr[ExpEUA,T S(1κ) = 1] ∈ Negl(1κ)

where ExpEUA,T S(1κ):
1) (tvk, {tsk}i∈N)← S.Gen(1κ,N, t)
2) Adversary A receives vk and has an oracle access to T S

to sign any message it desires.
3) A outputs message m and signature σ.
A wins the game if T S.Ver(tvk,m, σ) = > and A did not
use the oracle access on m.

We conclude with the definition of robustness of a (t,n)-
threshold-signature scheme.

Definition 6. A (t,n)-threshold-signature scheme T S =
(Gen,Sign,Combine,Ver) is robust, if there is no PPT adver-
sary A that controls up to t players and has an oracle access to
T S that can prevent honest parties from combining t′ partial
signatures from t′ players into a single threshold signature,
where t′ ≥ 2t+ 1.

B. Proofs of Accountability, Transparency, Revocation Ac-
countability and Revocation Transparency

Proof methodology. We argue that United-π achieves
the following four security properties: accountability, trans-
parency, revocation accountability and revocation trans-
parency. We do so using a reduction to the existential un-
forgeability of the secure signature scheme S that each of
these algorithms use. Our proof methodology is as follows:

1) Given a security property ξ ∈
{ACC,∆TRA,ReACC,∆ReTRA}, we assume to
the contrary that United-π does not achieve ξ.

2) Hence, there must exist a probabilistic polynomial time
(PPT) adversary A that wins the security experiment
defined for ξ with a non-negligible probability.

3) Then, we show how to useA to build an adversaryA’ that
breaks the existential unforgeability of the secure signing
scheme S, thus contradicting that such an adversary A
exists.

a) We first define an execution model Exec’ (see Def. 7),
which is a variant of the Exec execution model
described in Alg. 1.

b) Then, we construct an adversary AdvEUSA (see Alg. 17)
that executes the given adversary A in the United-π
under Exec’ and outputs a message m and signature
σ over m.

c) Finally, we argue that if adversary A prevents United-π
from achieving property ξ, then adversary AdvEUSA
breaks the existential unforgeability of S (see Claim 5).

We start by defining the Exec’ execution model.

Definition 7. Let S be a secure signature scheme and let
(sk′, vk′)← S.Gen(1κ). Execution model Exec’ is a variant
of the Exec execution model, with United-π as PII imple-
mentation and an adversary A with the following changes:
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1) The Gen algorithm has the following additional code:

if Sι.chosen = > then

Return (PrivInfo = (dk, nil),PubInfo = (ek, vk′))

between line 1 and line 2, where vk′ is the public
verification key generated by S.Gen.

2) In Issue, Upgrade, Revoke, IsRevoked algorithms, replace
the following:

σ = S.Sign(S.PrivInfo.sk, data)

with the following code:

if Sι.chosen = > then

Generate σ by signing data using the oracle access to S
else

σ = S.Sign(S.PrivInfo.sk, data)

We now describe algorithm AdvEUSA (see Alg. 17).
AdvEUSA takes as input a security parameter 1κ, an attribute
ξ, a public verification key vk, a set of authorities N and the
number f of malicious authorities in N. The algorithm is using
a secure signature scheme S and executes the adversary A in
United-π under Exec’ in order to generate a message m and
a signature σ, such that σ is a valid signature over m which
can be verified by vk, i.e., S.Ver(vk,m, σ) = >. Note, that
AdvEUSA has only access to vk and has no access to vk’s
matching signing key sk.

Algorithm 17 AdvEUSA(1κ, ξ, vk,N, f)

1: [t, OutA, ι, R]← Exec’A,United-π(1κ,N, f)

2: if M (R) = ⊥ then Return ⊥

3: ψ ← OutA

4: Output (m,σ) s.t. m = (Core(ψ), ξ, ψ.ρ[ξ].clk) and σ = ψ.ρ[ξ].σ

We now argue that if there exists an adversary A that can
break the security of United-π, we can use algorithm AdvEUSA
described in Alg. 17 with adversary A to break the existential
unforgeability of S.

Claim 5. For every PPT adversary A that achieves

Pr[SafetyExpξ,MA,P (1κ,N, f) = 1] 6∈ Negl(1κ)

where ξ ∈ {ACC,∆TRA,ReACC,∆ReTRA}, there exists a
PPT adversary A’ that achieves

Pr[ExpEUA′,S(1κ) = 1] 6∈ Negl(1κ)

Proof. To prove this claim, we demonstrate that if such
adversary A exists, then there exists an adversary A’ that given
a public verification key vk is able to generate a message m
and a signature σ such that

S.Ver(vk,m, σ) = > (1)

without knowing the matching secret signing key sk, thus
contradicting the existential unforgeability of S.

For each attribute ξ ∈ {ACC,∆TRA,ReACC,∆ReTRA},
the safety experiment SafetyExpξ,MA,P (1κ,N, f) contains the

algorithm call P.WasValid(ψ, ξ). Following the implementa-
tion described in Alg. 15, the algorithm checks if

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ξ, η.clk), η.σ)

for η = ψ.ρ[ξ]. Thus, if A is a PPT adversary that achieves

Pr[SafetyExpξ,MA,P (1κ,N, f) = 1] 6∈ Negl(1κ)

it must hold that

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ξ, η.clk), η.σ) = > (2)

However, this means that we can construct an adversary A’
using A and AdvEU. Namely, A’ executes AdvEU with A and
outputs AdvEU’s outputs. First, since A is polynomial then A’
is also polynomial. Second, since AdvEU simulates A with
the public verification key vk, then vk = S.PubInfo.pkη.ι,
and following Alg. 17 the output of AdvEU is message m =
(Core(ψ), ξ, ψ.ρ[ξ].clk) and signature σ = ψ.ρ[ξ].σ, we get

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ξ, η.clk), η.σ) ≡
S.Ver(vk,m, σ) ≡ >

(3)

and therefore, following Eq. 1, 2 and 3, we constructed an
adversary A’ that satisfies:

Pr[ExpEUA′,S(1κ) = 1] 6∈ Negl(1κ)

thus contradicting the existential unforgeability of S.

Proofs. We now apply Claim 5 to argue that United-π
achieves accountability, transparency, revocation accountabil-
ity and revocation transparency. Since United-π uses the signa-
ture scheme S slightly differently to achieve these properties,
we provide a separate claim for each property. In each claim
we first explain how United-π uses the signature scheme S to
achieve the specific property and then employ the reduction
described in Claim 5 to argue that United-π indeed achieves
the specific property.

Claim 6. If United-π uses a signature scheme S, then either
United-π achieves accountability, or S is not a secure signature
scheme.

Proof. In United-π, the only way to generate a valid account-
able certificate ψ, is by invoking the P.Issue algorithm on
authority ι which is authorized to issue ψ. According to the
implementation described in Alg. 10, the algorithm P.Issue
uses the secure S.Sign algorithm to generate the proof that ψ
is an accountable certificate issued by ι.

Assume to the contrary that United-π does not achieve
accountability. Namely:

Pr[SafetyExpACC,M
A,P (1κ,N, f) = 1] 6∈ Negl(1κ)

However, following Claim 5, if such adversary A exists, we
can use A to build A’ that breaks the existential unforgeability
of the secure signature scheme S.

Therefore, PII achieves accountability.

Claim 7. If United-π uses a signature scheme S, then either
United-π achieves transparency, or S is not a secure signature
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scheme.

Proof. In United-π, the only way to generate a valid trans-
parent certificate ψ, is by invoking the P.Upgrade algorithm
on authority ι. According to the implementation described in
Alg. 14, the P.Upgrade algorithm uses the secure S.Sign al-
gorithm to generate the proof that ψ is a transparent certificate.

Assume to the contrary that United-π does not achieve
transparency. Namely:

Pr[Exp∆TRA
A,P (1κ,N, f) = 1] 6∈ Negl(1κ)

However, following Claim 5, if such adversary A exists, we
can use A to build A’ that breaks the existential unforgeability
of the secure signature scheme S.

Therefore, PII achieves transparency.

Claim 8. If United-π uses a signature scheme S, then either
United-π achieves revocation accountability, or S is not a
secure signature scheme.

Proof. In United-π, the only way to revoke a certificate ψ, is
by invoking the P.Revoke algorithm on ψ.ρ[ACC].ι (the issuer
of ψ). According to the implementation described in Alg. 12,
the P.Revoke algorithm uses the secure S.Sign algorithm to
generate the proof that ψ was revoked by ι.

Assume to the contrary that United-π does not achieve
revocation accountability. Namely:

Pr[ExpReACC
A,P (1κ,N, f) = 1] 6∈ Negl(1κ)

However, following Claim 5, if such adversary A exists, we
can use A to build A’ that breaks the existential unforgeability
of the secure signature scheme S.

Therefore, PII achieves revocation accountability.

Claim 9. If United-π uses a signature scheme S, then either
United-π achieves revocation transparency, or S is not a secure
signature scheme.

Proof. In United-π, the only way to achieve revocation trans-
parency is by invoking the P.Upgrade algorithm on authority
ι. According to the implementation described in Alg. 14, the
P.Upgrade algorithm uses the secure S.Sign algorithm to
generate the proof that ψ is transparently revoked by ι.

Assume to the contrary that United-π does not achieve
revocation transparency. Namely:

Pr[Exp∆ReTRA
A,P (1κ,N, f) = 1] 6∈ Negl(1κ)

However, following Claim 5, if such adversary A exists, we
can use A to build A’ that breaks the existential unforgeability
of the secure signature scheme S.

Therefore, PII achieves revocation transparency.

C. Proof of Non-Equivocation

Proving that United-π achieves non-equivocation is different
from proving the other properties, because United-π imple-
ments non-equivocation using both a secure encryption scheme
E and a secure and robust (t,n)-threshold-signature scheme

T S . This requires a few adjustments to the proof methodology,
as we now discuss.

Proof methodology. To prove that United-π achieves non-
equivocation, we use the following methodology:

1) We define an execution model Exec’ where non-
equivocation relies solely on a secure (t,n)-threshold-
signature scheme T S (Def. 8) and define a matching
variant of the non-equivocation property called non-
equivocation’, which is identical to non-equivocation but
under the Exec’ model (Def. 10).

2) Then, we show that United-π achieves non-equivocation’
under the Exec’ model, see Claims 10,11,12.

3) Finally, we show that the security argument also holds for
(original) non-equivocation property under the original
Exec execution model, see Claim 13.

The rationale behind this methodology can be viewed as
a ‘divide and conquer’ approach that allows us to present
the proof in a simplified manner. Since both encryption and
threshold signature schemes are used in non-equivocation,
the aforementioned proof methodology separates the two by
defining the Exec’ execution model, where encryption is not
used. The fact that Exec’ only slightly varies from Exec,
allows us to prove that non-equivocation can be achieved in
United-π using a secure threshold signature scheme, without
(at first) the need to handle the security of the encryption
scheme so that our proof methodology resembles one for a
standard signature scheme. Lastly, we show that if we add
encryption to Exec’, thus ending up the with the original
Exec model, the security argument that United-π achieves
non-equivocation still holds, as long as the encryption scheme
is secure.

We start by defining the Exec’ execution model.

Definition 8. Let E be a secure signature scheme and let
(ek’, dk’) ← E .Enc(1κ). The execution model Exec’ is a
variant of the Exec execution model described in Alg. 1, with
United-π as PII implementation and an adversary A with the
following changes:

1) The Gen algorithm has the following additional code:

if Sι.chosen = > then

Return (PrivInfo = (nil, sk),PubInfo = (ek’, vk))

between line 2 and line 3, where ek’ is the public
encryption key generated by E .Enc.

2) In GroupGen algorithm, replace the following line:

H = {hi ← E .Enc(PubInfoi.ek, tski)}i∈N

with the following:

H = {hi ← E .Enc(PubInfoi.ek, tski)}i∈N−ι
H = H ∪ {hι ← E .Enc(PubInfoι.ek, ‘0’)}

Note the two modifications that happen in Exec’ as op-
posed to Exec. First, authority ι chosen by the adversary, does
not generates random encryption/decryption keys (like the rest
of the authorities), but rather use a predetermined encryption
key ek’. Second, ι receives a ‘useless’ string (‘0’) instead of
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ι’s share of the signing key tskι. These two modifications
essentially eliminate the part that the encryption scheme E
plays in non-equivocation, and allows the argument made
in Claim 13. We now define matching definitions for safety
experiments and safety properties under the Exec’ model.

Definition 9. Safety experiment SafetyExp’ is identical to
safety experiment SafetyExp defined in Sec. IV-D, except
for the use of the Exec’ execution model instead of Exec.

Definition 10. United-π achieves non-equivocation’ if for
every PPT adversary A holds:

Pr[SafetyExp’NEQ,MA,United-π(1κ,N, f) = 1] ∈ Negl(1κ)

We now start the second phase of our proof process. We
begin by showing that United-π is secure against conflicting
(equivocating) certificates, i.e., honest authorities would not
sign conflicting certificates. Namely, when an honest authority
is aware of a valid certificate ψ with the NEQ attribute, it
will not partially sign any other certificate ψ’ with the same
identifier (ψ.id = ψ’.id) that its validity period overlaps ψ’s
validity period, since these two certificates are in conflict.

Claim 10. Let T S be a (t,n)-threshold-signature scheme. If
United-π uses T S with n = |N| > 3f as the number of
shares, f the number of malicious parties and threshold t as
t = |N| − f , then no PPT adversary can abuse United-π
to generate two conflicting certificates ψ,ψ’ with the non-
equivocation attribute.

Proof. The only place in United-π where authorities use
their share of the group signing key, is in line 1.1.6 of the
Incoming algorithm (Alg. 16), where an authority generates a
share for a non-equivocal certificate ψ, i.e., ψ has the NEQ
attribute. However, this line is executed only if the check in
line 1.1.3 is satisfied, i.e., there is no conflicting certificate
ψ’ in the S.certs repository. In other words, if line 1.1.3
is satisfied, it ensures that there is no certificate ψ’ (valid
or pending) in S.certs with the same identifier but different
public information that has the NEQ attribute. Therefore, each
honest authority would only execute line 1.1.6, i.e., generate
their partial group-signature, for either ψ or ψ’ but never for
both.

Let nψ (nψ’) denote the number of honest authorities
partially-signing ψ (resp., ψ’). Then:

nψ + nψ’ ≤ |N| − f (4)

Assume, without loss of generality, that nψ ≥ |N| − 2f , i.e.,
there are enough signature-shares from honest authorities to
combine into a valid certificate ψ with the NEQ attribute.
Following Eq. 4:

nψ’ ≤ |N| − f − (|N| − 2f) = f

hence the total number of shares of signatures for ψ’ is at
most 2f (nψ’, plus f malicious authorities). However, since
we used a threshold of |N| − f > 3f − f = 2f ; hence, there
are not enough partial signatures to combine into a valid non-

equivocal certificate-upgrade for ψ’.

We now argue that if there exists an adversary A that can
win the non-equivocation’ safety experiment under Exec’, we
can use A to contradict the unforgeability of T S .

Claim 11. For every PPT adversary A that achieves

Pr[SafetyExp’NEQ,MA,P (1κ,N, f) = 1] 6∈ Negl(1κ)

there exists a PPT adversary A’ that achieves

Pr[ExpEUA′,T S(1κ) = 1] 6∈ Negl(1κ)

Proof. To prove this claim, we demonstrate that if such
adversary A exists, then there exists an adversary A’ that given
a public group verification key v is able to generate a message
m and a signature σ such that

T S.Ver(v,m, σ) = >

without knowing more than f of the partial signing keys, thus
contradicting the unforgeability of T S .

First, note that following Claim 10, such adversary A cannot
abuse United-π in a way that would cause honest authorities
to generate conflicting partial-signatures for it.

However, assume to the contrary that such adversary A
exists. Since A ‘win’ in the SafetyExp’ experiment, the
conditions in lines 6.1 − 6.3 of the experiment must hold.
In particular, A managed to produce two certificates ψ and
ψ’, with the same identifier ψ.id = ψ’.id but different public
information, i.e., ψ.pub 6= ψ’.pub, which are both ‘valid’, i.e.,
P.WasValid(ψ,NEQ) ∧ P.WasValid(ψ’,NEQ). Hence, we
have:

T S.Ver(v,m, σ) ≡
T S.Ver(S.PubInfo.tvk, (Core(ψ),NEQ), ψ.ρ[NEQ].σ) ≡
T S.Ver(S.PubInfo.tvk, (Core(ψ’),NEQ), ψ’.ρ[NEQ].σ) ≡ >

(5)

Consider an adversary A’ that executes A. Since A can
generate two conflicting certificates ψ,ψ’ as described in Eq. 5
with non-negligible probability, and following claim 10 that ψ’
was not ‘honestly’ generated by United-π honest authorities,
it shows that A’ is able to generate a message m and signature
σ over m with only the knowledge of v and up to f of the
signing key shares, thus contradicting the unforgeability of
T S .

We now complete the second phase of our proof by arguing
that United-π achieve non-equivocation’.

Claim 12. If United-π uses a secure threshold signature
scheme T S , then either United-π achieves non-equivocation’,
or T S is not a secure threshold signature scheme.

Proof. Assume to the contrary that there exists an efficient
(PPT) adversary A that negates the claim that United-π
achieve non-equivocation’, i.e.:

Pr[SafetyExp’NEQ,MA,United-π(1κ,N, f) = 1] 6∈ Negl(1κ)
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However, following Claim 11, this means that we can use A
to construct a PPT adversary A’ that breaks the unforgeability
of T S .

Therefore, when using a secure threshold signature
scheme T S , United-π achieves non-equivocation’, i.e., non-
equivocation under the Exec’ model.

We complete the proof that United-π achieves non-
equivocation with the last phase of our proof methodology. We
already showed that United-π achieves non-equivocation’. To
prove that United-π also achieves non-equivocation, we need
to show that the Exec execution model does not provide any
advantage to the adversary in comparison to Exec’. Namely,
the fact that United-π uses the secure encryption scheme E in
Exec (yet not in Exec’), does not provide the adversary with
an advantage.

To that end, we define the following indistinguishability
game Exp′

CPA−IND
A,E (1κ):

1) The game randomly chooses b ∈ {0, 1}.
2) If b = 0, we execute A under the Exec’A,United-π model,

and if b = 1, we execute A under the ExecA,United-π

model.
3) A outputs b’ ∈ {0, 1}.
A wins the game if b = b’.

We now argue that United-π achieves non-equivocation.

Claim 13. If United-π uses a secure encryption scheme E
and secure threshold-signature scheme T S , then it achieves
non-equivocation.

Proof. The difference between the Exec and the Exec’ mod-
els is that the adversary has an advantage in Exec, because
it also receives the encrypted secret information generated
by GroupGen using a secure encryption scheme E . Claim 12
shows that United-π is secure under the Exec’ model, since
T S is secure; we now show that the security under the Exec
model also holds.

Assume to the contrary that although E is secure; there
exists an adversary A that negates the claim that United-π
achieve non-equivocation under the Exec model, namely:

Pr[SafetyExpNEQ,M
A,United-π(1κ,N, f) = 1] 6∈ Negl(1κ)

Since the only difference between Exec and Exec’ is the use
of E to encrypt the individual secret information, it means that
A uses this advantage to win the experiment.

Consider an adversary A’ that simulates A in the afore-
mentioned Exp′

CPA−IND
A,E (1κ) indistinguishability game, and

outputs b′ = 1 if A wins the SafetyExpNEQ,M
A,United-π(1κ,N, f)

experiment (since we conclude it is an execution under the
Exec model, where A has an advantage), and outputs b′ = 0
otherwise (since it is probably an execution under the Exec’
model). Consequently, if such A exists, then we are able to
construct A’ that wins the Exp′

CPA−IND
A,E (1κ) experiment

with a non-negligible probability, thus contradicting the indis-
tinguishability of E .

Therefore, United-π achieves non-equivocation (also under
the Exec model).

D. Proof of Liveness

Recall that United-π employs an immediate response ap-
proach, where every algorithm’s execution produces an im-
mediate non-pending response, except for upgrading a cer-
tificate with the non-equivocation attribute; in such a case, a
pending certificates is generated first. As a result, we only
show that United-π satisfies the liveness requirements of non-
equivocation, as the rest of the liveness properties are trivially
achieved by United-π’s immediate response approach.

We show that United-π achieves liveness of non-
equivocation in a two steps process. First, we argue that in
any valid execution of United-π, where the upgrade liveness
criteria are satisfied (i.e., there is no valid reason not to
upgrade a certificate ψ), ψ will be upgraded (see Claim 14).
Then, we show that an adversary under United-π’s threat
model cannot prevent a valid non-equivocation upgrade, thus
resulting in United-π satisfying the liveness requirements of
non-equivocation (see Claim 15).

Claim 14. Let [t, ψ, ι, R]← ExecA,United-π(1κ,N, f) be an
execution of the Exec execution model, where R are the
execution details, ι is the honest authority chosen by the ad-
versary A and ψ a pending non-equivocation certificate. If the
liveness criteria of non-equivocation in United-π is met, i.e.,
LiveCNEQ(R) = >, then on any time t > ψ.ρ[NEQ].clk + ∆,
ι outputs an upgraded non-equivocal certificate ψ’ such that
Core(ψ) = Core(ψ′) ∧ P.WasValid(ψ′,NEQ) = >.

Proof. Assume to the contrary that there exists an adversary
A that is able to cause Exec to output execution R and
time t > ψ.ρ[NEQ].clk + ∆ where ι outputs ψ’ such
that P.WasValid(ψ′,NEQ) 6= >, even though the liveness
requirement was met, i.e., LiveCNEQ(R) = >. However,
following the liveness criteria of non-equivocation in United-π
described in Section V-A, if LiveCNEQ(R) = > then at
least 3f + 1 authorities out of N sent approvals to ι and
they did so before ∆ time has expired. Since there are only
f malicious authorities and United-π do not accept more
than one partial proof per authority, ι had at least 2f + 1
(i.e., enough) valid partial proofs from honest authorities to
combine before ∆ expires, and no more than f invalid partial
proofs; hence, ι would have generated a valid combined proof
of non-equivocation. Therefore, since ι is an honest authority,
ι would have outputted an upgraded certificate on any time
Clktι ≥ ψ.ρ[attr].clk + ∆, thus contradicting the assumption
that such A exists.

Claim 15. If United-π uses a robust threshold signature
scheme T S , then either United-π achieves liveness of pending
certificate upgrade for non-equivocation attribute, or T S is not
a robust threshold signature scheme.

Proof. A robust (t,n)-threshold-signature scheme T S ensures
that performing T S.Combine on t′ ≥ 2t+1 partial signatures
where at most t of them are invalid outputs a valid group
signature. Since in United-π n > 3f , any call to T S.Combine
is with at least 2f+1 valid partial signatures and thus outputs
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a valid group signature, as long as T S is indeed a robust
(t,n)-threshold-signature.

Assume to the contrary that United-π does not achieves
liveness of pending certificate upgrade for non-equivocation
attribute. Then, there exists an adversary A such that

Pr[LivenessExp
Upgrade,LiveCNEQ,M
A,United-π (1κ,N, f) = 1] 6∈ Negl(1κ)

Thus, following experiment LivenessExp
Upgrade,LiveCNEQ,M
A,United-π ,

it means that although the liveness criteria LiveCNEQ(R) was
met, an upgraded certificate was not issued by an honest au-
thority ι. However, following Claim 14 and United-π’s attack
and communication model, we know that if LiveCNEQ(R) =
>, then ι has enough partial signature to successfully pro-
duce an upgraded certificate. Therefore, if such adversary A
does exists, this means that A was able to prevent ι from
combining using T S.Combine enough valid partial signatures
(at least 2f + 1) into a valid group signature with only f
invalid partial signatures under modelM that ensures reliable
communication, thus contradicting the robustness of T S .

Therefore, when using a robust threshold signature scheme,
United-π achieves liveness of pending certificate upgrade for
non-equivocation attribute.

APPENDIX B
ADDITIONAL EXPLANATIONS FOR SAFETY

REQUIREMENTS

Below we provide explanations for the remaining four safety
requirements from Section IV-D.

A. Transparency: Requirement 6 presented in Algorithm 3.
The SafetyExp∆TRA,M

A,P (1κ,N) game executes adversary
A using Exec, verifies that A followed the modelM, and ex-
tracts the execution details as described in SafetyExpACC,M

A,P .
The adversary wins the game if three requirements are

met. First, ψ must be a valid transparent certificate (line
5.1). Second, authority ι and the transparency issuer of ψ
are honest authorities (line 5.1). Notice that the game checks
that the transparency issuer is honest and not the issuer of
the certificate itself (i.e., accountability issuer), since even if
the issuer of the certificate is corrupt, this does not prevent
the transparency issuer from broadcasting the certificate to the
rest of the authorities. The third requirement is that there is
an honest authority ι that is not aware of the transparency of
ψ on time t (lines 5.2-5.3). This requirement is validated by
verifying that on time t authority ι was instructed to perform
P.Query with ψ.id, but the output of this invocation did not
contain a transparent certificate based on ψ, and was sometime
after the time that ψ was supposed to be transparent. Since
the P .Query algorithm outputs all certificates associated with
ψ.id, this is a proof that an honest authority is not aware of
ψ.

B. Non-equivocation: Requirement 7 presented in Algo-
rithm 4.

The SafetyExpNEQ,M
A,P (1κ,N) game executes adversary A

using Exec, verifies that A followed the model M, and ex-
tracts the execution details as described in SafetyExpACC,M

A,P .

The adversary wins the game if three requirements are met.
First, ψ and ψ’ must be valid certificates (ψ provided by
the adversary and ψ’ by some ι, lines 4-5) with the non-
equivocation attribute (line 6.1). Second, both certificates have
overlapping validity periods (line 6.2). Third, ψ must also be
a non-revoked certificate (line 6.3).

C. Revocation Accountability: Requirement 8 presented Algo-
rithm 5.

The SafetyExpReACC,M
A,P (1κ,N) game executes adversary

A using Exec, verifies that A followed the modelM, and ex-
tracts the execution details as described in SafetyExpACC,M

A,P .
The adversary wins the game if two requirements are met.

First, ψr must be a valid revoked certificate and authority that
revoked ψr must be an honest authority (line 5.1). The second
requirement is that the authority that is claimed to revoke ψr
did not revoked it (line 5.2).

D. Revocation Transparency: Requirement 9 presented Algo-
rithm 6.

The SafetyExp∆ReTRA,M
A,P (1κ,N) game executes adversary

A using Exec, verifies that A followed the modelM, and ex-
tracts the execution details as described in SafetyExpACC,M

A,P .
The adversary wins the game if four requirements are met.

First, ψp must be a valid transparency pending certificate (line
6.1). Second, authority x and the transparency issuer of ψp
must be an honest authority (line 6.2). Notice that the game
checks that the transparency issuer is honest and not the issuer
of the certificate itself (i.e., accountability issuer), since even if
the issuer of the certificate is corrupted, this does not prevent
the transparency issuer from broadcasting the certificate to the
rest of the authorities. The third requirement is that there is
an honest authority x that is not aware of the transparency
of ψp on time t (line 6.3). This requirement is validated by
verifying that on time t authority x was instructed to perform
P .Query with ψp.id, but the output of this invocation did not
contain a transparent certificate based on ψp (line 6.3). Since
the P .Query algorithm outputs all the certificate associated
with ψp.id, this is a proof that an honest authority is not
aware of ψp. The fourth and final requirement ensures that
time t was sometime after the time that ψp was supposed
to be transparent ψ.ρ[∆TRA].t (line 6.4). This requirement
ensures that the evidence the adversary obtained of winning
the game is indeed relevant, since until time ψ.ρ[∆TRA].t not
all honest authorities are required to know ψp.
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