
Provable Security for PKI Schemes

It is possible to build a cabin with no foundations,

but not a lasting building. - Eng. Isidor Goldreich [28].

Hemi Leibowitz1, Amir Herzberg2, and Ewa Syta3

1 Dept. of Computer Science, Bar-Ilan University, Ramat Gan, Israel
2 Dept. of Computer Science and Engineering, University of Connecticut, Storrs, CT,

USA
3 Dept. of Computer Science, Trinity College, Hartford, CT, USA

Abstract. Public Key Infrastructure (PKI) schemes have significantly
evolved since X.509, with more complex goals, e.g., transparency, ensur-
ing security even against corrupt issuers. However, their security prop-
erties are still not rigorously defined or established. This is alarming, as
PKIs are the basis for security of many critical systems, and security
concerns exists even for well known and widely deployed PKI schemes,
e.g., Certificate Transparency (CT) [36].
We present the first rigorous security specifications for PKI schemes,
with properties such as transparency, revocation transparency and non-
equivocation. Our goal is a general framework, applicable to most PKI de-
signs. We apply it to CT as well as PoC-PKI, a ‘proof-of-feasibility’ PKI
scheme, which has a significantly different design than CT, to demon-
strate the flexibility of the framework. Lastly, we present theorems we
proved for these two schemes.

1 Introduction

Public Key Infrastructure (PKI) provides an essential foundation to applications
of public key cryptography, and crucial for security in open networks and sys-
tems. Since its introduction in 1988, the deployment of PKI was dominated by
the X.509 standard [16]. X.509 was widely deployed by many protocols and sys-
tems. The most widespread is likely the TLS/SSL protocol [44], used to secure
connections between web server and browser. This ‘web-PKI’ is critical for the
secure use of the Web - and hence, a lucrative target for attackers, more than
any other PKI deployment so far.

Unfortunately, the web-PKI deployment has inherent weaknesses. In particu-
lar, any CA is trusted to issue certificates for any domain [21]. This makes CAs
a prime target for attackers. Over the years, we have seen many failures of this
trusted-CA approach. For example, hackers stole the master keys of CAs [18,43]
and issued fake certificates for major websites. Furthermore, some CAs abused
their powers by improperly delegating their certificate-issuing authority or even
intentionally issuing unauthorized certificates [22]. Such PKI failures allow at-
tackers to issue fake certificates, launch website spoofing and man-in-the-middle



attacks, possibly leading to identity theft, surveillance, compromises of personal
and confidential information, and other serious security breaches.

X.509 certificates are signed by the issuing CA, which ensures accountability:
a CA cannot deny having issued a certificate - or, more precisely, that its pri-
vate key was used to sign the certificate. For many years, this was considered a
sufficient deterrent; however, the many PKI failures brought the realization that
accountability is not sufficient. Accountability is only effective if and when the
fake certificate is found - which may not occur, especially if abused ‘stealthily’,
and if the misbehaving authority can be effectively punished.

These failures motivated efforts to develop and adopt improved-security PKI
schemes, i.e., PKI schemes that ensure security against corrupt CAs. During the
recent years, there have been extensive efforts toward this goal by researchers,
developers and the IETF. These efforts focus on security properties such as
transparency, non-equivocation and more. The proposals and designs include
Certificate Transparency (CT) [35, 36], Enhanced-CT [46], Sovereign Key [23],
CONIKS [42], AKI [32], PoliCert [52], ARPKI [8], DTKI [55], CoSi [50, 51],
IKP [39], CertCoin [26], PB-PKI [7], Catena [53] and CertLedger [34].

These designs have goals beyond those of X.509 - and, the goals and designs
alike are significantly more complex than X.509. However, so far, these goals -
and, often, even the designs - have not been rigorously defined; certainly, there
are no proofs of security in most cases. This is alarming, as most practical appli-
cations of cryptography involve certificates and PKI; and the extensive efforts to
prove security of cryptographic protocols, may be foiled when implemented over
an unproven, and not even well defined, PKI. The concerns are even greater,
considering the wide use and importance of PKIs, and the fact that attacks
against PKI are not only a theoretical threat and have been done in practice.

Even for the much simpler X.509 PKI, there is no definition or proof of secu-
rity; however, this may not be as critical, since for X.509, both definitions and
proof are quite straightforward. Few works [9,15] prove security of cryptographic
protocols based on parts of the X.509 design; however, there are signifcant as-
pects of X.509 they ignore, e.g., revocation. Works introducing PKIs with secu-
rity against corrupt adversary typically offer only informal security arguments,
with the following exceptions. Definitions and analysis for the logging properties
of CT are presented in [17, 20]. ARPKI [8] and DTKI [55] provide automated
symbolic analysis for their core, system-specific properties. No work defined (or
analyzed) the generic PKI security properties.

Indeed, defining and proving security for PKI schemes is a non-trivial chal-
lenge, especially for schemes with defenses against corrupt CAs (and other enti-
ties). Another challenge is that PKI proposals vary greatly - even in the parties
involved and in the communication and attack models. However, without defi-
nitions and proofs, there is a risk of using insecure schemes, and, consequently,
of insecure deployments and implementations of PKI schemes. Furthermore, the
lack of proper definitions and proofs makes it challenging to build (provably)
secure systems, which depend on PKI schemes and their advanced features, and
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to improve, compare and select a PKI scheme that best fits a specific application
or scenario.

The lack of a precise framework for security of PKI schemes also makes it
hard to evaluate and compare schemes, and to define new security properties,
e.g, pertaining to privacy. It also prevents a modular design of schemes that
achieve such new and advanced properties, by provable reductions to simpler,
already-analyzed schemes.

We present the PKI framework, with well-defined correctness, safety and
liveness requirements, allowing for reduction-based proofs of security for PKI
schemes. The framework supports a wide range of PKI schemes, from X.509 to
advanced, improved-security PKI schemes.

The PKI framework focuses on defending against corrupt CAs. We explicitly
do not address trust-management issues, such as the decision to trust a partic-
ular CA, typically based on cross-certification by already-trusted CAs (‘basic
constraints’ in X.509), or restricting a CA to particular name-space (‘naming
constraints’ in X.509). Other works address other important aspects of PKI
schemes, mainly the trust decision - essentially, which CA should be trusted for
a given certificate. A model of trust for PKI systems was proposed by Mauer [40],
subsequently extended by [11,38], and others [10,29,31,37,47,56]. Our framework
focuses on the complementary issue of dealing with parties that may arbitrarily
misbehave by ensuring that their misbehavior can be discovered or prevented.

To define the framework, we reviewed and analyzed a number of existing
PKI schemes and applications, to ensure that the framework reflects current
PKIs and applications while remaining flexible to accommodate future PKIs,
uses and extensions. We present game-based definitions, for the basic security
requirements for PKI schemes designed for possible faulty CAs, namely, account-
ability, ∆-transparency, non-equivocation (detection and prevention), revocation
accountability and ∆-revocation transparency. We map these requirements to
existing PKIs in Table 1.

PKI is a fundamental part of most cryptographic systems; the surge of works
on PKI in the recent years may indicate that more schemes, models and goals,
may be identified in the future. The PKI framework is designed to support
such flexibility, allowing different communication, synchronization and adversary
models, and making it easy to define additional requirements. We also expect
future works to investigate different variations and extensions of the framework
itself, ranging from additional requirements, e.g., privacy, to challenges such as
provably-secure compositions. Such variations were explored for other funda-
mental cryptographic mechanisms, such as encryption schemes.

To make sure that the PKI properties we identified are, in fact, feasible,
and that our framework is sufficiently general and flexible to support different
PKI schemes, we present the theorems we proved for two different PKI schemes.
The first is a ‘Proof of Concept’ PKI scheme we developed and call PoC-PKI;
the second is CTcomp, which is essentially Certificate Transparency (CT) with
(simplified) specification of some essential missing details. We describe PoC-PKI
and prove its security in the full version of this paper [4], and describe and analyse
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CT, including CTcomp, in concurrent work [1]. The design of CT is very different
from that of PoC-PKI, with different roles, adversary model and more, allowing
us to fine-tune the framework to ensure it can support diverse schemes.

The PKI framework facilitate the definition of the adversary model for each
PKI schemes, including the entity-faults, communication and synchronization
assumptions, which may differ significantly between different PKI schemes. The
interactions between the adversary and the different entities are defined using
a precise execution algorithm (Alg. 1), and the properties are proven as long
as the adversary operates within the assumed - and well defined - adversary
model. The execution algorithm and adversary models, may be applicable for
other applied, distributed cryptographic protocols. In particular, to analyze the
CT and PoC-PKI PKI schemes, we present models for f(n)-corruption-faults,
bounded-delay-authenticated communication and bounded drift clocks. These and
similar models are implicitly assumed by many practical cryptographic systems;
the execution algorithm and adversary models may be applicable therefore to
other cryptographic systems, beyond PKI schemes. In particular, other models,
e.g., passive adversaries, may be defined in similar manner.

The paper is organized as follows. Section 2 reviews the PKI landscape
with respect to the requirements we identify in our framework and summarizes
the related work. Section 3 presents the execution model of the framework and
Section 4 presents the PKI framework and its correctness, safety and liveness
requirements. Section 5 discusses how the framework can be applied in practice.
We conclude and discuss future work in Section 6.

2 Security Properties of PKI Schemes

The first step in developing the PKI framework was the identification of the
security properties of PKI schemes, where we focus on schemes designed for
security against corrupt authorities (typically, corrupt CA). In this section, we
first discuss, informally, these security properties, and then use these properties
to compare proposed PKI schemes (see Table 1). See Section 4.4 for the game-
based definitions.

2.1 ‘Basic’ PKI Safety Properties

The basic goal of a PKI scheme is to ensure authenticity of information in public
key certificates. Certificates are issued and endorsed by Certificate Authorities
(CAs). An honest CA issues a certificate only after it verifies that the entity
requesting the certificate is eligible to receive it. A typical certificate contains
an identifier and some public information, typically including a public key. A
certificate also typically includes a signature generated by the issuing CA, over
the certificate’s information; the signature serves as the CA’s endorsement of
the mapping between the identifier and the public information in the certificate.
The signature establishes the basic goal of PKI schemes: accountability.
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Accountability (ACC) is the ability to identify the CA that issued a given cer-
tificate. Accountability provides a reactive defense against a corrupt CA; such
CA can be ignored or otherwise punished. In most PKI schemes, including X.509,
accountability is achieved by having the CA digitally sign certificates, i.e., a CA
is accountable for any certificate signed using the CA’s private key. CA account-
ability, in this sense, includes unauthorized use of the CA’s private key, e.g.,
due to exposure or penetration, as well as intentionally issuing ‘fake’ certificate,
where the public information does not correctly match the identifier. Note that
we use the term accountability as a technical, well-defined property, which does
not necessarily have any specific legal or financial implications.

Revocation accountability (ReACC). A certificate can be considered valid only
after its issue date and until its expiration date, both of which specified in the
certificate. The issuing CA, however, can invalidate a certificate before its expi-
ration date by revoking it. A user can request to have their certificate revoked
for a variety of reasons, including a loss or compromise of the private key corre-
sponding to the public key endorsed in the certificate.

The two main revocation mechanisms in practice are the certification revo-
cation lists (CRLs) [19] and online certificate status protocol (OCSP) [48]. Their
main security property is revocation accountability (ReACC).

Revocation accountability (ReACC) ensures accountability of the revoked cer-
tificates. Namely, each revoked certificate can be traced back to the revoking CA.
This helps to ensures that a client will not have their certificate revoked without
a legitimate reason (e.g., their request), unless the CA is malicious, or an at-
tacker corrupts or tricks the CA - in which case, this can be exposed. Revocation
accountability is similar to the accountability property, which focuses on issuing
certificates.

2.2 Beyond X.509: security against trusted-yet-corrupted CAs

In Section 2.1, we discussed accountability and revocation accountability, the
two basic PKI properties, provided already by X.509. We now discuss additional
security goals, pursued by more recent PKI schemes, designed to improve secu-
rity against corrupt CAs. These include ∆-transparency (∆TRA), ∆-revocation
transparency (∆ReTRA), ∆-equivocation detection (∆EQ-D) and equivocation
prevention (EQ-P).

∆-Transparency (∆TRA). Accountability, as described above, mainly serves
as a deterrent against misbehavior, i.e., only offers retroactive security by pun-
ishing a CA ‘caught’ misbehaving, e.g., issuing a fraudulent certificate. For many
years this reactive measure was viewed as a sufficient defense, under the assump-
tion that CAs were highly respectable and trustworthy entities who would not
risk, intentionally or otherwise, being implicated in issuing fraudulent certifi-
cates. However, repeated cases of fake-certificates, by compromised or dishonest
CAs, have proven this assumption to be overly-optimistic. It turned out that
punishing CAs is non-trivial: beyond negative publicity, any punishment was
arbitrary, short-lived and overall ineffective [6, 30,33,45].

5



Furthermore, ‘punishment’ could only be applied after the damage was com-
mitted and discovered - if it is discovered at all. An attacker or corrupt CA could
reduce the risk of discovery, by minimizing the exposure of the fraudulent cer-
tificate. Except for efforts such as the Perspectives Project [54], or the EFF SSL
Observatory [24] that aim to gather and inspect all SSL certificates used in prac-
tice, the burden of detecting and responding to fraudulent certificates is mostly
on the clients that receive them; browsers typically cannot detect fraudulent
certificates, much less to report them to a (non-existing) ‘enforcement agency’.

This significant issue has motivated more recent PKI designs, e.g. CT, where
certificates are transparently published, to allow third parties (e.g., trusted ‘mon-
itors’) to inspect and detect any fraudulent certificates. This design makes it
possible to quickly detect misbehavior, such as issuing of a fraudulent certifi-
cate. Ideally, fraudulent certificates could likely be detected before they can be
abused, or at least, before the can cause much harm.

Unfortunately, there is still no guarantee that such detection would in fact
occur before certificate misuse occurs. In fact, even where detection is guaran-
teed to occur, this can only be guaranteed some time after issuing of the fake
certificate - although this aspect is often overlooked. We denote this time by ∆,
and hence we refer to this property as ∆-transparency (or ∆TRA); in a specific
PKI scheme, the value of ∆ would be a function of model-specific parameters
(such as network delay). Transparency prevents a CA from ‘silently’ generating
fraudulent yet validly-formed certificates, and exposing them only to selected
victims during an attack.

Transparency requires a certificate to be authenticated (signed) by a party
which takes responsibility for making the certificate known to all monitoring-
entities, within the specified time frame ∆. By demanding transparency, a PKI
system facilitates detection of fraudulent certificates, even when issued by a
corrupt or compromised CA. Often, a certificate is considered fraudulent since it
uses a misleading identifier, such as a domain name which is identical or similar
to that of a victim domain, e.g., g00gle.com, or with an identifier which users may
expect to belong to a known domain, e.g., googleaccounts.com. Such misleading
identifiers are often abused, e.g., for phishing attacks. A PKI which supports
transparency, allows a domain to vigilantly watch for any certificate issued with
identifiers which are identical, similar or otherwise misleading to be associated
with its own domain names.

Equivocation: detection and prevention (∆EQ-D and EQ-P). Fraudulent cer-
tificates which use the same identifier as the victim, may be abused for phishing,
and for other attacks, e.g., stealing web cookies. PKI schemes may detect equiv-
ocation (∆EQ-D) or even prevent it (EQ-P).

A PKI which prevents equivocation, will prevent a corrupt CA from issu-
ing a fake certificate for an already-certified identifier, e.g., domain name. This
could prevent, rather than merely detect, man-in-the-middle and other attacks
impersonating existing secure domains [12].

Note that transparency implies ∆EQ-D, but not EQ-P. We still define equivo-
cation detection as a separate property, since it does not imply transparency, i.e.,
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∆EQ-D is not equivalent to transparency. In fact, some PKI schemes, notably
CONIKS [42], offer equivocation detection but not transparency - indeed, trans-
parency would conflict with some of CONIKS privacy goals. Of course, providing
non-equivocation but not transparency, may still allow issuing of misleading (but
not identical) identifiers, e.g., misleading domain names which may be abused
for phishing attacks.

Revocation transparency (∆ReTRA). Revocation accountability does not en-
sure that revocation would be performed correctly. Consider a scenario where a
client asks to have her certificate revoked, but a corrupt CA does not properly
revoke the certificate, and as a result, some (or all) relying parties are kept un-
aware of the revocation, and still consider the certificate as valid. Obviously, such
behavior may endanger the client in many scenarios, e.g., when the correspond-
ing private key was obtained by an attacker. Revocation transparency ensures
that if a CA revoked a certificate, then all authorities should be aware of the
revocation, within some bounded time, preventing such undesirable scenarios.

Privacy. Some of the recent PKI schemes offer different privacy properties.
However, the properties are non-trivial and also differ significantly. Therefore,
we left to future work, the important and challenging task of extending the PKI
framework to privacy properties. Note that, as discussed above, some privacy
properties may conflict with transparency.

2.3 Properties of different PKI Schemes

The goal of the PKI framework is to allow analysis and provable-security,
for existing and future PKI schemes. We designed the framework in a way that
embraces, complements and reflects current PKI designs. To this end, we have
methodically examined the existing PKI schemes by identifying and analyzing
their properties.

We present the results of our analysis in Table 1, and summarize them below.
The table includes twelve existing PKI systems, and, in addition, PoC-PKI, a
“proof-of-concept” PKI we defined, and CTcomp, a minor extension of the CT
specifications, which appears essential to ensure CT’s security properties. We
compared all schemes with respect to the requirements formally presented in
Section 4; we also mention two additional properties, privacy, discussed infor-
mally in Section 2.2, and global name-spaces. Details of the evaluation of each
scheme are included in the full version [4].

Notations in Table 1. We use the n/s (not supported) symbol to indicate
when a scheme does not seem to support a requirement. Otherwise, we use one
of the three following symbols,  , �, or G#, to indicate the support of a require-
ment by the scheme. The  symbol indicates that a system comes with rigorous,
reduction-based proof of the requirement. We indicate with an appropriate com-
ment when a scheme is supported by automated symbolic proof for a given
property; note that such proofs are often of property specific to that scheme,
not properties defined for arbitrary PKI schemes. The G# symbol indicates that
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System [reference]

Safety requirements Additional req.

ACC ∆TRA ∆EQ-D EQ-P ReACC ∆ReTRA Privacy 1 Global
name-
space

X.509 and PKIX, with CRL
or OCSP 2

G# n/s n/s n/s G# n/s n/s 3

Catena [53] �7 � � � �7 � n/s 3

CertCoin [26] n/s � � � n/s � n/s 3

PB-PKI [7] n/s � � � n/s � � 3

CoSi [51] G# � � � n/s n/s n/s 3

Enhanced-CT [46]
G# � � n/s G# � n/s 3

DTKI [55] 3

AKI [32] G# � � n/s G# � � 3

CONIKS [42] G# n/s � n/s G# � � 7

ARPKI [8] 4 G# � � � G# � n/s 3

CertLedger [34] G# � � � � � n/s 3

Certificate Transparency
(CT) [36]

G# �5 �5 n/s G# n/s6 3

CTcomp [1] (CT completed)    n/s  n/s n/s 3

PoC-PKI [4] (full version of
this work)

      n/s 3

Table 1: Comparison of PKI schemes with respect to PKI framework. Symbols:
 - reduction-based proofs, G# - intuitively true, � - security arguments (a proof
may require assumptions), n/s - not supported.
1Different privacy definitions, goals. 2OCSP ensures certificate-status freshness.
3DTKI has symbolic proofs of some aspects. 4ARPKI has symbolic proofs of
some aspects. 5Proofs of logging properties in [17,20]. 6CT is extended to include
revocation transparency in [35].

although no formal proofs were provided, it seems intuitively true that the sys-
tem achieves a requirement; e.g., accountability in X.509 follows from the use of
signature scheme to sign the certificate. The � symbol depicts the property is
justified using an (informal) security argument; note that this may imply that
additional assumptions or details may be needed to ensure security.

Following our discussion of the ‘basic’ PKI security properties in Section 2.1,
we observe that most systems aim to achieve accountability, with the exception
of CertCoin and PB-PKI. Both CertCoin and PB-PKI build on top of Name-
coin [3], which is a decentralized namespace system rather than a centralized,
CA-oriented system, where the CAs grant identifiers to clients. Instead, due to
the fully decentralized nature, anyone can claim an identifier so long it is avail-
able; consequently, there is no accountability for assigning identifiers. Notice also
that Catena is a witnessing (logging) scheme that allows to witness public-key
directories using the Bitcoin blockchain. As a result, accountability of issuing
certificates is handled by the directories themselves, which require unusual ad-
ditional assumptions (which can be modelled using the framework).

Interestingly, many systems directly focus on more advanced properties, such
as transparency and non-equivocation, and treat more ‘basic’ properties, such
as accountability and revocation, as intrinsic to PKI, often without even stating
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them. This phenomenon is especially apparent in case of revocation; many sys-
tems (e.g., CertCoin, Catena, PB-PKI, CoSi) do not directly address revocation
at all, and do not discuss how revocation should be handled, by whom and under
which conditions. Other PKI schemes use the X.509 notion of a certificate, and
implicitly rely on the X.509 revocation mechanisms (CRLs and OCSP). This ap-
proach is somewhat understandable due to the pervasiveness of X.509, but also
establishes the X.509 revocation mechanisms as the status quo of revocation,
despite known weaknesses.

In Table 1, we label accountability and revocation accountability as ‘intu-
itively true’ for all systems, except for CertCoin, Catena, PB-PKI, and CoSi.
Accountability and revocation accountability are typically achieved using a se-
cure signing scheme, and therefore a formal proof seems straightforward and
not essential. Note that CertCoin, PB-PKI and CONIKS allow clients to revoke
their own certificates, but revocation can also be done by an adversary that
compromised the client’s secret keys, or alternatively, the client may be unable
to perform revocation if the secret keys are lost.

Transparency, on the other hand, is supported by all post-X.509 PKI schemes,
except CONIKS. The fact that transparency is so pervasively provided is likely
in response to one of the main weaknesses of X.509 widely abused in prac-
tice, i.e., the lack of a mechanism to effectively propagate all issued certificates
among CAs and clients. CONIKS, on the other hand, offers a limited notion
of transparency of the identity / value map, which hides the actual identifiers
and their corresponding values, as a trade-off between security and privacy. The
clients can only query for individual identifiers. Furthermore, even that must be
within a specific namespace, as CONIKS does not support global namespaces,
where multiple CAs are authorized to issue for the same namespace. The use of
separate namespaces, while problematic for the web PKI, works well for many
applications such as chat rooms or messaging boards, that require secure key
distribution but are under control of a single entity.

As Table 1 indicates, most previously-published PKI schemes have only in-
formal security arguments for transparency. The exception are CT, DTKI, and
ARPKI, which have different types of automated proofs for scheme-specific prop-
erties. Namely, the properties and their proofs are not relevant to PKIs per se.
Rather, they focus on details of the design of the particular scheme. Specifically,
Dowling et al. [20] formalized security properties and provided reduction-based
proofs for logging aspects of CT, that cover two classes of security goals involv-
ing malicious loggers and malicious monitors. Chase and Meiklejohn [17], on the
other hand, focus on formalizing transparency through “transparency overlays”,
a generic construction they use to rigorously prove transparency in CT and Bit-
coin. While their approach is elegant and can be used in other systems as a prim-
itive that achieves transparency, it focuses on the “CT-style transparency” and
does not consider other PKI properties such as revocation or non-equivocation.

Some of the systems, such as DTKI and ARPKI, verify their core secu-
rity properties using automated symbolic proofs via the Tamarin prover [41].
Symbolic proofs provide an important added value for the security of proposed
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systems. Unfortunately, symbolic proofs often use abstractions; for example, in
DTKI and ARPKI, a Merkle tree is modeled as a list. Such abstractions present
an obstacle towards ‘air-tight’ security proofs. This strengthens the importance
of a formal framework which on the one hand does not rely on specific imple-
mentations, yet, on the other, can be easily used by any implementation. We
leave it to future work to explore ways to use symbolic proofs to add automatic
verification capabilities to the framework described in this paper.

The post-X.509 safety requirements - transparency, non-equivocation and
revocation transparency - are more complex to define and to achieve, compared
to the X.509 properties of accountability and revocation accountability. Hence,
we did not consider any of these post-X.509 properties to be ‘intuitively true’ -
we believe they all require a proper definition and proof, as we provide in this
paper. However, we separated between properties which are not-supported, and
properties which are claimed to be supported using some security arguments.
Note that several systems do not discuss revocation transparency at all, even
though in certain cases, e.g., CoSi, it seems relatively easy to achieve it. CT
originally did not have a built-in support for revocation transparency, and it
was only later formalized as Revocation Transparency [35].

Finally, security requirements for cryptographic schemes often consider only
safety requirements; however, in practice, liveness is an essential property - which
is not always ensured. Liveness implies that operations terminate within bounded
time, or eventually; e.g., whenever a certificate is issued (or revoked), the pro-
cess will terminate. In the case of PKI schemes, liveness usually seems easy to
achieve, but it is difficult to formalize, analyze and prove. Indeed, we believe that
liveness ‘intuitively holds’ for all proposed PKI schemes as indicated in Table 1,
however, none of the proposals identify liveness as a goal, and certainly none de-
fine it rigorously or prove that it holds. We correct this situation by presenting
a liveness requirement that covers processing certificates, and specifically in this
case, issuing, revoking and ‘upgrading’ certificates; see Section 4.5.

3 Entities and Execution Model

In this section, we define the execution algorithm for the framework we pro-
pose; see the next section for details specific to PKI schemes, such as algorithms
specific to PKI schemes.

The execution algorithm is flexible, and applicable not just to PKI schemes
but also to other systems, with different goals and functionalities. For example,
the execution is invoked for a given scheme, denoted P; this may be a PKI
scheme - but could also be any other scheme - the execution is not PKI specific.

The flexibility of the execution algorithm also extends to support for a variety
of network, synchronization and adversary models. In particular, the execution
model allows synchronous, partially synchronous or asynchronous communica-
tion models, and adversarial models ranging from passive eavesdropper to active
adversaries who can modify messages and launch man-in-the-middle attacks.
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3.1 Entities, Authorities and basic operations

In PKI, there are two types of entities: authorities and clients, also referred to
as relying parties. Clients rely on the authorities to obtain and manage their cer-
tificates and for any other certificate-related requests and queries. Authorities
are responsible for the entire certificate life cycle, where the main events of issu-
ing, upgrading and revoking certificates are driven by the clients’ requests. For
simplicity and generality, the model treats all authorities equally, although this
does not prevent implementations where authorities have specific roles (e.g., CA,
RA, logger, auditor, etc.). When a system makes such distinctions between au-
thorities, they are captured in the execution model as an output value OutA,(see
Algorithm 1). We denote the set of all authorities in the system as N = {1, . . . , n},
where n is the number of all authorities.

Authorities may interact with one another to perform certain actions. Each
authority has a local clock Clk and a local state S, e.g. containing issued certifi-
cates, and the following information: i) S.ι: the unique-identifier of each entity, ii)
S.PrivInfo: private (secret) information, and iii) S.PubInfo: public information.

Each authority supports several operations specific to PKI schemes as de-
tailed in Section 4. Below we define three operations which are not PKI-specific
and are performed locally by each authority: Gen, Time and Incoming.

– Gen(1κ) → (PrivInfo,PubInfo): The Gen algorithm allows to initialize the
authority and generate the necessary set up information (e.g., cryptographic
keys) for each individual authority. The algorithm takes as input a security
parameter 1κ and outputs private information PrivInfo and public informa-
tion PubInfo.

– Time(S,Clk)→ (S′, {mi}i∈N, out): The Time algorithm performs operations
which are time-dependent. The algorithm takes as input a local state S
and local clock Clk. The algorithm outputs the modified state S′, a set of
messages {mi}i∈N for other authorities and output out.

– Incoming(S,Clk, {m̃i}i∈N)→ (S′, {mi}i∈N, out): The Incoming algorithm pro-
cess and handles incoming messages from other authorities. The algorithm
takes as input a local state S, a local clock Clk and a set of messages {m̃i}i∈N.
The algorithm outputs the modified state S′, a set of messages {mi}i∈N, and
output out.

In addition to these three local operations, we define a system initiation
operation, GroupGen, which generates common public information, such as a
system-wide public key or a set of ‘root’ public keys. The GroupGen operation
is invoked as a part of our execution model; to implement this in a real sys-
tem, GroupGen could be run by a trusted third party, or using an appropriate
multi-party computation protocol. The GroupGen algorithm takes as input a se-
curity parameter 1κ, the set of authorities N and a set of public information
{PubInfoi}i∈N. GroupGen has only one output, the public group information
PubInfo. Namely, GroupGen(1κ,N, {PubInfoi}i∈N)→ PubInfo.

11



3.2 Execution Model

The execution model is defined by the ExecA,P algorithm (see Algorithm 1),
where A and P represent the adversary and the specific implementation of a
PKI system, respectively. This algorithm takes as input a security parameter 1κ

and the set of authorities N. The Exec algorithm begins with an initialization
phase (lines 1-7). First (line 1), the adversary selects the set of faulty authorities
NF. The local state of each authority is initialized using Gen (line 2) but the
adversary is allowed to override the state for each authority in NF (line 3). We
note that the local clock of each authority is initialized by the adversary as the
specific clock synchronization rules must conform to the restrictions expressed
in the model predicate M (see Section 3.3). Then (line 4), GroupGen algorithm
is used to generate the public information PubInfo, known by all authorities.
Finally (line 7), the adversary is provided with all public information and invoked
to set the inputs for the first round of the execution phase. The execution phase
(lines 8-9) is a loop of rounds, where each round is labeled with an incremental
round number t. In each round, each authority i ∈ N handles three events. First
(line 8.2.1), we invoke one of the functions of P, as selected by the adversary; the
function P.Algti is selected by the variable Algti , which the adversary sets in line
7 (initialization) or afterwards line 8.3 (execution). This is intended to invoke
the algorithms in PKI which are not run by the execution process directly (i.e.,
all but Gen, GroupGen, Time, and Incoming). Second (line 8.2.2), we invoke the
P.Incoming algorithm to handle incoming messages m̃t−1

i,j from other authorities
j ∈ N (in previous round t−1). Next (line 8.2.3), we invoke the P.Time algorithm
to handle time-based events. Each of the algorithms is provided with access to
the current local state and clock of the appropriate authority, and after it is
finished executing, it outputs a modified state for that authority as well as a
set of messages for other authorities (possibly empty). We complete the round
by invoking the adversary (line 8.3), who receives as input all the messages sent
in this round {mi,j}i,j∈N, and determines which messages would be received in
the next round {m̃t

i,j}i,j∈N; this allows for an active adversary, or to enforce
m̃t
i,j = mi,j for eavesdropping adversary. The execution rounds repeat until the

adversary decides to abort. When the adversary aborts the execution (line 9), the
execution concludes, and outputs (line 11) four values: [t,NF, OutA, R], where t
is the number of rounds in the execution, NF is the set of faulty authorities, OutA
is the transcript of adversary’s choices, and R is the run, namely, the ‘transcript’
of the execution (line 10).

3.3 Fault, Communication and Synchronization Models

Our execution model is general, flexible and suitable for schemes designed for
different adversary models. We define a model predicate M over each execution
run, which returns true if, and only if, the run conforms to the intended ad-
versarial model. Namely, given a set of input parameters ξ = {N,NF, OutA, R}
which provides the execution details, the model M is defined as:

M(ξ) = {MFAULT (ξ) ∧MCOM (ξ) ∧MSY NC(ξ)}

12



whereMFAULT is the fault model function,MCOM is the communication model
function, and MSY NC is the synchronization model function.

This approach allows each system to precisely define its adversarial model by
specifying the details of the fault, communication, and synchronization models.
While many systems use common and well-understood assumptions (e.g., a hon-
est majority for the fault model, a synchronous network for the communication
model, or fully synchronized clocks for the synchronization model), others may
need to define their own variants and being able to do so in a formal way is
necessary. In this work, we apply this framework to our proof-of-concept system
PoC-PKI that follows a standard adversarial model but also to Certificate Trans-
parency which requires different assumptions. We present the model predicate
M for PoC-PKI and CT in Section 5. Below we provide formal descriptions of
some of the standard fault, communication and synchronization model functions.

Faults Model Function MFAULT . The fault model function specifies which
sets of authorities the adversary may control. One commonly used faults model
limits only the size of the set of faulty authorities, as a function f of the total
number of authorities. We refer to this particular faults model asMNumF

f , where
f : N → N bounds the number of faulty authorities as a function of the total
number of authorities, namely:

MNumF
f (ξ) = {TRUE iff |ξ.NF| ≤ f (|ξ.N|)} (1)

In particular, our proof-of-concept PKI, PoC-PKI, uses MNumF
f with f de-

fined as: f(n) = b(n/3)c. Namely, the faulty entities can arbitrarily misbehave
so long the adversary controls less than a third of all authorities. The way that
we let the adversary control the faulty authorities is by allowing the adversary
to control their public (and private) information, see line 3 of the execution,
and also to modify messages they send and receive, as we define below; this
essentially allows adversary to ‘act as’ all of these authorities.

Communication Model Function MCOM . Below we present a bounded-
delay communication model with authenticated channels function MBD−COM

∆com
,

where every message received by honest entity was sent at most ∆com earlier
(captured byMBD−RCV

∆com
) and every message sent by an honest entity is received

at most ∆com later (captured by MRC−SENT
∆com

).

MBD−RCV
∆com

(ξ) = {
(
(∀i, j ∈ ξ.N− ξ.NF, τ ∈ N)ξ.R.m̃τ

i,j 6= ∅⇒

∃τ ′ s.t. Clkτi −∆com ≤ Clkτ
′

j < Clkτi ∧ ξ.R.m̃τ
i,j = ξ.R.mτ ′

i,j

)
}

MBD−SENT
∆com

(ξ) = {
(
(∀i, j ∈ ξ.N− ξ.NF, τ ∈ N)ξ.R.mτ

i,j 6= ∅⇒

∃τ ′ s.t. Clkτi < Clkτ
′

j ≤ Clkτi +∆com ∧ ξ.R.m̃τ ′

i,j = ξ.R.mτ
i,j

)
}

Finally, the communication model function is defined as:

MBD−COM
∆com

(ξ) = {MBD−RCV
∆com

(ξ) ∧MBD−SENT
∆com

(ξ)}
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Synchronization Model Function MSY NC . The following synchroniza-
tion model function MBD−SY NC

∆clk
defines a bounded-drift clock synchronization

model, i.e., the time difference between the local clocks of all entities is at most
∆clk. As a special case (∆clk = 0), this function defines a model where the local
clocks are fully synchronized, i.e., there is no difference between entities’ clocks.

MBD−SY NC
∆clk

(ξ) = {
(
(∀i, j ∈ ξ.N, τ ∈ N)|ξ.R.Clkτi − ξ.R.Clkτj | ≤ ∆clk

)
}

Algorithm 1 ExecA,P(1κ,N)

// Adversary picks state, set of faulty authorities

1:
(

NF, S
0
A,
{
Clk0i

}
i∈N

)
← A(N, 1κ)

// Initialize local variables for all authorities
2: ∀i ∈ N : S0

i ← ⊥,
(
S0
i .PrivInfo, S0

i .PubInfo
)
← P.Geni (1κ)

// Adversary sets each faulty entity’s PrivInfo and PubInfo

3:
(
S0
A,
{(
S0
i .PrivInfo, S0

i .PubInfo
)}
i∈NF

)
← A

(
{S0
A,S

0
i .PrivInfo}i∈NF

, {S0
j .PubInfo}j∈N

)
// Generate public group information

4: PubInfo ←
(
P.GroupGen(1κ,N, {S0

i .PubInfo}i∈N), {S0
i .PubInfo}i∈N

)
5: ∀i ∈ N : S0

i .PubInfo ← PubInfo

// Initialize the round indicator t
6: t← 0

// Invoking the adversary before the first round
7: [{Alg1i , Inp

1
i , Clk

1
i }i∈N, {m̃0

i,j}i,j∈N, S
1
A]← A(S0

A,PubInfo)

// Execution phase:
8: repeat

8.1: t← t+ 1

8.2: ∀i ∈ N :

// Invoke instructions for the current round

8.2.1:
(
S1, {m1

i,j}j∈N, Out1
)
← P.Algti

(
St−1
i , Clkti , Inp

t
i

)
8.2.2:

(
S2, {m2

i,j}j∈N, Out2
)
← P.Incoming

(
S1, Clk

t
i , {m̃

t−1
i,j }j∈N

)
8.2.3:

(
Sti , {m

3
i,j}j∈N, Out3

)
← P.T ime

(
S2, Clk

t
i

)
// Aggregate all outputted values during round t into a single set

8.2.4: Outti ← Out1 ∪Out2 ∪Out3, (∀j)mi,j =
⋃3
`=1m

`
i,j

// Adversary sees and controls messages, and selects operations for next round

8.3: [{Algt+1
i , Inpt+1

i , Clkt+1
i }i∈N, {m̃ti,j}i,j∈N, S

t+1
A , Abort, OutA]← A({mi,j}i,j∈N, S

t
A)

// Repeat until the adversary indicates termination via the Abort indicator
9: until Abort 6= ⊥

// Output:

10: R←


{
Algt̂i , Inp

t̂
i , Out

t̂
i , Clk

t̂
i

}
i∈N

,

{
mt̂i,j , m̃

t̂

i,j

}
i,j∈N


t̂∈{1...t}

// The algorithm outputs the number of rounds t, the set of faulty authorities NF, the transcript
OutA detailing the adversary’s choices, and the transcript R of all execution details.

11: Return [t,NF, OutA, R]
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4 The PKI Framework

In this section, we describe the PKI framework. We first provide an overview of
the framework and then define the correctness, safety and liveness requirements.

4.1 Certificates and Functionalities

A PKI scheme P associates an identity identifier id with some public information
pub. The association of (id, pub) is achieved through a certificate, and authorities
issue certificates, add attributes to certificates, or revoke certificates in response
to clients’ requests using algorithms PKI defines (see Section 4.2). A certificate
ψ contains:

ψ = (id, pub, sd, ed, ρ)

where:
– ψ.id: identifier of the entity for which ψ was issued.
– ψ.pub: public information associated with ψ.id, e.g., a cryptographic public

key.
– ψ.sd: start of certificate validity period.
– ψ.ed: end of certificate validity.
– ψ.ρ: certificate’s attributes and details.
• ψ.ρ[attr].σ: ‘attestation’ that ψ has attribute attr.
• ψ.ρ[attr].ι: identity of the authority who attests for attr.
• ψ.ρ[attr].clk: the local time when the attr attribute was added to ψ.

When a client wishes to obtain a certificate to associate some id with some
pub, she contacts some authority ι ∈ N. Authority ι verifies the legitimacy of
the client’s request, and if warranted, produces a certificate ψ using the P.Issue
algorithm. We stress that this verification process is not prescribed by this frame-
work. We assume that each implementation of PKI will specify this verification
process and define any additional constraints on CAs (e.g., naming constraints).
The P.WasValid algorithm can be used to check if a given certificate is valid.
This algorithm does not depend on any state so it can be used by any part in the
PKI, and each implementation can define its specific P.WasValid to reflect its
notion of a certificate validity. Authorities also support the P.Query algorithm,
which outputs a list of all valid certificates issued for some id, if such certificates
are known to the authority.

Once a certificate is issued, it can be then upgraded using the P.Upgrade
algorithm to receive an attribute, i.e., an ‘added-on’, signed ‘endorsement’ of a
certificate, such as signed certificate timestamp (SCT) in the Certificate Trans-
parency PKI [2]. We denote the entire set of possible attributes as AttrSet and
each implementation may define its own AttrSet, providing for flexibility and cus-
tomization. We define AttrSet = {ACC,∆TRA,∆EQ-D,EQ-P,REV,∆ReTRA} to
support the safety requirements of accountability, ∆-transparency, equivocation
detection, equivocation prevention, revocation accountability, and ∆-revocation
transparency, respectively. Each attribute reflects some property of a certificate
and carries a specific meaning in terms of its security. For example, a certifi-
cate with the ACC attribute is accountable, that is, the issuing authority can be
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identified. A ∆-transparent (∆TRA attribute) certificate can be assumed to be
known to all honest authorities in the system after some point in time defined
by ∆ while an unequivocal (EQ-P attribute) certificate carries a guarantee that
another valid unequivocal certificate for the same identifier will not be issued
unless the initial one was expired or revoked. We view revocation as an attribute
too and discuss it next.

An authority may invalidate a certificate before its expiration date using the
P.Revoke algorithm, which generates a revoked certificate ψr, i.e., a certificate
that has a revocation attribute added that indicates the level of revocation: (REV
for accountable revocation and ∆ReTRA for ∆-transparent revocation, or both).
As before, each implementation should define its specific revocation rules. An
expired certificate need not be revoked. The P.IsRevoked algorithm is used to
check the revocation status of a certificate: if ψ is revoked, then P.IsRevoked
returns its revoked version ψr; if ψ is not revoked, then P.IsRevoked returns a
certificate with the NR attribute that contains a proof of non-revocation until
the current time; in any other case, e.g., if the state of the certificate is not
determined or known, the algorithms returns ⊥.

Pending Certificates. In our execution model, all PKI algorithms return
an immediate response once invoked. However, there are three algorithms that
might not be able to immediately return a final response: the P.Issue algorithm,
the P.Revoke algorithm, and the P.Upgrade algorithm. These algorithms might
not be solely depended on local operations; for example, they might require
interaction with other authorities before they are able to decide whether to is-
sue/revoke/upgrade a certificate. Therefore, we introduce the notion of pending
certificates. Namely, when one of these three algorithms is unable to produce
the immediate final (expected) response, the algorithm produces a pending cer-
tificate ψp instead, which contains a commitment that specifies when the final
response will be ready with respect to a finite, system parameter ∆. At some
time after the ∆ time period has passed, the client requests the authority for the
final response. The authority executes the P.Upgrade algorithm with the pend-
ing certificate ψp as an input, and delivers to the client the output of P.Upgrade,
which is the final output. The final output is either the ‘real’ certificate, i.e.,
the expected non-pending upgraded certificate, or, the output is ⊥, i.e., the re-
quest was declined. We emphasize that whether ψp was generated by the P.Issue,
P.Revoke, or the P.Upgrade algorithm, the final response can only be obtained
using the P.Upgrade algorithm.

4.2 PKI Algorithms

Each scheme P defined in the PKI framework provides the following algorithms:

P = (Gen,GroupGen, Issue,Upgrade,WasValid,

Query,Revoke, IsRevoked,Time, Incoming)

The PKI framework follows the execution model described in Section 3, which
defines Gen and GroupGen (for key generation), Time (for handling time-based
events) and Incoming (for handling incoming messages).
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We start by describing the stateless WasValid algorithm.

WasValid(ψ, [attr, tms])→ >/Pending/⊥: The algorithm takes as input a cer-
tificate ψ, optional attribute attr and an optional timestamp tms. If ψ is a
valid certificate and has the attr attribute (or if no attr is provided), then
the algorithm outputs >. If ψ has the attr attribute but in a pending state,
the algorithm outputs Pending. If tms is used, then the output is with re-
spect to some point in time defined by tms. This also applies to checking if
the certificate is expired (that is, tms is outside of the sd and ed dates). In
any other case, the algorithm outputs ⊥.

WasValid is stateless, hence, it may be run by everyone, including relying
parties, the adversary, and in particular, can be used in security games to enforce
validity requirements. All other algorithms always receive as input the local
state S and current local clock clk, and output the modified state S′, output
messages {mi}i∈N, and output Out. To avoid clutter, we abuse notation and do
not explicitly write these inputs and outputs, but only other inputs and outputs,
which are unique to each algorithm. We now describe the remaining algorithms:
Issue, Upgrade, Revoke, IsRevoked and Query.

Issue(id, pub, sd, ed) → ψ/ψp/⊥: The algorithm takes as input an identity id,
public information pub, start date sd and end date ed, and outputs a certifi-
cate ψ for (id, pub) that is valid after sd and before ed. The algorithm may
also output a pending certificate ψp, if it cannot immediately issue the cer-
tificate, e.g., if it needs to check with other authorities. If the operation fails,
e.g., due to discovery of conflicting certificate, then the algorithm returns ⊥.

Upgrade(ψ, attr, [α])→ ψ’/ψp/⊥: The algorithm takes as input a certificate ψ,
an upgrade attribute attr and additional optional information α. If the up-
grade request is valid, the algorithm outputs an upgraded certificate ψ’ based
on ψ with the attr attribute. If the algorithm requires further operations,
the algorithm outputs a pending certificate ψp. If the input is a pending
certificate ψp, then after the ∆-defined time, the algorithm returns a final
version ψ of ψp. If the upgrade fails, the algorithm returns ⊥ and provide
an explanation why in the output parameter Out.

Revoke(ψ)→ ψr/ψp/⊥: The algorithm takes as input a certificate ψ, and out-
puts a revoked certificate ψr, a pending-revoked certificate ψp, or failure
indicator ⊥.

IsRevoked(ψ)→ ψ’/ψr/⊥: The algorithm takes as input a certificate ψ. If ψ is
known to be a valid non-revoked certificate, the algorithm outputs ψ’, which
is identical to ψ along with a proof of non-revocation until the current local
time using the NR attribute. If ψ was already revoked, the algorithm returns
the revoked certificate ψr. In any other case, the algorithm returns ⊥.

Query(id) → {ψ}/⊥: The algorithm takes as input an identity id and returns
the set of certificates {ψ} that are associated with id. If such certificates do
not exist, the algorithm returns ⊥.
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4.3 Correctness Requirements

We next describe the PKI correctness requirements for issuing, revoking, upgrad-
ing, and the revocation status check operation. The requirements specify that
if an operation does not fail (return ⊥), then it should produce the requested
output as specified by each algorithm. We first state that the results of the issue
operation is a ‘correct’ certificate, namely a certificate with the requested core.
Given a certificate ψ, its core is Core(ψ) = (ψ.id, ψ.pub, ψ.sd, ψ.ed), i.e., the en-
tire certificate except for its attributes. For convenience, we denote Core(⊥) = ⊥.

Requirement 1. PKI scheme P satisfies correctness of certificate issuance if:

(∀ id, pub, sd, ed;ψ ← P.Issue(id, pub, sd, ed) s.t. ψ 6= ⊥)⇒
[(P.WasValid(ψ) 6= ⊥) ∧ (ψ.id = id) ∧ (ψ.pub = pub)]

Requirement 2. PKI scheme P satisfies correctness of certificate revocation
if:

(∀ ψ ; ψr ← P.Revoke(ψ) s.t. Core(ψ) = Core(ψr))⇒
P.WasValid(ψr,REV) 6= ⊥

Requirement 3. PKI scheme P satisfies correctness of certificate upgrade if:(
∀ ψ, attr, α;ψ’← P.Upgrade(ψ, attr, α) s.t.

Core(ψ) = Core(ψ’)
)
⇒ P.WasValid(ψ’, attr) 6= ⊥

Correctness of certificate revocation status should return either a revoked or
a non-revoked certificate, with the same core. The proof of non-revocation is
added to the certificate in the dedicated NR attribute.

Requirement 4. PKI scheme P satisfies correctness of certificate revocation
status if:

(∀ ψ ; ψ’← P.IsRevoked(ψ) s.t. Core(ψ) = Core(ψ’))⇒
P.WasValid(ψ’,REV) ∨ P.WasValid(ψ’,NR)

4.4 Safety Requirements

PKI schemes, as many other protocols, have two kinds of security requirements,
safety and liveness, which we now define for PKI. For each security requirement
ξ, we define a corresponding experiment SecExpξ,MA,P , where model M is as de-
scribed in subsection 3.3, and use it to define the requirement using the following
‘generic’ definition.

Definition 1. PKI scheme P satisfies a security requirement ξ under model
M, if for every PPT adversary A and for every set N holds:

Pr
[
SecExpξ,MA,P (1κ,N) = 1

]
∈ Negl(1κ)
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Algorithm 2 SecExpACC,M
A,P (1κ,N)

// Execute the adversary

1: [t,NF, OutA, R]← ExecA,P(1κ,N)

// Did A follow the model?
2: if M (N,NF, OutA, R) = ⊥ then Return

⊥

// Extract algorithms and inputs from R

3:
{
Algt̂i , Inp

t̂
i

}
i∈N, t̂∈{1...t}

← R

// Extract from the adversary’s output

4: (ψ, ι)← OutA

5: Return:

// ψ is a valid accountable certificate
5.1: P.WasValid(ψ,ACC) ∧

// ψ was issued by honest authority ι
5.2: ι = ψ.ρ[ACC].ι ∧ ι ∈ N− NF ∧

// However, ι did not issue ψ

5.3: @ t̂ s.t. Algt̂ι = P.Issue ∧

Inpt̂ι = (ψ.id, ψ.pub, ψ.sd, ψ.ed)

Algorithm 3 SecExpReACC,M
A,P (1κ,N)

// Execute the adversary

1: [t,NF, OutA, R]← ExecA,P(1κ,N)

// Did A follow the model?
2: if M (N,NF, OutA, R) = ⊥ then Return ⊥

// Extract algorithms and inputs from R

3:
{
Algt̂i , Inp

t̂
i

}
i∈N, t̂∈{1...t}

← R

// Extract from the adversary’s output

4: (ψr, ι)← OutA

5: Return:

// ψr is a valid revoked certificate
5.1: P.WasValid(ψr,REV) ∧

// ψr was issued by an honest authority
5.2: ι = ψr.ρ[ACC].ι ∧ ι ∈ N− NF ∧

// However, P.Revoke was not invoked on ι

5.3: @ t̂ s.t. Algt̂ι = P.Revoke ∧

Inpt̂ι = ψ ∧ Core(ψ) = Core(ψr)

Requirement 5. Accountability (ACC). Adversary A wins in the accountability

experiment SecExpACC,M
A,P if it produces an accountable certificate ψ which is

valid, yet the specified issuing authority ψ.ρ[ACC].ι did not issue ψ. See Algo-
rithm 2.

The SecExpACC,M
A,P (1κ,N) game initializes the experiment by calling the

Exec algorithm, which simulates the adversary. In return, the Exec algorithm
outputs the number of rounds t simulated in Exec, the set of corrupted au-
thorities NF, the transcript of adversary’s choices OutA, and R, the transcript
of the simulation (lines 1,3). The experiment verifies that the run followed the
model M (line 2); if not, it aborts and outputs ⊥. M takes as input parameter
ξ = {N,NF, OutA, R}. For a run which follows the model, we ‘parse’ R to find

the operations and inputs

{
Alg t̂i , Inp

t̂
i

}
i∈N, t̂∈{1...t}

(line 3). From OutA (line

4), we extract the certificate returned by the adversary (ψ) and the selected
honest authority (ι).

The adversary wins if ψ is a valid accountable certificate issued by the honest
authority ι (lines 5.1-5.2), yet ι was never instructed to execute the P.Issue
algorithm along with the inputs ψ.id, ψ.pub, ψ.sd, ψ.ed (line 5.3).

Requirement 6. Revocation accountability (ReACC). Adversary A wins in the

revocation accountability experiment SecExpReACC,M
A,P if it produces a valid re-

voked certificate ψr issued by an honest authority ψr.ρ[ACC].ι, where ψr.ρ[ACC].ι
did not revoke ψr. See Algorithm 3.
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Algorithm 4 SecExp∆TRA,M
A,P (1κ,N)

1: [t,NF, OutA, R]← ExecA,P(1κ,N)

2: if M (N,NF, OutA, R) = ⊥ then Return ⊥

3:
{
Algt̂i , Inp

t̂
i , Out

t̂
i , Clk

t̂
i

}
i∈N, t̂∈{1...t}

← R

4: (ψ, ι)← OutA

5: Return:

// ψ is a valid transparent certificate
5.1: P.WasValid(ψ,∆TRA) ∧

// Both ι and ψ.ρ[∆TRA].ι are honest
5.2: ι, ψ.ρ[∆TRA].ι ∈ N− NF ∧

// ι is not aware of ψ although it should
5.3: Clktι ≥ ψ.ρ[∆TRA].clk +∆ ∧

5.4:
[
Algtι, Inp

t
ι

]
= [P.Query, ψ.id] ∧

5.5: @ψ’ ∈ Outtι s.t. Core(ψ) = Core(ψ’)

Algorithm 5 SecExp∆ReTRA,M
A,P (1κ,N)

1: [t,NF, OutA, R]← ExecA,P(1κ,N)

2: if M (N,NF, OutA, R) = ⊥ then Return ⊥

3:
{
Algt̂i , Inp

t̂
i , Out

t̂
i , Clk

t̂
i

}
i∈N, t̂∈{1...t}

← R

4: (ψr, x, t̂, ι)← OutA

5: Return:

// ψr is a valid revoked certificate
5.1: P.WasValid(ψr,REV) ∧

// ψr claims revocation transparency
5.2: P.WasValid(ψr, ∆ReTRA) ∧

// Both ι and ψr.[∆ReTRA].ι are honest
5.3: ι, ψr.[∆ReTRA].ι ∈ N− NF ∧

// ι is not aware of ψr although it should
5.4:

[
Algtι, Inp

t
ι

]
= [P.Query, ψr.id] ∧

5.5: (@ψ ∈ Outtι s.t. Core(ψr) = Core(ψ) ∧

P.WasValid(ψ,REV)) ∧

5.6: Clkt̂ι ≥ ψr.ρ[∆ReTRA].clk +∆

The SecExpReACC,M
A,P (1κ,N) game executes adversary A using Exec, verifies

that A followed the model M, and extracts the execution details as described
in SecExpACC,M

A,P .
The adversary wins the game if two requirements are met. First, ψr must be

a valid revoked certificate and the authority that revoked ψr must be an honest
authority (lines 5.1-5.2). The second requirement is that the authority that is
claimed to revoke ψr did not revoke it (line 5.3).

Requirement 7. ∆-Transparency (∆TRA). Adversary A wins in the ∆-transparency

experiment SecExp∆TRA,M
A,P , if it produces a valid certificate ψ, which is trans-

parent on time ψ.ρ[∆TRA].clk, yet there is an honest authority ι that is not
aware of ψ after time ψ.ρ[∆TRA].clk +∆. See Algorithm 4.

The SecExp∆TRA,M
A,P (1κ,N) game executes adversary A using Exec, verifies

that A followed the model M, and extracts the execution details as described
in SecExpACC,M

A,P .
The adversary wins the game if three requirements are met. First, ψ must

be a valid transparent certificate (line 5.1). Second, authority ι and the trans-
parency issuer of ψ are honest authorities (line 5.2). Notice that the game checks
that the transparency issuer is honest, but it does not require the transparency
issuer to be identical to the issuer of the certificate itself (i.e., accountability
issuer). This is since even if the issuer of the certificate is corrupt, this does
not prevent the transparency issuer from broadcasting the certificate to the rest
of the authorities. For example, in CT, the transparency issuers (loggers) are
distinct from the certificate issuers. The third requirement is that there is an
honest authority ι that is not aware of the transparency of ψ on time t (lines
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5.3-5.5). This requirement is validated by verifying that on time t authority ι
was instructed to perform P.Query with ψ.id, but the output of this invocation
did not contain a transparent certificate based on ψ, and was sometime after the
time that ψ was supposed to be transparent. Since the P.Query algorithm out-
puts all certificates associated with ψ.id, this is a proof that an honest authority
is not aware of ψ.

Requirement 8. Revocation transparency (∆ReTRA). Adversary A wins in the

∆-revocation transparency experiment SecExp∆ReTRA,M
A,P if it produces a valid

certificate ψr which is revoked on time ψr.ρ[∆ReTRA].clk, yet there is an hon-
est authority ι that is not aware of ψr after time ψr.ρ[∆ReTRA].clk + ∆. See
Algorithm 5.

The SecExp∆ReTRA,M
A,P (1κ,N) game executes adversary A using Exec, veri-

fies that A followed the modelM, and extracts the execution details as described
in SecExpACC,M

A,P .
The adversary wins the game if four requirements are met. First, ψr must

be a valid revoked certificate with the ∆ReTRA attribute attribute (line 5.1).
Second, authority ι and the revocation transparency issuer of ψr must be honest
authorities (line 5.2). The third requirement is that the honest authority ι is
not aware of the revocation transparency of ψr on time t (lines 5.3-5.4). This
requirement is validated by verifying that on time t authority ι was instructed
to perform P.Query with ψr.id, but the output of this invocation did not con-
tain a revoked transparent certificate based on ψr. Since the P.Query algorithm
outputs all the certificate associated with ψr.id, this is a proof that an honest
authority is not aware of ψr. The fourth and final requirement ensures that time
t was sometime after the time that ψr was supposed to be transparently revoked
ψr.ρ[∆ReTRA].clk + ∆ (line 5.5). This requirement ensures that the evidence
the adversary obtained of winning the game is indeed relevant, since until time
ψr.ρ[∆ReTRA].clk +∆ not all honest authorities are required to know ψr.

Requirement 9. Equivocation detection (∆EQ-D). Adversary A wins in the

∆-equivocation detection experiment SecExp∆EQ-D,M
A,P if it produces two valid,

non-revoked certificates ψ, ψ’ for the same identifier (ψ.id = ψ’.id) and for
overlapping validity periods which both have the ∆EQ-D property, where each
certificate has different public information (ψ.pub 6= ψ’.pub), yet none of the
entities in N was able to detect the equivocation before the ∆ time of the ∆EQ-D
property has passed. See Algorithm 6.

The SecExp∆EQ-D,M
A,P (1κ,N) game executes adversary A using Exec, verifies

that A followed the model M, and extracts the execution details as described
in SecExpACC,M

A,P .
The adversary wins the game if several requirements are met. First, ψ and

ψ’ must be valid certificates for the same identifier (ψ provided by the adversary
and ψ’ by some ι, line 4) with the equivocation detection attribute (lines 5.1-5.3).
Second, both certificates have overlapping validity periods (line 5.4). Third, the
run did not include revocation (line 5.5). Fourth, time t must be after the ∆
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Algorithm 6 SecExp∆EQ-D,M
A,P (1κ,N)

1: [t,NF, OutA, R]← ExecA,P(1κ,N)

2: if M (N,NF, OutA, R) = ⊥ then Return ⊥

3:
{
Outt̂i

}
i∈N, t̂∈{1...t}

← R

4: (ψ, ι)← OutA, ψ’← Outtι

5: Return:

// ψ and ψ’ are non-equivocal
5.1: P.WasValid(ψ,∆EQ-D) ∧

5.2: P.WasValid(ψ’,∆EQ-D) ∧

// ψ and ψ’ have the same identifier
5.3: ψ.id = ψ’.id ∧

// ψ and ψ’ have overlapping validity
// periods, yet different PubInfo

5.4: ψ.sd < ψ’.sd < ψ.ed ∧ ψ.pub 6= ψ’.pub ∧

// The run did not include ψ’s revocation
5.5: (@t′ ≤ t, j)

(
ψr ← Outt

′
j ;

P.WasValid(ψr,REV) ∧

Core(ψr) = Core(ψ)
)

// The ∆ time for detection has passed
5.6: t > ∆+max(ψ.ρ[∆EQ-D].clk,

ψ’.ρ[∆EQ-D].clk)

// No one detected the equivocation
5.7: (@t′ ≤ t, j)

(
(ψ,ψ’, ‘Equivocation’)← Outt

′
j

)

Algorithm 7 SecExpEQ-P,M
A,P (1κ,N)

1: [t,NF, OutA, R]← ExecA,P(1κ,N)

2: if M (N,NF, OutA, R) = ⊥ then Return ⊥

3:
{
Outt̂i

}
i∈N, t̂∈{1...t}

← R

4: (ψ, ι)← OutA, ψ’← Outtι

5: Return:

// ψ and ψ’ are non-equivocal
5.1: P.WasValid(ψ, EQ-P) ∧

5.2: P.WasValid(ψ’, EQ-P) ∧

// ψ and ψ’ have the same identifier
5.3: ψ.id = ψ’.id ∧

// ψ and ψ’ have overlapping validity
// periods, yet different PubInfo

5.4: ψ.sd < ψ’.sd < ψ.ed ∧ ψ.pub 6= ψ’.pub ∧

// The run did not include ψ’s revocation
5.5: (@t′ ≤ t, j)

(
ψr ← Outt

′
j ;

P.WasValid(ψr,REV) ∧

Core(ψr) = Core(ψ)
)

time period has passed, relative to the time that the certificates were upgraded
with the ∆EQ-D property, the latest of the two certificates (line 5.6). Finally,
none of the entities has detected the equivocation (line 5.7).

Requirement 10. Equivocation prevention (EQ-P). Adversary A wins in the

equivocation prevention experiment SecExpEQ-P,M
A,P if it produces two valid, non-

revoked certificates ψ, ψ’ for the same identifier (ψ.id = ψ’.id) and for over-
lapping validity periods, where each certificate has different public information
(ψ.pub 6= ψ’.pub). See Algorithm 7.

The SecExpEQ-P,M
A,P (1κ,N) game executes adversary A using Exec, verifies

that A followed the model M, and extracts the execution details as described
in SecExpACC,M

A,P .

The adversary wins the game if three requirements are met. First, ψ and ψ’
must be valid certificates for the same identifier (ψ provided by the adversary
and ψ’ by some ι, line 4) with the equivocation prevention attribute (lines 5.1-
5.3). Second, both certificates have overlapping validity periods (line 5.4). Third,
the run did not include revocation (line 5.5).
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4.5 Liveness Requirement

Liveness requires that operations complete, eventually or in bounded time, and
with appropriate outputs. Since we defined the scheme as a set of algorithms,
they all immediately return with some value; however, we allowed pending re-
sponses, which require later an upgrade to the final outcome. Pending responses
are required to handle cases where some cooperation and communication be-
tween authorities is required to complete the operation successfully, e.g., to en-
sure transparency or non-equivocation. Therefore, for a PKI scheme to ensure
liveness, it should ensure that such pending responses are, in due time, resolved.
However, clearly, this can only be guaranteed in runs which satisfy some live-
ness conditions, such as, a sufficient number of benign authorities and reliable,
bounded-delay communication. We denote the liveness condition LiveC, namely,
LiveC is the liveness-conditions predicate over runs, s.t. if LiveC(N,NF, OutA, R) =
>, then operations should complete successfully.

Requirement 11. Liveness. Adversary A wins in the ∆LiveC − Liveness
experiment SecExp∆LiveC−Liveness,M

A,P , if the execution fails to upgrade a certifi-
cate (with some attribute attr), although a pending certificate existed whose
pending period has completed, and although the liveness criteria was met. See
Algorithm 8.

Algorithm 8 SecExp∆LiveC−Liveness,M
A,P (1κ,N)

1: [t,NF, OutA, R]← ExecA,P(1κ,N)

2: if M (N,NF, OutA, R) = ⊥ then Return ⊥

3:
{
Algt̂i , Inp

t̂
i , Out

t̂
i

}
i∈N, t̂∈{1...t}

← R

4: ι← OutA, [ψ, attr, α]← Inptι

5: Return:

// ι is an honest authority and P.Upgrade was invoked on ι on round t
5.1: ι ∈ N− NF ∧ Algtι = P.Upgrade ∧

// ψ is a valid pending certificate that its pending period is over

5.2: P.WasValid(ψ, attr) = Pending ∧ Clktι ≥ ψ.ρ[attr].clk +∆

// The liveness criteria was met, however, no progress was made, i.e., ι did not upgrade ψ
5.3: LiveC(N,NF, OutA, R) ∧ P.WasValid(Outtι, attr) 6= >

5 Applying the PKI Framework

The goals of the PKI framework is to facilitate analysis of PKI schemes, including
proofs of security by reductions, allowing comparison and evaluation of different
PKI schemes. The challenge is that there are very different PKI schemes, with
different approaches, goals and models; our goal is that the framework will be
applicable to most or all of them, yet precise and usable.

23



To validate that our framework meets these objectives and fine-tune it, we ap-
plied it to two very different PKI schemes; this section presents the main results.
The first scheme is Certificate Transparency (CT), the only widely-deployed
‘post-X.509’ PKI scheme; the second scheme is a proof-of-concept PKI scheme
called PoC-PKI.

5.1 Certificate Transparency

CT is widely known and has multiple extensions and influence, and is being
standardized by the IETF [36]. That said, CT is quite complex, not always
well and completely defined, and subject of significant criticism; all this makes
precise analysis challenging and important. We applied the PKI framework to
CT according to RFC6962 [36] and previous publications; unfortunately, we
found several crucial under-specified aspects in the RFC. For example, a critical
aspect of CT is the gossip protocol4, but RFC6962 does not define this protocol.
We report in this section on the analysis of CTcomp, which is our best effort to
complete the missing specifications in RFC6962, in the simplest possible way,
to create a well-defined protocol whose properties can be analyzed. Obviously,
the analysis can be easily adapted to support more improved, efficient and/or
complex variants of CT. See [1] for the complete design of CTcomp as well as its
analysis.

Authorities. CT considers, in addition to Certificate Authorities, also several
other authorities: loggers, who keep public logs of certificates issued by different
CAs; monitors, who validate that logs are published correctly; and auditors, who
validate that certificates appear in the appropriate log.

Each monitor in NM monitors at least one logger, but can monitor as many
loggers as it chooses; we describe Mon(`) ⊆ NM as the subset of the monitors,
that monitors a specific logger ` ∈ NL. Formally, we assume that the ‘roles’ of
each authority are specified as the corresponding string, in the first input from
the adversary, e.g., authority i is a monitor if ‘Monitor’ ∈ Inp1

i .

Model Function M for CTcomp. CTcomp assumes bounded delay commu-
nication and bounded drift clocks5, with the corresponding model functions
MBD−COM

∆com
, MBD−SY NC

∆clk
defined in Section 3.3; in addition, it uses a unique

faults model MCT−FAULT , defined below. Together, we have:

MCT
∆com,∆clk

(ξ) = {MCT−FAULT (ξ) ∧MBD−COM
∆com

(ξ) ∧MBD−SY NC
∆clk

(ξ)}

4 “All clients should gossip with each other, exchanging STHs at least”
5 RFC6962 states that some of the algorithms are asynchronous. However, those algo-

rithms definitely use time-outs; the authors apparently meant to say the algorithms
are non-blocking. Similarly clock-synchronization is required to allow some of CT’s
operations, although it is not explicitly stated.
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The fault model function is unique to CT; the adversary can control any
entity in N as long as every logger is monitored by at least one honest monitor.
Namely:

MCT−FAULT (ξ) = {(∀i ∈ ξ.N− ξ.NF)i ∈ ξ.R.NM ⇔ ‘Monitor’ ∈ ξ.Inp1
i }

Analysis. Our analysis proves that CTcomp achieves most of the properties of
the PKI framework. The theorems refers to CTS,Hcomp, which specifies the signature
scheme S and CRHF H used by CTcomp; assume both are secure (using standard
definitions).

Theorem 1. CTS,Hcomp satisfies security requirements accountability and revoca-

tion accountability, under model MCT
∆com,∆clk

.

Proof. See [1].

We next prove that CTcomp ensures ∆CT -transparency, with ∆CT = 4∆com+
2∆clk. ∆CT accounts for the time it takes to include the certificate in the log
(MMD ≤ ∆com), plus the time it takes for other entities to learn about new
certificates (∆com), plus the time it takes to send a gossip message (∆com) and
receive a gossip message (∆com). On top of that, because the clocks might be
skewed by at most ∆clk, we add one ∆clk for when entities learn of new certifi-
cates and another ∆clk for the gossip.

Theorem 2. CTS,Hcomp satisfies security requirement ∆CT -transparency under model

MCT
∆com,∆clk

.

Proof. See [1].

Notice that CT does not prevent equivocation: it is possible for a CA to issue
a (potentially fake) certificate for an identifier (domain) which already has an
existing (legitimate) certificate. This can be detected - if both certificates are
‘transparent’. Equivocation does not require corrupt authorities, since CT does
not require CAs or loggers to refuse issuing equivocal certificates.

Liveness. The only scenario in which pending certificates are used in CTcomp
is for transparency. The liveness conditions for such scenario checks whether
there was a legitimate reason for the logger to decline the request6 to add some
certificate to the log. We define the function publish(ψ) ∈ {>,⊥} that repre-
sent these requirements in CTcomp as they involve ‘outside’ consideration, e.g.,
some loggers might not trust specific root CAs. Hence, the appropriate liveness
condition in CTcomp is:

LiveCCTcomp(ξ) = {(∃` ∈ N− NF) ∧ publish(ξ.R.Inptι)}
6 From RFC6962:“logs MUST refuse to publish certificates without a valid chain to a

known root CA”
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Theorem 3. CTS,Hcomp satisfies security requirement LiveCCTcomp-liveness under

model MCT
∆com,∆clk

.

Proof. See [1].

5.2 PoC-PKI

We now briefly describe the design of our provably secure proof-of-concept PKI,
PoC-PKI; see [4] for the full description and proofs. PoC-PKI takes a different
approach than public log based PKI schemes. Instead of allowing a number of
(potentially) untrusted logging entities to maintain the certificates and having
monitoring entities enforce proper behavior of loggers, PoC-PKI uses thresh-
old signature scheme to simulate a collectively trusted entity that manages the
certificates. Similar ideas were proposed in CoSi [51] and ARPKI [8].

In PoC-PKI, the most basic form of a certificate is an accountable certificate,
i.e., a certificate issued by an authorized authority. An accountable certificate
can be upgraded with various properties. For example, an accountable certifi-
cate ψ can be upgraded to be ∆-transparent by obtaining a commitment from
one of the authorities, where that authority commits to inform the rest of the
authorities about ψ in at most ∆ time. For non-equivocation, PoC-PKI use
pending certificates. The request to upgrade ψ into a non-equivocal certificate is
propagated to the rest of the authorities. If they approve, they contribute their
partial signature, attesting of their approval, and more importantly, they will
not approve any other certificate as non-equivocal if it was issued for the same
identifier for an overlapping validity period.

The PoC-PKI scheme uses several scheme: a secure signature scheme S, a
secure encryption scheme E and a secure and robust threshold signature scheme
T S. Hence, the scheme’s fully-qualified name is PoC-PKIS,E,T S ; for brevity, we
use the shorter notation PoC-PKI instead of the fully-qualified notation where
the identification of S, E and T S is irrelevant and confusion seems unlikely.

Model Function M for PoC-PKI. Following the common models described
in Section 3.3, the model function is defined as:

MPoC-PKI
∆com,∆clk

(ξ) = {MNumF
b(n/3)c(ξ) ∧MBD−COM

∆com
(ξ) ∧MBD−SY NC

∆clk
(ξ)}

(2)

where the fault modelMNumF
b(n/3)c sets the number of entities that can arbitrar-

ily misbehave to less than a third of all authorities, the communication model
MBD−COM

∆com
is a bounded communication delay (bounded by ∆com), and the

synchronization model MBD−SY NC
∆clk

is a bounded-drift clock synchronization
model (bounded by ∆clk).
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Analysis. We use the notation PoC-PKIS,E,T S for implementation of PoC-PKI
that uses signature scheme S, encryption scheme E and threshold signature
scheme T S.

Let ∆PoC-PKI = ∆com + ∆clk denote the delay ensured by PoC-PKI for
transparency and revocation transparency. The reason for this value is that when
an authority upgrades a certificate with transparency or revocation transparency,
it immediately broadcasts the upgraded certificate to the rest of the entities,
using the output messages {m1

i,j}j∈N (see line 8.2.1 in the Exec algorithm).
Hence, it takes at most ∆com time for the messages to arrive to other entities.
Following line 8.2.2 in the Exec algorithm, entities process this message in the
following round. However, their clocks might not be completely synchronized,
which can add up to ∆clk additional delay.

Theorem 4. PoC-PKIS,E,T S achieves accountability, revocation accountability,
∆PoC-PKI-transparency, ∆PoC-PKI-revocation transparency and equivocation pre-
vention under model MPoC-PKI

∆com,∆clk
.

Proof. See [4].

Liveness. The only scenario in which pending certificates are used in PoC-PKI
is for equivocation prevention. The liveness conditions for such scenario checks
whether there was no legitimate reason to decline the upgrade of the certifi-
cate. Since the honest authority that refuses to complete the upgrade operation
outputs an ‘explanation’, i.e., an already existing equivocating certificate, the
liveness condition can verify if the explanation is legitimate. Hence, the appro-
priate liveness condition in PoC-PKI is:

LiveCPoC-PKI(ξ) =


(
∀(ψ,EQ-P) = ξ.R.Inpξ.tξ.OutA.ι, ψ’ = ξ.R.Outξ.tξ.OutA.ι

)
P.WasValid(ψ’,EQ-P) = ⊥ ∨ ψ.id 6= ψ’.id ∨
ψ.sd > ψ’.ed


(3)

Theorem 5. PoC-PKIS,E,T S achieves LiveCPoC-PKI-liveness under modelMPoC-PKI
∆com,∆clk

.

Proof. See [4].

6 Conclusions and Future Work

We presented a PKI framework, which defines model and security requirements
for PKI schemes. We showed the flexibility and applicability of our framework
by applying it to two very different PKI schemes: PoC-PKI, a ‘proof-of-concept’
PKI that meets all requirememnts, and CTcomp, a completion of the Certificate
Transparency (CT) specifications.

We hope that this work can provide a good foundation and starting point for
collaborative effort by the cryptographic and security communities to ‘debug’,
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improve and extend these definitions, as well as explore variants - as was the
case for other basic cryptographic schemes, e.g., encryption. Some possible ex-
tensions were already discussed, informally, in previous works (and this work),
most notably, several different notions of privacy. Other directions for further
research include (1) analysis of existing (and new) PKI schemes with respect to
our framework, (2) designing a practical PKI that will ensure all of our security
requirements, including prevention of non-equivocation, possibly as an optimized
variant of PoC-PKI, which we presented in a simplified, sub-optimal design, (3)
adopting the framework and/or its execution model, to define and study security
properties of other complex cryptographic systems, and (4) extending the frame-
work to support secure compositions, e.g. following UC [13], and specifically [14]
(which present a basic UC model for certification).
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A PoC-PKI: A Provably-Secure PKI

We now describe the PoC-PKI system, a provably-secure ‘proof-of-concept’ PKI
scheme. PoC-PKI is designed for simplicity rather than efficiency or deployabil-
ity. PoC-PKI provably meets all PKI requirements (see Appendix B for rigorous
proofs and analysis).

A.1 High-Level Overview

In PoC-PKI, besides clients, there is only one type of entities, which are called
authorities. Authorities issue certificates to clients using the PoC-PKI.Issue algo-
rithm, which outputs the simplest form of a valid certificate in PoC-PKI, which
is an accountable certificate, i.e., a certificate with the ACC attribute.

Similarly, authorities revoke certificates upon client’s request, using the PoC-PKI.Revoke
algorithm, which outputs a revoked certificate, i.e., the same inputted certificate
but with the REV attribute. Both the ACC and the REV attributes are imple-
mented using a secure signature scheme, used by the authority to generate a
proof that the relevant certificate has these attributes. Namely, a certificate ψ
has attribute attr if ψ.ρ[attr].σ is a valid signature over ψ and attr signed by
ψ.ρ[attr].ι ∈ N.

A client can request any authority to upgrade the client’s accountable certifi-
cate, by adding to it the transparency attribute. If a client requests to upgrade
an accountable certificate into a ∆-transparent certificate, the authority uses the
PoC-PKI.Upgrade algorithm to output an upgraded certificate, i.e., a certificate
with the ∆TRA attribute. Similarly, the same can be done when a client requests
a ∆-revocation transparency upgrade; the authority uses the PoC-PKI.Upgrade
algorithm to output an upgraded certificate with the ∆ReTRA attribute. Note
that transparency in PoC-PKI does not involve pending certificates, and the out-
putted certificate is a non-pending upgraded certificate. The∆TRA and∆ReTRA
attributes are implemented using proofs (like the ACC,REV attributes), but in
addition, the authority immediately broadcasts the upgraded certificate to the
rest of the authorities, so that they all know about the upgraded certificate
before the ∆ time period passes.

When a client requests to upgrade a certificate into an unequivocal certifi-
cate, the authority also use the PoC-PKI.Upgrade algorithm, but this time, the
algorithm outputs a pending certificate, i.e., a certificate with the EQ-P attribute
(pending unequivocal). The reason is that equivocation prevention is achieved
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in PoC-PKI using the active involvement of other authorities, and therefore, a
pending certificate is generated until the upgrade process completes. Once the
process is completed, the authority will upgrade the client’s certificate into an
unequivocal certificate, based on the information gathered from other authori-
ties. However, this process may also fail, e.g., because during this process the
authority learns about another (pending or not) unequivocal non-revoked certifi-
cate that conflicts with the pending certificate. If the process fails, the upgrading
authority never upgrades the pending certificate into an actual unequivocal non-
pending certificate.

PoC-PKI implements this upgrade process using secure and robust threshold
signature scheme T S. Namely, the authority that issued the EQ-P pending cer-
tificate informs the rest of the authorities about the pending certificate, asking
them to confirm whether they approve this upgrade request or not. Essentially,
the only reason that an authority disapproves such request is if the authority
is aware of some other unequivocal, non-revoked certificate that was issued for
the same identifier for an overlapping period, i.e., a conflicting certificate (other
criterias could also be used). If that is the case, the disapproving authority in-
forms the upgrading authority about the existing certificate, thus providing the
upgrading authority with a legitimate reason not to complete the upgrade. Oth-
erwise, if such conflicting certificate does not exists, each authority approves the
upgrade by using its share of the threshold-signing key and sends back a partial-
signature for the certificate upgrade. Upon receiving a sufficient set of partial
signatures, i.e., containing at least |N| − f properly-signed partial signatures,
and not receiving any conflicting certificate, the authority generates and returns
the certificate with the properly-threshold-signed EQ-P attribute.

Every authority in PoC-PKI can provide certificates with the aforementioned
attributes. Relying parties are expected to ignore certificates or attributes where
the signer is not authorized; however, the ‘authorization’ aspect, e.g., naming-
constraints, is not part of the scheme and is left for the actual system that adopts
PoC-PKI. Further, systems that use PoC-PKI can decide for themselves what
type of certificates they are willing to support. That is to say, that although
equivocation prevention is the strongest property suggested by PoC-PKI, sys-
tems can definitely accept and trust certificates which are ‘only’ accountable,
transparent or pending-unequivocal. Of course, the system designers should take
into consideration the proportional security guarantees. Furthermore, systems
might consider using such certificates as ‘temporary’ certificates which might be
considered less trusted, but can be useful until a certificate becomes unequivocal.

A.2 Preliminaries

PoC-PKI uses three underlying cryptographic schemes: public-key encryption,
signatures and threshold-signatures. These are all standard cryptographic schemes
with multiple known implementations, including provably-secure constructions
from basic primitives. We briefly recall the definitions of these schemes along
with their security games.
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Definition 2. An encryption scheme E = (Gen,Enc,Dec) consists of the follow-
ing probabilistic algorithms:
– Key generation Gen(1κ)→ (dk, ek), with input a security parameter 1κ and

outputs: private decryption key dk and public encryption key ek.
– Encryption Enc(ek,m) → c, with inputs public key ek and message m, and

output ciphertext c.
– Decryption Dec(dk, c)→ m, with inputs private key dk and ciphertext c, and

output message m.

Definition 3. An encryption scheme E = (Gen,Enc,Dec) is CPA-indistinguishable
(CPA-IND), if for every PPT adversary A:

Pr[ExpCPA−INDE,A (1κ) = 1] ∈ Negl(1κ)

where ExpCPA−INDE,A (1κ):
1. (dk, ek)← E .Enc(1κ).
2. Adversary A chooses two messages m0,m1.
3. The game randomly chooses b ∈ {0, 1}.
4. A c = E .Enc(sk,mb) and outputs value b’ ∈ {0, 1}.
5. The experiment outputs 1 if b = b’, otherwise, the experiment outputs 0.

Definition 4. A signature scheme S = (Gen,Sign,Ver) consists of the following
probabilistic algorithms:
– Key generation Gen(1κ) → (sk, vk), with input security parameter 1κ and

output private signing key sk and public verification key vk.
– Signing Sign(sk,m)→ (σ), with input private signing key sk and a message
m, and output signature σ.

– Verification Ver(vk,m, σ) → (>/⊥), with inputs public verification key vk,
message m and signature σ, and output: true (>) if σ is a valid signature
over m, otherwise false (⊥).

Definition 5. A signature scheme S = (Gen,Sign,Ver) is existentially unforge-

able if for every PPT adversary A:

Pr
[
ExpEUS,A(1

κ) = 1
]
∈ Negl(1 κ)

where ExpEUS,A(1κ):
1. (sk, vk)← S.Gen(1κ)
2. Adversary A receives vk and has an oracle access to S.Sign to sign any

message it desires.
3. A outputs message m and signature σ.
4. The experiment outputs 1 if S.Ver(vk,m, σ) = > and A did not use the

oracle access on m, otherwise, the experiment outputs 0.

While definitions 2,3,4,5 are standard definitions of encryption and signature
schemes, choosing a definition of a threshold signature scheme is slightly more
complex. As opposed to classic encryption and signature schemes which are local,
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i.e., each operation of the scheme is performed by only one entity and does not
require interaction with other entities, threshold signature schemes are inher-
ently different. For example, in [27], the threshold scheme is presented similarly
to a classical signature scheme, with the necessary adjustments. Namely, the key
generation algorithm is modified to output shares of the signature key and the
signing algorithm is a distributed algorithm that outputs the final group sig-
nature. Another example is [49], where a signature share verification algorithm
allows to check whether a specific partial signature is valid, i.e., was indeed signed
by the matching entity on the respective message. Other works, such as [5, 25],
present and discuss more possible designs, definitions and implementations.

We chose to define the threshold scheme using the four algorithm notation
T S = (Gen,Sign,Combine,Ver), where: T S.Gen is the key generation algorithm,
T S.Sign is the individual singing algorithm, T S.Combine is the signatures com-
bining algorithm, and T S.Ver is the group signature verification algorithm. We
also define matching security and robustness definitions. We believe that our
definitions are a simplified generalization of the existing designs and definitions,
and allow a clear presentation of PoC-PKI; however, further work (which is be-
yond the scope of this paper) is required to explore the relationships between
these definitions.

Definition 6. A (t, n)-threshold-signature scheme T S = (Gen,Sign,Combine,Ver)
consists of the following probabilistic algorithms:
– Key-generation Gen(1κ, n, t)→ (tvk, {tski}ni=1), with inputs security param-

eter 1κ, total number of entities n, the threshold value t < n, and outputs a
group verification key tvk and n secret shares {tski}ni=1 of the signature key.

– Signing Sign(tski,m)→ σi, with input secret share key tski and message m,
and output partial signature σi.

– Combining Combine({σi}) → σ/⊥, with input set of partial signatures {σi}
and output threshold signature σ or failure ⊥.

– Verification Ver(tvk,m, σ) → (>/⊥), with input group verification key tvk,
messages m and threshold signature σ, and output > or ⊥.

Definition 7. A (t, n)-threshold-signature scheme T S = (Gen,Sign,Combine,Ver)

is existentially unforgeable, if there is no PPT adversary A that controls up to

t players and has an oracle access to T S that can produce a cryptographically

valid group signature on any previously unsigned message m. Namely, for every

adversary A:

Pr
[
ExpEUT S,A(1

κ,N, t) = 1
]
∈ Negl(1κ)

where ExpEUT S,A(1κ,N, t) is defined as:
1. (tvk, {tsk}i∈N)← T S.Gen(1κ, |N|, t)
2. (m,σ) ← AT S.Sign(tski,·)

tvk (A outputs message m and signature σ, given tvk
and oracle access to T S with key tski)

3. Return 1 if T S.Ver(tvk,m, σ) = > and A did not use the oracle access on
m more than t times, otherwise, the experiment outputs 0.
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Definition 8. A (t, n)-threshold-signature scheme T S = (Gen,Sign,Combine,Ver)
is robust, if executing the T S.Combine algorithm with more than t valid partial
signatures, i.e., signatures generated by T S.Sign on the same message using valid
key shares, always generates a valid group signature. Namely, for any message
space M and any set of entities N where |N| = n, and any adversary A that
controls up to t entities (denoted by NF ⊂ N s.t. |NF| ≤ t), and given keys
(tvk, {tski}i∈N)← T S.Gen(1κ, |N|, t), it holds that:

(∀m ∈M,W ⊆ {σi = T S.Sign(tski,m) | i ∈ N− NF},
W ′ ← A)|W | ≥ t+ 1⇒

T S.Ver(tvk,m, T S.Combine(W ∪W ′)) = >
(4)

A.3 System Model

PoC-PKI’s system model MPoC-PKI
∆com,∆clk

uses common models described in Sec-
tion 3.3, and is defined as:

MPoC-PKI
∆com,∆clk

(ξ) = {MNumF
b(n/3)c(ξ) ∧MBD−COM

∆com
(ξ) ∧MBD−SY NC

∆clk
(ξ)}

Namely, the fault model MNumF
b(n/3)c sets the number of entities that can ar-

bitrarily misbehave to less than a third of all authorities, the communication
modelMBD−COM

∆com
is a bounded communication delay (bounded by ∆com), and

the synchronization modelMBD−SY NC
∆clk

is a bounded-drift clock synchronization
model (bounded by ∆clk).

A.4 PoC-PKI Algorithms

PoC-PKI .Gen(1κ) (Algorithm 9). This algorithm receives as input security pa-
rameter 1κ, and uses it to generate cryptographic encryption and signing keys.

Algorithm 9 PoC-PKI .Gen(1κ)

// Generate decryption/encryption key pair using the secure encryption scheme E
1: (dk, ek)← E.Gen(1κ)

// Generate signing/verification key pair using the secure signature scheme S
2: (sk, vk)← S.Gen(1κ)

// Output key pairs
3: Return (PrivInfo = (dk, sk),PubInfo = (ek, vk))

PoC-PKI .GroupGen(1κ,N, {PubInfoi}i∈N) (Algorithm 10). This algorithm
receives as input security parameter 1κ, the set N, and public information PubInfoi =
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(eki, vki) for every authority i ∈ N. It first uses T S.Gen to generate group ver-
ification key tvk and |N| partial signature key secret shares tski (line 1). Then,
it computes a hint hi = E .Enc(PubInfoi.ek, tski) which is the encrypted par-
tial secret share tski for every authority i ∈ N (line 2). The algorithm con-
cludes by outputting the the group verification key tvk, the public information
{PubInfoi}i∈N, and the encrypted set of hints H (lines 3-4).

Algorithm 10 PoC-PKI .GroupGen(1κ,N, {PubInfoi}i∈N)

// Generate a group verification key tvk and partial signing keys tski

1: (tvk, {tski}|N|i=1)← T S.Gen(1κ, |N|, b|N|/3c)

// Encrypt partial signing key tski such that only authority i can decrypt it
2: H = {hi ← E.Enc(PubInfoi.ek, tski)}i∈N

// Output the public information and individual hints
3: PubInfo ← (tvk, {PubInfoi}i∈N, H)

4: Return PubInfo

PoC-PKI.Issue(id, pub, sd, ed) (Algorithm 11). Inputs are the certificate de-
tails: identity id, public information (incl. key) pub, and start, end dates sd, ed.
The algorithm generates a signature σ using the S.Sign algorithm over the in-
putted details (line 1) and generates a matching certificate ψ for the inputted
details with the ACC attribute (accountability) and uses σ as a proof of account-
ability (lines 2-3). The algorithms stores the newly generated certificate in its
local state S.certs (line 4) and outputs the accountable certificate ψ.

Algorithm 11 PoC-PKI.Issue(id, pub, sd, ed)

Comment: An honest authority invokes issue only if the client that request ownership over id is
eligible for id and the authority is authorized to issue certificates for id.

// Generate a basic certificate

1: σ = S.Sign(S.PrivInfo.sk, (id, pub, sd, ed,ACC, clk))

2: ρ← {(ACC, (σ, S.ι, clk))}

3: ψ ← (id, pub, sd, ed, ρ)

// Add the new certificate to the local state
4: S.certs += (ψ.id, ψ)

5: Return ψ

PoC-PKI .Query(id) (Algorithm 12). Once a certificate appears in the local
state it can be queried using the Query algorithm. Given an identifier id, the
algorithm returns all certificates locally associated with id.
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Algorithm 12 PoC-PKI.Query(id)

// Check if there are certificates associated with id

1: if id in S.certs then return S.certs[id]

// Otherwise
2: Return ⊥

PoC-PKI .Revoke(ψ) (Algorithm 13). Revokes a valid certificate ψ prema-
turely. Returns a revoked-version ψr of ψ if it can be revoked or was already
previously revoked, and ⊥ otherwise. The algorithm first makes sure that the
certificate is a valid certificate and that it is allowed to revoke it (line 1); in
PoC-PKI, certificates can only be revoked by their issuers. Then, the algorithm
checks if the certificate might have been already revoked. If this is the case, the
revoked certificate is returned (line 2). If not, the algorithm revokes the certifi-
cate by adding to the certificate a signed revocation proof, and stores the revoked
certificate in the local state (lines 3-8).

Algorithm 13 PoC-PKI.Revoke(ψ)

// Verify that ψ was issued by the authority and ψ is a valid, not expired certificate

1: if ψ.ρ[ACC].ι 6= S.ι ∨ P.WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ S.certs[ψ.id] s.t. P.WasValid(ψr,REV) ∧ Core(ψ) = Core(ψr) then return ψr

3: ψr ← ψ

// Revoke ψ
4: data← (Core(ψ),REV, clk)

5: σ ← S.Sign(S.PrivInfo.sk, data)

6: ψr.ρ[REV]← (σ, S.ι, clk)

// Add ψr to the local state
7: S.certs[ψr.id] += ψr

8: Return ψr

PoC-PKI .IsRevoked(ψ) (Algorithm 14). Checks whether a certificate was re-
voked or not. The algorithm is invoked over the issuer of the certificate, since if
the certificate was revoked - the issuer of the certificate was the authority who
revoked it. The algorithm first makes sure that the certificate is valid and that
it was issued by the current executing authority (line 1). Then, it checks if there
is a revoked version of this certificate in the local state, and if so, it returns
the revoked certificate (line 2). Otherwise, the algorithm adds to the certificate
a signed proof that the certificate was not revoked until the current local time
under the NR attribute and outputs the certificate.
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Algorithm 14 PoC-PKI.IsRevoked(ψ)

// Verify that ψ was issued by the authority and ψ is a valid, not expired certificate

1: if ψ.ρ[ACC].ι 6= S.ι ∨ P.WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ S.certs[ψ.id] s.t. P.WasValid(ψr,REV) ∧ Core(ψ) = Core(ψr) then return ψr

3: ψ’← ψ

// Add the non-revocation proof to ψ’
4: data← (Core(ψ),NR, clk)

5: σ = S.Sign(S.PrivInfo.sk, data)

6: ψ’.ρ[NR]← (σ, S.ι, clk)

7: Return ψ’

Note: sending/broadcasting messages. Recall that our execution model (Al-
gorithm 1) allows an algorithm running in one authority i, to specify messages
mi,j to be sent to authority j. We next describe Upgrade(ψ, attr, [α]), which
is the first - and one of few - algorithms in PoC-PKI that send messages. For
simplicity, PoC-PKI sends most messages m to all entities, which we write as
Broadcast(m).

PoC-PKI .Upgrade(ψ, attr , [α]) (Algorithm 15). Upgrades certificate ψ with
attribute attr. The algorithm starts by making sure that the inputted certifi-
cate is a valid certificate (line 1). Then, the algorithm checks the local state
whether an upgraded certificate with this attribute already exists. If so, the
algorithm outputs the relevant certificate (line 2). Otherwise, the algorithm per-
forms the upgrade based on the requested attribute. For transparency upgrades,
the algorithm adds a relevant signed proof to the certificate and broadcasts the
upgraded certificate (lines 4.1-4.1.4). For equivocation prevention upgrade, the
algorithm generates a pending upgrade certificate by adding a signed proof to
the certificate, and broadcasts the pending certificate (lines 4.2-4.2.4). The rest
of the authorities receive this pending certificate (using the PoC-PKI.Incoming
algorithm) and check whether they object to the upgrade request. If not, they
send back a partial signature to the upgrading authority.

When the client returns with the pending certificate (line 4.3), the algorithm
checks if the time for the upgrade process (ψ.ρ[EQ-P].clk +∆) has passed (line
4.3.1). If not, it means that the certificate is still pending, and the algorithm
outputs the same pending certificate. If the time has expired, the algorithm out-
puts ⊥, since the upgrade failed, along with the failure reason (line 4.3.2). Recall
that line 2 of the algorithm checks whether an upgraded certificate exists in the
local state. If the upgrade was successful, such certificate would have already ex-
ist in the local state (according to the implementation of the PoC-PKI.Incoming
algorithm). Therefore, since line 2 did not found such certificate, this means that
the upgrade failed.
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Algorithm 15 PoC-PKI.Upgrade(ψ, attr, [α])

// Verify that ψ is a valid, not expired certificate

1: if P.WasValid(ψ) = ⊥ ∨ ψ.ed < clk then return ⊥
// If there is already a matching pending or upgraded certificate, return it. A pending certificate
is ‘upgraded’ to non-pending by the Incoming function - Upgrade does not need to do this.

2: if ∃ψ’ ∈ S.certs s.t. Core(ψ) = Core(ψ’) ∧ P.WasValid(ψ’, attr) then return ψ’

3: ψ’← ψ

4: switch attr

// Transparency upgrade
4.1: case ∆TRA ∨ ∆ReTRA

// Add the transparency proof to ψ’
4.1.1: data← (Core(ψ), attr, clk)

4.1.2: σ = S.Sign(S.PrivInfo.sk, data)

4.1.3: ψ’.ρ[attr]← (σ, S.ι, clk)

4.1.4: Broadcast(ψ’)

// Equivocation prevention upgrade for a non-pending certificate
4.2: case (EQ-P ∧ P.WasValid(ψ, EQ-P) = ⊥)

// Add the PendEQ-P attr to ψ’
4.2.1: data← (Core(ψ),PendEQ-P, clk)

4.2.2: σ = S.Sign(S.PrivInfo.sk, data)

4.2.3: ψ’.ρ[EQ-P]← (σ, S.ι, clk)

4.2.4: Broadcast(ψ’)

// Non-equivocation upgrade for pending certificate
4.3: case EQ-P ∧ P.WasValid(ψ, EQ-P) = Pending

// If upgrade time (∆ = 2) did not pass, return the pending certificate
4.3.1: if clk < ψ.ρ[EQ-P].clk +∆ then return ψ

// Upgrade time passed already yet still ‘pending’: failure
4.3.2: Return (⊥, S.certs[ψ.id].ρ[attr].failure)

// Add the certificates to the local set of certificates
5: S.certs[ψ.id] += {ψ,ψ’}

6: Return ψ’

PoC-PKI .WasValid(ψ, [attr , tms]) (see Algorithm 16). Checks if a certificate
is valid, and optionally, whether it has an attribute attr. The algorithm first
checks if the inputted certificate is a valid certificate (line 2). In PoC-PKI,
a valid certificate is a non-expired certificate that was issued by an authority
which is authorized to issue a certificate for the namespace that ψ.id belongs to.
In other words, the certificate must have a valid accountability (ACC) attribute.
Hence, the algorithm verifies that authority that issued the accountability at-
tribute is authorized using the Authorized algorithm (which is defined by the
actual system that implements PoC-PKI) and that the proof of accountability is
cryptographically valid. If there is no attr input (or attr = ACC), then the algo-
rithm outputs >, since ψ is a valid certificate (line 3). Otherwise, the algorithm
examines whether the certificate has the attr attribute.

The verification whether ψ has some specific attribute is done for each at-
tribute accordingly. For the revocation accountability, ∆-transparency and ∆-
revocation transparency attributes, the algorithm checks if ψ contains a relevant
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proof which is cryptographically valid (lines 5-5.1). The same check is performed
for the non-revoked attribute (NR), but in addition, the algorithm also ensures
that the time in which the proof was issued comply with the tms value (lines
6-6.1). Finally, for the equivocation prevention attribute (EQ-P), the algorithm
first check if the certificate is a pending certificate using the standard signature
scheme (line 7.1). If not, the algorithm checks if ψ contains a valid threshold
signature (line 7.2).

Algorithm 16 PoC-PKI.WasValid(ψ, [attr, tms])

1: χ← ψ.ρ[ACC]

// Verify that χ.ι (the issuer of ψ) is authorized to issue ψ and that the accountability proof is
cryptographically valid. These are the basic validity requirements in PoC-PKI

2: if Authorized(χ.ι, ψ.id) 6= > ∨ tms < ψ.sd ∨ tms > ψ.ed ∨

S.Ver(S.PubInfoχ.ι.vk, (Core(ψ),ACC, χ.clk), χ.σ) 6= >

2.1: Return ⊥

// If no attribute was supplied or the attribute is accountability, return true
3: if attr = ⊥ ∨ attr = ACC then return >

4: η ← ψ.ρ[attr]

// For the attributes that are implemented solely using proofs
5: if attr ∈ {∆TRA, ∆ReTRA,REV}

// Check that the proof is cryptographically valid
5.1: Return S.Ver(S.PubInfoη.ι.vk, (Core(ψ), attr, η.clk), η.σ)

// For the NR attribute
6: if attr = NR

// Check that the proof is cryptographically valid and that it is relevant to tms
6.1: Return S.Ver(S.PubInfoη.ι.vk, (Core(ψ), attr, η.clk), η.σ) ∧ ψ.ρ[NR].clk ≥ tms

// For the equivocation prevention attribute
7: if attr = EQ-P

// Check if ψ is pending
7.1: if S.Ver(S.PubInfoη.ι.vk, (Core(ψ),PendEQ-P, η.clk), η.σ) then return Pending

// Certificate is not pending, check if the group proof is cryptographically valid
7.2: Return T S.Ver(S.PubInfo.tvk, (Core(ψ), EQ-P), η.σ)

8: Return ⊥

PoC-PKI .Incoming (see Algorithm 17). Handles all incoming messages. In
PoC-PKI, there are three possible incoming messages: (1) a certificate broadcast,
(2) a non-equivocation rejection, and (3) a non-equivocation approval. When a
valid certificate arrives (line 1.1), it is added to the local state of certificates (line
1.1.1). If the arriving certificate is pending non-equivocation (line 1.1.2), the al-
gorithm checks against the local state whether there is a conflicting certificate
(line 1.1.3). Such conflicting certificate can be either an existing unequivocal
certificate or a pending non-equivocation certificate. In case of a conflict, the
algorithm prepares a response for the upgrading authority, to inform it about
the conflicting certificate, i.e., about the upgrade request rejection (line 1.1.4).
If there is no conflict, the algorithm prepares a partial signature approving the
equivocation prevention upgrade (line 1.1.6). The actual response is sent in line
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1.1.7. If the arriving message contains a conflicting certificate, i.e., upgrade rejec-
tion (line 1.2), store the conflicting certificate locally so it can be supplied to the
client as an explanation why the upgrade failed (line 1.2.1). When the algorithm
receives a partial signature (line 1.3), it stores the partial signature locally (line
1.3.1); when enough partial signature have arrived (line 1.3.2), the algorithm
combines them using the threshold signature scheme’s T S.Combine algorithm
(line 1.3.4). If the T S.Combine algorithm was successful, the algorithm stores
the upgraded certificate (line 1.3.5).

Algorithm 17 PoC-PKI .Incoming(M )

// Process each of the messages

1: for each m′ ∈M

// If m′ is a broadcasted certificate
1.1: if ψ ← m′ s.t. P.WasValid(ψ)

// Add the certificate to the local state
1.1.1: S.certs[ψ.id] += ψ

// If ψ is pending equivocation prevention
1.1.2: if P.WasValid(ψ, EQ-P) = Pending

// If a conflicting certificate is known, return it to abort
1.1.3: if ∃ψ’ ∈ S.certs s.t. ψ.id = ψ’.id ∧

Core(ψ) 6= Core(ψ’) ∧ P.WasValid(ψ’, EQ-P) 6= ⊥

// Prepare a rejection response with the conflicting certificates
1.1.4: res ← (ψ,ψ’)

// No conflicting certificate - approve the request for non-equivocation
1.1.5: else

// Prepare a partial signature approving the upgrade
1.1.6: res ← (ψ, σ = T S.Sign(S.PrivInfo.tsk, (Core(ψ), EQ-P)))

// Send back the relevant response
1.1.7: Send res to authority ψ.ρ[EQ-P].ι

// If m′ is an upgrade rejection
1.2: else if (ψ,ψ’)← m′ s.t.P.WasValid(ψ, EQ-P) = Pending ∧ P.WasValid(ψ’, EQ-P) 6= ⊥

// Store the conflicting certificate
1.2.1: S.certs[ψ.id].ρ[EQ-P].failure = ψ’

// If m′ is a partial approval of a pending certificate which has not been rejected yet
1.3: else if (ψ, σ)← m′ s.t. P.WasValid(ψ, EQ-P) = Pending ∧

S.certs[ψ.id].ρ[EQ-P].failure = ⊥

// Add new partial signature to the local state
1.3.1: S.toUpgrade[ψ.id] += σ

// Check to see if enough semi-signatures arrived
1.3.2: if |S.toUpgrade[ψ.id]| < |N| − b|N|/3c then continue

// Enough semi-proofs have arrived - try to combine them
1.3.3: ψ’← ψ

1.3.4: ψ’.ρ[NEQ].σ ← T S.Combine(S.toUpgrade[ψ.id])

// Check if the upgrade was successful
1.3.5: if P.WasValid(ψ’, EQ-P) then S.certs[ψ’.id] += ψ’

The PoC-PKI .Time algorithm is not required in PoC-PKI, since in PoC-PKI
there are no time-based events.
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B Analysis of PoC-PKI

In this section, we provide reduction-based proofs showing that PoC-PKI achieves
its safety and liveness properties. We first show that PoC-PKI achieves ac-
countability, ∆-transparency, revocation accountability and ∆-revocation trans-
parency by reduction to the existential unforgeability of a secure signature
scheme. We then show that PoC-PKI also achieves equivocation prevention by
reduction to the existential unforgeability of a secure threshold signature scheme.
We conclude by showing that PoC-PKI achieves the liveness properties of the
PKI framework.

B.1 Proofs of Accountability, Revocation Accountability,
∆-Transparency and ∆-Revocation Transparency

Proof Methodology. To prove that PoC-PKI achieve the attributes that are
implemented using the secure signature scheme S, we use the following method-
ology:

1. Given a security property ξ ∈ {ACC, ∆TRA,ReACC, ∆ReTRA}, we assume
to the contrary that PoC-PKI does not achieves ξ.

2. Hence, there must exist a probabilistic polynomial time (PPT) adversary A
that wins, with a non-negligible probability, the security experiment defined
for ξ.

3. We show how to use this PPT adversary A, to build another PPT adversary,
AdvEU, that breaks the existential unforgeability of the secure signing scheme
S, thus contradicting that such A exists. Specifically:

(a) We first define a variation of PoC-PKI called PoC-PKI
OSign(·)
ι,vk (see Def. 9).

(b) Then, we construct the AdvEU adversary (see Alg. 18) that executes the

given adversary A in PoC-PKI
OSign(·)
ι,vk under the Exec execution model,

and outputs a message m and signature σ over m.
(c) Finally, we argue that if adversary A prevents PoC-PKI from achieving

property ξ, then adversary AdvEU breaks the existential unforgeability
of S (see Claim 1).

The PoC-PKI
OSign(·)
ι,vk scheme. We start by defining the PoC-PKI

S,E,T S,OSign(·)
ι,vk,dk,ek

scheme; for brevity, where the identities of S, E and T S are clear or irrelevant,

we may use the shorthand PoC-PKI
OSign(·)
ι,vk .

Definition 9. Let S, E and T S be a signature, encryption and threshold-signature
schemes, respectively, and let (sk, vk) ← S.Gen(1κ) and (dk, ek) ← E .Gen(1κ),

for a given 1κ. Given a PPT oracle OSign, let PoC-PKI
S,E,T S,OSign(·)
ι,vk,dk,ek (abbre-

viated as PoC-PKI
OSign(·)
ι,vk ) be a PKI scheme where one designated authority

ι ∈ N executes the PoC-PKI with the following changes, and other authorities in
N execute PoC-PKI without any changes:
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1. PoC-PKI
OSign(·)
ι,vk .Gen is the same as PoC-PKI.Gen (Alg. 9), except for re-

placing lines 2− 3 of PoC-PKI.Gen with the following line:

Return (PrivInfo = (dk, nil),PubInfo = (ek, vk))

2. In the Issue, Upgrade, Revoke and IsRevoked algorithms, replace the following
line of code:

σ = S.Sign(S.PrivInfo.sk, data)

with the following line of code:

σ = OSign(data)

namely, generate proof σ by signing data using the oracle access to the sign
operation S.Sign.

The AdvEU adversary. We now describe the AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S algo-

rithm (see Alg. 18), referred to as AdvEU for brevity. The algorithm takes as
input a security parameter 1κ, an attribute ξ, a public verification key vk, and a
set of authorities N. In addition, the algorithm takes an adversary A, a PoC-PKI
implementation, a secure signature scheme S, a secure encryption scheme E , a
robust threshold signature scheme T S, an execution model M, and also has an
oracle access to the signing function S.Sign, with the (unknown) secret signing
key sk (which is vk’s respective secret key), represented by the OSign(·) no-
tation. The algorithm randomly selects an authority ιr ∈ N (line 1), and then

executes PoC-PKI
OSign(·)
ιr,vk with adversary A using the Exec execution model

(line 2). In line 3, the algorithm extracts a certificate ψ and identifier ι ∈ N that
was chosen by A. A valid execution according to the modelM is verified in line
4, along with the verification that the chosen authority chosen by A during the
execution is identical to the authority chosen by AdvEU, and that this author-
ity is an honest authority. In line 5, the algorithm outputs a message m and a
signature σ based on ψ.

Algorithm 18 AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S(1κ, ξ, vk,N)

// Randomly choose authority ιr ∈ N

1: ιr
R← N

// Execute PoC-PKI
OSign(·)
ι,vk

2: [t,NF, OutA, R]← Exec
A,PoC-PKI

S,E,T S,OSign(·)
ιr,vk,dk,ek

(1κ,N)

// Extract output from the execution
3: (ψ, ι)← OutA

// Ensure the adversary followed the model and chose to forge the honest authority ιr
4: if M (N,NF, OutA, R) = ⊥ ∨ ιr 6= ι ∨ ι 6= ψ.ρ[ξ].ι ∨ ι ∈ NF then Return ⊥

// Output message m and forged signature σ over m based on ψ
5: Output (m,σ) s.t. m = (Core(ψ), ξ, ψ.ρ[ξ].clk) and σ = ψ.ρ[ξ].σ

We now argue that if there exists an adversary A that can break the security
of PoC-PKI, we can use algorithm AdvEU described in Alg. 18 with adversary
A to break the existential unforgeability of S.
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Claim 1. Let ξ ∈ {ACC, ∆TRA,ReACC, ∆ReTRA}. If PoC-PKIS,E,T S does not
achieves ξ, then the signature scheme S is not existential unforgeable.

Proof. Assume to the contrary that PoC-PKIS,E,T S does not achieves the secu-

rity property ξ ∈ {ACC, ∆TRA,ReACC, ∆ReTRA}, yet S is a secure signature

scheme. If PoC-PKI does not achieves property ξ, then there exists an adversary

A that satisfies

Pr
[
SecExpξ,MA,PoC-PKIS,E,T S

(1κ,N) = 1
]
6∈ Negl(1κ) (5)

However, for each property ξ ∈ {ACC, ∆TRA,ReACC, ∆ReTRA}, the match-

ing security experiment SecExpξ,MA,PoC-PKIS,E,T S
(1κ,N) contains the algorithm

call PoC-PKI .WasValid(ψ, ξ). Following the implementation of PoC-PKI .WasValid(ψ, ξ)

(described in Alg. 16), the algorithm executes

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ξ, η.clk), η.σ) (6)

for η = ψ.ρ[ξ]. Thus, following Eq. 5, A is a PPT adversary that achieves

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ξ, η.clk), η.σ) = > (7)

However, this means that we can use A to construct a PPT adversary

AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S that breaks the existential unforgeability of S.

First, since A is polynomial then AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S is also polynomial.

Second, since AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S(1κ, ξ, vk,N) simulates A with the public

verification key vk for ι ∈ N, then

S.PubInfo.pkη.ι = vk (8)

and the output of AdvEU is

(m = (Core(ψ), ξ, ψ.ρ[ξ].clk), σ = ψ.ρ[ξ].σ) (9)

Therefore, combining Eq. 7,8 and 9, we get

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ξ, η.clk), η.σ) =

S.Ver(vk,m, σ) = >
(10)

Finally, the AdvEU adversary does not always successfully output a pair

(m,σ), because the authority chosen in line 1 of the algorithm might not be the

honest authority chosen by A during the execution of PoC-PKI
OSign(·)
ι,vk (captured
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by line 4 of the AdvEU algorithm). But, since the authorities chosen by AdvEU

and A are chosen independently, the probability this happens is only 1/|N|, i.e.,

we still have a non-negligible probability to succeed. Thus, combined with Eq. 5

and 10, we constructed an adversary AdvEU that satisfies

Pr

[
ExpEU

AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S ,S

(1κ) = 1

]
6∈ Negl(1κ) (11)

thus contradicting the existential unforgeability of S.

Proving PoC-PKI’s properties through reduction to a secure sig-
nature scheme. We now apply Claim 1 to argue that PoC-PKI achieves ac-
countability, ∆-transparency, revocation accountability and ∆-revocation trans-
parency. Since PoC-PKI achieves each of these attributes using the signature
scheme S slightly differently, we provide a separate claim for each attribtue. In
each claim we first explain how PoC-PKI uses the signature scheme S to achieve
the specific property and then employ the reduction described in the claim to
argue that PoC-PKI indeed achieves the specific attribute.

Claim 2. PoC-PKIS,E,T S achieves accountability under modelMPoC-PKI
∆com,∆clk

, as-
suming that S is a secure signature scheme, E is a secure encryption scheme and
T S is a secure, robust threshold signature scheme.

Proof. In PoC-PKIS,E,T S , the only way to generate a valid accountable certifi-
cate ψ, is by invoking the PoC-PKIS,E,T S .Issue algorithm on authority ι which
is authorized to issue ψ. According to the implementation described in Alg. 11,
the algorithm PoC-PKIS,E,T S .Issue uses the secure S.Sign algorithm to generate
the proof that ψ is an accountable certificate issued by ι.

Assume to the contrary that PoC-PKIS,E,T S does not achieves accountability.
However, following Claim 1, if such adversary A exists, we can use A to build

AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S that breaks the existential unforgeability of the secure

signature scheme S.
Therefore, PoC-PKIS,E,T S achieves accountability.

Claim 3. PoC-PKIS,E,T S achieves revocation accountability under modelMPoC-PKI
∆com,∆clk

,
assuming that S is a secure signature scheme, E is a secure encryption scheme
and T S is a secure, robust threshold signature scheme.

Proof. In PoC-PKIS,E,T S , the only way to revoke a certificate ψ, is by invoking
the PoC-PKIS,E,T S .Revoke algorithm on ψ.ρ[ACC].ι (the issuer of ψ). According
to the implementation described in Alg. 13, the PoC-PKIS,E,T S .Revoke algo-
rithm uses the secure S.Sign algorithm to generate the proof that ψ was revoked
by ι.

Assume to the contrary that PoC-PKIS,E,T S does not achieves revocation
accountability. However, following Claim 1, if such adversary A exists, we can

use A to build AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S that breaks the existential unforgeability

of the secure signature scheme S.
Therefore, PoC-PKIS,E,T S achieves revocation accountability.
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Claim 4. PoC-PKIS,E,T S achieves∆PoC-PKI-transparency under modelMPoC-PKI
∆com,∆clk

,
assuming that S is a secure signature scheme, E is a secure encryption scheme
and T S is a secure, robust threshold signature scheme.

Proof. In PoC-PKIS,E,T S , the only way to generate a valid transparent certifi-
cate ψ, is by invoking the PoC-PKIS,E,T S .Upgrade algorithm on authority ι. Ac-
cording to the implementation described in Alg. 15, the PoC-PKIS,E,T S .Upgrade
algorithm uses the secure S.Sign algorithm to generate the proof that ψ is a
transparent certificate.

Assume to the contrary that PoC-PKIS,E,T S does not achieves ∆PoC-PKI-
transparency. However, following Claim 1, if such adversary A exists, we can use

A to build AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S that breaks the existential unforgeability of

the secure signature scheme S.
Therefore, PoC-PKIS,E,T S achieves ∆PoC-PKI-transparency.

Claim 5. PoC-PKIS,E,T S achieves∆PoC-PKI-revocation transparency under model
MPoC-PKI

∆com,∆clk
, assuming that S is a secure signature scheme, E is a secure encryp-

tion scheme and T S is a secure, robust threshold signature scheme.

Proof. In PoC-PKIS,E,T S , the only way to achieve ∆PoC-PKI-revocation trans-
parency is by invoking the PoC-PKIS,E,T S .Upgrade algorithm on authority ι. Ac-
cording to the implementation described in Alg. 15, the PoC-PKIS,E,T S .Upgrade
algorithm uses the secure S.Sign algorithm to generate the proof that ψ is
∆PoC-PKI-transparently revoked by ι.

Assume to the contrary that PoC-PKIS,E,T S does not achieves ∆PoC-PKI-
revocation transparency. Namely: However, following Claim 1, if such adversary

A exists, we can useA to build AdvEU
OSign(·),M
A,PoC-PKI,S,E,T S that breaks the existential

unforgeability of the secure signature scheme S.
Therefore, PoC-PKI achieves ∆PoC-PKI-revocation transparency.

B.2 Proof of Non-Equivocation

Proving that PoC-PKI achieves equivocation prevention is different from proving
the other properties, because PoC-PKI prevents equivocation using both a secure
encryption scheme E and a robust (t, n)-threshold-signature scheme T S. This
requires a few adjustments to the proof methodology, as we now discuss.

Proof methodology. To prove that PoC-PKI achieves equivocation pre-
vention, we use the following methodology:

1. We define a variation of PoC-PKI called T S- PoC-PKI
OTSign(·)

where equiv-
ocation prevention relies solely on the threshold scheme T S and not on a
secure encryption scheme (Def. 10).

2. Then, we show that T S- PoC-PKI
OTSign(·)

achieves equivocation prevention,
see Claims 6,7.

3. Finally, we show that the security argument also holds for the original
PoC-PKI scheme, see Claim 8.
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Rationale behind the proof methodology. The rationale behind this
methodology can be viewed as a ‘divide and conquer’ approach that allows us to
present the proof in a simplified manner. Since both encryption and threshold sig-
nature schemes are used to achieve equivocation prevention, the aforementioned

proof methodology separates the two by defining the T S- PoC-PKI
OTSign(·)

scheme, where encryption is not used for equivocation prevention. The fact that

T S- PoC-PKI
OTSign(·)

only slightly varies from PoC-PKI, allows us to prove
that equivocation prevention can be achieved in PoC-PKI using a secure thresh-
old signature scheme, without (at first) the need to handle the security of the
encryption scheme so that our proof methodology resembles one for a standard
signature scheme. Lastly, we show that if we add the encryption back to the

T S- PoC-PKI
OTSign(·)

scheme, thus ending up the with the original PoC-PKI
scheme, the security argument that PoC-PKI achieves equivocation prevention
still holds, as long as the encryption scheme is secure.

The T S- PoC-PKI
OTSign(·)

scheme. We start by defining the variation of

the PoC-PKI, called T S- PoC-PKI
OTSign(·)

.

Definition 10. Let S,E and T S be a signature, encryption and threshold-signature

schemes, respectively. Given a PPT OTSign(·) oracle, let T S- PoC-PKI
S,E,T S,OTSign(·)

(abbreviated as T S- PoC-PKI
OTSign(·)

) be a PKI scheme identical to PoC-PKI,
except for the following changes:

1. In the T S- PoC-PKI
OTSign(·)

.GroupGen algorithm, replace the following line

(line 2 in Alg. 10):

H = {hi ← E .Enc(PubInfoi.ek, tski)}i∈N (12)

with the following code:

H = {hi ← E .Enc(PubInfoi.ek, ‘0’)}i∈N (13)

2. In the T S- PoC-PKI
OTSign(·)

.Incoming algorithm, replace the following line

of code:

res ← (ψ, σ = T S.Sign(S.PrivInfo.tsk, (Core(ψ),EQ-P))) (14)

with the following line of code:

res ← (ψ, σ = OTSign((Core(ψ),EQ-P))) (15)

namely, generate proof σ by signing data using the oracle access to the sign
operation T S.Sign.

Note the two modifications that happen in T S- PoC-PKI
OTSign(·)

as opposed
to PoC-PKI. First, instead of delivering each authority ι ∈ N its matching share
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of the threshold signature scheme tskι, the authorities receive a ‘useless’ string
(‘0’). Second, instead of using the individual signing algorithm T S.Sign in the
Incoming algorithm, the scheme uses the oracle OTSign. These two modifications
essentially eliminate the part that the encryption scheme E plays in equivocation

prevention, hence, in T S- PoC-PKI
OTSign(·)

, equivocation prevention is imple-
mented solely using the threshold signature scheme T S.

Proving that T S- PoC-PKI
OTSign(·)

achieves equivocation prevention.
We now start the second phase of our proof process, and begin by showing that

T S- PoC-PKI
OTSign(·)

is secure against conflicting (equivocating) certificates,
i.e., honest authorities would not sign conflicting certificates. Namely, when an
honest authority is aware of a valid certificate ψ with the EQ-P attribute, it will
not partially sign any other certificate ψ’ with the same identifier (ψ.id = ψ’.id)
that its validity period overlaps with the validity period of ψ, since these two
certificates are in conflict.

Claim 6. Let N be a set of entities and let f be the number of compromised
entities in N. Let T S be a (t, n)-threshold-signature scheme where n = |N| > 2f
as the number of shares, and the threshold t is defined as t = |N| − f − 1. If

the T S- PoC-PKI
S,E,T S,OTSign(·)

scheme uses T S, then no PPT adversary can

abuse T S- PoC-PKI
OTSign(·)

to generate two conflicting certificates ψ,ψ’ with
the non-equivocation attribute.

Proof. The only place in T S- PoC-PKI
OTSign(·)

where authorities generate par-
tial signatures is in line 1.1.6 of the Incoming algorithm (Alg. 17), where an
authority generates a share for the signature proof of a non-equivocal certificate
ψ. However, this line is executed only if the check in line 1.1.3 is satisfied, i.e.,
there is no conflicting certificate ψ’ in the S.certs repository. In other words, if
line 1.1.3 is satisfied, it ensures that there is no certificate ψ’ (valid or pending)
in S.certs with the same identifier but different public information that has the
EQ-P attribute. Therefore, each honest authority would only execute line 1.1.6,
i.e., generate their partial group-signature, for either ψ or ψ’ but never for both.

Let nψ (nψ’) denote the number of honest authorities partially-signing ψ

(resp., ψ’). Then:

nψ + nψ’ ≤ |N| − f (16)

Assume, without loss of generality, that nψ ≥ t + 1 = |N| − f , i.e., there

are enough signature-shares from honest authorities to combine into a valid

certificate ψ with the EQ-P attribute. Following Eq. 16:

nψ’ ≤ |N| − f − nψ = 0 (17)

hence, the total number of shares of signatures for ψ’ is at most f (i.e., only
from the malicious authorities). Since following Def. 7, at least t + 1 partial
signatures are required to be combined into a valid group signature, and since
t+ 1 = |N|− f > 2f − f = f , then f is not enough partial signatures to combine
into a valid non-equivocal certificate upgrade for ψ’.
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The AdvEU-TS adversary. We now describe the AdvEU-TS
OTSign(·),M
A,PoC-PKI,S,E,T S

algorithm (see Alg. 19), referred to as AdvEU-TS for brevity. The algorithm takes
as input a security parameter 1κ, a public group verification key tvk, and a set
of authorities N. In addition, the algorithm takes an adversary A, a PoC-PKI
implementation, a secure signature scheme S, a secure encryption scheme E , a
robust threshold signature scheme T S, an execution model M, and also has
an oracle access to the signing function T S.Sign, with the (unknown) secret
partial-signing key tskι where ι ∈ N, represented by the OTSign(·) notation.

The algorithm executes T S- PoC-PKI
S,E,T S,OTSign(·)

with adversary A using
the Exec execution model (line 1), and in line 2 the algorithm extracts two
certificates ψ,ψ’ from the output of A. A valid execution according to the model
M is verified in line 3, along with the verification that the ψ,ψ’ are conflicting
certificates. In line 4, the algorithm outputs a message m and a signature σ
based on ψ’.

Algorithm 19 AdvEU-TS
OTSign(·),M
A,PoC-PKI,S,E,T S(1κ, tvk,N)

// Execute T S- PoC-PKI
S,E,T S,OTSign(·)

1: [t,NF, OutA, R]← Exec
A,T S- PoC-PKIS,E,T S,OTSign(·) (1κ,N)

// Extract output from the execution
2: (ψ,ψ′)← OutA

// Ensure the adversary followed the model
3: if M (N,NF, OutA, R) = ⊥ ∨ ψ.id 6= ψ’.id ∨ Core(ψ) = Core(ψ’) ∨

P.WasValid(ψ, EQ-P) 6= > ∨ P.WasValid(ψ’, EQ-P) 6= >

3.1: Return ⊥

// Output message m and forged signature σ over m based on ψ’
4: Output (m,σ) s.t. m = (Core(ψ’), EQ-P, ψ’.ρ[EQ-P].clk) and σ = ψ’.ρ[EQ-P].σ

We now complete the second phase of our proof by arguing that T S- PoC-PKI
OTSign(·)

achieves equivocation prevention.

Claim 7. T S- PoC-PKI
S,E,T S,OTSign(·)

achieves equivocation prevention under
model MPoC-PKI

∆com,∆clk
, assuming that S is a secure signature scheme, E is a secure

encryption scheme and T S is a robust threshold signature scheme.

Proof. To prove this claim, we demonstrate that if T S- PoC-PKI
OTSign(·)

does
not achieves equivocation prevention, we can build an adversary that breaks the

security of the threshold signature used in T S- PoC-PKI
OTSign(·)

.

Assume to the contrary that T S- PoC-PKI
OTSign(·)

does not achieves equiv-

ocation prevention, thus, there exists an adversary A that satisfies:

Pr

[
SecExp

EQ-P,MPoC-PKI
∆com,∆clk

A,T S- PoC-PKI
OTSign(·)(1

κ,N) = 1

]
6∈ Negl(1κ) (18)
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Since A ‘win’ in the equivocation prevention security experiment (Eq. 18),

then the conditions in lines 5.1 − 5.5 of the security experiment (Alg. 7) must

hold. In particular, A managed to produce two valid conflicting certificates ψ,ψ’

with the equivocation prevention attribute EQ-P, namely:

T S- PoC-PKI
OTSign(·)

.WasValid(ψ,EQ-P) =

T S- PoC-PKI
OTSign(·)

.WasValid(ψ’,EQ-P) = >
(19)

Hence, following Eq. 19 and the implementation of T S- PoC-PKI
OTSign(·)

.WasValid

described in Alg. 16, we get that:

T S.Ver(S.PubInfo.tvk, (Core(ψ),EQ-P), ψ.ρ[EQ-P].σ) ≡
T S.Ver(S.PubInfo.tvk, (Core(ψ’),EQ-P), ψ’.ρ[EQ-P].σ) ≡ >

(20)

However, this means we can use A to construct a PPT adversary AdvEU-TS
that breaks the security of T S. Namely, since A can generate two conflicting
certificates ψ,ψ’ as described in Eq. 20 with non-negligible probability, and fol-
lowing Claim 6 that ψ’ (without loss of generality) was not ‘honestly’ generated

by T S- PoC-PKI
OTSign(·)

honest authorities, it shows that AdvEU-TS is able to
generate a message m = (Core(ψ’),EQ-P) and signature σ = ψ’.ρ[EQ-P].σ over
m with only the knowledge of the public group verification key v = S.PubInfo.tvk
and up to t oracle accesses on m, and therefore, following Def. 7:

Pr

[
ExpEU

T S,AdvEU-TS
OTSign(·),M
A,PoC-PKI,S,E,T S

(1κ,N, t) = 1

]
∈ Negl(1κ)

thus AdvEU-TS contradicts the unforgeability of T S.

Therefore, T S- PoC-PKI
OTSign(·)

achieves equivocation prevention.

Proving that (original) PoC-PKI also achieves equivocation preven-
tion. We complete our proof with the last phase of our proof methodology.

We already showed that T S- PoC-PKI
OTSign(·)

achieves equivocation preven-
tion. To prove that PoC-PKI also achieves equivocation prevention, we need
to show that the fact that PoC-PKI uses encryption to achieve equivocation
prevention does not provide any advantage to the adversary in comparison to

T S- PoC-PKI
OTSign(·)

.
To that end, we define the following indistinguishability game Exp

CPA−IND
A,E (1κ):

1. The game randomly chooses b ∈ {0, 1}.
2. If b = 0, we execute A with the T S- PoC-PKI

OTSign(·)
scheme, and if b = 1,

we execute A with the PoC-PKI scheme.
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3. A outputs b’ ∈ {0, 1}.
4. The game outputs 1 if b = b’, otherwise 0.

We now argue that PoC-PKI achieves equivocation prevention.

Claim 8. PoC-PKIS,E,T S achieves equivocation prevention under modelMPoC-PKI
∆com,∆clk

,
assuming that S is a secure signature scheme, E is a secure encryption scheme
and T S is a robust threshold signature scheme.

Proof. The only difference between the PoC-PKI and the T S- PoC-PKI
OTSign(·)

schemes is that the adversary has an advantage in PoC-PKI, because it also
receives the encrypted secret information generated by PoC-PKI.GroupGen us-

ing the secure encryption scheme E . Claim 7 shows that T S- PoC-PKI
OTSign(·)

achieves equivocation prevention, since T S is secure; we now show that security
in the PoC-PKI scheme also holds.

Assume to the contrary that although E is secure; there exists an adversary

A that negates the claim that PoC-PKI achieves equivocation prevention under

the MPoC-PKI
∆com,∆clk

model, namely:

Pr

[
SecExp

EQ-P,MPoC-PKI
∆com,∆clk

A,PoC-PKI (1κ,N) = 1

]
6∈ Negl(1κ) (21)

Since the only difference between PoC-PKI and T S- PoC-PKI
OTSign(·)

is the
use of E to encrypt the individual secret information, it means that A uses this
advantage to win the experiment.

Consider an adversaryA’ that simulatesA in the aforementioned Exp
CPA−IND
A,E (1κ)

indistinguishability game, and outputs b′ = 1 ifA wins the SecExp
EQ-P,MPoC-PKI

∆com,∆clk

A,PoC-PKI (1κ,N)
experiment (since we conclude it is an execution with the PoC-PKI scheme,
where A has an advantage), and outputs b′ = 0 otherwise (since it is proba-

bly an execution with the T S- PoC-PKI
OTSign(·)

scheme). Consequently, if such

A exists, then we are able to construct A’ that wins the Exp
CPA−IND
A,E (1κ)

experiment with a non-negligible probability, thus contradicting the indistin-
guishability of E .

Therefore, PoC-PKI also achieves equivocation prevention.

B.3 Proof of Liveness

Recall that PoC-PKI employs an immediate response approach, where every
algorithm’s execution produces an immediate non-pending response, except for
upgrading a certificate with the equivocation prevention attribute; in such a
case, a pending certificates is generated first. Hence, the only property that we
need to define the livness conditions for is equivocation prevention.

Proof methodology. We show that PoC-PKI achieves liveness of equivoca-
tion prevention in a two steps process. First, we argue that in any valid execution
of PoC-PKI, where the upgrade liveness criteria are satisfied (i.e., there is no
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valid reason not to upgrade a certificate ψ), ψ will be upgraded (see Claim 9).
Then, we show that an adversary under PoC-PKI’s threat model cannot prevent
a valid equivocation prevention upgrade, thus resulting in PoC-PKI satisfying
the liveness requirements of equivocation prevention (see Claim 10).

Claim 9. Let [t,NF, OutA, R]← ExecA,PoC-PKI(1
κ,N) be an execution of PoC-PKI

with adversary A for a set of authorities N and security parameter 1κ under
execution model Exec. Also, let authority ι ← OutA be an honest authority
(ι ∈ N−NF). If the execution is a valid execution under modelMPoC-PKI

∆com,∆clk
and

the liveness criteria of equivocation prevention is met, then on any time after
ψ.ρ[EQ-P].clk+∆, ι outputs a valid upgraded non-equivocal certificate. Namely:(
∀[t,NF, OutA, R]← ExecA,PoC-PKI(1

κ,N), ι← OutA,
Clktι > ψ.ρ[EQ-P].clk +∆,ψ’← Outtι

)
MPoC-PKI

∆com,∆clk
(N,NF, OutA, R) = > ∧ LiveCPoC-PKI(N,NF, OutA, R) = >

∧ ι ∈ N− NF ⇒ Core(ψ) = Core(ψ′) ∧ P .WasValid(ψ′,EQ-P) = >
(22)

Proof. Assume to the contrary that there exists an execution of PoC-PKI that
negates the claim, i.e., certificate ψ is not upgraded with the EQ-P attribute, even
though the liveness criteria was met. Following the liveness criteria LiveCPoC-PKI

described in Section 5.2, if the liveness criteria is met, then ι did not output any
valid ‘explanation’ why the upgrade should fail, i.e., no existing valid conflicting
certificate known to other authorities that prevents the requested upgrade.

However, this means that at least |N| − f − 1 of the authorities sent ap-
provals to ι (all the honest authorities), and they did so before the upgrade
time has expired. Since there are only f malicious authorities and PoC-PKI
does not accept more than one partial proof per authority, ι had enough valid
partial signatures from honest authorities to combine, and no more than f in-
valid partial signatures; hence, ι would have generated a valid combined signa-
ture of non-equivocation. Hence, since ι is an honest authority, if the liveness
criteria was met, ι would have outputted an upgraded certificate on any time
Clktι ≥ ψ.ρ[attr].clk + ∆, thus contradicting the assumption that an execution
that negates the claim exists.

Claim 10. PoC-PKIS,E,T S achieves LiveCPoC-PKI-liveness under modelMPoC-PKI
∆com,∆clk

.

Proof. Since in PoC-PKI it holds that |N| > 3f , any call to T S.Combine is
with at least 2f + 1 valid partial signatures, and therefore outputs a valid group
signature, as long as T S is a robust (t, n)-threshold-signature.

Assume to the contrary that PoC-PKI does not achieves liveness of pending

certificate upgrade for equivocation-prevention attribute. Then, there exists an

adversary A such that

Pr

[
SecExp

∆LiveC−liveness,MPoC-PKI
∆com,∆clk

A,PoC-PKI (1κ,N) = 1

]
6∈ Negl(1κ) (23)
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Thus, following experiment SecExp
∆LiveC−liveness,MPoC-PKI

∆com,∆clk

A,PoC-PKI (Alg. 8), it means
that although the liveness criteria LiveC(N,NF, OutA, R) was met, an upgraded
certificate was not issued by an honest authority ι. However, following Claim 9
and PoC-PKI’s model MPoC-PKI

∆com,∆clk
, we know that if LiveC(N,NF, OutA, R) = >,

then ι has enough partial signature to successfully produce an upgraded certifi-
cate. Therefore, if such adversary A does exists, this means that A was able to
prevent ι from combining using T S.Combine enough valid partial signatures (at
least 2f + 1) into a valid group signature with only f invalid partial signatures
under model MPoC-PKI

∆com,∆clk
that ensures reliable communication, thus contradict-

ing the robustness of T S.
Therefore, when using a robust threshold signature scheme, PoC-PKI achieves

liveness of pending certificate upgrade for the equivocation-prevention attribute.
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