
Provably Model-Secure PKI Schemes

It is possible to build a cabin with no foundations, but not a lasting building.

- Eng. Isidor Goldreich [30].

Hemi Leibowitz1, Amir Herzberg2, and Ewa Syta3

1 Dept. of Computer Science, Bar-Ilan University, Ramat Gan, Israel
2 Dept. of Computer Science and Engineering, University of Connecticut, Storrs, CT

3 Dept. of Computer Science, Trinity College, Hartford, CT??

Abstract. Public Key Infrastructure (PKI) schemes have significantly
evolved since X.509, with more complex goals, e.g., transparency, to en-
sure security against corrupt issuers. However, their security properties
have not been rigorously defined or established. This is concerning as
PKIs are the basis for security of many critical systems, and security
concerns exist, even for well known and deployed PKI schemes, e.g.,
Certificate Transparency (CT) [39].

We present the first rigorous security specifications for PKI schemes,
with properties such as transparency, revocation transparency and non-
equivocation. We show that these security definitions are satisfiable, by
presenting PoC-PKI, a ‘proof-of-concept’ PKI scheme, and proving that
the scheme meets all of the PKI security properties we defined. We also
analyze CT, and show that the design specified in RFC6962 achieves
some of the properties.

Lastly, we present the Model-Secure framework that offers a novel ap-
proach, where security requirements are defined with respect to a specific
model predicate M. This allows analysis of PKI schemes and other pro-
tocols under well-defined adversary, communication and synchronization
models, in a modular and flexible way, e.g., both simplified and realistic
models. The framework facilitates reuse of definitions, and, indeed, sev-
eral of the model predicates and security requirements we define, seem
‘generic’ and reusable in analysis of other practical protocols.

1 Introduction

Public Key Infrastructure (PKI) provides an essential foundation for applications
which rely on public key cryptography, and it is crucial to achieve security in open
networks and systems. Since its introduction in 1988, the deployment of PKI has
been dominated by the X.509 standard [15], likely due to its integration with the
TLS/SSL protocol [53], the most widespread protocol used to secure connections

?? The work was partially completed during a visiting position at the Dept. of Computer
Science and Engineering, University of Connecticut, Storrs, CT

between servers and clients, most commonly web browsers. The resulting ‘web-
PKI’ is necessary to provide confidentiality, integrity and authenticity of web
services, and as such, is critical for the secure use of the web.

Unfortunately, the web-PKI deployment has inherent weaknesses. In par-
ticular, any CA is trusted to issue certificates for any domain [22], resulting
in the weakest-link security model and making individual CAs prime targets
for attacks. Over the years, we have seen many failures of this trusted-CA ap-
proach. For example, hackers stole the master keys of CAs [17, 52] and issued
fake certificates for major websites. Furthermore, some CAs abused their powers
by improperly delegating their certificate-issuing authority or even intention-
ally issuing unauthorized certificates [23]. Such PKI failures allow attackers to
issue fake certificates, launch website spoofing and man-in-the-middle attacks,
possibly leading to identity theft, surveillance, compromises of personal and con-
fidential information, and other serious security breaches.

X.509 certificates are signed by the issuing CA, which ensures accountability:
a CA cannot deny having issued a certificate - or, more precisely, that its pri-
vate key was used to sign the certificate. For many years, this was considered a
sufficient deterrent; however, the many PKI failures brought the realization that
accountability is not sufficient. Accountability is only effective if and when the
fake certificate is found - which may not occur, especially if abused ‘stealthily’,
and only if the misbehaving authority can be effectively punished.

These failures motivated efforts to develop and adopt improved-security PKI
schemes, i.e., PKI schemes that ensure security against corrupt CAs. During the
recent years, there have been extensive efforts toward this goal by researchers,
developers and the IETF. These efforts focus on security properties such as trans-
parency, non-equivocation and more. Proposals and designs include Certificate
Transparency (CT) [38,39], Enhanced-CT [55], Sovereign Key [24], CONIKS [47],
AKI [36], PoliCert [61], ARPKI [4], DTKI [64], CoSi [59, 60], IKP [44], Cert-
Coin [27], PB-PKI [3], Catena [62], CertLedger [37], among others.

The goals of these designs are beyond those of X.509, and are significantly
more complex than the X.509 goals. However, so far, these goals have not been
rigorously defined and proven. Only few works present any analysis: [16,21] an-
alyze (only) the logging mechanism of CT, and ARPKI [4, 64] use automated
symbolic analysis for system-specific properties. However, no work defines secu-
rity goals (or proves such properties hold). In fact, even for the simple, ‘classi-
cal’ X.509 PKI, there is no definition of security requirements (and no proof).
Arguably, this may not be as critical, since for X.509, both definitions and
proof are quite straightforward (see within). However, this lack of definition
(and proof) implies that works analyzing security of PKI-based protocols, e.g.,
IPsec/IKE [12,19] and TLS [34,50], mostly completely ignore the PKI and sim-
ply assume the use of correct public keys. Few works [5,14,28] study security of
cryptographic protocols based on a simplification of X.509; however, the simpli-
fication ignores revocation and other advanced aspects of X.509, not to mention
the properties of post-X.509 PKI schemes, such as transparency.

2

This is alarming, as most practical applications of cryptography involve cer-
tificates, and their security depends on the security of the PKI. The extensive
efforts to prove security of cryptographic protocols may be moot when these
protocols are deployed over a PKI scheme which was not proven secure. The
concerns are even greater, considering that attacks against PKI are not only a
theoretical threat, but are a major concern in practice.

Indeed, defining and proving security for PKI schemes is a non-trivial chal-
lenge, especially for post-X.509 schemes, with more advanced and complex goals.
PKI proposals vary greatly - even terms of the types of parties involved, and
in the communication and attack models. Further, any existing definitions and
requirements are often informally defined and tailored to a specific design. The
lack of proper definitions and proofs makes it challenging to build (provably)
secure systems, which depend on PKI schemes, and to improve, compare and
select PKI schemes. Evaluation of PKI schemes with new properties is especially
challenging; for example, there are several schemes designed to achieve different
privacy goals, but these cannot be properly compared - and, of course, are not
proven secure. It is impossible to design and analyze schemes modularly, by
provable reductions to simpler, already-analyzed schemes.

First contribution: definitions and implementations of provably-
secure PKI schemes. In this work, we present well-defined correctness and
safety requirements for PKI schemes, with reduction-based proofs of security.
The definitions supports a wide range of PKI schemes, from X.509 to advanced,
improved-security PKI schemes, independently of their specific designs.

We focus on the classical security challenge of dealing with misbehaving par-
ties, e.g., corrupt CAs, by detecting misbehavior and/or preventing damage due
to misbehavior. Note that we do not address trust-management issues, such as
the decision to trust a particular CA, typically based on cross-certification by
already-trusted CAs (‘basic constraints’ in X.509), or restricting a CA to par-
ticular name-space (‘naming constraints’ in X.509). Other works address other
important aspects of PKI schemes, mainly the trust decision - essentially, which
CA should be trusted for a given certificate. A model of trust for PKI sys-
tems was proposed by Mauer [45], subsequently extended by [9, 43], and others
[8, 31,33,41,56,65].

To define the security requirements, we reviewed and analyzed existing PKI
schemes and the properties they claim to provide. We present game-based defi-
nition for the basic security requirements for PKI schemes designed for possibly
faulty CAs. These include the following safety requirements: accountability, ∆-
transparency, non-equivocation (detection and prevention), revocation account-
ability, non-revocation accountability and ∆-revocation transparency. We map
these safety requirements to existing PKIs in Table 1.

To make sure that the PKI properties we identified are comprehensive and
feasible, we analyzed two (very different) PKI schemes. The first is a ‘Proof of
Concept’ PKI (PoC-PKI) scheme we present, which we prove to ensure all of
the security requirements we defined. The second is CTcomp, which is essen-

3

tially Certificate Transparency (CT), complemented with essential details left
unspecified in [39].

Second contribution: the Model-Secure framework. Applied crypto-
graphic protocols, and specifically PKI schemes, can be designed and analyzed
under different assumptions as well as adversary, communication and synchro-
nization models. For PKI schemes, in particular, these aspects have crucial im-
plications on their security. It is well established that cryptographic protocols
are specified and analyzed under specific adversary models; communication and
synchronization models are not always relevant, and when they are, highly sim-
plified models are often applied, e.g., perfect synchronization (‘rounds model’).

This creates a challenge for the application of provable security to applied
cryptographic protocols, which are usually designed to operate under realistic
communication and synchronization models. We have considered the use of ex-
isting rigorous frameworks for analysis of distributed algorithms, e.g., the I/O
automata [35] or reactive systems [51]. However, these frameworks are overly
complex, even when focusing on relatively simple algorithms and requirements;
applying them to complex tasks such as PKI schemes and to cryptographic pro-
tocols, appears prohibitively challenging.

Instead, we present the model-secure framework, which cleanly separates the
specification and analysis of security into three components: the execution pro-
cess, model and requirements. The first component is a well-defined, and rela-
tively straightforward, adversary-driven execution process (Algorithm 1). This
execution process defines precisely the process of executing a protocol P un-
der adversary A giving the adversary an extensive control over the operation
of the environment, including communication, local-clock values, inputs from
the application, and faults. We then separately define a model M that enforces
well-defined restrictions on the adversary’s actions. (The execution process also
imposes some basic limitations, e.g., events are ordered, rather than potentially
only partially-ordered, as allowed in [35,51].)

The second component of the framework is the definition of model predi-
cates. A model predicateM maps the execution of P under A into ‘valid’ (>) or
‘invalid’ (⊥), effectively enforcing one or multiple restrictions on the adversar-
ial control of the execution, including initialization assumptions, limitations on
number and type of faults, maximal delay and/or maximal clock drift. This ex-
ecution process allows formal yet flexible and generic security definitions, which
apply under a variety of adversary, communication and synchronization models.
Unlike our approach, current definitions of security do not separate between the
security requirements and the adversarial, communication and synchronization
models assumed by a given protocol. This lack of separation, makes it hard to
apply a fixed set of security requirements, to protocols designed and analyzed
under different models.

This execution process is a significant deviation from the ‘classical’ approach
of defining security using games (experiments), with a given protocol and adver-
sary; in this ‘classical’ definitions, the model is an integral part of the game/experiment,
while in our execution process, the model M is also specified as a parameter.

4

Like the adversary A and the protocol P, the model is also well-defined as a
PPT algorithm M. We found this approach necessary for this work, to allow
our definitions to apply to different PKI scenarios and applications with (very
likely) different assumptions. The use of this non-standard execution process
introduces some additional burden in this paper - to its readers as well as au-
thors. We apologize, and assure the readers that we strived for simplicity and
a ‘clean’ methodology, justifying this extra effort by providing flexible, general
PKI definitions. Furthermore, we believe that the approach is likely to be ben-
eficial for other cryptographic protocols and problems, allowing definitions to
apply across different adversary, communication and synchronization models,
and making it easier to compare models between different works; indeed, we
expect the separation between the model aspects and the problem-specific as-
pects of security definitions, to allow cleaner definitions, as well as to allow the
reuse of well-defined modelsM. We therefore consider the execution process and
methodology to be an additional important contribution of this work.

Organization. §2 reviews the PKI landscape with respect to the require-
ments we identify in our framework and summarizes the related work. §3 presents
the execution model of the framework and §4 presents the PKI framework and
its security requirements. §5 discusses how the framework can be applied in prac-
tice. We conclude and discuss future work in §6. Additional content is available
in the appendices.

2 Security Properties of PKI Schemes

The first step in developing the PKI framework was the identification of the
security properties of PKI schemes, where we focus on schemes designed for
security against corrupt authorities (typically, corrupt CA). In this section, we
first discuss, informally, these security properties which we then formally define
(see §4.4 for the game-based definitions).

We put an extensive effort into a thorough comparison of the existing schemes
with respect to the properties we identify. We present the result in Table 1 and
discuss them in §2.3. This work significantly benefited from this comparison.

2.1 X.509 PKI schemes and related requirements

The basic goal of a PKI scheme is to ensure authenticity of information in public
key certificates. Certificates are issued and endorsed by Certificate Authorities
(CAs). An honest CA issues a certificate only after it verifies that the entity
requesting the certificate is eligible to receive it. A typical certificate contains
an identifier and some public information, typically including a public key. A
certificate also typically includes a signature generated by the issuing CA, over
the certificate’s information; the signature serves as the CA’s endorsement of
the mapping between the identifier and the public information in the certificate.
The signature establishes the basic goal of PKI schemes: accountability.

5

Accountability (ACC) is the ability to identify the CA that issued a given cer-
tificate. Accountability provides a reactive defense against a corrupt CA; such
CA can be ignored or otherwise punished. In most PKI schemes, including X.509,
accountability is achieved by having the CA digitally sign certificates, i.e., a CA
is accountable for any certificate signed using the CA’s private key. CA account-
ability, in this sense, includes unauthorized use of the CA’s private key, e.g.,
due to exposure or penetration, as well as intentionally issuing ‘fake’ certificate,
where the public information does not correctly match the identifier. Note that
we use the term accountability as a technical, well-defined property, which does
not necessarily have any specific legal or financial implications.

Revocation accountability (ReACC). A certificate can be considered valid only
after its issue date and until its expiration date, both of which specified in the
certificate. The issuing CA, however, can invalidate a certificate before its expi-
ration date by revoking it. A user can request to have their certificate revoked
for a variety of reasons, including a loss or compromise of the private key corre-
sponding to the public key endorsed in the certificate.

The two main revocation mechanisms in practice are the certification revo-
cation lists (CRLs) [18] and online certificate status protocol (OCSP) [57]. Their
main security property is revocation accountability (ReACC).

Revocation accountability (ReACC) ensures accountability of the revoked cer-
tificates. Namely, each revoked certificate can be traced back to the revoking CA.
This helps to ensures that a client will not have their certificate revoked with-
out a legitimate reason (e.g., their request), unless the CA is malicious, or an
attacker corrupts or tricks the CA - in which case, this can be exposed. Revo-
cation accountability is similar to the accountability property, which focuses on
issuing certificates. In X.509 and most PKI schemes, only the issuer can revoke
a certificate, but this is not necessarily always the case (in other PKI schemes).

Some PKI revocation mechanisms, most significantly OCSP [57], also support
a ‘positive’ attestation for certificates, i.e., indicating the certificate was not
revoked (up to given time). This ‘non-revoked’ certificate is signed by a CA -
typically, the issuer. Such attestations allow a relying party to justify reliance on
the certificate, more precisely, on the mapping of public information/key to the
identifier, e.g., for accepting a signed document as evidence of it being approved
by the subject of the certificate.

The non-revocation accountability (NReACC) property ensures that a honest
CA would never sign both revocation and non-revocation for the same certificate,
with overlapping periods; in fact, if the same CA signs such a pair of conflicting
certificates, this provides a Proof of Misbehavior. In X.509, and even most post-
X.509 PKI schemes, only the issuer can revoke certificates, making this property
easy to define and achieve. However, considering the history of CA failures, it
may be useful to allow revocation of certificates by other authorities, making
it harder to define and achieve the non-revocation accountability property. We
discuss post-X.509 schemes and requirements in the next subsection.

6

2.2 Post-X.509 PKI schemes and requirements

In §2.1, we discussed accountability, revocation accountability and non-revocation
accountability, which correspond to the basic PKI properties, provided already
by X.509. We now discuss additional security goals, pursued by more recent
PKI schemes, designed to improve security against corrupt CAs. These include
∆-transparency (∆TRA), ∆-revocation transparency (∆ReTRA), ∆-equivocation
detection (∆EQ-D) and equivocation prevention (EQ-P).

∆-Transparency (∆TRA). Accountability, as described above, mainly serves
as a deterrent against misbehavior, i.e., only offers retroactive security by pun-
ishing a CA ‘caught’ misbehaving, e.g., issuing a fraudulent certificate. For many
years this reactive measure was viewed as a sufficient defense, under the assump-
tion that CAs were highly respectable and trustworthy entities who would not
risk, intentionally or otherwise, being implicated in issuing fraudulent certifi-
cates. However, repeated cases of fake-certificates, by compromised or dishonest
CAs, have proven this assumption to be overly-optimistic. It turned out that
punishing CAs is non-trivial: beyond negative publicity, any punishment was
arbitrary, short-lived and overall ineffective [2, 32,54].

Furthermore, ‘punishment’ could only be applied after the damage was com-
mitted and discovered - if it is discovered at all. An attacker or corrupt CA could
reduce the risk of discovery, by minimizing the exposure of the fraudulent cer-
tificate. Except for efforts such as the Perspectives Project [63], or the EFF SSL
Observatory [25] that aim to gather and inspect all SSL certificates used in prac-
tice, the burden of detecting and responding to fraudulent certificates is mostly
on the clients that receive them; browsers typically cannot detect fraudulent
certificates, much less to report them to a (non-existing) ‘enforcement agency’.

This significant issue has motivated more recent PKI designs, e.g. CT, where
certificates are transparently published, to allow third parties (e.g., trusted ‘mon-
itors’) to inspect and detect any fraudulent certificates. This design makes it
possible to quickly detect misbehavior, such as issuing of a fraudulent certifi-
cate. Ideally, fraudulent certificates could likely be detected before they can be
abused, or at least, before they can cause much harm.

Unfortunately, there is still no guarantee that such detection would in fact
occur before certificate misuse occurs. In fact, even where detection is guaran-
teed to occur, this can only be guaranteed some time after issuing of the fake
certificate - although this aspect is often overlooked. We denote this time by ∆,
and hence we refer to this property as ∆-transparency (or ∆TRA); in a specific
PKI scheme, the value of ∆ would be a function of model-specific parameters
(such as network delay). Transparency prevents a CA from ‘silently’ generating
fraudulent yet validly-formed certificates, and exposing them only to selected
victims during an attack.

Transparency requires a certificate to be authenticated (signed) by a party
which takes responsibility for making the certificate known to all monitoring-
entities, within the specified time frame ∆. By demanding transparency, a PKI
system facilitates detection of fraudulent certificates, even when issued by a
corrupt or compromised CA. Often, a certificate is considered fraudulent since it

7

uses a misleading identifier, such as a domain name which is identical or similar
to that of a victim domain, e.g., g00gle.com, or with an identifier which users may
expect to belong to a known domain, e.g., googleaccounts.com. Such misleading
identifiers are often abused, e.g., for phishing attacks. A PKI which supports
transparency, allows a domain to vigilantly watch for any certificate issued with
identifiers which are identical, similar or otherwise misleading to be associated
with its own domain names.

Equivocation: detection and prevention (∆EQ-D and EQ-P). Fraudulent cer-
tificates which use the same identifier as the victim, may be abused for phishing,
and for other attacks, e.g., stealing web cookies. PKI schemes may detect equiv-
ocation (∆EQ-D) or even prevent it (EQ-P).

A PKI which prevents equivocation, will prevent a corrupt CA from issu-
ing a fake certificate for an already-certified identifier, e.g., domain name. This
could prevent, rather than merely detect, man-in-the-middle and other attacks
impersonating existing secure domains [10].

Note that transparency implies ∆EQ-D, but not EQ-P. We still define equivo-
cation detection as a separate property, since it does not imply transparency, i.e.,
∆EQ-D is not equivalent to transparency. In fact, some PKI schemes, notably
CONIKS [47], offer equivocation detection but not transparency - indeed, trans-
parency would conflict with some of CONIKS privacy goals. Of course, providing
non-equivocation but not transparency, may still allow issuing of misleading (but
not identical) identifiers, e.g., misleading domain names which may be abused
for phishing attacks.

Revocation transparency (∆ReTRA). Revocation accountability does not en-
sure that revocation would be performed correctly. Consider a scenario where
a client asks to have her certificate revoked, but a corrupt CA does not prop-
erly revoke the certificate, and as a result, some (or all) relying parties are kept
unaware of the revocation, and still consider the certificate as valid. Obviously,
such behavior may endanger the client in many scenarios, e.g., when the cor-
responding private key was obtained by an attacker. Revocation transparency
ensures that if a CA revoked a certificate, then all relevant authorities should be
aware of the revocation , within some bounded time, preventing such undesirable
scenarios.

Privacy. Some of the recent PKI schemes offer different privacy properties.
However, the properties are non-trivial and also differ significantly. Therefore,
we left to future work, the important and challenging task of extending the PKI
framework to privacy properties. Note that, as discussed above, some privacy
properties may conflict with transparency.

2.3 Properties of different PKI Schemes

The goal of the PKI framework is to allow analysis and provable-security,
for existing and future PKI schemes. We designed the framework in a way that
embraces, complements and reflects current PKI designs. To this end, we have
methodically examined the existing PKI schemes by identifying and analyzing

8

System [reference]

Safety requirements Additional req.

ACC ∆TRA ∆EQ-D EQ-P
ReACC/
NReACC ∆ReTRA Privacy1 Global

name-
space

X.509 and PKIX, with CRL
or OCSP 2

G# n/s n/s n/s G# n/s n/s 3

Catena [62] �7 � � � �7 � n/s 3

CertCoin [27] n/s � � � n/s � n/s 3

PB-PKI [3] n/s � � � n/s � � 3

CoSi [60] G# � � � n/s n/s n/s 3

Enhanced-CT [55]
G# � � n/s G# � n/s 3

DTKI [64] 3

AKI [36] G# � � n/s G# � � 3

CONIKS [47] G# n/s � n/s G# � � 7

ARPKI [4] 4 G# � � � G# � n/s 3

CertLedger [37] G# � � � � � n/s 3

Certificate Transparency
(CT) [39]

G# �5 �5 n/s G# n/s6 3

CTcomp (CT completed, this
work)

 n/s n/s n/s n/s 3

PoC-PKI (this work) n/s 3

Table 1: Comparison of PKI schemes with respect to PKI framework. Symbols:
 - reduction-based proofs, G# - intuitively true, � - security arguments (a proof
may require assumptions), n/s - not supported.
1Different privacy definitions, goals. 2OCSP ensures NReACC. 3DTKI has sym-
bolic proofs of some aspects. 4ARPKI has symbolic proofs of some aspects.
5Proofs of logging properties in [16, 21]. 6CT is extended to include revocation
transparency in [38].

their properties. We present the results of our analysis in Table 1, and summarize
them below. The table includes twelve existing PKI systems, and, in addition,
PoC-PKI, a “proof-of-concept” PKI we defined, and CTcomp, a minor exten-
sion of the CT specifications, which appears essential to ensure CT’s security
properties. We compared all schemes with respect to the requirements formally
presented in §4; we also mention two additional properties, privacy, discussed
informally in §2.2, and global name-spaces.

Notations in Table 1. We use the n/s (not supported) symbol to indicate
when a scheme does not seem to support a requirement. Otherwise, we use one
of the three following symbols, , �, or G#, to indicate the support of a require-
ment by the scheme. The symbol indicates that a system comes with rigorous,
reduction-based proof of the requirement. We indicate with an appropriate com-
ment when a scheme is supported by automated symbolic proof for a given
property; note that such proofs are often of property specific to that scheme,
not properties defined for arbitrary PKI schemes. The G# symbol indicates that
although no formal proofs were provided, it seems intuitively true that the sys-
tem achieves a requirement; e.g., accountability in X.509 follows from the use of
signature scheme to sign the certificate. The � symbol depicts the property is
justified using an (informal) security argument; note that this may imply that
additional assumptions or details may be needed to ensure security.

9

Following our discussion of the ‘basic’ PKI security properties in §2.1, we
observe that most systems aim to achieve accountability, with the exception
of CertCoin and PB-PKI. Both CertCoin and PB-PKI build on top of Name-
coin [1], which is a decentralized namespace system rather than a centralized,
CA-oriented system, where the CAs grant identifiers to clients. Instead, due to
the fully decentralized nature, anyone can claim an identifier so long it is avail-
able; consequently, there is no accountability for assigning identifiers. Notice also
that Catena is a witnessing (logging) scheme that allows to witness public-key
directories using the Bitcoin blockchain. As a result, accountability of issuing
certificates is handled by the directories themselves, which require unusual ad-
ditional assumptions (which can be modelled using the framework).

Interestingly, many systems directly focus on more advanced properties, such
as transparency and non-equivocation, and treat more ‘basic’ properties, such
as accountability and revocation, as intrinsic to PKI, often without even stating
them. This phenomenon is especially apparent in case of revocation; many sys-
tems (e.g., CertCoin, Catena, PB-PKI, CoSi) do not directly address revocation
at all, and do not discuss how revocation should be handled, by whom and under
which conditions. Other PKI schemes use the X.509 notion of a certificate, and
implicitly rely on the X.509 revocation mechanisms (CRLs and OCSP). This ap-
proach is somewhat understandable due to the pervasiveness of X.509, but also
establishes the X.509 revocation mechanisms as the status quo of revocation,
despite known weaknesses.

In Table 1, we label accountability, revocation accountability and non-revocation
accountability as ‘intuitively true’ for all systems, except for CertCoin, Catena,
PB-PKI, and CoSi. Thesep properties are typically achieved using a secure sign-
ing scheme, and therefore a formal proof seems straightforward and not essential.
Note that CertCoin, PB-PKI and CONIKS allow clients to revoke their own cer-
tificates, but revocation can also be done by an adversary that compromised the
client’s secret keys, or alternatively, the client may be unable to perform revo-
cation if the secret keys are lost.

Transparency, on the other hand, is supported by all post-X.509 PKI schemes,
except CONIKS. The fact that transparency is so pervasively provided is likely
in response to one of the main weaknesses of X.509 widely abused in prac-
tice, i.e., the lack of a mechanism to effectively propagate all issued certificates
among CAs and clients. CONIKS, on the other hand, offers a limited notion
of transparency of the identity / value map, which hides the actual identifiers
and their corresponding values, as a trade-off between security and privacy. The
clients can only query for individual identifiers. Furthermore, even that must be
within a specific namespace, as CONIKS does not support global namespaces,
where multiple CAs are authorized to issue for the same namespace. The use of
separate namespaces, while problematic for the web PKI, works well for many
applications such as chat rooms or messaging boards, that require secure key
distribution but are under control of a single entity.

As Table 1 indicates, most previously-published PKI schemes have only in-
formal security arguments for transparency. The exception are CT, DTKI, and

10

ARPKI, which have different types of automated proofs for scheme-specific prop-
erties. Namely, the properties and their proofs are not relevant to PKIs per se.
Rather, they focus on details of the design of the particular scheme. Specifically,
Dowling et al. [21] formalized security properties and provided reduction-based
proofs for logging aspects of CT, that cover two classes of security goals involv-
ing malicious loggers and malicious monitors. Chase and Meiklejohn [16], on the
other hand, focus on formalizing transparency through “transparency overlays”,
a generic construction they use to rigorously prove transparency in CT and Bit-
coin. While their approach is elegant and can be used in other systems as a prim-
itive that achieves transparency, it focuses on the “CT-style transparency” and
does not consider other PKI properties such as revocation or non-equivocation.

Some of the systems, such as DTKI and ARPKI, verify their core secu-
rity properties using automated symbolic proofs via the Tamarin prover [46].
Symbolic proofs provide an important added value for the security of proposed
systems. Unfortunately, symbolic proofs often use abstractions; for example, in
DTKI and ARPKI, a Merkle tree is modeled as a list. Such abstractions present
an obstacle towards ‘air-tight’ security proofs. This strengthens the importance
of a formal framework which on the one hand does not rely on specific imple-
mentations, yet, on the other, can be easily used by any implementation. We
leave it to future work to explore ways to use symbolic proofs to add automatic
verification capabilities to the framework described in this paper.

The post-X.509 safety requirements - transparency, non-equivocation and re-
vocation transparency - are significantly more complex to understand, define and
to achieve, compared to the X.509 properties of accountability and revocation
accountability. Hence, we did not consider any of these post-X.509 properties to
be ‘intuitively true’ - we believe they all require a proper definition and proof,
as we provide in this paper; we spent considerable effort in properly defining
these requirements in a precise and complete manner, and made every effort to
keep things simple - but we admit that these definitions still require considerable
effort to fully understand.

We separated between properties which are not-supported, and properties
which are claimed to be supported using some security arguments. Note also
that most systems do not discuss revocation transparency at all, even though in
certain cases, e.g., CoSi, it seems relatively easy to achieve it. CT originally did
not have a built-in support for revocation transparency, and it was only later
formalized as Revocation Transparency [38].

3 Adversary-Driven Execution Process Framework

The security of distributed systems and cryptographic protocols should be stated
and analyzed with respect to a specific model. By the term model, we mean a
combination of adversary capabilities, communication assumptions and clock-
synchronization assumptions:
Adversary capabilities: often referred to as the adversary model, define the

computational resources of the adversary, e.g., probabilistic polynomial time

11

(PPT), as well as other capabilities, e.g., from cipher-text only (CTO) to
chosen ciphertext attacks (CCA) (for encryption schemes).

Communication assumptions: properties of the underlying communication
mechanism, such as reliable/unreliable communication, FIFO or non-FIFO,
authenticated or not, bounded/fixed delay or asynchronous, and so on.

Clock-synchronization assumptions: define assumptions regarding the avail-
ability and properties of per-entity clocks. Common models include purely
asynchronous clocks (no synchronization), bounded-drift clocks, and syn-
chronized clocks.

However, research on cryptographic schemes and protocols often focuses on
properties that do not depend on communication and clock synchronization.
For example, when we define security of encryption schemes or zero-knowledge
proofs, there is no significance to the properties of the communication between
the parties, or to the synchronization of their clocks. Therefore, in such works,
the definitions typically do not refer to communication and synchronization as-
sumptions and only define the adversary’s capabilities. However, communication
and synchronization assumptions are crucial to the operation and security of dis-
tributed systems, including PKI schemes. In fact, several of the properties we
discussed for PKI schemes involve time, and as such, are impacted by the com-
munication and synchronization assumptions.

One way to address this challenge would be to adopt a specific, simple model
for communication and synchronization, e.g., the synchronous ‘rounds model’,
where all parties operate in lockstep, round by round, and messages sent at round
i are delivered in round i+1. Using such a fixed model has the benefit of making
it easy to focus on the cryptographic aspects, e.g., present rigorous definitions
and prove security (by reductions). However, real systems are more complex;
clocks are not fully synchronized, and communication is rarely, if ever, perfectly
synchronous. This creates a dilemma in the design and analysis of cryptographic
protocols; should we use a simplified model in order to focus on the cryptographic
aspects of a protocol, or should we use a more realistic model to allow analysis of
practical systems that must take communication and clock synchronization into
account? While we are specifically interested in PKI schemes, this issue applies
to other protocols as well. We now discuss our approach, which consists of the
generic adversary-driven execution process, the definition of model predicates,
and definition of experiment-predicate based security requirements.

The adversary-driven execution process ExecA,P(1κ,N) (Algorithm 1). The
execution process specifies the details of running a given protocol P with a given
adversary A, both modeled as efficient (PPT) functions. The execution process
does not enforce any assumptions or model on the communication, synchroniza-
tion, or inputs to the protocol; all of that is controlled entirely by the adversary
A. Furthermore, the execution allows the adversary to set and retrieve the state
of any entity as well as messages sent and received, allowing for different failure
models.

The model predicate M. All model-specific details are handled by a model
predicate M, as follows. After the execution process finishes, it produces a

12

transcript of the execution; this transcript is input to M. When Mreturns >
(TRUE), we say that the execution is correct according to M, i.e., satisfies the
model M; otherwise, the execution is invalid, i.e., does not satisfy the model.
This allows the model to specifies the adversary, communication and synchro-
nization constraints, as well as protocol-specific assumption.

The definition of the model as a predicate, facilitates modular definition of
models, as a conjunction of more basic model predicates. The models of both PKI
schemes we analyze, are composed of specific sub-model predicates, each dealing
with very specific aspects - the adversary model, the communication model,
the synchronization model and, where necessary, models for protocol-specific
assumption. This allows reuse of the same (sub)models by multiple schemes,
making it easier to compare different schemes and protocols. See §3.2.

The security requirements. The execution process and the model, facilitate
precise definition of security requirements, as predicates (‘experiments’) over the
results of the execution. This is separate from the validation of the model, al-
lowing modular specification of security requirements. Namely, different works
may reuse the same security requirements (and execution process) but use other,
possibly more realistic (and more complex) models, expressing different adver-
sary capabilities, restrictions on usage, and assumptions on communication and
synchronization. Similarly, different works may reuse the same models to study
additional security requirements. In particular, we prove security for two PKI
schemes under different adversary models, but with respect to the same security
requirements. The separation between the definition of the model and of the re-
quirements, also allows definition of generic requirements. Generic requirements
are applicable to different protocols and problems. We identify four generic re-
quirements, that appear relevant to many security protocols. These requirements
focus on attribute of messages, i.e., non-repudiation, and on detection of misbe-
having entities (see §3.3). This approach is quite different from the current way
of defining security for cryptographic schemes and protocols; it takes some time
and effort to get used to the separate model and security definitions. However,
we found that with a little use, the advantages become clear and the approach
becomes natural and convenient, facilitating modularity and reuse of require-
ments and models, and allowing for proper comparison of security guarantees
between different schemes.

3.1 Design of Adversary-Driven Execution Process

We now present the Adversary-Driven Execution Process as defined by pseudo-
code in Algorithm 1. We explain and justify our design decisions as we discuss
the specifics of the execution process.

The execution process ExecA,P(1κ,N) has four inputs: the two algorithms
(an adversary A and protocol P), a unary security parameter 1κ and a finite set
N of entities (or parties). The protocol P refers to a specific protocol executed
within the execution process given a specific adversary A. A modelM is not an
input or a part of the process and only applied to its transcript after the process
finishes, making it oblivious to the specific assumptions expressed in M.

13

Algorithm 1 Adversary-Driven Execution Process ExecA,P(1κ,N)

1: ∀i ∈ N : si ← (sec = 1κ,N, ι = i, s.initCounter = 0), sA ← (1κ,N)

2: t← 1

3: repeat

// A selects entity i[t], operation α[t], and input inp[t] and clock clk[t].
4: (i[t], α[t], inp[t], clk[t])← A(sA)

5: if α[t] =‘Set’ then

6:
(
si[t], out[t]

)
← inp[t]

7: out[t]← ⊥

8: else if α[t] =‘Get’ then then out[t]← si[t]

9: else
(
si[t], out[t]

)
← P

(
si[t], α[t], inp[t], clk[t]

)
10: end if

// Update sA and set outA to either ⊥ (to continue), or to other output (to terminate)
11: (sA, outA)← A (sA, out[t])

12: t← t+ 1

13: until outA 6= ⊥

14: t← t− 1

// A selects the global, real time clock value τ [t] for each t

15:
{
t̂ ∈ {1, . . . , t} : τ [t̂]

}
← A(sA)

// Output:

16: NF ←
{
ι ∈ N : (∃ t̂)i[t̂] = ι ∧ α[t̂] ∈ {‘Set’,‘Get’}

}
17: R←

{
t̂ ∈ {1, . . . , t} : i[t̂], α[t̂], inp[t̂], clk[t̂], τ [t̂], out[t̂]

}
18: Return [NF, R, t, outA]

To allow the process to apply to protocols with multiple functions and opera-
tions, we define the entire protocol P as a single PPT algorithm and use param-
eters to specify the exact operations and their inputs. Specifically, the protocol
has four parameters: (s, α, inp, clk), where s is the state of the entity, α identifies
the specific ‘operation’ or ‘function’ to be invoked, inp is the set of inputs to that
operation/function, and clk is the current value of the clock of the entity. The
protocol always outputs a pair (s, out), where s is the state of the entity after
the operation, and out is the output. The execution process reserves two specific
strings, ‘Set’ and ‘Get’ (lines 5-8), to define generic operations. We use these to
allow the adversary to expose (‘Get’) the state of an entity, corresponding to a
‘honest but curious’ fault, and to control (‘Set’) the output of an entity, corre-
sponding to a malicious fault; we discuss these further below. Namely, protocols
should not use ‘Set’ and ‘Get’ as names of operations/functions.

Notation. We use the following notation in Algorithm 1: i is an entity from
the set of all entities N, si is i’s state, α is an operation to be executed, inp is an
input value, clk is a local clock value, τ is a real clock value, and out is an output
produced after some operation was executed. We use t to index execution steps
within the execution process. When discussing only the input parameter inp of
a specific protocol operation α, we often abuse notation and simply refer to it
as P.α(inp). This is especially useful for any stateless functions, i.e., functions
that do not depend on or modify the state; such functions are defined as part

14

of the protocol, but may be applied outside of the execution process, e.g., to
define experiments and requirements. We use a dot notation to refer to elements
of ‘structures’, and an index notation to refer to cells of ‘arrays’. For example,
R.out[t] refers to the value of the tth entry of the array R.out, which is part of
the event log R.

We now discuss the three main components of the execution process, that is,
the initialization, main loop execution and termination.

Initialization. In line 1, we set the initial state for each entity i and the
adversary A, si and sA respectively. In line 2, we set the initial value of t, which
we use to index the operations (steps) of the execution, i.e., increment by one
(line 12) each time we complete one ‘execution loop’ (lines 3-13). The value t does
not represent any clock value and is independent of any clock synchronization
model, and specifically, is not controlled by the adversary. Rather, t allows us
to index a sequence of operations performed within one execution loop, and
precisely refer to each step of the execution. The local clock clk and real time
clock τ are used to represent and model different clock assumptions.

Main execution loop (lines 3-13). The design allows the adversary A to have
a generous control over the execution. Specifically, in each step t, A determines
(line 4) an operation α[t] to be applied to an entity i[t] ∈ N, with input inp[t]
and its local clock value clk[t]. Additionally, in line 15, the adversary selects the
global, real time clock value τ [t]. The adversary selects τ [t] after the main loop
run since it is not needed earlier and it may want to decide on these values based
on the run, allowing for greater flexibility and control over the execution. We
use both clk[t] and τ [t] to accommodate different clock synchronization models.
The execution process does not place any restrictions on these values and enforc-
ing any constraints is left to the appropriate clock synchronization model. The
specific clock synchronization model provided in this work ensures that τ [t] is
monotonously increasing and uses it to enforce other communication and clock
properties (see Sections 3.2.3 and 3.2.4).

After the adversary defines the specific operation and inputs (line 4), the
event is executed (lines 5-9). There are three options for each event specified
as an operation α[t]. More concretely, α[t] = ‘Set’ (lines 5-7) lets the adversary
set the state si[t] of entity i[t] (to inp[t]); α[t] = ‘Get’ (line 8) outputs the state
si[t] of entity i[t], including any private state, e.g., private keys, by setting it
into out[t]; and α[t] set to any other operation (line 9) invokes the protocol P
specific function over the state si[t] of entity i[t], with inputs α[t], inp[t], clk[t].
This results in a new state si[t] and output out[t] for entity i[t].

The ‘Set’ and ‘Get’ operations are particularly important as the adversary
uses them to control and interact with the entities by being able to define (set)
and retrieve (get) their state. Certain other operations may be defined and used
in the model predicate M to enforce the protocol assumptions. Specifically, we
use ‘Init’, ‘Incoming’, ‘Sleep’, ‘Wake-up’ in the communication and synchroniza-
tion models to ensure that communication and time-driven events invoke proper
handler functions (see Sections 3.2.2, 3.2.3 and 3.2.4 for details).

15

The execution process allows the adversary to set and get the state of any
entity; however, a specific execution model M may forbid such operations, e.g.,
return ⊥ for executions where the adversary performs them. In line 11, the
adversary processes the output out[t] of the protocol. The adversary may modify
its state sA, and outputs a value outA; when outA 6= ⊥, the execution moves to
the termination phase; otherwise the loop continues.

Termination (lines 14-18). Upon termination, the process returns the rel-
evant values from the execution. Most of these values are in the events log R
(line 17), namely, the values of i[t′], α[t′], inp[t′], clk[t′], τ [t′] and out[t′], for each
of the rounds t′ ≤′, where t is the index of the last round, set in line 14. Private
values such as entity’s private keys are not part of the output unless provided as
inp[t′] for α[t′] = ‘Set’ or properly extracted using α[t′] = ‘Get’. In addition to
R, the execution also returns the set of faulty entities NF (produced in line 16),
the index of the last round t, the adversary’s output outA.

Limitations. The execution process supports a large variety of models. For
example, the adversary may control (‘Set’) and learn (‘Get’) the state of ev-
ery party i[t] ∈ N but this may be restricted (or fully prohibited) by specific
model M, allowing different fault models (honest-but curious, threshold, adap-
tive, proactive, etc.). However, for simplicity and focus, some generalizations
are left for future work. In particular, we allow the adversary to control all in-
puts events, while typical definitions of confidentiality and indistinguishability
requirements provide randomized inputs which are not directly observable by
the adversary. Similarly, we allow the adversary to control and observe all com-
munication events; a specific model predicate M may prohibit the adversary
from changing the messages, but an extension is required to prevent the adver-
sary from even observing the communication (e.g., if anonymous or confidential
channels must be assumed without providing appropriate mechanisms at the
protocol level). We leave extending the execution model to allow such additional
generalities to future work.

3.2 The Model Predicates

The execution process described in Algorithm 1 specifies the details of running a
protocol P against an adversary A; however, it does not, on its own, restrict the
adversary. An essential part of any security analysis, is to define the adversary
model, i.e., the exact capabilities of the adversary. In this subsection, we present
different model predicates, which precisely define a model for the adversary. We
use the model predicates to restrict the capabilities of the adversary as well as
the events that can happen in the execution process. This includes limiting of
the possible faults, defining initialization assumptions, and defining the commu-
nication and synchronization models. Our approach allows to analyze schemes
designed for different model predicates M, and to define the adversary capabil-
ities as well as the communication and synchronization assumptions, separately
from the specification of the protocol and from the security definitions.

16

We enforce restrictions on the adversary A by applying a model M to A
and ensuring that A satisfies M, as defined below. Let both A and M be PPT
algorithms, where M is a predicate (i.e., outputs > or ⊥).

Definition 1 (Model-satisfying adversary). We say that adversary A sat-
isfies model M, if for every protocol P and every set of entities N holds:

Pr [M(1κ,N,ExecA,P(1κ,N)) = ⊥] ∈ Negl(1κ)

We define and use several model predicates. Most of these predicates focus
on some specific aspect of the model, e.g.,MCLK

∆clk
, which defines a typical clock-

synchronization model (with bounded-drift from global real time). By separately
defining different aspects of the assumptions made, we can precisely define the
models and then reuse them in the analysis of different protocols and even dif-
ferent problems, allowing combinations of new and known model predicates as
necessary.

Before we proceed to present the individual model predicates, we first de-
scribe and discuss MPoC-PKI

∆com,∆clk
, the ‘composite’ model predicate, which encom-

passes adversary, clock synchronization and communication assumptions, that
we use in the analysis of the PoC-PKI PKI scheme; see §5.1 for the description
of PoC-PKI, and proofs of security underMPoC-PKI

∆com,∆clk
. Of course,MPoC-PKI

∆com,∆clk
is

quite specific for PoC-PKI; and applications and schemes, e.g., CTcomp, require
different models. However, most of the ‘sub-models’ of PoC-PKI, are generic
and can be used in definition of models for other tasks and schemes; indeed, the
model of CTcomp is based on the same component models.
MPoC-PKI

∆com,∆clk
is defined as the conjunction of four component model predi-

cates, each focusing on a different aspect: Mr̂-rounds
SecInit , modeling a trusted-setup

(initialization) with an authenticated message-response exchange, M|NF|≤f , an
f -Byzantine faults model, MCOM

∆com
, an authentic-sender, bounded-delay com-

munications model, and MCLK
∆clk

, a bounded-drift clock-synchronization model.
Namely:

MPoC-PKI
∆com,∆clk

(ξ) ≡M3-rounds
SecInit ∧M|NF|≤b(|N|/3)c(ξ) ∧MCOM

∆com(ξ) ∧MCLK
∆clk

(ξ) (1)

where we used ξ as a shorthand for (1κ,N,NF, R, t, outA), the inputs provided
to the model predicate. Notice the specific parameters, r̂ = 3 and f = b(|N|/3)c.

3.2.1 M|NF|≤f : up to f Byzantine (malicious) faults model

We next define M|NF|≤f , a specific adversary model allowing the adversary to
choose, and completely control, up to f of the entities in N. We refer to such
failures, where the adversary completely controls the entity, as malicious or
Byzantine faults. We use f as a function applied to the total number of entities
|N|. We refer to this particular faults model as M|NF|≤f , where f : N → N
bounds the number of faulty entities as a function of the total number of entities.
Specifically, the adversary may corrupt entities by performing the ‘Get’ and
‘Set’ operations. To enforce the model, we simply ensure that ‘Get’ and ‘Set’

17

operations can be applied only to entities in NF, and that |NF| ≤ f(|N|). We
define M|NF|≤f as:

M|NF|≤f (1κ,N,NF, R, t, outA) = (|NF| ≤ f (|N|))∧(∀t)(R.α[t] ∈ {‘Get’, ‘Set’} ⇒ i[t] ∈ NF)
(2)

PoC-PKI, our proof-of-concept PKI, usesM|NF|≤f with f defined as: f(n) =
b(n/3)c. Namely, the faulty entities can arbitrarily misbehave so long the ad-
versary controls at most a third of all entities. Note that M|NF|≤f only restricts
the set NF of faulty entities, which does not yet restrict the adversary’s ability
to interfere with the communication, clock and local inputs of any entity - in-
cluding non-faulty entities (in N − NF). By using M|NF|≤f in conjunction with
additional model predicates, e.g., MCOM

∆com
and MCLK

∆clk
(described next), we can

also restrict the adversary in such additional ways, as desired for a particular
analysis. Notice, in particular, that MCOM

∆com
, which defines restrictions on the

communication events, completely excludes events where the sender or recipient
are faulty (i.e., in NF). This allows the adversary to completely control all of
faulty entities.

3.2.2 Mr̂-rounds
SecInit : the r̂-rounds secure initialization model.

Cryptographic protocols are often designed assuming a secure initialization pro-
cess, e.g., assuming shared secret keys. However, in the execution process (Al-
gorithm 1), entities can only communicate via the adversary. As a result, we
cannot simply assume shared secret keys but the entities can only use their local
randomness to generate secret keys, and communicate, using cryptography, to
securely establish shared secret values. We next define a simple secure initializa-

tion model, Mr̂-rounds
SecInit . This model ensures r̂ secure ‘rounds’ of |N| steps each,

where in step t (where 1 ≤ t ≤ r̂ · |N|) holds:
– Entities are invoked with the special operation ‘Init’, i.e., α[t] = ‘Init’, and

in ‘round robin’, i.e., i[t] = t mod |N|. Note, in particular, that this prevents
the adversary, during the initialization, from invoking the special ‘Set’ and
‘Get’ operations, to control the state or output of an entity (‘Set’) or to
expose the state of an entity (‘Get’).

– Authenticated, reliable communication. Namely, every message received by
entity i from entity j at round 2 ≤ r ≤ r̂, was indeed sent by j in the
previous round to i; and vice verse, i.e., every message sent by i to j at
round 1 ≤ r ≤ (r̂ − 1), is correctly received by j, from sender i, in the next
round.
It is convenient to capture each of these two aspects by a separate model

predicate, i.e., Mr̂-rounds
SecInit (ξ) = Mr̂-rounds

InitOps (ξ) ∧ Mr̂-rounds
InitCom (ξ), where Mr̂-rounds

InitOps

captures the first aspect (‘operations’) andMr̂-rounds
InitCom captures the second aspect

(‘communications’). We now define each of these more precisely; for convenience,
let N = {1, 2, . . .}:

Mr̂-rounds
InitOps (1κ,N,NF, R, t, outA) =

(
∀i′ ∈ N, r ∈ {0, . . . , r̂ − 1} :
(R.i[i′ + r · |N|] = i′) ∧ (R.α[i′ + r · |N|] = ‘Init’)

)

18

Mr̂-rounds
InitCom (1κ,N,NF, R, t, outA) =

=

(
∀i′, j ∈ N, r′ ∈ {0, . . . , r̂ − 2}, m ∈ {0, 1}∗ :
(j,m) ∈ R.out[i′ + r′ · |N|]⇔ (i′,m) ∈ R.inp[j + (r′ + 1) · |N|])

)
Different protocols may require different number of initialization rounds. In

particular, we present and analyze two PKI schemes: PoC-PKI requires three
rounds and CTcomp requires only two. And, while the initialization model seems
appropriate for many protocols, there are surely many protocols which require
a different initialization model.

3.2.3 MCOM
∆com

: authentic-sender, bounded-delay communication model

We next present MCOM
∆com

, an authentic-sender, bounded-delay communication

model. It is convenient to define MCOM
∆com

as a conjunction of two simpler pred-

icates: MCOM-rcv
∆com

, ensuring authentic-sender for message-receive events, and

MCOM-send
∆com

, ensuring reliable, bounded-delay for message-send events. Namely:

MCOM
∆com(ξ) =MCOM-send

∆com (ξ) ∧MCOM-rcv
∆com (ξ)

We first present MCOM-rcv
∆com

, which ensures authentic-sender for message-receive
events. The adversary decides on the function α[tr] to be invoked at every round
tr as well as the input inp[tr]. To cause a message receipt event, the adversary
sets α[tr] to the special operation ‘Incoming’, and the input inp[tr] to the pair
(m, j) where m is the message and j ∈ N is the purported sender. We use dot
notation to refer to the message (inp[tr].m) and to the sender (inp[tr].j).

The authentic-sender property (MCOM-rcv
∆com

model) implies that inp[tr].j in-
deed sent this message to i[tr], during some previous round ts < t. We allow the
sender i[ts] to specify, as part of its output out[ts], one or more triplets of the
form (‘send’,m, j), specifying sending of message m to j ∈ N. The MCOM-rcv

∆com
model follows:

MCOM-rcv
∆com (1κ,N,NF, R, t, outA) =

=

[
(∀tr s.t. R.α[tr] = ‘Incoming’)(R.i[tr], R.inp[tr].j ∈ N− NF)⇒
∃ts < tr s.t. (‘send’, R.inp[tr].m,R.i[tr]) ∈ R.out[ts] ∧R.i[ts] = R.inp[tr].j

]

The MCOM-send
∆com

model ensures reliable, bounded-delay delivery of messages
sent. Assume that at round ts of the execution, the output out[ts] generated
by i[ts], includes a (‘send’,m, j) triplet, i.e., i[ts] sends message m to j ∈ N. If
theMCOM-send

∆com
model is true for this execution, then after at most ∆com, if the

execution did not terminate already, then entity j would receive m from i[ts].
Namely:

19

MCOM-send
∆com (1κ,N,NF, R, t, outA) =


(

(∀ts < t) (∃(‘send’,m, j) ∈ R.out[ts])∧
∧(R.τ [t] ≥ R.τ [ts] +∆com) ∧ (i[ts] ∈ N− NF)

)
⇒(

∃tr > ts s.t. R.τ [ts] +∆com ≥ R.τ [tr] ∧
∧R.inp[tr] = (m,R.i[ts])

)


We remark that:MCOM
∆com

only applies when both sender and recipient are non-

faulty (i.e., in N−NF);MCOM
∆com

only ensures delivery, sender authentication and
bounded delay. This still allows receipt of duplicate messages, which may involve
unbounded delay. To simplify MCOM-send

∆com
, we use the adversary-controlled τ [·]

values (line 6 of Algorithm 1). For this to be meaningful, we depend on the
synchronization properties of the MCLK

∆clk
model, discussed next.

3.2.4 MCLK
∆clk

: bounded-drift clock synchronization assumptions

Finally, we presentMCLK
∆clk

which models the bounded-drift clock synchronization

assumptions. We split this into two predicates, MDrift
∆clk

which limits the drift
between the clock values clk[t] which the adversary provides as input to the

protocol, and the ‘real time’ values τ [t]; and MWakeup
∆clk

, which provides a ‘wake-
up service’ to the protocol. Namely:

MCLK
∆clk

(ξ) =MDrift
∆clk

(ξ) ∧MWakeup
∆clk

(ξ)

We begin withMDrift
∆clk

, which bounds the clock drift. It enforces two require-
ments on the execution: each local-clock value (clk[t]) must be within ∆clk drift
from the ‘real-time’ τ [t], and the real-time values should be monotonously in-
creasing. Namely:

MDrift
∆clk

(1κ,N,NF, R, t, outA) =

[
(∀t′ ≤ t)(|R.clk[t′]−R.τ [t′]| ≤ ∆clk) ∧
(R.τ [t′ − 1] 6= ⊥)⇒ (R.τ [t′] ≥ R.τ [t′ − 1])

]
As a special case, when ∆clk = 0, this function defines a model where the

local clocks are fully synchronized, i.e., there is no difference between entities’
clocks. Finally, MWakeup

∆clk
provides a ‘wake-up service’ allowing the protocol to

perform time-driven activities and ensuring that appropriate functions are in-
voked properly.

MWakeup
∆clk

(1κ,N,NF, R, t, outA) =


(

(∀t′ ≤ t) ((‘Sleep’, x) ∈ R.out[t′]) ∧
∧ (∃r > t′)(R.τ [r] ≥ R.τ [t′] + x+∆clk)

)
⇒(

(∃t′′ > t′)(|R.τ [t′′]−R.τ [t′]− x| ≤ ∆clk)
∧ (R.i[t′] = R.i[t]) ∧ (R.α[t′] = ‘Wake-up’)

)


20

3.3 Model-Secure Requirements

To complete the presentation of the execution process, we now discuss how it
is used to define specific security requirements and properties, and to analyze
whether these properties are ensured by a given protocol P, under given model
M, interacting with any PPT adversary A. While we present game/experiment-
based definitions, future work may consider other forms of definitions, such as
simulation-based.

A protocol P would typically have multiple security properties, i.e., sat-
isfy multiple security requirements. We define a security requirement as a pair
(ξ,ExpξP), where ξ is the name of the requirement and ExpξP is an efficiently
computable predicate, which we refer to as the ξ experiment. Let b be the out-
come of the ξ experiment predicate ExpξP , applied to the inputs and outputs

of the execution process, i.e., b ← ExpξP(1κ,N,ExecA,P(1κ,N)); if b = > then
we say that requirement ξ was not satisfied in this execution of P, or that the
adversary won in this execution; and if b = ⊥, then we say that requirement ξ
was satisfied in this execution, or that the adversary lost. We say that protocol
P ensures requirement ξ under model M, if for any PPT adversary A, there is
only negligible probability of an execution in which A wins, i.e., which does not
satisfy ξ, i.e., where ExpξP returns >.

Definition 2 (Protocol P ensures requirement ξ under model M). Let

(ξ,ExpξP) be a security requirement, i.e., a name ξ and an efficiently computable

predicate ExpξP . We say that protocol P ensures requirement (ξ,ExpξP) under
model M, or, abusing notation, that P ensures ξ under M, if for every PPT
adversary A that satisfies M (Definition 1), and for every set N, holds:

Pr

[
(NF, R, t, outA)← ExecA,P(1κ,N)

ExpξP(1κ,N,NF, R, t, outA) = >

]
∈ Negl(1κ)

Most of the requirements depend on the specific cryptographic scheme or
protocol; specifically, in §4, we describe such requirements for PKI protocols.
However, there are some generic security requirements, which apply to many
protocols. We next identify a few generic requirements, which apply to PKI
schemes, but also appear applicable to other security protocols, focusing on
the basic security goals of detection of misbehaving entities and attribution of
statements.

3.3.1 Verifiable Attribution of Statements (VAS) Requirement

The output of many protocols may include attributable statements. An attributable
statement is a tuple (m,σ, ι), where m is string, ι ∈ N is the purported origin of
the statement, and σ provides evidence (typically, a signature), allowing attri-
bution of statement m to entity ι. We next explain the validation process, which
uses the evidence σ to establish if ι has, in fact, originated m.

We focus on the typical case, where attribution is based on the use of a
digital signature scheme S (Appendix A.2), applied by the protocol P. Namely,

21

σ is the result of applying the signing algorithm S.Sign to the message m,
using some (private) signing key sk belonging to the origin ι. Therefore, we say
that the attributable statement (m,σ, ι) is valid, i.e., that σ really ‘proves’ that
ι is the origin of m, if S.Ver(pk,m, σ) = >, where pk is the public signature-
verification key of ι, i.e., the public key that validates signatures computed using
sk. This attributes the message m to the ‘owner’ of the public key pk (and the
corresponding signing key sk). To attribute m to ι, it remains to establish the
association between ι and the public key pk, i.e., to attribute pk, and messages
verified by it, to ι. We focus on protocols where this association is known and
secure (‘off-band’), e.g., CA public keys in PKI schemes.

We formalize this by assuming that each entity ι ∈ N identifies its public key
pk by outputting the pair (‘public key’, pk) ∈ out[t̂], in some step t̂; namely, we
use ‘public key’ as a ‘label’, to identify output of the public key. Typically, entities
output the public key when they generate the key, i.e., i[t̂] = ι, possibly as an
initialization operation, i.e. α[t̂] = ‘Init’. Notice that entities may often also
send their public keys to each other, using the (‘send’,m, j) output convention
described in § 3.2.3; however, we prefer to keep the two conventions separate,
since we believe that not every protocol that uses verification of attribution,
would necessarily send public keys in precisely the same way.

More precisely, the following Key Attribution Predicate Vka outputs > if
entity ι has identified pk as its public key, in a given log of events R output of
an execution of the protocol P (Algorithm 1):

Vka(ι, pk,R) =
{
∃ t̂ s.t. R.i[t̂] = ι ∧ (‘public key’, pk) ∈ R.out[t]

}
(3)

We now define the Verifiable Attribution of Statements requirement, and
the corresponding experiment. The adversary A ‘wins’ in the experiment, if
its output outA includes both a valid attributable statement (m,σ, ι) for non-
faulty entity ι ∈ N − NF, and a verification key pk associated with ι, yet ι did
not originate m. To allow us to identify events t̂ in which an entity ι = i[t̂]
intentionally signed message m, we adopt the following convention: whenever
signing a message m, the party adds the pair (‘signed’,m) as part of its output,
i.e., (‘signed’,m) ∈ out[t̂]. Since this is always done, whenever the protocol signs
a message, we will not explicitly include the (‘signed’,m) pairs as part of the
output, which would make the pseudo-code cumbersome. Note that often the
entity will also send the signed message, however, different protocols may send
in different ways, hence this convention makes it easier to define the requirement.

The requirement is defined with respect to specific signature scheme S, and
the Vka predicate define above (Eq. 3). For simplicity, and since S is typically
obvious (as part of P), we do not explicitly specify S as a parameter of the
requirement.

Requirement 1. Verifiable Attribution of Statements (VAS). Protocol P en-
sures VAS, for signature scheme S, if any PPT adversary A would have neg-
ligible probability to win in the Verifiable Attribution of Statements experiment

22

ExpVAS
P , i.e., to cause its value to be ⊥:

ExpVAS
P (1κ,N,NF, R, t, outA) =

 ((m,σ, ι), pk)← outA ; ι ∈ N− NF∧
S.Ver(pk,m, σ) = > ∧ Vka(ι, pk,R) = >∧
@ t̂ s.t. i[t̂] = ι ∧ (‘signed’,m) ∈ out[t̂]


3.3.2 Generic misbehavior detection requirements

Many security protocols are required to be resilient to misbehaviors, i.e., to
achieve their goals, even if some of the entities, say entities in NF ⊂ N, are faulty,
and may misbehave (arbitrarily or in some specified manner). This resiliency to
faulty, misbehaving entities, is often based on detection of misbehavior; further-
more, often, many security protocols are required only to detect misbehaviors,
which would be followed by taking some additional measures to deter and/or
neutralize an attack. While misbehavior can be detected in different ways, de-
tection is typically based either on some evidence that a certain entity is dishon-
est, where the evidence should be verifiable by any third party, or based on an
accusation, where one entity (the accuser) accuses another entity (the suspect)
of some misbehavior. Such an accusation may not be true, and therefore, it is
harder to use this approach to deter and/or neutralize the attack; however, many
misbehaviors do not leave any evidence verifiable by a third party, in which case,
accusations may provide some security benefits, e.g., detection of the attack. A
typical example of such misbehavior that does not leave any evidence, is when a
party fails to act in a required way, e.g., to send a required message or response;
such failure may be plausibly blamed on communication issues, or on failure of
the intended recipient. Often, a party, say Alice, detects such failure, say of Mal,
to send a required message, after Alice waits for some maximum delay, and then
Alice issues an ‘accusation’ against Mal, to alert others; for example, see [40].
An honest entity would only accuse a misbehaving party; however, because an
accusation cannot be verified, a misbehaving entity could falsely accuse anyone,
even an honest entity.

To formalize these concepts, we define two requirements: one to ensure that
honest entities cannot be ‘framed’ as misbehaving, i.e., evidences are always
verifiable with correct outcome, and another one to express that honest entities
never accuse other honest entities, i.e., only accuse misbehaving entities.

The Non-frameability requirement and Proof of Misbehavior. The first se-
curity requirement is called non-frameability (of honest entities), and ensures
that a specific protocol would not allow any entity to produce a valid Proof of
Misbehavior of a non-faulty entity. The requirement is therefore defined with
respect to a given Proof of Misbehavior Validation Predicate Vp, which receives
two inputs: a Proof-Validation Key pk, and a purported-proof ζ. The output of
Vp(pk, ζ) is >, if and only if ζ is a valid Proof of Misbehavior, as indicated by
pk; i.e., a misbehavior by an entity who knows the corresponding private key,
typically, the ‘owner’ of pk, which can be validated using the Key Attribution
Predicate Vka. The natural way is to define the Proof of Misbehavior Validation
Predicate Vp, to be protocol specific, as the notions of misbehavior, and valid

23

proof of misbehavior, depend on the specific protocol requirements. We specify
for P a special stateless operation α =‘Vp’, which does not modify the state or
depend on it, or on the local clock. Abusing notation, we denote this operation
simply as P.Vp(pk, ζ). The use of a protocol-defined P.Vp allows us to define,
below, the Non-frameability requirement.

Requirement 2. Non-frameability (NF). The adversary should have negligible
probability to win in the Non-frameability (NF) experiment, defined as follows,
i.e., to output a Proof of Misbehavior for an honest entity. Let Vp : {0, 1}∗ ×
{0, 1}∗ → {>,⊥} be a predicate. We define the non-frameability experiment as
follows:

ExpNF
P (1κ,N,NF, R, t, outA) = {(ι, ζ, pk)← outA ; Vka(ι, pk,R) ∧P.Vp(pk, ζ) ∧ι 6∈ NF}

(4)

Note: we present two PKI schemes: CTcomp, which relies on Proof of Mis-
behavior as well as on accusations, and PoC-PKI, which does not depend on
detection mechanisms, since it prevents the corresponding attack, by relying
on majority (and threshold signatures). For prevention-based protocol such as
PoC-PKI, the Proof of Misbehavior Validation Predicate (Vp) always returns ⊥,
hence, the requirement is trivially satisfied.

Accusations and the No False Accusations requirement. Recall that, in the
execution process, the adversary can use the ‘Set’ operation to set the output
and the state of a party; we refer to such party as faulty, and denote by NF the
set of faulty parties in an execution. In many protocols, one party, say Alice, may
detect that another party, say Mal, is faulty, typically, by receiving an invalid
message from Mal - or simply by not receiving a message expected from Mal by
a specific ‘deadline’ (for bounded-delay communication models).

Intuitively, the No False Accusations (NFA) requirement states that a non-
faulty entity a 6∈ NF (Alice), would never (falsely) accuse of a fault, another non-
faulty entity, b 6∈ NF (Bob). To properly define this requirement, we first define a
convention for one party, say a ∈ N (for ‘Alice’), to output an Indicator of Accusation,
i.e., ‘accuse’ another party, say m ∈ N (for ‘Mal’), of a fault. Specifically, we say
that at step tA of the the execution, entity i[tA] accuses entity m (Mal), if out[tA]
is a triplet of the form (IA,m, x). The last value in this triplet, x, should contain
the clock value at the first time that Alice accused Mal; we discuss this after the
requirement, as the value x is not relevant for the requirement, and just used as
a convenient convention for some protocols.

Requirement 3. No False Accusations (NFA). The adversary should have neg-
ligible probability to win in the No False Accusations (NFA) experiment ExpNFA

P ,
defined as follows, i.e., to cause one honest entity, say Alice, to accuse an-
other honest entity, say Bob (i.e., both Alice and Bob are in N − NF). Namely,
ExpNFA

P (1κ,N,NF, R, t, outA) returns ⊥ only if out[t] = (IA, j, x), for some
j ∈ N, and there is no step t1 in which the adversary ‘corrupted’ either j or
i[t], i.e., where α[t1] = ‘Set’ and i[t1] ∈ {i[t], j}. More precisely:

ExpNFA
P (1κ,N,NF, R, t, outA) = {(i[t] 6∈ NF)∧(∃j ∈ N−NF, x)((IA, j, x) ∈ out[t])}

(5)

24

As noted above, in an accusation, the output out[tA] contains a triplet of the
form (IA,m, x), where x is a clock value, and should contain the clock value at
the first time that Alice accused Mal. We found this convenient in definition of
protocol-specific requirements, where a party may accuse another party multiple
times, and the requirement is related to the time of the first accuse event. To
allow the use of this convention, we define the following ‘technical’ requirement
and experiment, which merely confirms that honest entities always indicate, in
any accuse event, the time of the first time they accused the same entity.

Requirement 4. Use First-Accuse Time (UFAT). The adversary should have
negligible probability to win in the Use First-Accuse Time (UFAT) experiment
ExpUFAT

P , defined as follows. To simplify the experiment, let fc(i,m,R) be the
value of clk[t′], where t′ is the first event in R in which entity i accused entity
m ∈ N (or ⊥ if no such event exists).

ExpUFAT
P (1κ,N,NF, R, t, outA) = {(i[t] 6∈ NF)∧(∃m ∈ N)(out[t] = (IA,m, x)∧(x 6= fc(i,m,R)}

(6)

4 Defining a Secure PKI Scheme

In this section, we first define a PKI scheme, and then define its security require-
ments.

4.1 PKI: Entities and Certificates

PKI schemes are protocols for a set N of authorities, such as certificate authorities
(CAs). For simplicity and generality, our definitions do not consider different
types of authorities; however, specific PKI schemes may define different types
of authorities, for example, we later present the CTcomp scheme, where some
authorities in N act as loggers, monitors or CAs.

PKI schemes have two types of users (clients): subjects, which typically use a
CA to obtain and manage their public key certificate, and relying parties, which
use the certificates of the subjects, in order to determine if they want to commu-
nicate with the subject (using the certified public key). Note, however, that we
do not explicitly model clients as entities in the execution; instead, the adversary
A ‘acts for’ the clients, i.e., sets the inputs to the authorities, including all client
requests, and receives the outputs generated by the authorities, including all re-
sponses, as per the execution process (Algorithm 1). Authorities are responsible
for the entire certificate life cycle, where the main events of issuing, upgrading
and revoking certificates are driven by the clients’ requests (as generated by the
adversary).

A certificate authority (CA), also referred to as an issuer, is an authority (in
N) that issues certificates to subjects, where a certificate is a verifiable association
of an identifier id (for a subject), with public information pub related to the
subject; in a public key certificate, the public information includes a subject’s
public key.

25

We allow certificates to contain a number of attributes, from a set AttrSet.
Attributes define properties of the subject and/or of the certificate, typically,
validated by one of the authorities ι ∈ N. Different PKI schemes may use differ-
ent sets AttrSet of attributes. For example, the ‘classical’ X.509 PKI, only uses
Accountability (ACC) and Revocation accountability (ReACC), both signed, typ-
ically, by the issuing CA (aka the issuer). However, more advanced PKI schemes,
e.g., Certificate Transparency, require additional attributes, often signed by other
entities, e.g., a logger; see details when we discuss CTcomp.

We define the ACC,∆TRA,∆EQ-D,EQ-P,ReACC (REV),NReACC (NREV) and
∆ReTRA attributes, each implying a corresponding security property of the
certificate: accountability, ∆-transparency, equivocation detection, equivocation
prevention, revocation accountability, non-revocation accountability, and∆-revocation
transparency requirements, respectively. We present game-based definition of
these security requirements in §4.4.

Definition 3 (Certificate). A certificate is a tuple: ψ = (id, pub, sd, ed, ρ):
– ψ.id: identifier of the entity for which ψ was issued.
– ψ.pub: public information associated with ψ.id. The ‘classical’ public infor-

mation is a cryptographic public key, but our definitions apply as well to any
other public information.

– ψ.sd and ψ.ed: start and end of the certificate validity period, respectively.
– ψ.ρ: certificate’s signatures and attributes :
• ψ.ρ[attr].σ: a attestation that ψ has an attribute attr.
• ψ.ρ[attr].ι: identity of the authority who attests for attr.
• ψ.ρ[attr].clk: the local clock value, when ψ.ρ[attr].ι has attested for attr.

To issue a certificate, we invoke the P.Issue operation. Intuitively, this rep-
resent handling of a certificate request coming from some client, who provides
the identifier id and the public key (or information) pub; formally, however, it
is the adversary who invokes this operation, since the adversary is modeling an
arbitrary sequence of client requests, as well as the arbitrary behavior of the
environment.

Certificates are issued by some issuer (CA), ι ∈ N, and the output normally
has (only) the ACC attribute, attesting to the fact that ι has issued the certifi-
cate, i.e., is accountable for it. Intuitively, ι is attesting that it has performed
the required verification of the identity of the requesting client. However, this
verification process is not part of the properties we model.

Once a certificate is issued, it can be then upgraded using the P.Upgrade
algorithm, ‘adding’ to the certificate one or more attributes from AttrSet. For-
mally, of course, these are two different certificates, since the output certificate
contains this additional attribute; but they have the same ‘Core’, i.e., the same
‘basic data’ (identifier, public key, and validity dates). This is captured by the
Core function, defined as follows.

Definition 4 (The Core function). Given a certificate ψ = (id, pub, sd, ed, ρ),
its Core is defined as Core(ψ) = (ψ.id, ψ.pub, ψ.sd, ψ.ed), i.e., the entire certifi-
cate except for its attributes ψ.ρ. For convenience, we define Core(⊥) = ⊥.

26

Pending Certificates. The execution model required every protocol opera-
tion to be instantaneous, i.e., return immediate response. However, the P.Issue,
P.Revoke and P.Upgrade algorithms may not be able to immediately return the
requested certificate, since, in some PKI systems, they may need to first interact
with other authorities, e.g., to avoid equivocation (when required). Such non-
immediate response is supported by pending certificates. The pending certificate
ψp is a commitment to produce the requested certificate (or failure indication),
within ∆ time; ∆ is typically known from the given attribute or request. Namely,
the response is guaranteed, once the P.Upgrade algorithm is invoked with the
pending certificate ψp, ∆ time or more after the pending certificate was sent.
The final output is either the expected non-pending upgraded certificate, or ⊥,
i.e., the request was declined. We emphasize that whether ψp was generated
by the P.Issue, P.Revoke, or the P.Upgrade algorithm, if a pending certificate
is received, then the final response can only be obtained using the P.Upgrade
algorithm.

Revocation. Revocation is a major aspect of PKI schemes, addressed already
in X.509. X.509 defines one revocation mechanism, the certificate revocation lists
(CRLs); however, in practice, most deployments of X.509 follow the OCSP spec-
ifications [57]. Both CRLs and OCSP are non-trivial, with multiple variants and
extensions, beyond our scope; we focus on the functionality which is required to
properly support revocation. Notice that most post-X.509 PKIs do not explicitly
address revocation, implicitly adopting the X.509 mechanisms (CRLs or OCSP).

With both CRLs and OCSP, revocation of certificates is handled by separate
signed objects - the CRLs and the OCSP responses. Our definitions of PKI
schemes and their security requirements are applicable to both CRLs and OCSP
responses, however, without explicitly referring to any specific additional data
structure (beyond the certificates themselves). Instead, we view the revocation
process as resulting in a certificate with the same Core, but with revocation-
related attributes.

Specifically, we consider three revocation-related attributes: Revoked REV at-
tribute: attests that the certificate was revoked by a given authority, at a given
local-clock value. Revocation is invoked by the P.Revoke operation of the PKI
scheme. A revocation attribute (REV) is useful, in particular, to allow subjects
that revoked their certificate, to confirm that their request was honored. Signed
OCSP responses provide an existing mechanism for REV; CRLs do not support
REV. Non-revoked NREV attribute attests that the certificate was valid (not re-
voked), at a given local-clock value. Such attestations allow a relying party to
justify reliance on the certificate, more precisely, on the mapping of public infor-
mation/key to the identifier, e.g., for accepting a signed document as evidence of
it being approved by the subject of the certificate. Both CRLs and OCSP pro-
vide NReACC. ∆-revocation transparency ∆ReTRA: attests that the revocation
shall be made available, in particular, to any ‘monitoring’ authorities, by ∆ time
units from the specified time (on the local clock). Monitoring authorities may
use OCSP queries learn of revocations in timely manner, however, that requires
a query for each of these certificates, which would not be viable.

27

To find out if a given certificate is revoked, invoke the P.IsRevoked operation
at the issuer of the certificate. If ψ was revoked, then P.IsRevoked returns its
revoked version ψr, with the REV attribute, and with the same Core (Core(ψr) =
Core(ψ)). If ψ was not revoked so far, then P.IsRevoked also returns a certificate
with the same Core, but with the NREV attribute.

Checking certificate validity: beyond checking for revocation by invoking
P.IsRevoked, PKI schemes also provide two functions, to check certificate status:
the stateless P.WasValid function, and the stateful P.Audit function. However,
the two functions differ in their goals, interfaces and usage. Details follow.

4.2 PKI Algorithms

We now define a PKI scheme P, which supports the following set of operations:

P = (Init, Issue,Upgrade,Revoke, IsRevoked,Audit,WasValid,Vp)

Two of these operations, Init and Vp, are generic, i.e., relevant for many
protocols and tasks, and therefore discussed already in §3.1. We next briefly
discuss the other operations and their inputs4.

To avoid clutter, we use the simplified notations defined in §3.1, i.e., explicitly
write only the input parameters of each operation, although the implementation
will, obviously, also refer to the clock and the state. (Note that the WasValid
operation is stateless, hence, its implementation cannot refer to the clock or
state.)

Issue(id, pub, sd, ed) → ψ/ψp/⊥: The algorithm takes as input an identity id,
public information pub, start date sd and end date ed, and outputs a cer-
tificate ψ for (id, pub) that is valid from sd till ed. The algorithm may also
output a pending certificate ψp, if it cannot immediately issue the certificate,
e.g., if it needs to check with other authorities. If the operation fails, e.g.,
due to discovery of conflicting certificate, then the algorithm returns ⊥.

Upgrade(ψ, attr)→ ψ’/ψp/⊥: The algorithm takes as input a certificate ψ and
an attribute attr. If the upgrade request is valid, the algorithm outputs an
upgraded certificate ψ’, with same core, and with the attr attribute. The
algorithm may also output a pending certificate ψp, if it requires time for
interactions with other entities. If the upgrade fails, the algorithm returns ⊥.
If the input ψ is (already) a pending certificate, and the time specified was
reached, then the algorithm does not return a pending certificate; it either
returns the upgraded certificate or failure (⊥).

Revoke(ψ)→ ψr/ψp/⊥: The algorithm takes as input a certificate ψ, and out-
puts a revoked certificate ψr, a pending-revoked certificate ψp, or failure
indicator ⊥.

4 Implementations may allow additional optional inputs, in which case, our require-
ments should be interpreted as holding for any values of these additional inputs. The
two PKI schemes we study do not use such optional inputs.

28

IsRevoked(ψ) → ψ’/ψr/⊥: The algorithm takes as input a certificate ψ. If ψ
is known to be a valid non-revoked certificate, the algorithm outputs ψ’,
which is identical to ψ along with a proof of non-revocation until the current
local time using the NREV attribute. If ψ was already revoked, the algorithm
returns the revoked certificate ψr. In any other case, the algorithm returns
⊥.

Audit(id, attr) → ψ/⊥ or Audit(ψ, attr) → >/IA/ζ/⊥: When Audit is invoked
with an identifier id and an attribute attr ∈ AttrSet, it either returns a valid
set of certificates Ψ issued for id, correctly endorsed for attr, and known to
the entity Audit is invoked on, or ⊥ otherwise (no such certificates). When
Audit is invoked with a certificate ψ and an attribute attr ∈ AttrSet, it
outputs > if the current state indicates that ψ is valid, and, in particular,
that attr has been legitimately included. In contrast, if the current state
indicates attr should not have been included in ψ, then Audit outputs an
Indicator of Accusation (IA) or a proof of misbehavior ζ. Otherwise, e.g.,
if the current state does not provide the necessary information, then the
algorithm returns ⊥. For example, in CTcomp, we use Audit to validate the
∆TRA attribute; if a certificate has the ∆TRA attribute, but is not ‘known’
to a monitoring entity, then invoking P.Audit in that entity will result in
either proof of misbehavior or Indicator of Accusation.

WasValid(ψ, pk, attr [, tms])→ >/Pending/⊥: This is a stateless function, that
takes as input a certificate ψ, a public key pk, an attribute attr ∈ AttrSet,
and, optionally, timestamp tms. If ψ is a valid certificate, with attribute attr
attested to using public key pk, then the algorithm outputs >. If ψ has the
attr attribute but in a pending state, the algorithm outputs Pending. If tms
is used, then the output is with respect to time tms. This also applies to
checking if the certificate is expired (that is, tms is outside of the sd and ed
dates). In any other case, the algorithm outputs ⊥.

4.3 PKI Correctness Requirements

Let (ξ,ExpξP) be a requirement; recall (Definition 2) that protocol P ensures

requirement (ξ,ExpξP) under model M, if for every PPT adversary A that
satisfies M, and every set of entities N, there is negligible probability that a
random execution of A with P, will not satisfy ξ.

We present the (Correct-α,ExpCorrect-α
P) requirements, confirming that the α

operation of P, for α ∈ {Issue, Revoke, Upgrade, IsRevoked}, either return a valid
certificate with the expected attributes (depending on α), or failure indication
(⊥). Recall that for protocol P, validity of a certificate is defined by the (stateless)
P.WasValid function; hence, the experiment requires the adversary to generate
an execution ending in an α ∈ {Issue, Revoke, Upgrade, IsRevoked} operation
with incorrect results, as defined by P.WasValid.

29

Requirement 5. Correctness requirements. Let α ∈ {Issue, Revoke, Upgrade, IsRevoked}.
The (Correct-α,ExpCorrect-α

P) requirement is defined by the following experiments:

ExpCorrect-Issue
P (1κ,N,NF, R, t, outA) =

R.i[t] 6∈ NF ∧ Vka(R.i[t], outA, R) ∧
∧ R.α[t] = ‘Issue’ ∧ R.inp[t] = (ip, pub, sd, ed) ∧ R.out[t] 6= ⊥ ∧

∧

P.WasValid(R.out[t], outA,ACC)⊥ ∨
∨R.out[t].ρ[ACC].ι 6= R.i[t] ∨
∨Core(R.out[t]) 6= Core(R.inp[t])




ExpCorrect-Revoke
P (1κ,N,NF, R, t, outA) =

R.i[t] 6∈ NF ∧ Vka(R.i[t], outA, R) ∧
∧ R.α[t] = ‘Revoke’ ∧ R.out[t] 6= ⊥ ∧

∧

P.WasValid(R.out[t], outA,REV)⊥ ∨
∨R.out[t].ρ[REV].ι 6= R.i[t] ∨
∨Core(R.out[t]) 6= Core(R.inp[t])




ExpCorrect-Upgrade
P (1κ,N,NF, R, t, outA) =

R.i[t] 6∈ NF ∧ Vka(R.i[t], outA, R) ∧
∧ R.α[t] = ‘Upgrade’ ∧ R.inp[t] = (ψ, attr) ∧ R.out[t] 6= ⊥ ∧

∧

P.WasValid(R.out[t], outA, attr)⊥ ∨
∨R.out[t].ρ[attr].ι 6= R.i[t] ∨
∨Core(R.out[t]) 6= Core(R.inp[t])




ExpCorrect-IsRevoked
P (1κ,N,NF, R, t, outA) =

R.i[t] 6∈ NF ∧ Vka(R.i[t], outA, R) ∧
∧ R.α[t] = ‘IsRevoked’ ∧ R.out[t] 6= ⊥ ∧

∧
(
attr ∈

{
ReACC,
NReACC

})P.WasValid(R.out[t], outA, attr)⊥ ∨
∨R.out[t].ρ[attr].ι 6= R.i[t] ∨
∨Core(R.out[t]) 6= Core(R.inp[t])




4.4 PKI Security Requirements

Let (ξ,ExpξP) be a security requirement; recall (Definition 2) that protocol P
ensures security requirement (ξ,ExpξP) under modelM, if for every PPT adver-
sary A that satisfiesM, and every set of entities N, there is negligible probability
that a random execution of A with P, will not satisfy ξ. Therefore, to define the
requirements, it only remains to specify their names and experiments.

We now present a description and an experiment for the accountability prop-
erty.

Requirement 6 (Accountability (ACC)). An adversary A wins in the account-
ability experiment ExpACC

P , if it produces an accountable certificate ψ which is
valid, yet the specified issuing authority ψ.ρ[ACC].ι did not issue ψ. See Algo-
rithm 2. See Algorithm 2.

30

Algorithm 2 ExpACC
P

ExpACC
P (1κ,N,NF, R, t, outA):

1: (ACC, ψ, ι, pk)← outA

2: return :

// pk is a valid key
3: Vka(ι, pk,R) ∧

// ψ is a valid accountable certificate
4: P.WasValid(ψ, pk,ACC) ∧

// ψ was issued by honest authority ι
5: ι = ψ.ρ[ACC].ι ∧ ι ∈ N− NF ∧

// However, ι did not issue ψ

6: @ t̂ s.t. R.i[t̂] = ι ∧ α[t̂] = ‘Issue’ ∧ R.inp[t̂] = (ψ.id, ψ.pub, ψ.sd, ψ.ed)

The ExpACC
P (1κ,N,NF, R, t, outA) takes as input a security parameter 1κ, a

set of entities N and the output of the Exec algorithm, i.e., the subset of faulty
entities NF, transcript R of the execution process, index of the last round t of
the execution, and the transcript of the adversary’s choices outA. In line 1, the
algorithm extracts from outA the certificate returned by the adversary (ψ), the
selected honest authority (ι), and ι’s public key (pk). In line 3, we validate the
key outputted by the adversary using the Key Attribution Predicate (Vka). The
adversary wins the game if ψ is a valid accountable certificate issued by the
honest authority ι (lines 4-5), yet ι was never instructed to execute the P.Issue
algorithm along with the correct inputs ψ.id, ψ.pub, ψ.sd, ψ.ed (line 6).

Requirement 7 (Revocation accountability (ReACC)). An adversary A wins in
the revocation accountability experiment ExpReACC

P if it produces a valid revoked
certificate ψr issued by an honest authority ψr.ρ[REV].ι, where ψr.ρ[REV].ι did
not revoke ψr. See Algorithm 3.

Algorithm 3 ExpReACC
P

ExpReACC
P (1κ,N,NF, R, t, outA):

1: (ReACC, ψr, ι, pk)← outA

2: return :

// pk is a valid key
3: Vka(ι, pk,R) ∧

// ψr is a valid revoked certificate
4: P.WasValid(ψr, pk,REV) ∧

// ψr was revoked by an honest authority
5: ι = ψr.ρ[REV].ι ∧ ι ∈ N− NF ∧

// However, ι did not revoke ψr

6: @ t̂, ψ s.t. R.i[t̂] = ι ∧ α[t̂] = ‘Revoke’ ∧ R.inp[t̂] = (ψ) ∧ Core(ψ) = Core(ψr)

In line 1 of ExpReACC
P , the algorithm extracts from outA the certificate re-

turned by the adversary (ψr), the selected honest authority (ι), and the its public

31

key (pk). The adversary wins the game if ψr is a valid revoked certificate revoked
by the honest authority ι (lines 4-5), yet ι was never instructed to revoke such
a certificate, i.e., to execute the P.Revoke algorithm, given as input a certificate
which has the same core as ψr (line 6).

Requirement 8 (Non-revocation accountability (NReACC)). An adversary A
wins in the non-revocation accountability experiment ExpNReACC

P if it produces
a certificate ψr revoked by an honest authority ψr.ρ[REV].ι, and a certificate ψ
with the same core as ψr, which has the non-revoked attribute attested by an
honest authority ψ.ρ[NREV].ι, where the attestation was performed after ψr was
revoked. See Algorithm 4.

In line 1 of ExpNReACC
P , the algorithm extracts from outA two certificates

(ψ, ψr) and corresponding public keys (pk,pkr) (line 1). The adversary wins the
ExpNReACC

P game if it produces a valid, revoked certificate ψr and a matching
non-revoked certificate ψ (line 4) such that ψ was produced after ψr (line 6),
and both were produced by by the same honest authority (line 5).

Algorithm 4 ExpNReACC
P

ExpReACC
P (1κ,N,NF, R, t, outA):

1: (NReACC, ψ, ψr, pk, pkr)← outA

2: return :

// pk and pkr are valid keys
3: Vka(ψr.ρ[REV].ι, pkr, R) ∧ Vka(ψ.ρ[NREV].ι, pk,R) ∧

// ψr is a valid revoked certificate and ψ is a matching, valid non-revoked certificate
4: P.WasValid(ψr, pkr,REV) ∧ P.WasValid(ψ, pk,NREV) ∧ Core(ψr) = Core(ψ) ∧

// both REV and NREV were signed by honest authorities
5: {ψ.ρ[REV].ι, ψ.ρ[NREV].ι} ⊆ N− NF

// ψ was produced after ψr
6: ψ.ρ[NREV].clk > ψr.ρ[REV].clk

Requirement 9 (∆-Transparency (∆TRA)). An adversary A wins in the ∆-
transparency experiment Exp∆TRA

P if it produces a valid certificate ψ, which is
transparent at time ψ.ρ[∆TRA].clk, yet there is any pair of honest authorities
ι, ι′ who are not aware of ψ after time ψ.ρ[∆TRA].clk + ∆, and neither issued
an Indicator of Accusation for the authority who endorsed the ∆TRA attribute
for ψ, or neither has a proof of misbehavior of that authority. See Algorithm 5.

32

Algorithm 5 Exp∆TRA
P

Exp∆TRA
P (1κ,N,NF, R, t, outA):

1: (∆TRA, ψ, pk)← outA

2: ι = R.i[t], ι′ = R.i[t-1]

3: return :

// pk is a valid public key
4: Vka(ψ.ρ[∆TRA].ι, pk,R) ∧

// ψ is a valid transparent certificate
5: P.WasValid(ψ, pk,∆TRA) ∧

// both ι and ι′ are honest
6: R.i[t-1] = R.i[t-2] ∧ {ι, ι′} ∈ N− NF ∧

// check for ∆TRA ψ that matches id
7: R.α[t-2] = ‘Audit’ ∧

R.inp[t-2] = (ψ.id,∆TRA) ∧

// check for any issues with ∆TRA ψ
8: (t′ = t-1, t)R.α[t′] = ‘Audit’ ∧

R.inp[t′] = (ψ,∆TRA) ∧

// time for ψ to be ∆TRA has passed
9: R.clk[t-2] ≥ ψ.ρ[∆TRA].clk +∆ ∧

// ψ is not transparent
10: ψ 6∈ R.out[t-2] ∧

// neither reported ψ.ρ[∆TRA].ι as bad
or neither has a valid proof of
ψ.ρ[∆TRA].ι’s misbehavior

11: (t′ = t-1, t)

((IA, ψ.ρ[∆TRA].ι, x)|x≤ψ.ρ[∆TRA].clk+∆ 6∈ R.out[t′]

∨

12: P.Vp(pk,R.out[t′]) = ⊥)

The adversary wins the Exp∆TRA
P the game if it can produce (line 1) a valid,

transparent certificate ψ (line 5) such that there exist two honest authorities
ι, ι′ (line 6) who after the appropriate time for ψ to be ∆TRA (line 9) are not
aware of ψ (line 10) and they do not consider the authority who endorsed ψ
for ∆TRA faulty, i.e., issued an Indicator of Accusation at the appropriate time
(line 11) or have a valid proof of its misbehavior validated using P.Vp (line 12).
This requirement is validated by verifying that ι and ι′ were instructed to invoke
P.Audit with the appropriate inputs (lines 7-8) and produces appropriate outputs
as described above. This ensures that if P.Audit is invoked on two different honest
entities, the answers will be consistent, i.e., a certificate will not be transparent
from one entity’s point of view but not the other, and if the certificate is not
transparent, the issuer will be accused of misbehavior (using IA) or there will
be a valid proof of its misbehavior.

Requirement 10 (Revocation transparency (∆ReTRA)). An adversary A wins
in the ∆-revocation transparency experiment Exp∆ReTRA

P if it produces a valid
certificate ψ, which is ∆ReTRA at time ψ.ρ[∆ReTRA].clk, and a matching,
valid certificate ψr, which is revoked at time ψr.ρ[REV].clk by an honest au-
thority, yet there is any pair of honest authorities ι, ι′ who are not aware of

33

ψr after time max(ψr.ρ[REV].clk, ψ.ρ[∆ReTRA].clk) +∆, and neither issued an
Indicator of Accusation for the authority who endorsed the ∆ReTRA attribute
for ψ, or neither has a proof of misbehavior of that authority. See Algorithm 6.

Algorithm 6 Exp∆ReTRA
P

Exp∆ReTRA
P (1κ,N,NF, R, t, outA):

1: (∆ReTRA, ψ, ψr, pk, pkr)← outA

2: ι = R.i[t], ι′ = R.i[t-1]

3: return :

// pk and pkr are valid keys
4: Vka(ψ.ρ[∆ReTRA].ι, pk,R) ∧

Vka(ψr.ρ[REV].ι, pkr, R) ∧

// ψ is a valid ∆ReTRA certificate
5: P.WasValid(ψ, pk,∆ReTRA) ∧

// ψr is a valid revoked certificate
6: P.WasValid(ψr, pkr,REV) ∧

// ψ and ψr have the same Core
7: Core(ψ) = Core(ψr) ∧

// ψr revoked by an honest entity
8: ψ.ρ[REV].ι ∈ N− NF ∧

// both ι and ι′ are honest
9: R.i[t-1] = R.i[t-2] ∧ {ι, ι′} ∈ N− NF ∧

// check for ∆ReTRA ψ that matches id
10: R.α[t-2] = ‘Audit’ ∧

R.inp[t-2] = (ψ.id,∆ReTRA) ∧

// check for any issues with ∆ReTRA ψ
11: (t′ = t-1, t)R.α[t′] = ‘Audit’ ∧

R.inp[t′] = (ψ,∆ReTRA) ∧

// time to know REV status has passed
12: R.clk[t-2] ≥ max(ψr.ρ[REV].clk,

ψ.ρ[∆ReTRA].clk) +∆ ∧

// ψ is not ∆ReTRA
13: ψ 6∈ R.out[t-2] ∧

// neither reported ψ.ρ[∆ReTRA].ι
as bad or neither has a valid proof of
ψ.ρ[∆ReTRA].ι’s misbehavior

14: (t′ = t-1, t)

((IA, ψ.ρ[∆ReTRA].ι, x)|x≤ψ.ρ[∆ReTRA].clk+∆ 6∈ R.out[t′]

∨

15: P.Vp(pk,R.out[t′]) = ⊥)

The adversary wins the Exp∆ReTRA
P game if the following requirements are

met. First, ψ must be a valid ∆ReTRA certificate (line 5), ψr must be a matching,
valid revoked certificate (lines 6-7) produced by an honest authority (line 8).
Second, there exist two honest authorities ι, ι′ (line 9) who after the appropriate
time for the revocation status to be known, i.e., at most ∆ after ψr was revoked
or ψ became ∆ReTRA whichever is later (line 12) are not aware of ψr (line 13)

34

and they do not consider the authority who endorsed ψ for ∆ReTRA faulty
(lines 14-15), validated as in the ∆TRA experiment described above.

Requirement 11 (Equivocation detection (∆EQ-D)). An adversary A wins
in the ∆-equivocation detection experiment Exp∆EQ-D

P if it produces two valid,
non-revoked ∆EQ-D certificates ψ, ψ’ for the same identifier (ψ.id = ψ’.id) and
for overlapping validity periods such that each certificate has different public in-
formation (ψ.pub 6= ψ’.pub), yet none of the entities in N was able to detect
the equivocation before the ∆ time of the ∆EQ-D property has passed. See Algo-
rithm 7.

35

Algorithm 7 Exp∆EQ-D
P

Exp∆EQ-D
P (1κ,N,NF, R, t, outA):

1: (∆EQ-D, ψ, ψ’, pk, pk′, pkι)← outA

2: ι = R.i[t]

3: return :

// pk, pk′ and pkι are valid keys
4: Vka(ψ.ρ[∆EQ-D].ι, pk,R) ∧

Vka(ψ’.ρ[∆EQ-D].ι, pk′, R) ∧

Vka(ι, pkι, R) ∧

// ι is honest
5: t′ = (t-4, t-3, t-2, t-1)R.i[t′] = R.i[t] ∧

ι ∈ N− NF ∧

// ψ and ψ’ are unequivocal
6: P.WasValid(ψ, pk,∆EQ-D) ∧

7: P.WasValid(ψ’, pk′,∆EQ-D) ∧

// ψ and ψ’ have the same identifier
8: ψ.id = ψ’.id ∧

// ψ and ψ’ have overlapping validity
// periods, yet different PubInfo

9: ψ.sd < ψ’.sd < ψ.ed ∧ ψ.pub 6= ψ’.pub ∧

// both certs are non-revoked
10: (t′ = t-3, t-4)R.α[t′] = ‘IsRevoked’ ∧

11: R.inp[t-3] = (ψ,NREV) ∧

R.inp[t-4] = (ψ’,NREV) ∧

12: (t′ = t-3, t-4)

(P.WasValid(out[t′], pkι,NREV)

// The ∆ time for detection has passed
13: R.τ [t] > ∆+max(ψ.ρ[∆EQ-D].clk,

ψ’.ρ[∆EQ-D].clk)

// No one detected the equivocation
14: (@t′ ≤ t)

(
(ψ,ψ’, ‘Equivocation’)← out[t′]

)
∧

// check for certs that match id
15: R.α[t-2] = ‘Audit’ ∧

R.inp[t-2] = (ψ.id,∆EQ-D) ∧

// audit for ψ and ψ’
16: R.α[t-1] = ‘Audit’ ∧

R.inp[t-1] = (ψ,∆EQ-D) ∧

17: R.α[t-1] = ‘Audit’ ∧

R.inp[t-1] = (ψ,∆EQ-D) ∧

// either neither cert is known, or one is known, and auditing again with the other one does

not cause detection of attack
18: ({ψ,ψ’} ∩ R.out[t-2] ∨ R.out[t-1] = >)

The adversary wins the Exp∆EQ-D
P game if the following requirements are

met. First, ψ and ψ’ must be valid, non-equivocal certificates (line 6) for the
same identifier (line 8) with overlapping validity periods but with different public
info (line 9) such that ψ was never revoked (lines 10-12). Second, the time for

36

detection (line 13) has passed and no one detected the equivocation (line 14)
and an honest entity ι either did not issue an Indicator of Accusation or has a
proof of misbehavior (lines 15-17).

We note that detecting equivocating certificate does not automatically indi-
cate a need to accuse another entity of misbehavior and does not, on its own,
constitute a proof of misbehavior since the interpretation of equivocation is ap-
plication dependent.

Algorithm 8 ExpEQ-P
P

ExpEQ-P
P (1κ,N,NF, R, t, outA):

1: (EQ-P, ψ, ψ’, pk, pk′, pkι)← outA

2: ι = R.i[t]

3: return :

// pk, pk′ and pkι are valid keys
4: Vka(ψ.ρ[EQ-P].ι, pk,R) ∧

Vka(ψ’.ρ[EQ-P].ι, pk′, R) ∧

Vka(ι, pkι, R) ∧

// ι is honest
5: i[t] = i[t-1] ∧ ι ∈ N− NF ∧

// ψ and ψ’ are non-equivocal
6: P.WasValid(ψ, pk, EQ-P) ∧

P.WasValid(ψ’, pk′, EQ-P) ∧

// ψ and ψ’ have the same identifier
7: ψ.id = ψ’.id ∧

// ψ and ψ’ have overlapping validity
periods, yet different PubInfo

8: ψ.sd < ψ’.sd < ψ.ed ∧ ψ.pub 6= ψ’.pub ∧

// both certs are non-revoked
9: (t′ = t-1, t)R.α[t′] = ‘IsRevoked’ ∧

10: R.inp[t-1] = (ψ,NREV) ∧

R.inp[t] = (ψ’,NREV) ∧

11: (t′ = t-1, t)P.WasValid(out[t′], pkι,NREV)

Requirement 12 (Equivocation prevention (EQ-P)). An adversary A wins in
the equivocation prevention experiment ExpEQ-P

P if it produces two valid, non-
revoked certificates ψ, ψ’ for the same identifier (ψ.id = ψ’.id) and for over-
lapping validity periods, where each certificate has different public information
(ψ.pub 6= ψ’.pub). See Algorithm 8.

The adversary wins the game ExpEQ-P
P if there exist two valid, unequivocal

certificates ψ and ψ’ (line 6) for the same identifier (line 7), with overlapping
validity periods and issued for the same public information (line 8) such that
neither certificate is revoked as attested by the same honest entity (lines 9-11).

37

5 Two Provably-Secure PKI Schemes

In this section, we describe the implementation and analysis of two PKI schemes,
proving that each of them achieves a (subset) of our security requirements. This
analysis allowed us to fine-tune the requirements, and ensure that they are feasi-
ble. The first scheme is a proof-of-concept PKI scheme called PoC-PKI, a rather
simple scheme that achieves all of the requirements. The second scheme is Cer-
tificate Transparency (CT), the only widely-deployed ‘post-X.509’ PKI scheme.

For lack of space, we only provide in this section very brief description of the
schemes, their models and the highlights from their analysis. For the complete
designs and analyses, see Appendices A-E.

5.1 PoC-PKI: a Proof-of-Concept PKI scheme

PoC-PKI is a conceptually-simple PKI scheme, which ensures advanced proper-
ties such as transparency and prevention of equivocation. To ensure such proper-
ties, PoC-PKI uses threshold signature scheme to simulate a collectively trusted
entity that manages the certificates. Similar ideas were proposed in CoSi [60]
and ARPKI [4]. In PoC-PKI, an accountable certificate ψ can be upgraded to
be ∆PoC-PKI-transparent by obtaining a commitment from one of the authorities,
where that authority commits to inform the rest of the authorities about ψ in at
most ∆PoC-PKI time. Similarly, an accountable (or ∆PoC-PKI-transparent) cer-
tificate can be upgraded to a non-equivocal one; however, this is not immediate.
PoC-PKI first returns a pending non-equivocation certificate, and propagates
the non-equivocation request to the rest of the authorities. If they approve, they
contribute their partial signature, attesting of their approval, and more impor-
tantly, they will not approve any other certificate as non-equivocal if it was issued
for the same identifier for an overlapping validity period.

The PoC-PKI scheme uses a secure signature scheme S, a secure encryption
scheme E and a secure and robust threshold signature scheme T S. Hence, the
scheme’s fully-qualified name is PoC-PKIS,E,T S ; however, for brevity, we often
use the ‘shorthand’ notation PoC-PKI.For the full description of PoC-PKI, see
Appendix B.

5.1.1 The PoC-PKI Model Function MPoC-PKI
∆com,∆clk

We define the model of PoC-PKI in Eq. (1), asMPoC-PKI
∆com,∆clk

(ξ) =M3-rounds
SecInit (ξ)∧

M|NF|≤b(|N|/3)c(ξ) ∧MCOM
∆com

(ξ) ∧MCLK
∆clk

(ξ), where, M3-rounds
SecInit is the secure ini-

tialization model (§ 3.2.2), M|NF|≤b(|N|/3)c is the fault model (§ 3.2.1), MCOM
∆com

is the communication model (§ 3.2.3) and MCLK
∆clk

is the clock synchronization
model as (§ 3.2.4).

We use ∆PoC-PKI = ∆com + ∆clk to denote the delay ensured by PoC-PKI.
The reason for this value is that when an authority upgrades a certificate with
transparency or revocation transparency, it immediately broadcasts the up-
graded certificate to the rest of the entities. Since the MPoC-PKI

∆com,∆clk
model en-

sures that the adversary cannot prevent these messages from being delivered, it

38

takes at most ∆com time for the messages to arrive to other entities. However,
entities’ clocks might not be completely synchronized, which can add up to ∆clk

additional delay.

5.1.2 Analysis: PoC-PKI provably achieves security requirements

PoC-PKIS,E,T S uses a signature scheme, encryption scheme and threshold sig-
nature scheme; however, as the following two Theorems show, PoC-PKI achieves
many requirements, even assuming only the signature scheme is secure (existen-
tially unforgeable). The first proof focuses on the ‘generic’ requirements (§4.4),
and the second covers several PKI-specific requirements.

Theorem 1. Let S be an existentially-unforgeable signature scheme. Then PoC-PKIS,E,T S

achieves Verifiable Attribution of Statements (VAS) for S, Non-frameability
(NF), No False Accusations (NFA) and Use First-Accuse Time (UFAT) under
model MPoC-PKI

∆com,∆clk
.

Theorem 2. Let S be an existentially-unforgeable signature scheme. Then PoC-PKIS,E,T S

achieves accountability, revocation accountability, non-revocation accountabil-
ity, ∆PoC-PKI-transparency, and ∆PoC-PKI-revocation transparency under model
MPoC-PKI

∆com,∆clk
.

Theorem 3. PoC-PKIS,E,T S achieves equivocation prevention under modelMPoC-PKI
∆com,∆clk

,

provided that T S is (t ≤M|NF|≤b(n/3)c)-existentially unforgeable, and E is CPA-
indistinguishable.

For the proofs of theorems 1-3, refer to the analysis of PoC-PKI in Ap-
pendix C.

5.2 CTcomp: simplified, ‘completed’ Certificate Transparency PKI

CT is the most widely known post-X.509 PKI scheme, and the first to be de-
ployed, as well as standardized [39]. It is also subject of significant criticism
regarding its purported properties; all this makes analysis highly desirable. Un-
fortunately, the RFC6962 left crucial under-specified aspects, e.g., the gossip
protocol, which is mentioned but not specified.

We analyzed CTcomp, which is our best effort to complete the missing spec-
ifications in RFC6962, in the simplest possible way, to create a well-defined
protocol whose properties can be analyzed.

CTcomp models three types of entities: certificate authorities, loggers and
monitors. Loggers keep public logs of certificates issued by different CAs, and
monitors validate that logs are published consistently. Note that clients and
auditors are not modeled in CTcomp, since they are irrelevant with respect to
the security properties. See Appendix D for details.

39

Loggers, in CTcomp, produce a signed tree hash (STH), once every MMD
(maximum merge delay) seconds. All loggers use the same value of MMD; this is
consistent with the current deployment of CT. Each honest monitor maintains
a full copy of each log it watches and after each MMD period, it fetches the
new STH along with all the newly added certificates. Then, the monitor ensures
that the new STH complies with the updated copy of the log it maintains. In
addition, CTcomp performs naive gossip by exchanging all the new certificates
and STHes between monitors every MMD.

5.2.1 The CTcomp Model MCTcomp
∆com,∆clk

We define the model of CTcomp as:

MCTcomp
∆com,∆clk

(ξ) =M2-rounds
SecInit (ξ) ∧MCOM

∆com(ξ) ∧MCLK
∆clk

(ξ) ∧MAuth
Mapping(ξ)

where most of these model predicates were already defined earlier:
M2-rounds

SecInit is the secure initialization model (§ 3.2.2), MCOM
∆com

is the commu-

nication model (§ 3.2.3), andMCLK
∆clk

is the clock synchronization model (§ 3.2.4).

The one new component is theMAuth
Mapping model, which ensures consistency be-

tween the mapping of monitors to loggers, and the monitors it invokes in the
transparency experiment. For details, see § D.2.

Let ∆CTcomp ≡ 4∆com + 2∆clk; this delay, ∆CTcomp , accounts for the time
it takes to include the certificate in the log (MMD ≤ ∆com), plus the time it
takes for other entities to learn about new certificates (∆com), plus the time it
takes to send a gossip message (∆com) and receive a gossip message (∆com). On
top of that, because the clocks might be skewed by at most ∆clk, we add one
∆clk for when entities learn of new certificates and another ∆clk for the gossip.

5.2.2 Analysis: CTcomp provably achieves most requirements

Our analysis proves that CTcomp achieves most of the properties of the PKI
framework. Specifically, we prove that CTcomp achieves Verifiable Attribution of
Statements (VAS) for S, Non-frameability (NF), No False Accusations (NFA),
Use First-Accuse Time (UFAT), accountability, revocation accountability, non-
revocation accountability, and ∆CTcomp-transparency. All of these are achieved

under modelMCTcomp
∆com,∆clk

, and assuming security of S, GMT , and H, under their
respective definitions. For lack of space, the relevant theorems and their proofs
are in section E.

The theorems refers to CTcomp
S,GMT ,H, which specifies the signature scheme

S, a generalized Merkle tree scheme GMT , and CRHF H used by CTcomp;
the proofs assume that these three primitives satify their respective security
definitions. See §A for details.

6 Conclusions and Future Work

Public Key Infrastructure (PKI) is the basis for security of most applied crypto-
graphic systems, and modern, post-X.509 PKI schemes have non-trivial design

40

and features. Hence, it is crucial to carefully define their security requirements,
and prove these are satisfied. In this paper, we provide the first rigorous spec-
ifications for PKI schemes, and two (very different) provably-secure schemes:
PoC-PKI, a ‘proof-of-concept’ scheme that meets all requirements, and CTcomp,
a completion of the Certificate Transparency (CT) specifications, which meets
most requirements. A significant challenge we faced, was the lack of appropriate
framework for rigorous analysis of applied, stateful cryptographic protocols, with
different communication, synchronization and adversary models. We addressed
this challenge by presenting the Model-Secure framework, where security is de-
fined with respect to a specific model predicateM. The framework appears useful
for other tasks; it allows comparison of protocols based on the requirements they
satisfy, and the models they assume. Definitions of models and requirements may
be reused across different types of protocols and schemes; we identified several
‘generic’ requirements, which appear to be applicable to many different tasks.

We see this work as only the stepping stone to further research, both of
provably-secure PKI schemes, and of the Model-Secure framework. In particular,
we expect that our PKI requirements need to be improved and extended, much
like the similar research process for ‘classical’ cryptographic primitives. Indeed,
while we did our best to define and present the best requirements, simplifying
the experiments as much as we could, they still require considerable effort to
fully understand. This shows the challenge and importance of properly analysing
these complex schemes; at the same time, it surely shows the need for further
efforts to refine and extend the requirements. Some extensions were discussed,
informally, in previous works, most notably, notions of privacy, and the study
of the requirements of Authenticated Key Exchange protocols, from the key
certification mechanism, see [7]. Another significant challenge is the design of
a practical PKI scheme that will meet all desired requirements, minimizing or
avoiding simplifications.

Another important challenge is to extend the Model-Secure framework. In
particular, extensions are necessary to allow specification of privacy requirements
such as indistinguishability; this was not required for the PKI requirements we
focused on, and therefore we did not yet pursue this challenge. Possibly a larger
challenge is to support secure compositions, possibly following UC [11]. Specifi-
cally, it would be interesting to extend [13], which present a UC definition for a
simplified basic PKI (a reduced functionality of X.509 PKI).

References

1. Namecoin, https://www.namecoin.org/
2. Asghari, H., Van Eeten, M., Arnbak, A., van Eijk, N.A.: Security Economics in

the HTTPS Value Chain. In: Twelfth Workshop on the Economics of Information
Security (WEIS 2013), Washington, DC (2013)

3. Axon, L., Goldsmith, M.: PB-PKI: A Privacy-aware Blockchain-based PKI. In:
SECRYPT (2017)

4. Basin, D., Cremers, C., Kim, T.H.J., Perrig, A., Sasse, R., Szalachowski, P.:
ARPKI: Attack Resilient Public-Key Infrastructure. In: Proceedings of the 2014

41

https://www.namecoin.org/

ACM SIGSAC Conference on Computer and Communications Security. pp. 382–
393. ACM (2014)

5. Boldyreva, A., Fischlin, M., Palacio, A., Warinschi, B.: A Closer Look at PKI:
Security and Efficiency. In: International Workshop on Public Key Cryptography.
pp. 458–475. Springer (2007)

6. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.4 (2017)

7. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.: Asics:
Authenticated key exchange security incorporating certification systems. Interna-
tional Journal of Information Security 16(2), 151–171 (2017)

8. Braun, J.: Maintaining Security and Trust in Large Scale Public Key Infrastruc-
tures. Ph.D. thesis, Technische Universität (2015)

9. Braun, J., Kiefer, F., Hülsing, A.: Revocation & Non-Repudiation: When the first
destroys the latter. In: European Public Key Infrastructure Workshop. pp. 31–46.
Springer (2013)

10. Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-Middle Attack to the HTTPS
Protocol. IEEE Security & Privacy 7(1), 78–81 (2009)

11. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on. pp. 136–145. IEEE (2001), online at https://eprint.iacr.org/2000/
067.pdf, last updated Dec. 2018.

12. Canetti, R., Krawczyk, H.: Security analysis of ike’s signature-based key-exchange
protocol. In: Yung, M. (ed.) Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2442, pp. 143–161.
Springer (2002)

13. Canetti, R., Shahaf, D., Vald, M.: Universally Composable Authentication and
Key-exchange with Global PKI. Cryptology ePrint Archive, Report 2014/432
(2014), https://eprint.iacr.org/2014/432

14. Canetti, R., Shahaf, D., Vald, M.: Universally Composable Authentication and
Key-exchange with Global PKI. In: Public-Key Cryptography–PKC 2016. pp. 265–
296. Springer (2016)

15. CCITT, B.B.: Recommendations X. 509 and ISO 9594-8. Information Processing
Systems-OSI-The Directory Authentication Framework (Geneva: CCITT) (1988)

16. Chase, M., Meiklejohn, S.: Transparency Overlays and Applications. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. pp. 168–179. ACM (2016)

17. Comodo™: Incident Report. Published online, http://www.comodo.com/
Comodo-Fraud-Incident-2011-03-23.html (March 2011)

18. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. Tech. rep. (2008)

19. Cremers, C.: Key exchange in ipsec revisited: Formal analysis of ikev1 and ikev2.
In: European Symposium on Research in Computer Security. pp. 315–334. Springer
(2011)

20. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Conference on the The-
ory and Application of Cryptology. pp. 416–427. Springer (1989)

21. Dowling, B., Günther, F., Herath, U., Stebila, D.: Secure Logging Schemes and
Certificate Transparency. In: European Symposium on Research in Computer Se-
curity. pp. 140–158. Springer (2016)

42

https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2014/432
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

22. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
Certificate Ecosystem. In: Proceedings of the 2013 conference on Internet measure-
ment conference. pp. 291–304. ACM (2013)

23. Dyer, J.: China Accused of Doling Out Counterfeit Digital Certificates in ‘Serious’
Web Security Breach. VICE News (April 2015)

24. Eckersley, P.: Sovereign Key Cryptography for Internet Domains. https://git.eff.
org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD (2012)

25. Electronic Frontier Foundation (EFF): The EFF SSL Observatory, https://www.
eff.org/observatory

26. Fouque, P.A., Stern, J.: Fully Distributed Threshold RSA under Standard Assump-
tions. Advances in CryptologyASIACRYPT 2001 pp. 310–330 (2001)

27. Fromknecht, C., Velicanu, D., Yakoubov, S.: A Decentralized Public Key Infras-
tructure with Identity Retention. IACR Cryptology ePrint Archive 2014, 803
(2014)

28. Gajek, S., Manulis, M., Pereira, O., Sadeghi, A.R., Schwenk, J.: Universally com-
posable security analysis of tls. In: International Conference on Provable Security.
pp. 313–327. Springer (2008)

29. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Sig-
natures. In: International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 354–371. Springer (1996)

30. Goldreich, O.: Foundations of Cryptography. Cambridge University Press (2009)
31. Herzberg, A., Mass, Y., Mihaeli, J., Naor, D., Ravid, Y.: Access Control Meets

Public Key Infrastructure, Or: Assigning Roles to Strangers. In: Proceeding 2000
IEEE Symposium on Security and Privacy. S&P 2000. pp. 2–14. IEEE (2000)

32. Hruska, J.: Apple, Microsoft buck trend, refuse to block unauthorized Chinese root
certificates. ExtremeTech (April 2015)

33. Huang, J., Nicol, D.M.: An anatomy of trust in public key infrastructure. Interna-
tional Journal of Critical Infrastructures 13(2-3), 238–258 (2017)

34. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Authenticated confidential channel
establishment and the security of tls-dhe. J. Cryptology 30(4), 1276–1324 (2017)

35. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The theory of timed i/o
automata. Synthesis Lectures on Distributed Computing Theory 1(1), 1–137 (2010)

36. Kim, T.H.J., Huang, L.S., Perrig, A., Jackson, C., Gligor, V.: Accountable Key
Infrastructure (AKI): A Proposal for a Public-Key Validation Infrastructure. In:
Proceedings of the 22nd international conference on World Wide Web. pp. 679–690.
ACM (2013)

37. Kubilay, M.Y., Kiraz, M.S., Mantar, H.A.: CertLedger: A new PKI model with
Certificate Transparency based on blockchain. arXiv preprint arXiv:1806.03914
(2018)

38. Laurie, B., Kasper, E.: Revocation Transparency. Google Research, September
(2012)

39. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency. RFC 6962 (Jun
2013). https://doi.org/10.17487/RFC6962, https://rfc-editor.org/rfc/rfc6962.txt

40. Leibowitz, H., Piotrowska, A.M., Danezis, G., Herzberg, A.: No Right to Remain
Silent: Isolating Malicious Mixes. In: 28th USENIX Security Symposium (USENIX
Security 19). pp. 1841–1858 (2019)

41. Lekkas, D.: Establishing and managing trust within the Public Key Infrastructure.
Computer Communications 26(16), 1815–1825 (2003)

42. Li, J., Yuen, T.H., Kim, K.: Practical Threshold Signatures Without Random
Oracles. In: Susilo, W., Liu, J.K., 0001, Y.M. (eds.) Provable Security, First Inter-
national Conference, ProvSec 2007, Wollongong, Australia, November 1-2, 2007,

43

https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://www.eff.org/observatory
https://www.eff.org/observatory
https://doi.org/10.17487/RFC6962
https://rfc-editor.org/rfc/rfc6962.txt

Proceedings. Lecture Notes in Computer Science, vol. 4784, pp. 198–207. Springer
(2007)

43. Marchesini, J., Smith, S.: Modeling Public Key Infrastructure in the Real World.
In: European Public Key Infrastructure Workshop. pp. 118–134. Springer (2005)

44. Matsumoto, S., Reischuk, R.M.: IKP: Turning a PKI Around with Decentralized
Automated Incentives. In: Security and Privacy (SP), 2017 IEEE Symposium on.
pp. 410–426. IEEE (2017)

45. Maurer, U.: Modelling a Public-Key Infrastructure. In: European Symposium on
Research in Computer Security. pp. 325–350. Springer (1996)

46. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: International Conference on Computer
Aided Verification. pp. 696–701. Springer (2013)

47. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: Bringing Key Transparency to End Users. In: USENIX Security Sym-
posium. pp. 383–398 (2015)

48. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function.
In: Conference on the theory and application of cryptographic techniques. pp. 369–
378. Springer (1987)

49. Merkle, R.C.: One Way Hash Functions and DES. In: Conference on the Theory
and Application of Cryptology. pp. 428–446. Springer (1989)

50. Morrissey, P., Smart, N., Warinschi, B.: The tls handshake protocol: A modular
analysis. Journal of Cryptology 23, 187–223 (Apr 2010)

51. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on. pp. 184–200. IEEE (2001)

52. Prins, J.: DigiNotar Certificate Authority breach Operation Black Tulip (2011)
53. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446 (Proposed Standard) (Aug 2018). https://doi.org/10.17487/RFC8446, https:
//www.rfc-editor.org/rfc/rfc8446.txt

54. Roosa, S.B., Schultze, S.: The ”Certificate Authority” Trust Model for SSL: A
Defective Foundation for Encrypted Web Traffic and a Legal Quagmire. Intellectual
property & technology law journal 22(11), 3 (2010)

55. Ryan, M.D.: Enhanced certificate transparency and end-to-end encrypted mail. In:
NDSS (2014)

56. Samer, W.A., Romain, L., Francois, B., AbdelMalek, B.: A formal model of trust for
calculating the quality of X. 509 certificate. Security and Communication Networks
4(6), 651–665 (2011)

57. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, D.C.:
X.509 Internet Public Key Infrastructure Online Certificate Status Protocol
- OCSP. RFC 6960 (Jun 2013). https://doi.org/10.17487/RFC6960, https://
rfc-editor.org/rfc/rfc6960.txt

58. Shoup, V.: Practical Threshold Signatures. In: International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 207–220. Springer
(2000)

59. Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Ford, B.: Certificate Cothority: To-
wards Trustworthy Collective CAs. Hot Topics in Privacy Enhancing Technologies
(HotPETs) 7 (2015)

60. Syta, E., Tamas, I., Visher, D., Wolinsky, D.I., Jovanovic, P., Gasser, L., Gailly,
N., Khoffi, I., Ford, B.: Keeping Authorities Honest or Bust with Decentralized
Witness Cosigning. In: Security and Privacy (SP), 2016 IEEE Symposium on. pp.
526–545. Ieee (2016)

44

https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC6960
https://rfc-editor.org/rfc/rfc6960.txt
https://rfc-editor.org/rfc/rfc6960.txt

61. Szalachowski, P., Matsumoto, S., Perrig, A.: PoliCert: Secure and Flexible TLS
Certificate Management. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. pp. 406–417. ACM (2014)

62. Tomescu, A., Devadas, S.: Catena: Efficient Non-equivocation via Bitcoin. In: 2017
38th IEEE Symposium on Security and Privacy (SP). pp. 393–409. IEEE (2017)

63. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-style
Host Authentication with Multi-Path Probing. In: USENIX Annual Technical Con-
ference. vol. 8, pp. 321–334 (2008)

64. Yu, J., Cheval, V., Ryan, M.: DTKI: A new formalized PKI with verifiable trusted
parties. The Computer Journal 59(11), 1695–1713 (2016)

65. Zhou, M., Bisht, P., Venkatakrishnan, V.: Strengthening XSRF Defenses for Legacy
Web Applications Using Whitebox Analysis and Transformation. In: Information
Systems Security, pp. 96–110. Springer (2011)

A Preliminaries

PoC-PKI and CTcomp use several underlying cryptographic schemes. In this
section, we recall the definitions of these schemes and the security definitions.
Specifically, we recall the definitions and security games of secure encryption
scheme (Appendix A.1), secure signature scheme (Appendix A.2) and secure
threshold signature scheme (Appendix A.3). Then, we recall the definition of
CRHF (Appendix A.4) and a generalized Merkle tree scheme (Appendix A.5).

A.1 Encryption Scheme

Definition 5. An encryption scheme E = (Gen,Enc,Dec) consists of the follow-
ing probabilistic algorithms:

– Key generation Gen(1κ)→ (dk, ek), with input a security parameter 1κ and
outputs: private decryption key dk and public encryption key ek.

– Encryption Enc(ek,m) → c, with inputs public key ek and message m, and
output ciphertext c.

– Decryption Dec(dk, c)→ m, with inputs private key dk and ciphertext c, and
output message m.

Definition 6. An encryption scheme E = (Gen,Enc,Dec) is CPA-indistinguishable
(CPA-IND), if for every PPT adversary A:

Pr[ExpCPA−INDE,A (1κ) = 1] ∈ Negl(1κ)

where ExpCPA−INDE,A (1κ):

1. (dk, ek)← E .Enc(1κ).
2. Adversary A chooses two messages m0,m1.
3. The game randomly chooses b ∈ {0, 1}.
4. A c = E .Enc(sk,mb) and outputs value b’ ∈ {0, 1}.
5. The experiment outputs 1 if b = b’, otherwise, the experiment outputs 0.

45

A.2 Digital Signature Scheme

Definition 7. A signature scheme S = (Gen,Sign,Ver) consists of the following
probabilistic algorithms:
– Key generation Gen(1κ) → (sk, vk), with input security parameter 1κ and

output private signing key sk and public verification key vk.
– Signing Sign(sk,m)→ (σ), with input private signing key sk and a message
m, and output signature σ.

– Verification Ver(vk,m, σ) → (>/⊥), with inputs public verification key vk,
message m and signature σ, and output: true (>) if σ is a valid signature
over m, otherwise false (⊥).

Definition 8. A signature scheme S = (Gen,Sign,Ver) is existentially un-

forgeable if for every PPT adversary A:

Pr
[
ExpEUS,A(1

κ) = 1
]
∈ Negl(1 κ)

where ExpEUS,A(1κ):
1. (sk, vk)← S.Gen(1κ)
2. Adversary A receives vk and has an oracle access to S.Sign to sign any

message it desires.
3. A outputs message m and signature σ.
4. The experiment outputs 1 if S.Ver(vk,m, σ) = > and A did not use the

oracle access on m, otherwise, the experiment outputs 0.

A.3 Threshold Signature Scheme

While definitions 5,6,7,8 are standard definitions of encryption and signature
schemes, choosing a definition of a threshold signature scheme is slightly more
complex; in particular, it appears there is no one dominant definition. Further-
more, as opposed to classic encryption and signature schemes which are local,
i.e., each operation of the scheme is performed by only one entity and does not re-
quire interaction with other entities, threshold signature schemes are inherently
different, and existing definitions we have seen involve a distributed algorithm as
part of the definition. For example, in [29], the threshold scheme is presented
similarly to a classical signature scheme, with the key generation algorithm mod-
ified to output shares of the signature key; however, the signing algorithm is a
distributed algorithm that outputs the final group signature. Another example
is [58], where a signature share verification algorithm allows to check whether a
specific partial signature is valid, i.e., was indeed signed by the matching entity
on the respective message. Other works, such as [26, 42], present and discuss
other possible designs, definitions and implementations. However, in all of these,
the definition includes a protocol or distributed algorithm. This introduces de-
pendency on the communication and synchronization models, and make it less
convenient to use threshold signatures as part of a design supporting different
models, as we do.

46

Instead, we define the threshold scheme using the following four algorithms:
T S = (Gen,Sign,Combine,Ver), where: T S.Gen is the key generation algorithm,
T S.Sign is the individual signing algorithm, T S.Combine is the signatures com-
bining algorithm, and T S.Ver is the group signature verification algorithm. We
also define matching security and robustness definitions. We believe that our
definitions generalize existing definitions, and allow a simpler presentation of
PoC-PKI and other protocols; however, further work, beyond the scope of this
paper, is required to confirm the relationships between the different threshold
signature definitions.

Definition 9. A (t, n)-threshold-signature scheme T S = (Gen,Sign,Combine,Ver)
consists of the following probabilistic algorithms:
– Key-generation Gen(1κ, n, t)→ (tvk, {tski}ni=1), with inputs security param-

eter 1κ, total number of entities n, the threshold value t < n, and outputs a
group verification key tvk and n secret shares {tski}ni=1 of the signature key.

– Signing Sign(tski,m)→ σi, with input secret share key tski and message m,
and output partial signature σi.

– Combining Combine({σi}) → σ/⊥, with input set of partial signatures {σi}
and output threshold signature σ or failure ⊥.

– Verification Ver(tvk,m, σ) → (>/⊥), with input group verification key tvk,
messages m and threshold signature σ, and output > or ⊥.

Definition 10. A (t, n)-threshold-signature scheme T S = (Gen,Sign,Combine,Ver)
is robust, if executing the T S.Combine algorithm with more than t valid par-
tial signatures, i.e., signatures generated by T S.Sign on the same message using
valid key shares, always generates a valid group signature. Namely, for any mes-
sage space M and any set of entities N where |N| = n, and any adversary A
that controls up to t entities (denoted by NF ⊂ N s.t. |NF| ≤ t), and given keys
(tvk, {tski}i∈N)← T S.Gen(1κ, |N|, t), it holds that:

(∀m ∈M,W ⊆ {σi = T S.Sign(tski,m) | i ∈ N− NF},
W ′ ← A)|W | ≥ t+ 1⇒

T S.Ver(tvk,m, T S.Combine(W ∪W ′)) = >
(7)

Definition 11. Let OTSign{tski}i∈N
(ι,m) be a PPT oracle algorithm that can

produce a cryptographically valid individual signature signed by any authority

ι ∈ N on messages m using the T S.Sign algorithm, i.e., OTSign{tsk}i∈N
(ι,m) ≡

T S.Sign(tskι,m). A (t, n)-threshold-signature scheme T S = (Gen,Sign,Combine,Ver)

is g−existentially unforgeable, where g is a function of the number of shares n,

if there is no PPT adversary A that controls up to f players (f ≤ t) and has an

oracle access to OTSign{tski}i∈N
(·, ·) that can produce a cryptographically valid

group signature on any previously unsigned message m, without performing more

than t− f oracle requests for message m. Namely, for every adversary A:

Pr
[
ExpEUT S,A(1

κ,N, t) = 1
]
∈ Negl(1κ)

47

where ExpEUT S,A(1κ,N, t) is defined as:
1. (tvk, {tsk}i∈N)← T S.Gen(1κ, |N|, t)
2. (m,σ)← A

OTSign{tski}i∈N
(·,·)

tvk (A outputs message m and group signature σ,
given tvk and oracle access to OTSign{tski}i∈N

)
3. Return 1 if T S.Ver(tvk,m, σ) = > and A did not use the oracle access on

m more than t− f times, otherwise, the experiment outputs 0.

A.4 Collision-Resistant Hash Functions

We recall the definitions of keyed and keyless collision resistant hash functions
(CRHFs), as described in [6].

Definition 12. Let κ be some sufficiently large security parameter, M = {0, 1}∗

be some message space, K = {0, 1}∗ be some key space and T = {0, 1}κ be a

digest space. A collision resistant keyed hash function H is an efficient

deterministic algorithm that takes two inputs, a key k ∈ K and a message m ∈M
and outputs t = H(k,m) ∈ T that for every PPT adversary A:

Pr
[
((m0,m1 ∈M)← A(1κ))(m0 6= m1 ∧H(k,m0) = H(k,m1))

]
∈ Negl(1 κ)

Definition 13. Given a sufficiently large security parameter κ, a keyless col-

lision resistant hash function H : 1κ ×M → T is an efficiently computable

function from some message space M = {0, 1}∗ to a digest space T = {0, 1}κ

that for every PPT adversary A:

Pr
[
((m0,m1 ∈M)← A(1κ))(m0 6= m1 ∧H(1κ,m0) = H(1κ,m1))

]
∈ Negl(1 κ)

A.5 Generalized-Merkle-Tree Scheme

A Merkle-tree is a well-known cryptographic construction introduced by Merkle [48].
In essence, a Merkle tree is a construction that takes a list of entries E and con-
structs a binary tree which its leaves are the entries in E and each inner tree node
is the result of applying a collision-resistant hash function (CRHF) over its child
nodes. The root of the resulting hash tree uniquely identifies the list of entries
(the tree leaves), in a secure way. Namely, the Merkle tree construction ensures
collision resistance for its inputs, i.e., is a CRHF for strings of arbitrary length,
even if the underlying hash function h is only a Fixed-Input-Length CRHF; note
that this goal is also achieved by the Merkle-Damgard construction [20,49].

There are numerous applications and variants of the Merkle tree construction,
e.g., for blockchains and for PKI schemes [3, 21, 39]; many of these applications
take advantage of two additional security properties:
Proof of Inclusion. The collision-resistance property of the Merkle tree allows

a recipient to confirm that the root of the hash tree corresponds to a par-
ticular list of entries E; however, in many applications, we want to validate

48

that the list E contains a particular element e, without providing the en-
tire list for the validation process - allowing for better efficiency, as well as,
possibly, privacy. Merkle trees facilitate such efficient validation of proofs
of inclusion of a particular element. (Merkle trees may also allow efficient
proofs of inclusion for multiple elements, and privacy for other elements,
under appropriate assumptions regarding the underlying hash function h;
however, these properties are not required for our needs.)

Proof of consistency. Merkle trees can also be consistent ; that is, given two
Merkle trees t1, t2 that represent lists E1, E2 respectively, tree t2 can be
proven to be consistent with t1 if the first |E1| items of E2 are identi-
cal to E1. This property is very useful, e.g., in applications that require
tamper-free, append-only log of entries like Certificate Transparency. Namely,
certificates can only be added to the list/tree and cannot be retroactively
added/changed, and this can be easily proved to anyone.
Merkle trees are indeed applied extensively - however, insufficient atten-

tion was given to defining and proving their security properties. One excep-
tion is [21], which proved some security properties for a specific variant of the
Merkle tree construction. We mostly follow and use their approach and construc-
tion, with a few changes. First, we define the aforementioned security properties:
collision-resistance, proof-of-inclusion and proof-of-consistency, which differ from
the (two) properties proven in [21]. Second, we present the construction as an
implementation of a Generalized Merkle Tree (GMT) scheme, allowing use of
the GMT in protocols, regardless of the specific construction (implementation),
allowing for future constructions with additional properties. That said, we em-
phasize that the construction described in §A.5.3 is almost identical to the one
described in [21].

Definition 14. A generalized Merkle tree scheme is a tuple

GMT = (GenTree,GenIncProof,VerIncProof,GenConsProof,VerConsProof)

which consists of the following algorithms:
– A Merkle tree hash generation algorithm GMT .GenTree(κ,E) → ϕ, which

takes as input a security parameter κ and a an ordered set (list) of binary
strings (entries) E, and outputs a Merkle tree root ϕ. We refer to E as the
tree leaves.

– A proof of inclusion generation algorithm GMT .GenIncProof(κ, i, E) → σ,
which takes as input a security parameter κ, an index i and entries E, and
outputs a string σ, which we refer to as a Proof of Inclusion of E(i) in the
output of GMT .GenTree(1κ, E).

– A proof of inclusion verification algorithm GMT .VerIncProof(κ, e, i, n, ϕ, σ)→
{>,⊥}, which takes as input an entry e, an index i, a number n, a string ϕ
and a string σ, and outputs > if σ is a valid proof of inclusion for entry e
of index i from a list of entries of size n which its Merkle tree root is ϕ, or
⊥ otherwise.

– A proof of consistency generation algorithm GMT .GenConsProof(κ, i, j, E)→
σ, which takes as input a security parameter κ, indexes i, j and entries E

49

h1−3

h1−2

h1

e1

h2

e2

h3

e3

Fig. 1: Example Merkle hash-tree, representing a list of entries E = {e1, e2, e3}.
Every internal node is the hash of its children; in particular, for every i holds
hi = h(ei), and hi−j) = h(hi||hj). Each entry ei can be proven to included in
the tree. For example, to validate that entry e2 is included in the tree hash h1−3,
the values of internal hash nodes required to validate the hash are h1 and h3.

h1−4

h1−2

h1

e1

h2

e2

h3−4

h3

e3

h4

e4

Fig. 2: Example of proof of consistency. Adding a new entry e4 to the Merkle
tree described in Fig. 1. After this addition, to prove consistency from tree
root h1−3 (from Fig. 1) to h1−4, the values of internal hash nodes required are
(h3, h4, h1−2). From h1−2 and h3 we get h1−3, and from h3 and h4 we get h3−4,
which with h1−2 gives h1−4.

50

and outputs a proof of consistency σ from the Merkle root of E[0 : i] to the
Merkle root of E[0 : j].

– A proof of consistency verification algorithm GMT .VerConsProof(κ, i, j, ϕi, ϕj , σ)→
{>,⊥}, which takes as input a security parameter κ, indexes i, j, Merkle tree
root ϕi, a second Merkle tree root ϕj and a proof of consistency σ and out-
puts > if σ is a valid proof of consistency from the tree represented by ϕi to
the tree represented by ϕj or ⊥ otherwise.

A.5.1 GMT Correctness properties

Definition 15. A generalized Merkle tree scheme

GMT = (GenTree,GenIncProof,VerIncProof,GenConsProof,VerConsProof)

satisfies correctness of inclusion proofs if:

(∀ κ,E, 1 ≥ i ≤ |E|;ϕ← GMT .GenTree(1κ, E))⇒
(GMT .VerIncProof(E[i], ϕ,GMT .GenIncProof(1κ, i, E))) = >

Definition 16. A generalized Merkle tree scheme

GMT = (GenTree,GenIncProof,VerIncProof,GenConsProof,VerConsProof)

satisfies correctness of consistency proofs if:

(∀ κ,E, 1 ≤ i ≤ |E|;ϕ← GMT .GenTree(1κ)E)⇒
(GMT .VerConsProof(GMT .GenTree(1κ, E[1 : i]), ϕ,

GMT .GenConsProof(1κ, i, E))) = >

A.5.2 GMT Security properties

Definition 17. A generalized Merkle tree scheme is collision resistant, if it

is computationally hard to find two different ordered lists E,E′ that have the

same Merkle tree root. Namely, if for every PPT adversary A and a sufficiently

large security parameter κ:

Pr

[
(E,E ′)← A(1κ)(E 6= E ′ ∧ E,E ′ ∈ {{0, 1}∗}
∧GMT .GenTree(E) = GMT .GenTree(E ′))

]
∈ Negl(1 κ)

Definition 18. A generalized Merkle tree scheme has secure proofs of in-
clusion, if inclusion proofs can only be generated for the tree leaves. Namely,
if for every PPT adversary A, every list of entries E and a sufficiently large
security parameter κ:

51

Pr

[
(e, σ)← A(1κ)(e 6∈ E ∧
GMT .VerIncProof(e,GMT .GenTree(E), σ) = >)

]
∈ Negl(1 κ)

Definition 19. A generalized Merkle tree scheme is consistent, if it is com-
putationally hard to find a consistency proof to two ordered lists E,E′ where E
is not a subset of E′. Namely, if for every PPT adversary A and a sufficiently
large security parameter κ:

Pr

 (E,E ′, σ)← A(1κ)(E 6⊆ E ′ ∧
GMT .VerConsProof(GMT .GenTree(E),
GMT .GenTree(E ′), σ) = >)

 ∈ Negl(1 κ)

A.5.3 The Merkle Tree Construction

Given a CRHF h, we now define the Merkle tree construction.

Algorithm 9 GMT h∈H.GenTree(κ,E)

1: if |E| = 1 then return h(κ, 0 || E[0])

2: else if |E| > 1 then

3: i← 2

⌈
log2

(
|E|
2

)⌉

4: return h(κ, 1 || GMT h.GenTree(κ,E[0 : i]) || GMT h.GenTree(κ,E[i : |E|]))

5: else return ⊥

6: end if

Algorithm 10 GMT h∈H.GenIncProof(κ, i, E)

1: if |E| > 1 then

2: j ← 2

⌈
log2

(
|E|
2

)⌉

3: if i < j then return GMT h.GenIncProof(κ, i, E[0 : j]) || GMT h.GenTree(κ,E[j : |E|])

4: else return GMT h.GenIncProof(κ, i− j, E[j : |E|]) || GMT h.GenTree(κ,E[0 : j])

5: end if

6: end if

7: return ⊥

52

Algorithm 11 GMT h∈H.VerIncProof(κ, e, i, n, ϕ, σ)

1: return ϕ = Rooth(κ, e, i, n, σ)

2: procedure Rooth(κ, e, i, n, σ)

3: if n = 1 then return h(0 || e)

4: j ← 2

⌈
log2

(
n
2

)⌉
5: if i < j then

6: `← Rooth(κ, e, i, j, σ[0 : |σ| − 1])

7: r ← σ[|σ| − 1]

8: else

9: `← σ[|σ| − 1]

10: r ← Rooth(κ, e, i− j, n− j, σ[0 : |σ| − 1])

11: end if

12: return h(κ, 1 || ` || r)

13: end procedure

Algorithm 12 GMT h∈H.GenConsProof(κ, i, j, E)

1: if 0 ≤ i < j ≤ |E| then return Proofh(κ, i, E[0 : j],>)

2: return ⊥

3: procedure Proofh(κ, i, E, b)

4: if i = |E| ∧ b = ⊥ then return GMT h.GenTree(κ,E[0 : i])

5: else

6: j ← 2

⌈
log2

(
|E|
2

)⌉

7: if i ≤ j then return Proofh(κ, i, E[0 : j], b) || GMT h.GenTree(κ,E[j : |E|])

8: else return Proofh(κ, i− j, E[j : |E|],⊥) || GMT h.GenTree(κ,E[0 : j])

9: end if

10: end if

11: end procedure

53

Algorithm 13 GMT h∈H.VerConsProof(κ, i, j, ϕi, ϕj , σ)

1: if i is a power of 2 then σ ← ϕi || σ

2: ϕ′i ← Root0h(κ, i, j, σ)

3: ϕ′j ← Root1h(κ, i, j, σ)

4: return ((ϕi = ϕ′i) ∧ (ϕj = ϕ′j))

5: procedure Root0h(κ, i, j, σ)

6: k ← 2

⌈
log2

(
j
2

)⌉
7: if i < k then return Root0h(κ, i, k, σ[0 : |σ| − 1])

8: else if i = k then return σ[|σ| − 2]

9: else

10: `← σ[|σ| − 1]

11: r ← Root0h(κ, i− k, j − k, σ[0 : |σ| − 1])

12: return h(κ, 1 || ` || r)

13: end if

14: end procedure

15: procedure Root1h(κ, i, j, σ)

16: if |σ| = 2 then return h(κ, 1 || σ[0] || σ[1])

17: k ← 2

⌈
log2

(
j
2

)⌉
18: if i < k then

19: `← Root1h(κ, i, k, σ[0 : |σ| − 1])

20: r ← σ[|σ| − 1]

21: else

22: `← σ[|σ| − 1]

23: r ← Root1h(κ, i− k, j − k, σ[0 : |σ| − 1])

24: end if

25: return h(κ, 1 || ` || r)

26: end procedure

54

B PoC-PKI: A Provably-Secure PKI

We now describe the PoC-PKI system, a provably-secure ‘proof-of-concept’ PKI
scheme. PoC-PKI is designed for simplicity rather than efficiency or deployabil-
ity. PoC-PKI provably meets all PKI requirements (see Appendix C for rigorous
proofs and analysis).

B.1 High-Level Overview

In PoC-PKI, there is only one type of entities, which are called authorities,
i.e., the set N is the set of authorities in PoC-PKI. Authorities issue certificates
to clients using the PoC-PKIS,E,T S .Issue algorithm, which outputs the simplest
form of a valid certificate in PoC-PKI, which is an accountable certificate, i.e.,
a certificate with the ACC attribute.

Similarly, authorities revoke certificates upon client’s request, using the PoC-PKIS,E,T S .Revoke
algorithm, which outputs a revoked certificate, i.e., the same inputted certificate
but with the REV attribute. Both the ACC and the REV attributes are imple-
mented using a secure signature scheme, used by the authority to generate a
proof that the relevant certificate has these attributes. Namely, a certificate ψ
has attribute attr if ψ.ρ[attr].σ is a valid signature over Core(ψ) and attr signed
by ψ.ρ[attr].ι ∈ N on local time ψ.ρ[attr].clk.

A client can request any authority to upgrade the client’s accountable certifi-
cate, by adding to it the transparency attribute. If a client requests to upgrade
an accountable certificate into a ∆PoC-PKI-transparent certificate, the authority
uses the PoC-PKIS,E,T S .Upgrade algorithm to output an upgraded certificate,
i.e., a certificate with the ∆TRA attribute. Similarly, the same can be done
when a client requests a ∆PoC-PKI-revocation transparency upgrade; the author-
ity uses the PoC-PKIS,E,T S .Upgrade algorithm to output an upgraded certifi-
cate with the ∆ReTRA attribute. Note that transparency in PoC-PKI does not
involve pending certificates, and the outputted certificate is a non-pending up-
graded certificate. The ∆TRA and ∆ReTRA attributes are implemented using
proofs (like the ACC,REV attributes), but in addition, the authority immediately
broadcasts the upgraded certificate to the rest of the authorities, so that they
all know about the upgraded certificate before the ∆PoC-PKI time period passes.

When a client requests to upgrade a certificate into an unequivocal certificate,
the authority also use the PoC-PKIS,E,T S .Upgrade algorithm, but this time, the
algorithm outputs a pending certificate, i.e., a certificate with the EQ-P attribute
(pending unequivocal). The reason is that equivocation prevention is achieved
in PoC-PKI using the active involvement of other authorities, and therefore, a
pending certificate is generated until the upgrade process completes. Once the
process is completed, the authority will upgrade the client’s certificate into an
unequivocal certificate, based on the information gathered from other authori-
ties. However, this process may also fail, e.g., because during this process the
authority learns about another (pending or not) unequivocal non-revoked certifi-
cate that conflicts with the pending certificate. If the process fails, the upgrading

55

authority never upgrades the pending certificate into an actual unequivocal non-
pending certificate.

PoC-PKI implements this upgrade process using secure and robust threshold
signature scheme T S. Namely, the authority that issued the EQ-P pending cer-
tificate informs the rest of the authorities about the pending certificate, asking
them to confirm whether they approve this upgrade request or not. Essentially,
the only reason that an authority disapproves such request is if the authority
is aware of some other unequivocal, non-revoked certificate that was issued for
the same identifier for an overlapping period, i.e., a conflicting certificate (other
criterias could also be used). If that is the case, the disapproving authority in-
forms the upgrading authority about the existing certificate, thus providing the
upgrading authority with a legitimate reason not to complete the upgrade. Oth-
erwise, if such conflicting certificate does not exists, each authority approves the
upgrade by using its share of the threshold-signing key and sends back a partial-
signature for the certificate upgrade. Upon receiving a sufficient set of partial
signatures, and not receiving any conflicting certificate, the authority generates
and returns the certificate with the properly-threshold-signed EQ-P attribute.

Every authority in PoC-PKI can provide certificates with the aforementioned
attributes. Relying parties are expected to ignore certificates or attributes where
the signer is not authorized; however, the ‘authorization’ aspect, e.g., naming-
constraints, is not part of the scheme and is left for the actual system that adopts
PoC-PKI. Further, systems that use PoC-PKI can decide for themselves what
type of certificates they are willing to support. That is to say, that although
equivocation prevention is the strongest property suggested by PoC-PKI, sys-
tems can definitely accept and trust certificates which are ‘only’ accountable,
transparent or pending-unequivocal. Of course, the system designers should take
into consideration the proportional security guarantees. Furthermore, systems
might consider using such certificates as ‘temporary’ certificates which might be
considered less trusted, but can be useful until a certificate becomes unequivocal.

B.2 Model Function MPoC-PKI
∆com,∆clk

We define the model of PoC-PKI as

MPoC-PKI
∆com,∆clk

(ξ) =M3-rounds
SecInit (ξ) ∧M|NF|≤b(|N|/3)c(ξ) ∧MCOM

∆com(ξ) ∧MCLK
∆clk

(ξ)

where,M3-rounds
SecInit is the secure initialization model described in §3.2.2,M|NF|≤b(|N|/3)c

is the fault model described in §3.2.1 which sets the number of entities that can
arbitrarily misbehave to less than a third of all entities, MCOM

∆com
is the commu-

nication model as described in §3.2.3,MCLK
∆clk

is the clock synchronization model
as described in §3.2.4.

We use ∆PoC-PKI = ∆com + ∆clk to denote the delay ensured by PoC-PKI.
The reason for this value is that when an authority upgrades a certificate with
transparency or revocation transparency, it immediately broadcasts the up-
graded certificate to the rest of the entities. Since the MPoC-PKI

∆com,∆clk
model en-

sures that the adversary cannot prevent these messages from being delivered, it

56

takes at most ∆com time for the messages to arrive to other entities. However,
entities’ clocks might not be completely synchronized, which can add up to ∆clk

additional delay.

B.3 Local State Variables

Each entity has a local clock clk and a local state s. All entities store the
following information:
– s.N: the unique-identifiers of all entities.
– s.ι: the entity’s unique-identifier.
– s.PrivInfo: private (secret) information.
– s.PubInfoi: the public information of entity i ∈ N.
– s.certs: all the certificates known to the entity.

B.4 PoC-PKI Algorithms

B.4.1 Init Algorithm

The initialization algorithm PoC-PKIS,E,T S .Init (Algorithm 14) consists of three
rounds. In the first round (lines 1-6), each entity extracts from the input inp and
store locally the set of entities s.N and its identifier s.ι. Then, each entity gen-
erates a private/public signing key pair and encryption/decryption key pair. In
line 3, the algorithm produces the public key attribution statement (see §3.3.1).
The public keys are then sent to all other entities to be processed in the second
round. In the second round (lines 7-13), each entity extract from the input the
public keys sent by the other entities in the first round, and stores them locally.
Then, a trusted designated entity generate group keys. This process could be al-
ternatively implemented using a secure and distributed algorithm, which would
eliminate the need for a trusted party; however, for simplicity, we pick entity
number 1 (without loss of generality) to be the trusted entity in this implemen-
tation. Furthermore, entity number 1 needs to be trusted only during the secure
initialization phase, and does not have to be trusted after that. Entity number
1 uses T S.Gen to generate group verification key and |N| partial signature key
secret shares tski. Then, it encrypts the partial secret share tski for every au-
thority i ∈ N and sends to each entity its encrypted partial secret share along
with the group verification key. In the third and final round, each authority
stores the group verification key and decrypts and stores its encrypted partial
secret group signing key.

B.4.2 Issue Algorithm

The certificate issuance algorithm PoC-PKIS,E,T S .Issue (Algorithm 15) takes as
input the certificate details: identity id, public information (incl. key) pub, and
start, end dates sd, ed. The algorithm generates a signature σ using the S.Sign
algorithm over the inputted details (line 1) and generates a matching certificate
ψ for the inputted details with the ACC attribute (accountability) and uses σ as

57

Algorithm 14 PoC-PKIS,E,T S .Init()

1: if s.initCounter = 0 then

2: (s.PrivInfo.sk, s.PubInfos.ι.vk)← S.Gen(s.1κ)

3: out← (‘public key’, s.PubInfos.ι.vk)

4: (s.PrivInfo.dk, s.PubInfos.ι.ek)← E.Gen(s.1κ)

5: s.initCounter ← 1

6: out← {(‘send’,m = [PubInfo = s.PubInfos.ι], j)}j∈s.N−s.ι
7: else if s.initCounter = 1 then

8: s.PubInfoinp.j ← inp.m.PubInfo

9: if s.ι = 1 then

10: (s.PubInfo.tvk, {tski}|s.N|i=1)← T S.Gen(s.1κ, |s.N|, b|s.N|/3c)

11: E ← {ei = E.Enc(s.PubInfoi.ek, tski)}i∈N

12: out← {(‘send’,m = [tvk = s.PubInfo.tvk, tsk = E.ej)], j)}j∈s.N−s.ι
13: end if

14: s.initCounter ← 2

15: else if s.initCounter = 2 then

16: s.PubInfo.tvk ← inp.m.tvk

17: s.PrivInfo.tsk ← S.Dec(s.PrivInfo.dk, inp.m.tsk)

18: s.initCounter ← 3

19: end if

a proof of accountability (lines 2-3). The algorithms stores the newly generated
certificate in its local state s.certs (line 4) and outputs the accountable certificate
ψ.

Algorithm 15 PoC-PKIS,E,T S .Issue(id, pub, sd, ed)

Comment: An honest authority invokes issue only if the client that request ownership over id is
eligible for id and the authority is authorized to issue certificates for id.

// Generate a basic certificate

1: data← (id, pub, sd, ed,ACC, clk)

2: σ = S.Sign(s.PrivInfo.sk, data)

3: ρ← {(ACC, (σ, s.ι, clk))}

4: ψ ← (id, pub, sd, ed, ρ)

// Add the new certificate to the local state
5: s.certs += ψ

6: return ψ

B.4.3 Audit Algorithm

The certificate audit algorithm PoC-PKIS,E,T S .Audit (Algorithm 16) checks whether
there are problems with inputted certificate ψ with respect to the inputted at-

58

tribute attr. When the attr attribute refers to accountability, revocation ac-
countability or non-revocation accountability, the algorithm returns the output
of the PoC-PKIS,E,T S .WasValid algorithm on ψ and attr, as it does not have
any additional requirements besides the cryptographic correctness enforces by
WasValid. For the rest of the attributes, WasValid is not enough, so the algorithm
performs additional checks. When the attr attribute refers to ∆-transparency
or ∆PoC-PKI-revocation transparency, the algorithm checks if ψ indeed appears
in its local state, and if not, the algorithm outputs a matching IA (Indication
of Accusation). When the attr attribute refers to equivocation prevention, the
algorithm checks if ψ indeed appears in its local state, and if not, the algorithm
outputs a matching IA (Indication of Accusation).

Algorithm 16 PoC-PKIS,E,T S .Audit(ψ, attr)

1: v ← PoC-PKIS,E,T S .WasValid(ψ, attr)

2: if attr ∈ {ACC,REV,NREV, EQ-P} then return v

3: if attr ∈ {∆TRA, ∆ReTRA} ∧ v ∧ then

(@ψ’ ∈ s.certs s.t. (Core(ψ) = Core(ψ’) ∧ PoC-PKIS,E,T S .WasValid(ψ’, attr)))

4: if s.PubInfoψ.ρ[attr].ι.accusation = ⊥ then s.PubInfoψ.ρ[attr].ι.accusation← clk

5: return (IA, ψ.ρ[attr].ι, s.PubInfoψ.ρ[attr].ι.accusation)

6: end if

7: return ⊥

B.4.4 Revoke Algorithm

PoC-PKIS,E,T S .Revoke (Algorithm 17). Revokes a valid certificate ψ prema-
turely. Returns a revoked-version ψr of ψ if it can be revoked or was already
previously revoked, and ⊥ otherwise. The algorithm first makes sure that the
certificate is a valid certificate and that it is allowed to revoke it (line 1); in
PoC-PKI, certificates can only be revoked by their issuers. Then, the algorithm
checks if the certificate might have been already revoked. If this is the case, the
revoked certificate is returned (line 2). If not, the algorithm revokes the certifi-
cate by adding to the certificate a signed revocation proof, and stores the revoked
certificate in the local state (lines 3-8).

B.4.5 IsRevoked Algorithm

PoC-PKIS,E,T S .IsRevoked (Algorithm 18). Checks whether a certificate was re-
voked or not. The algorithm is invoked over the issuer of the certificate, since if
the certificate was revoked - the issuer of the certificate was the authority who
revoked it. The algorithm first makes sure that the certificate is valid and that
it was issued by the current executing authority (line 1). Then, it checks if there
is a revoked version of this certificate in the local state, and if so, it returns
the revoked certificate (line 2). Otherwise, the algorithm adds to the certificate

59

Algorithm 17 PoC-PKIS,E,T S .Revoke(ψ)

// Verify that ψ was issued by the authority and ψ is a valid, not expired certificate

1: if ψ.ρ[ACC].ι 6= s.ι ∨ PoC-PKIS,E,T S .WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ s.certs[ψ.id] s.t. PoC-PKIS,E,T S .WasValid(ψr ,REV) ∧ Core(ψ) = Core(ψr) then

return ψr

3: ψr ← ψ

// Revoke ψ
4: data← (Core(ψ),REV, clk)

5: σ ← S.Sign(s.PrivInfo.sk, data)

6: ψr.ρ[REV]← (σ, s.ι, clk)

// Add ψr to the local state
7: s.certs[ψr.id] += ψr

8: return ψr

a signed proof that the certificate was not revoked until the current local time
under the NREV attribute and outputs the certificate.

Algorithm 18 PoC-PKIS,E,T S .IsRevoked(ψ)

// Verify that ψ was issued by the authority and ψ is a valid, not expired certificate

1: if ψ.ρ[ACC].ι 6= s.ι ∨ PoC-PKIS,E,T S .WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ s.certs[ψ.id] s.t. PoC-PKIS,E,T S .WasValid(ψr ,REV) ∧ Core(ψ) = Core(ψr) then

return ψr

3: ψ’← ψ

// Add the non-revocation proof to ψ’
4: data← (Core(ψ),NREV, clk)

5: σ = S.Sign(s.PrivInfo.sk, data)

6: ψ’.ρ[NREV]← (σ, s.ι, clk)

7: return ψ’

B.4.6 Upgrade Algorithm

PoC-PKIS,E,T S .Upgrade (Algorithm 19). Upgrades certificate ψ with attribute
attr. The algorithm starts by making sure that the inputted certificate is a valid
certificate (line 1). Then, the algorithm checks the local state whether an up-
graded certificate with this attribute already exists. If so, the algorithm outputs
the relevant certificate (line 2). Otherwise, the algorithm performs the upgrade
based on the requested attribute. For transparency upgrades, the algorithm adds
a relevant signed proof to the certificate and broadcasts the upgraded certificate
(lines 4.1-4.1.4). For equivocation prevention upgrade, the algorithm generates
a pending upgrade certificate by adding a signed proof to the certificate, and
broadcasts the pending certificate (lines 4.2-4.2.4). The rest of the authorities

60

receive this pending certificate (using the PoC-PKIS,E,T S .Incoming algorithm)
and check whether they object to the upgrade request. If not, they send back a
partial signature to the upgrading authority.

When the client returns with the pending certificate (line 4.3), the algorithm
checks if the time for the upgrade process (ψ.ρ[EQ-P].clk +∆) has passed (line
4.3.1). If not, it means that the certificate is still pending, and the algorithm out-
puts the same pending certificate. If the time has expired, the algorithm outputs
⊥, since the upgrade failed, along with the failure reason (line 4.3.2). Recall that
line 2 of the algorithm checks whether an upgraded certificate exists in the local
state. If the upgrade was successful, such certificate would have already exist in
the local state (according to the implementation of the PoC-PKIS,E,T S .Incoming
algorithm). Therefore, since line 2 did not found such certificate, this means that
the upgrade failed.

Algorithm 19 PoC-PKIS,E,T S .Upgrade(ψ, attr)

// Verify that ψ is a valid, not expired certificate

1: if PoC-PKIS,E,T S .WasValid(ψ) = ⊥ ∨ ψ.ed < clk then return ⊥
// If there is already a matching pending or upgraded certificate, return it. A pending certificate
is ‘upgraded’ to non-pending by the Incoming function - Upgrade does not need to do this.

2: if ∃ψ’ ∈ s.certs s.t. Core(ψ) = Core(ψ’) ∧ PoC-PKIS,E,T S .WasValid(ψ’) then return ψ’

3: ψ’← ψ

4: switch attr do

// Transparency upgrade
5: case ∆TRA ∨ ∆ReTRA

// Add the transparency proof to ψ’
6: data← (Core(ψ), attr, clk)

7: σ = S.Sign(s.PrivInfo.sk, data)

8: ψ’.ρ[attr]← (σ, s.ι, clk)

9: out← {(‘send’,m = [ψ’], j)}j∈N−s.ι

// Equivocation prevention upgrade for a non-pending certificate
10: case (EQ-P ∧ PoC-PKIS,E,T S .WasValid(ψ, EQ-P) = ⊥)

// Add the PendEQ-P attr to ψ’
11: data← (Core(ψ),PendEQ-P, clk)

12: σ = S.Sign(s.PrivInfo.sk, data)

13: ψ’.ρ[EQ-P]← (σ, s.ι, clk)

14: out← {(‘send’,m = [ψ’], j)}j∈N−s.ι

// Non-equivocation upgrade for pending certificate
15: case EQ-P ∧ PoC-PKIS,E,T S .WasValid(ψ, EQ-P) = Pending

// If upgrade time (∆ = 2) did not pass, return the pending certificate
16: if clk < ψ.ρ[EQ-P].clk +∆ then return ψ

// Upgrade time passed already yet still ‘pending’: failure
17: return (⊥, s.certs[ψ.id].ρ[attr].failure)

// Add the certificates to the local set of certificates
18: s.certs[ψ.id] += {ψ,ψ’}

19: return ψ’

61

B.4.7 WasValid Algorithm

PoC-PKIS,E,T S .WasValid (see Algorithm 20). Checks if a certificate is valid, and
optionally, whether it has an attribute attr. The algorithm first checks if the in-
putted certificate is a valid certificate (line 2). In PoC-PKI, a valid certificate is
a non-expired certificate that was issued by an authority which is authorized to
issue a certificate for the namespace that ψ.id belongs to. In other words, the
certificate must have a valid accountability (ACC) attribute. Hence, the algo-
rithm verifies that authority that issued the accountability attribute is autho-
rized using the Authorized algorithm (which is defined by the actual system that
implements PoC-PKI) and that the proof of accountability is cryptographically
valid. If there is no attr input (or attr = ACC), then the algorithm outputs >,
since ψ is a valid certificate (line 3). Otherwise, the algorithm examines whether
the certificate has the attr attribute.

The verification whether ψ has some specific attribute is done for each at-
tribute accordingly. For the revocation accountability, ∆-transparency and ∆-
revocation transparency attributes, the algorithm checks if ψ contains a relevant
proof which is cryptographically valid (lines 5-5.1). The same check is performed
for the non-revoked attribute (NREV), but in addition, the algorithm also en-
sures that the time in which the proof was issued comply with the tms value
(lines 6-6.1). Finally, for the equivocation prevention attribute (EQ-P), the al-
gorithm first check if the certificate is a pending certificate using the standard
signature scheme (line 7.1). If not, the algorithm checks if ψ contains a valid
threshold signature (line 7.2).

B.4.8 Incoming Algorithm

PoC-PKIS,E,T S .Incoming (see Algorithm 21). Handles all incoming messages. In
PoC-PKI, there are three possible incoming messages: (1) a certificate broadcast,
(2) a non-equivocation rejection, and (3) a non-equivocation approval. When a
valid certificate arrives (line 1.1), it is added to the local state of certificates (line
1.1.1). If the arriving certificate is pending non-equivocation (line 1.1.2), the al-
gorithm checks against the local state whether there is a conflicting certificate
(line 1.1.3). Such conflicting certificate can be either an existing unequivocal
certificate or a pending non-equivocation certificate. In case of a conflict, the
algorithm prepares a response for the upgrading authority, to inform it about
the conflicting certificate, i.e., about the upgrade request rejection (line 1.1.4).
If there is no conflict, the algorithm prepares a partial signature approving the
equivocation prevention upgrade (line 1.1.6). The actual response is sent in line
1.1.7. If the arriving message contains a conflicting certificate, i.e., upgrade rejec-
tion (line 1.2), store the conflicting certificate locally so it can be supplied to the
client as an explanation why the upgrade failed (line 1.2.1). When the algorithm
receives a partial signature (line 1.3), it stores the partial signature locally (line
1.3.1); when enough partial signature have arrived (line 1.3.2), the algorithm
combines them using the threshold signature scheme’s T S.Combine algorithm
(line 1.3.4). If the T S.Combine algorithm was successful, the algorithm stores
the upgraded certificate (line 1.3.5).

62

Algorithm 20 PoC-PKIS,E,T S .WasValid(ψ, pk , attr [, tms])

1: χ← ψ.ρ[ACC]

// Verify that χ.ι (the issuer of ψ) is authorized to issue ψ and that the accountability proof is
cryptographically valid. These are the basic validity requirements in PoC-PKI

2: if Authorized(χ.ι, ψ.id) 6= > ∨ tms < ψ.sd ∨ tms > ψ.ed ∨

S.Ver(pk, (Core(ψ),ACC, χ.clk), χ.σ) 6= > then

3: return ⊥

4: end if

// If no attribute was supplied or the attribute is accountability, return true
5: if attr = ⊥ ∨ attr = ACC then return >

6: η ← ψ.ρ[attr]

// For the attributes that are implemented solely using proofs
7: if attr ∈ {∆TRA, ∆ReTRA,REV} then return S.Ver(pk, (Core(ψ), attr, η.clk), η.σ)

// For the NREV attribute
8: if attr = NREV then

// Check that the proof is cryptographically valid and that it is relevant to tms
9: return S.Ver(pk, (Core(ψ), attr, η.clk), η.σ) ∧ ψ.ρ[NREV].clk ≥ tms

10: end if

// For the equivocation prevention attribute
11: if attr = EQ-P then

// Check if ψ is pending
12: if S.Ver(pk, (Core(ψ),PendEQ-P, η.clk), η.σ) then return Pending

// Certificate is not pending, check if the group proof is cryptographically valid
13: return T S.Ver(pk, (Core(ψ), EQ-P), η.σ)

14: end if

15: return ⊥

63

Algorithm 21 PoC-PKIS,E,T S .Incoming()

1: for each m ∈ inp do

// If m is part of the secure initialization phase
2: if s.initCounter < 3 then PoC-PKIS,E,T S .Init(m)

// If m is a broadcasted certificate
3: if ψ ← m s.t. PoC-PKIS,E,T S .WasValid(ψ) then

4: s.certs[ψ.id] += ψ

// If ψ is pending equivocation prevention
5: if PoC-PKIS,E,T S .WasValid(ψ, EQ-P) = Pending then

// If a conflicting certificate is known, return it to abort
6: if ∃ψ’ ∈ s.certs s.t. ψ.id = ψ’.id ∧

Core(ψ) 6= Core(ψ’) ∧ PoC-PKIS,E,T S .WasValid(ψ’, EQ-P) 6= ⊥ then

// Prepare a rejection response with the conflicting certificates
7: res ← (ψ,ψ’)

// No conflicting certificate - approve the request for non-equivocation
8: else

// Prepare a partial signature approving the upgrade
9: res ← (ψ, σ = T S.Sign(s.PrivInfo.tsk, (Core(ψ), EQ-P)))

10: end if

11: out← (‘send’, res, ψ.ρ[EQ-P].ι)

12: end if

// If m is an upgrade rejection
13: else if (ψ,ψ’) ← m s.t.PoC-PKIS,E,T S .WasValid(ψ, EQ-P) =

Pending ∧ PoC-PKIS,E,T S .WasValid(ψ’, EQ-P) 6= ⊥ then

// Store the conflicting certificate
14: s.certs[ψ.id].ρ[EQ-P].failure = ψ’

// If m is a partial approval of a pending certificate which has not been rejected yet
15: else if (ψ, σ)← m s.t. PoC-PKIS,E,T S .WasValid(ψ, EQ-P) = Pending ∧

s.certs[ψ.id].ρ[EQ-P].failure = ⊥ then

// Add new partial signature to the local state
16: s.toUpgrade[ψ.id] += σ

// Check to see if enough semi-signatures arrived
17: if |s.toUpgrade[ψ.id]| < |N| − b|N|/3c then continue

// Enough semi-proofs have arrived - try to combine them
18: ψ’← ψ

19: ψ’.ρ[NEQ].σ ← T S.Combine(s.toUpgrade[ψ.id])

// Check if the upgrade was successful
20: if PoC-PKIS,E,T S .WasValid(ψ’, EQ-P) then s.certs[ψ’.id] += ψ’

21: end if

22: end for

64

The PoC-PKIS,E,T S .Time algorithm is not required in PoC-PKI, since in
PoC-PKI there are no time-based events.

C Analysis of PoC-PKI

In this section, we provide reduction-based proofs showing that PoC-PKI achieves
its safety properties, as described in §5.1. We first show that PoC-PKI achieves
accountability,∆PoC-PKI-transparency, revocation accountability, non-revocation
accountability and ∆PoC-PKI-revocation transparency by reduction to the exis-
tential unforgeability of a secure signature scheme. We then show that PoC-PKI
also achieves equivocation prevention by reduction to the g−existential unforge-
ability of a secure threshold signature scheme.

C.1 Proofs of Accountability, Revocation Accountability,
Non-Revocation Accountability, ∆PoC-PKI-transparency and
∆PoC-PKI-revocation transparency

Proof Methodology. To prove that PoC-PKIS,E,T S achieves the attributes
that are implemented using the secure signature scheme S, we use the following
methodology:

1. We first define a variation of PoC-PKIS,E,T S called PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk

(see Def. 20), where a PPT oracle algorithm OSign(sk, ·) is used to generate
signatures using a secret key sk instead of entity ι ∈ N, where sk is the
matching secret signing key of the verification key vk, see §C.1.1.

2. Then, we define a game called Exp
Forge,M
A,PoC-PKIS,E,T S , where we execute an

adversaryA with the PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk scheme, and askA to output

a message m and signature σ over m, signed using the public verification key
vk, namely, without A knowing the matching signing key sk, nor A can use
the oracle access to sign m, see §C.1.2.

3. We then formulate Lemma 1, showing that the existence of an adversary that

‘wins’ the Exp
Forge,M
A,PoC-PKIS,E,T S game with non-negligible probability means

that S is not a secure signature scheme, see §C.1.3.
4. We then prove that if PoC-PKIS,E,T S does not achieves accountability, revo-

cation accountability, ∆PoC-PKI-transparency or ∆PoC-PKI-revocation trans-

parency, then we can construct an adversary that wins the Exp
Forge,M
A,PoC-PKIS,E,T S

game with non-negligible probability, see §C.1.4.
5. Finally, we revisit Theorem 2 and complete its proof by combining steps

1− 4, see §C.1.5.

C.1.1 The PoC-PKI
OSign(sk,·)
N,ι,vk scheme

We begin by defining a variation of the PoC-PKIS,E,T S scheme, denoted as

PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk ; for brevity, where the identities of S, E and T S are

clear or irrelevant, we may use the shorthand PoC-PKI
OSign(sk,·)
N,ι,vk .

65

Definition 20. Let S, E and T S be a signature, encryption and threshold-
signature schemes, respectively, and let (sk, vk) ← S.Gen(1κ), for a given secu-

rity parameter 1κ. Given a PPT oracle OSign(sk, ·), let PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk

(abbreviated as PoC-PKI
OSign(sk,·)
N,ι,vk) be a PKI scheme where one designated au-

thority ι ∈ N executes the PoC-PKIS,E,T S scheme with the following changes,
and the rest of the authorities in N execute PoC-PKIS,E,T S without any changes:

1. The PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk .Init algorithm is the same as PoC-PKIS,E,T S .Init

(Alg. 14), except for replacing line 2 of PoC-PKIS,E,T S .Init with the following

line:

(s.PrivInfo.sk, s.PubInfos.ι.vk)← (nil, vk)

where vk is the public verification key of the sk signing key, given as input

to PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk .

2. In all the algorithms that use the signing key, replace the following code:

S.Sign(s.PrivInfo.sk, data)

with the following code:
OSign(sk, data)

namely, sign data using the oracle access to the sign operation S.Sign.

C.1.2 The Exp
Forge,M
A,PoC-PKIS,E,T S Game

We now define the Exp
Forge,M
A,PoC-PKIS,E,T S (1κ,N) game:

1. Generate key pair (sk, vk)← S.Gen(1κ).

2. Randomly choose an authority ι
R← N.

3. Execute A with the PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk scheme, i.e.,

(NF, R, t, outA)← ExecA,PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk

(1κ,N)

4. A outputs message m and signature σ, i.e., (m,σ)← outA.
5. The experiment outputs 1 if:

(a) S.Ver(vk,m, σ) = >
(b) A did not use the oracle access on m.
(c) A satisfies model M (see Def. 1).
(d) ι is an honest authority, i.e., ι ∈ N− NF

Otherwise, the experiment outputs 0.

C.1.3 The Relation Between Exp
Forge,M
A,PoC-PKIS,E,T S and the Security of

the Signature Scheme S

We now show that the existence of an adversary that ‘wins’ the Exp
Forge,M
A,PoC-PKIS,E,T S

game with non-negligible probability means that S is not a secure signature
scheme.

66

Lemma 1. If there is a PPT adversary A that satisfies

Pr

[
Exp

Forge,MPoC-PKI
∆com,∆clk

A,PoC-PKIS,E,T S
(1κ,N) = 1

]
6∈ Negl(1κ) (8)

then S is not a secure signature scheme.

Proof. Assume to the contrary that such adversary A exists, yet S is a secure
signature scheme.

Following §C.1.2, ifA ‘wins’ the Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game with non-negligible

probability, then this means that A can output a message m and a valid signa-
ture σ over m, where A has only access to the verification key and oracle accesses
to the signing key, without requesting the oracle to sign m.

Therefore, according to definition of existential unforgeability (Def. 8), the

following holds for A

Pr
[
ExpEUA,S(1

κ) = 1
]
6∈ Negl(1κ) (9)

thus contradicting the security of S.

C.1.4 Linking Accountability, Revocation Accountability, ∆PoC-PKI-

transparency and∆PoC-PKI-revocation transparency to the Exp
Forge,M
A,PoC-PKI

Game

We now show that if PoC-PKIS,E,T S does not ensures accountability under

modelMPoC-PKI
∆com,∆clk

, then we can construct an adversary that wins in the Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S

game.

Claim 1. If PoC-PKIS,E,T S does not ensures accountability under modelMPoC-PKI
∆com,∆clk

,

then there exists a PPT adversary AACC such that

Pr

[
Exp

Forge,MPoC-PKI
∆com,∆clk

AACC,PoC-PKIS,E,T S
(1κ,N) = 1

]
6∈ Negl(1κ) (10)

Proof. From Definition 2, if PoC-PKIS,E,T S does not ensures accountability un-

der model MPoC-PKI
∆com,∆clk

, then there exists a PPT adversary AACC that satisfies

Pr

[
(NF, R, t, outAACC

)← ExecAACC,PoC-PKIS,E,T S (1
κ,N)

ExpACC
PoC-PKIS,E,T S (1

κ,N,NF, R, t, outAACC
) = >

]
6∈ Negl(1κ)

(11)

Therefore, all that is left is to show that if Eq. 11 holds then Eq. 10 also
holds.

67

First, according to the description of the security experiment ExpACC
PoC-PKIS,E,T S

(Alg. 2), the return value of the experiment is true only if, among other criteria,

the following is true:

PoC-PKIS,E,T S .WasValid(ψ,ACC) (12)

for a certificate ψ outputted by the adversary, where ψ.ρ[ACC].ι (the issuer of
the certificate), is an honest authority that did not issue ψ by executing the
PoC-PKIS,E,T S .Issue algorithm.

Second, according to the implementation of PoC-PKIS,E,T S .WasValid, as de-

scribed in Alg. 20, the algorithm executes

S.Ver(s.PubInfoη.ι.vk, (Core(ψ),ACC, η.clk), η.σ) (13)

for η = ψ.ρ[ACC].
Lastly, the only place in PoC-PKIS,E,T S where an honest authority ι com-

putes its keys is in the PoC-PKIS,E,T S .Init algorithm (Algorithm 14); specifi-
cally the sign/verify key pair is generated in line 2, using the S.Gen algorithm.
Furthermore, the signing key is only used in algorithms: PoC-PKIS,E,T S .Issue,
PoC-PKIS,E,T S .Revoke, PoC-PKIS,E,T S .IsRevoked and PoC-PKIS,E,T S .Upgrade,
and only with the S.Sign algorithm; however, certificates can only be issued in
PoC-PKI using the PoC-PKIS,E,T S .Issue algorithm.

Thus, following Eq. 11, the value described in Eq. 12 must be true, and as a
result, Eq. 13 must also equal true. Accordingly, with accordance to PoC-PKI’s
implementation, adversary AACC is a PPT adversary that for a message m =
(Core(ψ),ACC, η.clk) was able to generate a signature σ = η.σ that is validated
with non-negligible probability with the verification key vk = s.PubInfoη.ι.vk,
without access to the signing key, and without ever having the honest authority
ι sign m. Hence, such AACC adversary satisfies Eq. 10.

We now show that if PoC-PKIS,E,T S does not ensures revocation account-
ability under model MPoC-PKI

∆com,∆clk
, then we can construct an adversary that wins

in the Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game.

Claim 2. If PoC-PKI does not achieves revocation accountability under model

MPoC-PKI
∆com,∆clk

, then there exists a PPT adversary AREV such that

Pr

[
Exp

Forge,MPoC-PKI
∆com,∆clk

AREV,PoC-PKIS,E,T S
(1κ,N) = 1

]
6∈ Negl(1κ) (14)

Proof. From Definition 2, if PoC-PKI does not ensures revocation accountability

under modelMPoC-PKI
∆com,∆clk

, then there exists a PPT adversary AREV that satisfies

Pr

[
(NF, R, t, outAREV

)← ExecAREV,PoC-PKIS,E,T S (1
κ,N)

ExpREV
PoC-PKIS,E,T S (1

κ,N,NF, R, t, outAREV
) = >

]
/∈ Negl(1κ)

(15)

68

Therefore, all that is left is to show that if Eq 15 holds then Eq 14 also holds.

First, according to the description of the security experiment ExpREV
PoC-PKIS,E,T S

(Alg. 3), the return value of the experiment is true only if, among other criteria,

the following is true:

PoC-PKIS,E,T S .WasValid(ψr ,REV) (16)

for a certificate ψr outputted by the adversary, where ψr.ρ[REV].ι (the entity
that revoked the certificate), is an honest authority that did not revoke ψr by
executing the PoC-PKIS,E,T S .Revoke algorithm.

Second, according to the implementation of PoC-PKIS,E,T S .WasValid, as de-

scribed in Alg. 20, the algorithm executes

S.Ver(S.PubInfo.pkη.ι, (Core(ψr),REV, η.clk), η.σ) (17)

for η = ψr.ρ[REV].

Lastly, the only place in PoC-PKIS,E,T S where an honest authority ι com-
putes its keys is in the PoC-PKIS,E,T S .Init algorithm (Algorithm 14); specifi-
cally the sign/verify key pair is generated in line 2, using the S.Gen algorithm.
Furthermore, the signing key is only used in algorithms: PoC-PKIS,E,T S .Issue,
PoC-PKIS,E,T S .Revoke, PoC-PKIS,E,T S .IsRevoked and PoC-PKIS,E,T S .Upgrade,
and only with the S.Sign algorithm; however, certificates can only be have the
non-revocation accountability attribute in PoC-PKI using the PoC-PKIS,E,T S .IsRevoked
algorithm.

Thus, following Eq. 19, the value described in Eq. 20 must be true, and
as a result, Eq. 21 must also equal true. Accordingly, with accordance to
PoC-PKIS,E,T S ’s implementation, adversary ANREV is a PPT adversary that
for a message m = (Core(ψ),NREV, η.clk) was able to generate a signature
σ = η.σ that is validated with non-negligible probability with the verification
key vk = s.PubInfoη.ι.vk, without access to the signing key, and without ever
having the honest authority ψ.ρ[NREV].ι sign m. Hence, such ANREV adversary
satisfies Eq. 18.

We now show that if PoC-PKIS,E,T S does not ensures non-revocation ac-
countability under modelMPoC-PKI

∆com,∆clk
, then we can construct an adversary that

wins in the Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game.

Claim 3. If PoC-PKI does not achieves non-revocation accountability under

model MPoC-PKI
∆com,∆clk

, then there exists a PPT adversary ANREV such that

Pr

[
Exp

Forge,MPoC-PKI
∆com,∆clk

ANREV,PoC-PKIS,E,T S
(1κ,N) = 1

]
6∈ Negl(1κ) (18)

69

Proof. From Definition 2, if PoC-PKI does not ensures non-revocation account-

ability under modelMPoC-PKI
∆com,∆clk

, then there exists a PPT adversary ANREV that

satisfies

Pr

[
(NF, R, t, outANREV

)← ExecANREV,PoC-PKIS,E,T S (1
κ,N)

ExpNREV
PoC-PKIS,E,T S (1

κ,N,NF, R, t, outANREV
) = >

]
/∈ Negl(1κ)

(19)

Therefore, all that is left is to show that if Eq 19 holds then Eq 18 also holds.

First, according to the description of the security experiment ExpNREV
PoC-PKIS,E,T S

(Alg. 4), the return value of the experiment is true only if, among other criteria,

the following is true:

PoC-PKIS,E,T S .WasValid(ψ,NREV) (20)

for a certificate ψ outputted by the adversary, where ψ.ρ[NREV].ι (the entity
that issued the certificate’s non-revocation), is an honest authority.

Second, according to the implementation of PoC-PKIS,E,T S .WasValid, as de-

scribed in Alg. 20, the algorithm executes

S.Ver(S.PubInfo.pkη.ι, (Core(ψr),NREV, η.clk), η.σ) (21)

for η = ψ.ρ[NREV].

Lastly, the only place in PoC-PKIS,E,T S where an honest authority ι com-
putes its keys is in the PoC-PKIS,E,T S .Init algorithm (Algorithm 14); specifi-
cally the sign/verify key pair is generated in line 2, using the S.Gen algorithm.
Furthermore, the signing key is only used in algorithms: PoC-PKIS,E,T S .Issue,
PoC-PKIS,E,T S .Revoke, PoC-PKIS,E,T S .IsRevoked and PoC-PKIS,E,T S .Upgrade,
and only with the S.Sign algorithm; however, certificates can only be revoked in
PoC-PKI using the PoC-PKIS,E,T S .Revoke algorithm.

Thus, following Eq. 15, the value described in Eq. 16 must be true, and
as a result, Eq. 17 must also equal true. Accordingly, with accordance to
PoC-PKIS,E,T S ’s implementation, adversary AREV is a PPT adversary that for
a message m = (Core(ψr),REV, η.clk) was able to generate a signature σ = η.σ
that is validated with non-negligible probability with the verification key vk =
s.PubInfoη.ι.vk, without access to the signing key, and without ever having the
honest authority ι sign m. Hence, such AREV adversary satisfies Eq. 14.

We now show that if PoC-PKI does not ensures ∆PoC-PKI-transparency un-
der model MPoC-PKI

∆com,∆clk
, then we can construct an adversary that wins in the

Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game.

70

Claim 4. If PoC-PKIS,E,T S does not ensures ∆PoC-PKI-transparency under

model MPoC-PKI
∆com,∆clk

, then there exists a PPT adversary A∆TRA such that

Pr

[
Exp

Forge,MPoC-PKI
∆com,∆clk

A∆TRA,PoC-PKIS,E,T S
(1κ,N) = 1

]
6∈ Negl(1κ) (22)

Proof. From Definition 2, if PoC-PKIS,E,T S does not ensures∆PoC-PKI-transparency

under modelMPoC-PKI
∆com,∆clk

, then there exists a PPT adversaryA∆TRA that satisfies

Pr

[
(NF, R, t, outA∆TRA

)← ExecA∆TRA,PoC-PKIS,E,T S (1
κ,N)

Exp∆TRA
PoC-PKIS,E,T S (1

κ,N,NF, R, t, outA∆TRA
) = >

]
/∈ Negl(1κ)

(23)

Therefore, all that is left is to show that if Eq 23 holds then Eq 22 also holds.

First, according to the description of the security experiment Exp∆TRA
PoC-PKIS,E,T S

(Alg. 5), the return value of the experiment is true only if, among other criteria,

the following is true:

PoC-PKIS,E,T S .WasValid(ψ,∆TRA) ∧
R.out[t], R.out[t-1] 6= IA

(24)

for a certificate ψ outputted by the adversary, and there exists two honest au-
thorities that are not aware of ψ although they should, and they cannot indicate
any problem with ψ nor with the authority that issued ∆TRA for ψ.

Second, according to the implementation of PoC-PKIS,E,T S .WasValid, as de-

scribed in Alg. 20, the algorithm executes

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ∆TRA, η.clk), η.σ) (25)

for η = ψr.ρ[∆TRA].
Third, the only place in PoC-PKIS,E,T S where an honest authority ι com-

putes its keys is in the PoC-PKIS,E,T S .Init algorithm (Algorithm 14); specifi-
cally the sign/verify key pair is generated in line 2, using the S.Gen algorithm.
Furthermore, the signing key is only used in algorithms: PoC-PKIS,E,T S .Issue,
PoC-PKIS,E,T S .Revoke, PoC-PKIS,E,T S .IsRevoked and PoC-PKIS,E,T S .Upgrade,
and only with the S.Sign algorithm; however, certificates can only be upgraded
with the ∆TRA attribute in PoC-PKI using the PoC-PKIS,E,T S .Upgrade al-
gorithm. We emphasize that an honest authority that upgrades a ∆PoC-PKI-
transparent certificate ψ using the PoC-PKIS,E,T S .Upgrade algorithm, informs
all the other authorities about ψ.

Lastly, according to PoC-PKIS,E,T S .Audit (Alg. 16), if an honest authority
receives a cryptographically valid ∆PoC-PKI-transparent certificate that it is not
aware of although it should, it outputs an IA (Indicator of Accusation).

Thus, following Eq. 23, the value described in Eq. 24 must be true, and as
a result, Eq. 25 must also equal true. However, if Eq. 24 is true, this means

71

that the authority that endorsed ∆TRA for ψ was honest, because otherwise,
the honest authorities in Eq. 25 would have outputted an IA. Accordingly, with
accordance to PoC-PKIS,E,T S ’s implementation, adversary A∆TRA is a PPT ad-
versary that for a message m = (Core(ψ), ∆TRA, η.clk) was able to generate a
signature σ = η.σ that is validated with non-negligible probability with the veri-
fication key vk = s.PubInfoη.ι.vk, without access to the signing key, and without
ever having the honest authority ψ.ρ[∆TRA].ι sign m. Hence, such A∆TRA ad-
versary satisfies Eq. 22.

We now show that if PoC-PKIS,E,T S does not ensures ∆PoC-PKI-revocation
transparency under modelMPoC-PKI

∆com,∆clk
, then we can construct an adversary that

wins in the Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game.

Claim 5. If PoC-PKIS,E,T S does not ensures ∆PoC-PKI-revocation transparency

under modelMPoC-PKI
∆com,∆clk

, then there exists a PPT adversary A∆ReTRA such that

Pr

[
Exp

Forge,MPoC-PKI
∆com,∆clk

A∆ReTRA,PoC-PKIS,E,T S
(1κ,N) = 1

]
6∈ Negl(1κ) (26)

Proof. From Definition 2, if PoC-PKIS,E,T S does not ensures∆PoC-PKI-revocation

transparency under modelMPoC-PKI
∆com,∆clk

, then there exists a PPT adversaryA∆ReTRA

that satisfies

Pr

[
(NF, R, t, outA∆ReTRA

)← ExecA∆ReTRA,PoC-PKIS,E,T S (1
κ,N)

Exp∆ReTRA
PoC-PKIS,E,T S (1

κ,N,NF, R, t, outA∆ReTRA
) = >

]
/∈ Negl(1κ)

(27)

Therefore, all that is left is to show that if Eq 27 holds then Eq 26 also holds.

First, according to the description of the security experiment Exp∆ReTRA
PoC-PKIS,E,T S

(Alg. 6), the return value of the experiment is true only if, among other criteria,

the following is true:

PoC-PKIS,E,T S .WasValid(ψ,∆ReTRA) ∧
PoC-PKIS,E,T S .WasValid(ψr ,REV) ∧

Core(ψ) = Core(ψr) ∧
ψr.ρ[REV].ι ∈ N− NF

(28)

for certificates ψ,ψr outputted by the adversary, where ψr is the revoked version
of the ∆PoC-PKI-revocation transparent certificate ψ, which was revoked by an
honest authority, without two honest entities being aware of ψr, although they
should be.

72

Second, according to the implementation of PoC-PKIS,E,T S .WasValid, as de-

scribed in Alg. 20, the algorithm executes

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ∆ReTRA, η.clk), η.σ) (29)

for η = ψr.ρ[∆ReTRA].
Third, the only place in PoC-PKIS,E,T S where an honest authority ι com-

putes its keys is in the PoC-PKIS,E,T S .Init algorithm (Algorithm 14); specifi-
cally the sign/verify key pair is generated in line 2, using the S.Gen algorithm.
Furthermore, the signing key is only used in algorithms: PoC-PKIS,E,T S .Issue,
PoC-PKIS,E,T S .Revoke, PoC-PKIS,E,T S .IsRevoked and PoC-PKIS,E,T S .Upgrade,
and only with the S.Sign algorithm; however, the only place to revoke a cer-
tificate is via the PoC-PKIS,E,T S .Revoke algorithm and the only way to up-
grade a certificate into a ∆PoC-PKI-revocation transparent certificate is via the
PoC-PKIS,E,T S .Upgrade algorithm.

Lastly, when the PoC-PKIS,E,T S .Revoke algorithm revokes a∆PoC-PKI-revocation
transparent certificate, it notifies the rest of the authorities, and when the
PoC-PKIS,E,T S .Upgrade algorithm upgrades a revoked certificate into ∆PoC-PKI-
revocation transparent certificate it notifies the rest of the authorities.

Thus, following Eq. 27, the value described in Eq. 28 must be true, and
as a result, Eq. 29 must also equal true. Accordingly, with accordance to
PoC-PKIS,E,T S ’s implementation, adversary A∆ReTRA is a PPT adversary that
for a message m = (Core(ψ), ∆ReTRA, η.clk) was able to generate a signature
σ = η.σ that is validated with non-negligible probability with the verification
key vk = s.PubInfoη.ι.vk, without access to the signing key, and without ever
having the honest authority ι sign m. Hence, such A∆ReTRA adversary satisfies
Eq. 26.

C.1.5 Completing the Proof

Now, we revisit Theorem 2 presented in §5.1, and complete its proof.

Theorem 2. Let S be an existentially-unforgeable signature scheme. Then PoC-PKIS,E,T S

achieves accountability, revocation accountability, non-revocation accountabil-
ity, ∆PoC-PKI-transparency, and ∆PoC-PKI-revocation transparency under model
MPoC-PKI

∆com,∆clk
.

Proof. The proof for all four properties is essentially identical; we present the
argument for accountability and later discuss the (trivial) adaptions for the other
three properties.

Assume, therefore, that PoC-PKIS,E,T S does not achieve accountability, and
we will show that this implies that S is not a secure signature scheme. Ac-
cording to Claim 1, this means there exists a PPT adversary A that wins the

Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game with non-negligible probability. Note that Claim 1

refers to this adversary as AACC; the argument follows by substituting A in
Eq. (10).

73

Similarly, from Claims 2-5, if PoC-PKI does not achieve revocation account-
ability, ∆PoC-PKI-transparency, or ∆PoC-PKI-revocation transparency, then there

a PPT adversary that wins the Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game with non-negligible

probability.
However, Lemma 1 shows that if there exists a PPT adversary A that wins

the Exp
Forge,MPoC-PKI

∆com,∆clk

A,PoC-PKIS,E,T S
game with non-negligible probability, then S is not a

secure signature scheme.

C.2 Proof of Non-Equivocation

Proving that PoC-PKIS,E,T S achieves equivocation prevention is different from
proving the other properties, because PoC-PKIS,E,T S prevents equivocation us-
ing both a secure encryption scheme E and a robust threshold signature scheme
T S. This requires a few adjustments to the proof methodology, as we now dis-
cuss.

Proof methodology. To prove that PoC-PKIS,E,T S achieves equivocation
prevention, we use the following methodology:

1. We define a variation of PoC-PKIS,E,T S called T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

where equivocation prevention relies solely on the threshold scheme T S,
rather than also relying on a secure encryption scheme (Def. 21), see §C.2.1.

2. Then, we show that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk is secure against

conflicting certificates, see §C.2.2.

3. We then define the Exp
T S−Forge,M
A,PoC-PKIS,E,T S game in §C.2.3 and link the security

of a threshold signature scheme T S with the Exp
T S−Forge,M
A,PoC-PKIS,E,T S game in

§C.2.4.

4. We show that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk ensures equivocation

prevention under model MPoC-PKI
∆com,∆clk

in §C.2.5
5. Finally, we show that the security argument also holds for the original

PoC-PKI scheme, see Theorem 3 in §C.2.6.
Rationale behind the proof methodology. The rationale behind this

methodology can be viewed as a ‘divide and conquer’ approach that allows us to
present the proof in a simplified manner. Since both encryption and threshold sig-
nature schemes are used to achieve equivocation prevention, the aforementioned

proof methodology separates the two by defining the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

scheme, where encryption is not used. We can then prove that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

ensures equivocation prevention, by reduction to the security of the threshold

signature scheme; since T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk does not use en-

cryption, this resembles the proof of properties that rely on standard signature
schemes, e.g., accountability, as described in Theorem 2, except that here we
reduce to the security of threshold signatures rather than to the security of a

standard signature scheme. The fact that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

only slightly varies from PoC-PKIS,E,T S , allows us to prove that if we add the

74

encryption back to the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk scheme, thus end-

ing up the with the original PoC-PKIS,E,T S scheme, the security argument that
PoC-PKIS,E,T S achieves equivocation prevention still holds, as long as the en-
cryption scheme is secure.

C.2.1 The T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk Scheme

We start by defining a variation of the PoC-PKIS,E,T S , called T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .

Definition 21. Let S,E and T S be a signature, encryption and threshold-signature

schemes, respectively. Given a PPT oracle OTSign{tski}i∈N
(i, ·), let T S- PoC-PKI

S,E,T S,OTSign{tski}i∈N
(i,·)

N,tvk

(abbreviated as T S- PoC-PKI
OTSign{tski}i∈N

(i,·)
) be a PKI scheme identical to

PoC-PKIS,E,T S , except for the following changes:

1. In the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .Init (Alg. 14), replace lines 10-

12 with the following code:

out← {(‘send’,m = [(tvk, E .Enc(PubInfoi.ek, ‘0’))], j)}i∈S.N−s.ι
(30)

2. In the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .Incoming algorithm, replace the

following line of code:

res ← (ψ, σ = T S.Sign(S.PrivInfo.tsk, (Core(ψ),EQ-P))) (31)

with the following line of code:

res ← (ψ, σ = OTSign{tski}i∈N
(s.ι, (Core(ψ),EQ-P))) (32)

namely, generate proof σ by signing data using the oracle access to the sign
operation T S.Sign.

Note the two modifications that happen in T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

as opposed to PoC-PKIS,E,T S . First, instead of delivering each authority ι ∈
N its matching share of the threshold signature scheme tskι, the authorities
receive a ‘useless’ string (‘0’). Second, instead of using the individual sign-
ing algorithm T S.Sign in the Incoming algorithm, the scheme uses the oracle
OTSign{tski}i∈N

(i, ·). These two modifications essentially eliminate the part that

the encryption scheme E plays in equivocation prevention, hence, in T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk ,

equivocation prevention is implemented solely using the threshold signature
scheme T S.

75

C.2.2 Proving that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk is Secure

Against Equivocation

We now show that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk is secure against con-

flicting (equivocating) certificates, i.e., honest authorities would not sign conflict-
ing certificates. Namely, when an honest authority is aware of a valid certificate
ψ with the EQ-P attribute, it will not partially sign any other certificate ψ’
with the same identifier (ψ.id = ψ’.id) that its validity period overlaps with the
validity period of ψ, since these two certificates are in conflict.

Claim 6. Let N be a set of entities and let f be the number of compromised
entities in N. Let T S be a (t, n)-threshold-signature scheme where n = |N| > 2f
as the number of shares, and the threshold t is defined as t = |N| − f − 1. If

the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk scheme uses T S, then no PPT adver-

sary can abuse T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk to generate two conflicting

certificates ψ,ψ’ with the non-equivocation attribute.

Proof. The only place in T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk where authori-

ties generate partial signatures is in line 9 of the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .Incoming

algorithm (Alg. 21), where an entity generates a share for the signature proof of
a non-equivocal certificate ψ. However, this line is executed only if the check in
line 6 is satisfied, i.e., there is no conflicting certificate ψ’ in the s.certs repos-
itory. In other words, if line 6 is satisfied, it ensures that there is no certificate
ψ’ (valid or pending) in s.certs with the same identifier but different public in-
formation that has the EQ-P attribute. Therefore, each honest authority would
only execute line 9, i.e., generate their partial group-signature, for either ψ or
ψ’, but never for both.

Let nψ (nψ’) denote the number of honest authorities partially-signing ψ

(resp., ψ’). Then:

nψ + nψ’ ≤ |N| − f (33)

Assume, without loss of generality, that nψ ≥ t + 1 = |N| − f , i.e., there

are enough signature-shares from honest authorities to combine into a valid

certificate ψ with the EQ-P attribute. Following Eq. 33:

nψ’ ≤ |N| − f − nψ = 0 (34)

hence, the total number of shares of signatures for ψ’ is at most f (i.e., only
from the malicious authorities). Since following Def. 11, at least t + 1 partial
signatures are required to be combined into a valid group signature, and since
t+ 1 = |N|− f > 2f − f = f , then f is not enough partial signatures to combine
into a valid non-equivocal certificate upgrade for ψ’.

C.2.3 The Exp
T S−Forge,M
A,PoC-PKIS,E,T S Game

We now define the Exp
T S−Forge,M
A,PoC-PKIS,E,T S (1κ,N) game:

76

1. Generate keys (tvk, {tski}i∈N)← T S.Gen(1κ, |N|, b|N|/3c).
2. Execute A with the T S- PoC-PKI

S,E,T S,OTSign{tski}i∈N
(i,·)

N,tvk scheme, i.e.,

(NF, R, t, outA)← Exec
A,T S- PoC-PKI

S,E,T S,OTSign{tski}i∈N
(i,·)

N,tvk

(1κ,N)

3. A outputs message m and signature σ, i.e., (m,σ)← outA.
4. The experiment outputs 1 if:

(a) T S.Ver(tvk,m, σ) = >
(b) A did not perform more than b|N|/3c oracle requests for message m.
(c) A satisfies model M (see Def. 1).
Otherwise, the experiment outputs 0.

C.2.4 The Relation Between Exp
T S−Forge,M
A,PoC-PKIS,E,T S and the Security of

the Threshold Signature Scheme T S

We now show that the existence of an adversary that ‘wins’ the Exp
T S−Forge,M
A,PoC-PKIS,E,T S

game with non-negligible probability means that T S is not a secure threshold
signature scheme.

Lemma 2. If there is a PPT adversary A that satisfies

Pr
[
Exp

T S−Forge,M
A,PoC-PKIS,E,T S (1

κ,N) = 1
]
6∈ Negl(1κ) (35)

then T S is not a g−existentially unforgeable threshold signature scheme.

Proof. Assume to the contrary that such adversaryA exists, yet T S is a g−existentially
unforgeable threshold signature scheme.

Following §C.2.3, ifA ‘wins’ the Exp
T S−Forge,M
A,PoC-PKIS,E,T S game with non-negligible

probability, then this means that A can output a message m and a valid signa-
ture σ over m, where A has only access to the verification key and no more than
b|N|/3c oracle requests for message m.

Therefore, according to the definition of g−existential unforgeability (Def. 11),
the following holds for A

Pr
[
ExpEUT S,A(1

κ, |N|, b|N|/3c) = 1
]
6∈ Negl(1κ) (36)

thus contradicting the g−existential unforgeability of T S.

C.2.5 T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk Ensures Equivocation Pre-

vention

We now show that if T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk does not ensures

equivocation prevention under model MPoC-PKI
∆com,∆clk

, then we can construct an

adversary that wins in the Exp
T S−Forge,M
A,PoC-PKIS,E,T S game.

77

Claim 7. If T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk does not ensures equivoca-

tion prevention under model MPoC-PKI
∆com,∆clk

, then there exists a PPT adversary

AEQ-P such that

Pr
[
Exp

T S−Forge,M
A,PoC-PKIS,E,T S (1

κ,N) = 1
]
6∈ Negl(1κ) (37)

Proof. From Definition 2, if T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk does not en-

sures equivocation prevention under modelMPoC-PKI
∆com,∆clk

, then there exists a PPT

adversary AEQ-P that satisfies

Pr

 (NF, R, t, outAEQ-P
)← Exec

AEQ-P,T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)

N,tvk

(1κ,N)

ExpEQ-P

T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)

N,tvk

(1κ,N,NF, R, t, outAEQ-P
) = >

 6∈ Negl(1κ)
(38)

Therefore, all that is left is to show that if Eq. 38 holds then Eq. 37 also
holds.

Since A ‘wins’ in the equivocation prevention security experiment (Eq. 38),

then following the security experiment (Alg. 8), A managed to produce two valid

conflicting certificates ψ,ψ’ with the equivocation prevention attribute EQ-P,

namely:

T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .WasValid(ψ,EQ-P) =

T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .WasValid(ψ’,EQ-P) = >

(39)

Hence, following Eq. 39 and the implementation of T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .WasValid

described in Alg. 20, we get that:

T S.Ver(tvk, (Core(ψ),EQ-P), ψ.ρ[EQ-P].σ) ≡
T S.Ver(tvk, (Core(ψ’),EQ-P), ψ’.ρ[EQ-P].σ) ≡ >

(40)

Since AEQ-P can generate two conflicting certificates ψ,ψ’ as described in
Eq. 40 with non-negligible probability, and following Claim 6 that ψ’ (without

loss of generality) was not ‘honestly’ generated by T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

honest authorities, it shows that adversary AEQ-P is a PPT adversary that is able
to generate a message m = (Core(ψ’),EQ-P) and signature σ = ψ’.ρ[EQ-P].σ
over m with only the knowledge of the public group verification key v = tvk and
up to t oracle accesses on m, and therefore, following Def. 11:

Pr
[
ExpEUT S,AEQ-P

(1κ,N, t) = 1
]
∈ Negl(1κ)

78

thus AEQ-P contradicts the unforgeability of T S.

Therefore, T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk achieves equivocation pre-

vention.

We next argue that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk ensures equivoca-

tion prevention.

Lemma 3. T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk ensures equivocation preven-

tion under model MPoC-PKI
∆com,∆clk

, assuming that S is a secure signature scheme, E
is a secure encryption scheme and T S is a robust threshold signature scheme.

Proof. Assume to the contrary that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk does

not ensures equivocation prevention under modelMPoC-PKI
∆com,∆clk

. We will show that
this implies that T S is not an unforgeable threshold signature scheme. Accord-
ing to Claim 7, this means there exists a PPT adversary AEQ-P that wins the

Exp
T S−Forge,MPoC-PKI

∆com,∆clk

AEQ-P,T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)

N,tvk

game with non-negligible probabil-

ity. However, Lemma 2 shows that if there exists a PPT adversary AEQ-P that

wins the Exp
T S−Forge,MPoC-PKI

∆com,∆clk

AEQ-P,T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)

N,tvk

game with non-negligible

probability, then T S is not an unforgeable threshold signature scheme.

C.2.6 Proving That (Original) PoC-PKI Also Achieves Equivocation
Prevention

We complete our proof with the last phase of our proof methodology. We al-

ready showed that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk achieves equivocation

prevention. To prove that PoC-PKIS,E,T S also achieves equivocation prevention,
we need to show that the fact that PoC-PKIS,E,T S uses encryption to achieve
equivocation prevention does not provide any advantage to the adversary in

comparison to T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk .

To that end, we define the following indistinguishability game Exp
CPA−IND
A,E (1κ):

1. The game randomly chooses b ∈ {0, 1}.
2. If b = 0, we executeA with the T S- PoC-PKI

S,E,T S,OTSign{tski}i∈N
(i,·)

N,tvk scheme,

and if b = 1, we execute A with the PoC-PKIS,E,T S scheme.
3. A outputs b’ ∈ {0, 1}.
4. The game outputs 1 if b = b’, otherwise 0.

Now, we revisit Theorem 3 presented in §5.1, and complete the proof that
PoC-PKI achieves equivocation prevention.

Theorem 3. PoC-PKIS,E,T S achieves equivocation prevention under modelMPoC-PKI
∆com,∆clk

,

provided that T S is (t ≤M|NF|≤b(n/3)c)-existentially unforgeable, and E is CPA-
indistinguishable.

79

Proof. The only difference between the PoC-PKIS,E,T S and the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

schemes is that the adversary has an advantage in PoC-PKIS,E,T S , because it
also receives the encrypted secret information generated by PoC-PKIS,E,T S .Init

using the secure encryption scheme E . Lemma 3 shows that T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

ensures equivocation prevention under model MPoC-PKI
∆com,∆clk

, since T S is secure;

we now show that security in the PoC-PKIS,E,T S scheme also holds.

Assume to the contrary that although E is secure; there exists an adversary

A that negates the claim that PoC-PKIS,E,T S ensures equivocation prevention

under the MPoC-PKI
∆com,∆clk

model, namely:

Pr

[
(NF, R, t, outAEQ-P

)← ExecAEQ-P,PoC-PKIS,E,T S (1
κ,N)

Exp∆ReTRA
PoC-PKIS,E,T S (1

κ,N,NF, R, t, outAEQ-P
) = >

]
/∈ Negl(1κ)

(41)

Since the only difference between PoC-PKIS,E,T S and T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk

is the use of E to encrypt the individual secret information, it means that A uses
this advantage to win the experiment.

Consider an adversaryA’ that simulatesA in the aforementioned Exp
CPA−IND
A,E (1κ)

indistinguishability game, and outputs b′ = 1 ifA wins the Exp
MPoC-PKI

∆com,∆clk

EQ-P (1κ,N)

experiment (since we conclude it is an execution with the PoC-PKIS,E,T S scheme,
where A has an advantage), and outputs b′ = 0 otherwise (since it is proba-

bly an execution with the T S- PoC-PKI
S,E,T S,OTSign{tski}i∈N

(i,·)
N,tvk scheme). Con-

sequently, if such A exists, then we are able to construct A’ that wins the

Exp
CPA−IND
A,E (1κ) experiment with a non-negligible probability, thus contra-

dicting the indistinguishability of E .
Therefore, PoC-PKIS,E,T S also achieves equivocation prevention.

C.3 Proofs of VAS, NF, NFA and UFAT

Lemma 4. Let S be an existentially-unforgeable signature scheme. Then PoC-PKIS,E,T S

achieves Verifiable Attribution of Statements (VAS) for S under modelMPoC-PKI
∆com,∆clk

.

Proof. Assume to the contrary, that there exists an adversary A that ‘wins’ in
the verifiable attribution of statements experiment ExpVAS

PoC-PKIS,E,T S , yet S is a
secure signature scheme.

First, following the definition of honest entities from the execution process
(Algorithm 1), A cannot change the execution of PoC-PKI algorithms by honest
entities.

Second, following the convention described in § 3.3.1, in every PoC-PKI algo-
rithm where the S.Sign algorithm is used, the algorithm ‘automatically’ produces
an attribution statement of the signed data.

Therefore, with accordance to the definition of ExpVAS
PoC-PKIS,E,T S from Req 1,

A is capable of producing a message m and a signature σ over m signed by an

80

honest authority ι, without executing S.Sign on ι with message m, with non-
negligible probability.

However, if such adversary A exists, then according to definition of existential

unforgeability (Def. 8), the following holds for A

Pr
[
ExpEUA,S(1

κ) = 1
]
6∈ Negl(1κ) (42)

thus contradicting the security of S.

Lemma 5. Let S be an existentially-unforgeable signature scheme. Then PoC-PKIS,E,T S

achieves Verifiable Attribution of Statements Non-frameability (NF), No False
Accusations (NFA) and Use First-Accuse Time (UFAT) under modelMPoC-PKI

∆com,∆clk
.

Proof. NF holds trivially since PoC-PKIS,E,T S .Vp always return ⊥ (for any in-
puts).

The only accusation statement generated in PoC-PKI is via the Audit al-
gorithm, when a ∆PoC-PKI-transparent certificate is inputted which the en-
tity is supposed to be aware of, yet it does not. According to the CTcomp
S,GMT ,H.Upgrade algorithm, an honest entity always informs all other entities
immediately after upgrading a certificate with the ∆TRA attribute. Therefore,
since according to MPoC-PKI

∆com,∆clk
sent messages arrive to their respective desti-

nations within bounded time which the ∆PoC-PKI time takes into consideration,
honest entities will always receive all ∆PoC-PKI-transparent certificates from hon-
est entities within the ∆PoC-PKI time, and therefore, NFA also holds.

UFAT also trivially holds, since in PoC-PKIS,E,T S .Audit always stores the
clock of the first accusation and outputs it in case of accusation.

Theorem 1. Let S be an existentially-unforgeable signature scheme. Then PoC-PKIS,E,T S

achieves Verifiable Attribution of Statements (VAS) for S, Non-frameability
(NF), No False Accusations (NFA) and Use First-Accuse Time (UFAT) under
model MPoC-PKI

∆com,∆clk
.

Proof. See Lemmas 4-5.

D CTcomp: Certificate Transparency Complemented

In this section we provide a formal description of CTcomp, which is our best effort
to complete the missing specifications of Certificate Transparency as defined in
RFC6962, in the simplest possible way, to create a well-defined protocol whose
properties can be analyzed (See Section E). Obviously, the analysis can be easily
adapted to support improved, more efficient and/or complex variants of CT.

D.1 Mapping CT into the PKI Framework

We design CTcomp by mapping the CT specification from RFC 6962 into the PKI
security framework. We use pseudo-code to describe the main functionalities,

81

simplifying some low-level details and APIs defined in the specification. Since
the specification does not provide all the necessary details to produce a formal
protocol description, we use CTcomp to fill in the gaps to produce a formal,
complete protocol description.

In CTcomp there are three types of roles: certificate authorities, loggers and
monitors, represented respectively by the set R = {CA,L,M}. Loggers keep
public logs of certificates issued by different CAs, and monitors validate that
logs are published consistently. Hence, the set of entities in CTcomp is defined as
N =

⋃
r∈R

Nr, where Nr is the subset of entities with role r ∈ R. For simplicity,

we assume that each entity has only one role.
Note that R does not contain clients, since they are irrelevant with respect to

the security properties. Clients are subjects of certificates, who want to ensure
that there are no misissued certificates for identifiers they own, i.e., identifiers
endorsed in their certificates as well as relying parties, who want to validate
a specific certificate before they use it. Similarly, R does not contain auditors,
which, as defined in the specifications, are not a separate entity but rather a
way to offload auditing functionality from certificate subjects and relying parties.
Clients, both certificate subjects and relying parties, simply rely on CAs, loggers
and monitors for ensuring that the system achieves its claimed properties.

Operation-wise, each logger in CTcomp use generalized Merkle tree to pro-
duces one signed tree hash (STH) per one maximum merge delay (MMD) period.
If no new certificates were added since the previous STH was produced, then the
logger re-signs the most recent STH. All loggers use the same MMD, which is
consistent with the current deployment of CT. Each honest monitor maintains
a full copy of each log it watches and after each MMD period, it fetches the new
STH along with all the newly added certificates. Then, the monitor ensures that
the new STH complies with the updated copy of the log it maintains.

CTcomp employs a naive gossip approach, where every MMD period all mon-
itors gossip all the new certificates and STHes they have learned since the pre-
vious gossip.

D.2 Model Function MCTcomp
∆com,∆clk

We define the model of CTcomp as

MCTcomp
∆com,∆clk

(ξ) =M2-rounds
SecInit (ξ) ∧MCOM

∆com(ξ) ∧MCLK
∆clk

(ξ) ∧MAuth
Mapping(ξ)

where, M2-rounds
SecInit is the secure initialization model (§ 3.2.2), MCOM

∆com
is the

communication model (§ 3.2.3), MCLK
∆clk

is the clock synchronization (§ 3.2.4),

and MAuth
Mapping enforces monitor-logger mapping as we discuss next. Note that

MCOM
∆com

defines a bounded-delay communication model although RFC6962 states
that some of the algorithms are asynchronous. However, those algorithms def-
initely use time-outs; the authors apparently meant to say the algorithms are
non-blocking. Similarly, MCLK

∆clk
assumes a bounded-drift clock synchronization,

although such synchronization is not explicitly stated in the specifications.

82

In CTcomp, each monitor is assigned loggers to watch, as part of the secure ini-
tialization phase. Since this monitor-logger mapping is determined by the adver-
sary, the model must make sure that the adversary does not abuse this privilege.
In CTcomp, this could be abused by the adversary in the ∆CTcomp -transparency
requirement, where the adversary is required to output a ∆CTcomp -transparent
certificate and honest monitors which are not aware of ψ - although they should.
However, the adversary could take advantage of this monitor-logger mapping ca-
pabilities into outputting a ∆CTcomp-transparent certificate which was signed by

a logger which is not monitored by m, thus winning the Exp∆TRA game. There-
fore, the model enforces an authentic mapping by making sure that the output
of the adversary in the Exp∆TRA

MCTcomp
∆com,∆clk

game complies with the monitor-logger

mapping. This is captured by the following model function:

MAuth
Mapping(1

κ,N,NF, R, t, outA) =

[
∀(∆TRA, ψ, ι)← outA ∃t′ ∈ {1, . . . , |N|} :
i[t′] = ι ∧ ψ.ρ[∆TRA].ι ∈ inp[t′]

]
We consider the ∆ delay used in CTcomp as ∆CTcomp = 4∆com + 2∆clk.

∆CTcomp accounts for the time it takes to include the certificate in the log
(MMD ≤ ∆com), plus the time it takes for other entities to learn about new
certificates (∆com), plus the time it takes to send a gossip message (∆com) and
receive a gossip message (∆com). On top of that, because the clocks might be
skewed by at most ∆clk, we add one ∆clk for when entities learn of new certifi-
cates and another ∆clk for the gossip.

D.3 CTcomp PKI Implementation

D.3.1 Local State Variables

Each entity has a local clock clk and a local state S. All entities, regardless of
their role, store the following information:
– s.N: the unique-identifiers of all entities.
– s.ι: the entity’s unique-identifier.
– s.role: the entity’s role.
– s.PrivInfo: private (secret) information.
– s.PubInfoi: the public information of entity i ∈ N.

In addition, entities also store role-specific information. Specifically, each CA
c ∈ NCA stores:
– s.certs: all the certificates issued/revoked by the CA.

Each monitor m ∈ NM stores:
– s.loggers ⊆ NL: the loggers watched by m.
– s.logi: the monitored information about logger i ∈ s.loggers, where:
• s.logi.version is the version number of the logger’s latest STH.
• s.logi.STH is the latest STH.
• s.logi.entries are all the certificates represented by the STH.
• s.logi.accusations are all the accusations when the logger did not send

updated information in time.

83

• s.logi.msgs are all messages received about this log, either from the
logger or through gossip.

Lastly, each logger ` ∈ NL stores:

– s.entries: ordered list of certificates currently logged in the Merkle tree.
– s.toAppend: all newly added certificates not yet logged.

D.3.2 Init Algorithm

The initialization algorithm CTcomp.Init (Algorithm 22) consists of two rounds.
In the first round (lines 1-7), each entity extract from the input inp and store
locally the set of entities s.N, its identifier s.ι, its role s.role, and monitors also
take the subset of loggers they need to monitor s.loggers. Then, each entity
generate a private/public signing key pair and a public key for hashing. The
public keys are then sent to all other entities to be processed in the second
round. In the second round (lines 8-11), each entity extract from the input the
public keys sent by the other entities in the first round, and store them locally.

Algorithm 22 CTS,GMT ,Hcomp .Init(1κ)

1: if s.initCounter = 0 then

2: (s.role, s.loggers)← inp.m

3: (s.PrivInfo.sk, s.PubInfos.ι.vk)← S.Gen(s.1κ)

4: out← (‘public key’, s.PubInfos.ι.vk)

5: s.PubInfos.ι.hk ← {0, 1}
n

6: s.initCounter ← 1

7: out← {(‘send’,m = [PubInfo = s.PubInfos.ι], j)}j∈s.N−s.ι
8: else if s.initCounter = 1 then

9: s.PubInfoinp.j ← inp.m.PubInfo

10: s.initCounter ← 2

11: end if

D.3.3 Issue Algorithm

The certificate issuance algorithm CTcomp.Issue (Algorithm 23) is used by a CA
to produce an accountable certificate ψ. Other authorities do not issue certifi-
cates. The algorithm uses S.Sign to sign the mapping between the identifier id
and some public information pub. An honest CA only issues a certificate if the
requesting client is eligible for the specific id. After the certificate is produced,
the CA adds it to its local state and returns it to the requesting client. We do
not model the interactions of CAs and their clients. In the context of the X.509
web PKI, an accountable certificate ψ can be viewed as a valid X.509 certificate
and can be used as such.

84

Algorithm 23 CTcomp
S,GMT ,H.Issue(id, pub, sd, ed)

Comment: An honest authority invokes Issue only if the client is eligible for the id it requests.

// Check if invoked by a CA

1: if s.ι /∈ NCA then return ⊥

// Generate a basic certificate

2: data← (id, pub, sd, ed,ACC, clk)

// Generate an accountable certificate

3: σ = S.Sign(s.PrivInfo.sk, data)

4: ρ← {(ACC, (σ, s.ι, clk))}

5: ψ ← (id, pub, sd, ed, ρ)

// Add the new certificate to the local state
6: s.certs += ψ

7: return ψ

D.3.4 Upgrade Algorithm

The upgrade algorithm CTcomp.Upgrade (Algorithm 24) needs to handle only
one scenario. Namely, the upgrade of an accountable certificate to a ∆CTcomp -
transparent certificate, i.e., a certificate with an attribute attr = ∆TRA. A
∆CTcomp -transparent certificate is a certificate that has been logged by one of
the loggers, that is, a certificate for which an SCT has been issued and a proof
of inclusion can be produced.

Since certificates can only logged by loggers, the loggers are also the only enti-
ties that can upgrade certificates. However, logging a certificate is not an atomic
operation, and therefore, cannot be completed immediately; this is a direct re-
sult of only periodically updating the tree and generating new STHes. Thus,
when a request to upgrade a valid, accountable certificate arrives, loggers cre-
ate a ∆CTcomp -transparency pending certificate, and when the next STH will be
generated, the pending certificate will be upgraded into a ∆CTcomp -transparent
certificate. Hence, When CTcomp.Upgrade is invoked on an accountable but not
yet pending ∆CTcomp -transparency or ∆CTcomp -transparent certificate ψ, the log-
ger immediately returns a pending ∆CTcomp -transparency certificate ψp, which is
ψ with an SCT, the logger’s promise to log the certificate within its MMD. After
each MMD-defined period of time, the logger adds new pending certificates to
its log, produces a new Merkle Tree Hash (MTH), and finally signs it producing
an STH (Signed Tree Hash), which serves as a commitment to the new version of
the log. When CTcomp.Upgrade is invoked on ψp after a new STH was produced,
the logger returns an upgraded ∆CTcomp -transparent certificate, which includes
an SCT and a proof of inclusion.

D.3.5 Revoke Algorithm

The certificate revocation algorithm CTcomp.Revoke (Algorithm 25) is used by an
eligible CA (the one who issued the certificate) to revoke a certificate ψ, which is
valid, not expired or not already revoked at the time of the revocation request. If

85

Algorithm 24 CTcomp
S,GMT ,H.Upgrade(ψ, attr)

// Check that invoked by a logger, ψ is valid, and the upgrade attribute is ∆TRA

1: if s.role 6= ‘L’ ∨ CTS,GMT ,Hcomp .WasValid(ψ,ACC) 6= > ∨ attr 6= ∆TRA then return ⊥

// If there is already a matching upgraded (transparent) certificate, return it.
2: if ∃ψ’ ∈ s.entries s.t. Core(ψ) = Core(ψ’) ∧ CTS,GMT ,Hcomp .WasValid(ψ’, ∆TRA) then return

ψ’

// If there is a matching pending certificate and no new STH yet, return it.
3: if ∃ψ’ ∈ s.toAppend s.t. Core(ψ) = Core(ψ’) ∧ CTS,GMT ,Hcomp .WasValid(ψ’, ∆TRA) = Pending ∧

s.STH.clk < ψ’.ρ[Pend∆TRA].clk then return ψ’

// Otherwise, issue a pending certificate
4: return Produce Pending(ψ)

5: procedure Produce Pending(ψ)

// Generate SCT and add it as a proof
6: data← (Core(ψ),Pend∆TRA, clk)

7: SCT = (s.ι, clk, data,S.Sign(s.PrivInfo.sk, data))

8: ψ.ρ[Pend∆TRA]← SCT

// Store ψ to be included in the next STH
9: s.toAppend += ψ

10: return ψ

11: end procedure

the certificate was already revoked, the algorithm outputs the revoked certificate
ψr. Otherwise, the algorithm revokes the certificate by signing the revocation
statement and outputting the certificate with the signed revocation statement.
The signature is generated using the signing algorithm S.Sign. Note that both
X.509 and CT do not explicitly instruct the CA to sign upon revocation, however,
this simple extension is necessary to ensure accountability of performing the
revocation operation.

Algorithm 25 CTcomp
S,GMT ,H.Revoke(ψ)

// Verify that ψ was issued by the executing CA and ψ is a valid, not expired certificate

1: if ψ.ρ[ACC].ι 6= s.ι ∨ CTS,GMT ,Hcomp .WasValid(ψ) 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ s.certs[ψ.id] s.t. CTcomp.WasValid(ψr,REV) ∧ Core(ψ) = Core(ψr) then return ψr

3: ψr ← ψ

// Revoke ψ
4: data← (Core(ψ),REV, clk)

5: σ ← S.Sign(s.PrivInfo.sk, data)

6: ψr.ρ[REV]← (σ, s.ι, clk)

// Add ψr to the local state
7: s.certs[ψr.id] += ψr

8: return ψr

86

D.3.6 IsRevoked Algorithm

The check revocation status algorithm CTcomp.IsRevoked (Algorithm 26) first
verifies that the inputted certificate is eligible to be examined, namely that it is
cryptographically valid, did not expire and that it was issued by the executing
entity. If the certificate was already revoked, then the algorithm outputs the
revoked version of the certificate. If the certificate is indeed valid and was not
revoked, the algorithm outputs the certificate with the not-revoked (NREV) at-
tribute, which contains a signed proof that the certificate is not revoked until
the current time clk.This is essentially equivalent to the operation of OCSP.

Algorithm 26 CTcomp
S,GMT ,H.IsRevoked(ψ)

// Verify that ψ was issued by the authority and ψ is a valid, not expired certificate

1: if ψ.ρ[ACC].ι 6= s.ι ∨ CTS,GMT ,Hcomp .WasValidψ 6= > ∨ ψ.ed < clk then return ⊥

// If ψ was already revoked, return it
2: if ∃ψr ∈ s.certs[ψ.id] s.t. CTcomp.WasValid(ψr,REV) ∧ Core(ψ) = Core(ψr) then return ψr

// Add the non-revocation proof to ψ’
3: ψ’← ψ

4: data← (Core(ψ),NREV, clk)

5: σ = S.Sign(s.PrivInfo.sk, data)

6: ψ’.ρ[NREV]← (σ, s.ι, clk)

7: return ψ’

D.3.7 WasValid Algorithm

The validation algorithm CTcomp.WasValid (Algorithm 27) verifies two require-
ments: 1) the current time is between the certificate’s validity period, and that
2) the accountability proof is cryptographically valid. These requirements are
enough for the accountability property, see lines 1-5. For the revoke property
REV and the not-revoked property NREV, the algorithm verifies that the proofs
are valid, see lines 6-7. For transparency (lines 8-11), the algorithm first check
if the certificate is pending. If not, the algorithm verifies that the certificate is
included in the public log. If ψ is indeed transparent, then it contains the root
of the Merkle tree, the signature over the root signed by the logger and the
necessary proof to check the path from ψ to the tree root.

D.3.8 Audit Algorithm

The CTcomp
S,GMT ,H.Audit algorithm (Algorithm 28) checks whether there are

problems with the inputted certificate ψ with regards to the inputted attribute
attr. In CTcomp, only monitors are required to support the algorithm. Namely,
the algorithm checks whether there were accusations against the logger that
issued the attr attribute for ψ. If such accusations exist, the algorithm outputs
the first accusation. Alternatively, if the attribute is ∆CTcomp -transparency, then

87

Algorithm 27 CTcomp.WasValid(ψ, pk, attr [, tms])

1: χ← ψ.ρ[ACC]

// Verify that the accountability proof is cryptographically valid and that the certificate has not
expired

2: if tms < ψ.sd ∨ tms > ψ.ed ∨ S.Ver(pk, (Core(ψ),ACC, χ.clk), χ.σ) 6= > then

3: return ⊥

4: end if

// If no attribute was supplied or the attribute is accountability, return true
5: if attr = ⊥ ∨ attr = ACC then return >

6: η ← ψ.ρ[attr]

// For the REV and NREV properties, check that the proof is cryptographically valid
7: if attr ∈ {REV,NREV} then return S.Ver(pk, (Core(ψ), attr, η.clk), η.σ)

// For transparency - check inclusion
8: if attr = ∆TRA then

// Check if the certificate is pending
9: if S.Ver(pk, (Core(ψ),Pend∆TRA, η.clk), η.σ) then return Pending

// Check that the certificate is indeed included in the log
10: return S.Ver(pk, η.sth.mth.hash, η.sth.mth.sigma) ∧

GMT .VerIncProof(κ,Core(ψ), η.index, η.sth.mth.len, η.sth.mth.proof, σ)

11: end if

12: return ⊥

the algorithm checks whether ψ appears in relevant monitored log. If not, the
algorithm outputs a proof of misbehavior, by outputting ψ and the messages
received by the logger, so the entity that verifies the proof can see that no such
certificate was delivered to executing monitor.

Algorithm 28 CTS,GMT ,Hcomp .Audit(attr, ψ)

1: if s.role 6= ‘M’ then return ⊥

2: isV alid← CTS,GMT ,Hcomp .WasValid(ψ, attr)

3: if s.logψ.ρ[attr].ι.accusations 6= ⊥ then

4: return s.logψ.ρ[attr].ι.accusations[0]

5: else if isV alid ∧ attr = ∆TRA ∧ clk ≥ ψ.ρ[∆TRA].clk +∆ ∧

@ψ’ ∈ s.logψ.ρ[∆TRA].ι.entries s.t. Core(ψ) = Core(ψ’) then

6: return (error = ‘misbehavior’, ψ, s.logψ.ρ[∆TRA].ι.msgs)

7: end if

8: return isV alid

D.3.9 Time Algorithm

The algorithm CTcomp.Time (Algorithm 29) handles time-based events and is
implemented according to the needs of each of CT’s entities. This algorithm
defines the periodically invoked operations of loggers and monitors. We do not

88

define such operations for CAs in this algorithm since CAs operations to issue,
upgrade or revoke certificates are handled using the corresponding algorithms.

The main operation for a logger is to periodically append certificates to the
tree such that it obeys its stated MMD. When it is time to update the log,
the logger appends new certificates to the tree, it saves the current STH and its
timestamp, then it updates the tree by appending new certificates, and produces
a new MTH and STH. Once the log is updated, for each newly added certificate,
the logger upgrades it to a transparent certificate by adding the ∆TRA attribute
and the corresponding proof of inclusion of the certificate in the log.

The main operation for a monitor is to periodically contact all loggers it
watches and obtain the new STH and newly added certificates, and to gossip
this information to all other monitors. For simplicity, we rely on a simple but
inefficient gossip protocol where everyone gossips with everyone by sending the
same message to each monitor.

D.3.10 Incoming Algorithm

Algorithm CTcomp.Incoming (Algorithm 30) handles incoming messages and is
implemented according to the needs of each of the CT’s entities. We model
only the messages necessary to provide the security properties and note that
additional messages would be needed to accommodate clients and additional
functionalities.

Loggers handle one message get-entries (start) to produce a set of certificates
currently in the tree starting at index start as well as the latest STH. Monitors
handle two incoming messages, a response to the get-entries messages and gossip
messages. When a monitor receives a response to get-entries, it checks it by
verifying the signature on the MTH , checks the reported MTH against the
set of current and new certificates, checks the new certificates for any invalid
or suspicious ones, and finally saves the newly received information. When a
monitor receives gossip messages, it compares the incoming gossiped data against
the local state and reports any discrepancies.

E CTcomp Analysis

E.1 Proof of Accountability, Revocation Accountability and
Non-Revocation Accountability

We start with accountability and revocation accountability.

Theorem 4. CTcomp
S,GMT ,H satisfies security requirements accountability,

revocation accountability and non-revocation accountability, under modelMCTcomp
∆com,∆clk

,
under the same assumptions as in Theorem 6.

Proof. Valid certificates in CTcomp
S,GMT ,H can only be issued using CTcomp

S,GMT ,H.Issue (Alg. 23), certificates can only be revoked using CTcomp
S,GMT ,H.Revoke

(Alg. 25) and non-revocation accountability can only be produced using CTcomp

89

Algorithm 29 CTS,GMT ,Hcomp .Time()

// If current entity is a logger

1: if s.role = ‘L’ then Logger Time()

// If current entity is a monitor

2: if s.role = ‘M’ then Monitor Time()

3: procedure Logger Time()

// Every MMD

4: if time to append new certificates then

// Append all new certificates from s.toAppend

5: s.entries += s.toAppend

// Update tree and produce a new STH

6: s.MTH ← (clk, len = |s.entries|, hash = GMT .GenTree(s.entries))

7: s.root← (s.ι,mth = s.MTH, σ = S.Sign(S.PrivInfo.sk, s.MTH))

// Add a proof of inclusion to each newly added certificate
8: j ← 1

9: for each ψ ∈ {s.entries ∩ s.toAppend} do

10: ψ.ρ[∆TRA]← (sth = s.root, index = |s.entries|+ j,

clk = s.MTH.clk, proof = GMT .GenIncProof(Core(ψ), s.entries))

11: j ← j + 1

12: end for

13: s.toAppend = ⊥

14: end if

15: end procedure

16: procedure Monitor Time()

// Every MMD

17: if time to retrieve log changes then

18: m = {type = ‘get-entries’, start=|s.logi.entries|}

19: out← {(‘send’,m, j)}j∈s.loggers
20: end if

21: if time for logger ` ∈ s.loggers to send the newly logged certificates and STH passed then

22: out← (IA, `, clk)

23: s.log`.accusations += out

24: end if

25: end procedure

90

Algorithm 30 CTS,GMT ,Hcomp .Incoming()

1: for each message msg ∈ inp do

2: if s.initCounter < 2 then PoC-PKIS,E,T S .Init(msg)

3: if s.role = ‘L’ then Logger Incoming(msg)

4: if s.role = ‘M’ then Monitor Incoming(msg)

5: end for

6: procedure Logger Incoming(msg)

7: if msg.m.type = ‘get-entries’ then

8: m = (type = ‘entries’, entries = s.certs[msg.m.start : |s.entries| − 1],

sth = s.root, from = msg.m.start, to = |s.entries| − 1)

9: out← (‘send’,m,msg.j)

10: end if

11: end procedure

12: procedure Monitor Incoming(msg)

13: switch msg.m.type do

14: case ‘gossip-entries’: Handle Gossip Entries(msg)

15: case ‘notify-error’: Handle Notify Error(msg)

16: case ‘entries’: Handle Get Entries(msg)

17: end procedure

S,GMT ,H.IsRevoked (Alg. 26). The implementation of the CTcomp
S,GMT ,H.Issue,

CTcomp
S,GMT ,H.Revoke and CTcomp

S,GMT ,H.IsRevoked algorithms is identical
to the implementation of the matching algorithms in PoC-PKI, i.e., PoC-PKI.Issue
(Alg. 15), PoC-PKI.Revoke (Alg. 17) and PoC-PKI.IsRevoked (Alg. 18), with only
one minor difference; that is, in CTcomp

S,GMT ,H, only CAs can issue certifi-
cates, and therefore, the first line of CTcomp.Issue verifies that the entity that
executes the algorithm is indeed a CA. Other than that, the algorithms are iden-
tical. However, this line has no impact on the security of the system, and only
needed since in CTcomp

S,GMT ,H all entities have the same role. Therefore, we
avoid repetition, and refer to the proof methodology described in Appendix C.1,
which also applies here, and proves that CTcomp

S,GMT ,H ensures accountability
and revocation accountability.

E.2 Proof of ∆CTcomp-transparency

Proof Methodology. To prove that CTcomp
S,GMT ,H achieves the attributes

that are implemented using the secure signature scheme S, we use the following
methodology:

1. We first define a variation of CTcomp
S,GMT ,H called CTcomp

OSign(sk,·)
N,ι,vk (see

Def. 22), where a PPT oracle algorithm OSign(sk, ·) is used to generate
signatures using a secret key sk instead of entity ι ∈ N, where sk is the
matching secret signing key of the verification key vk, see Section E.2.1.

91

Algorithm 31 CTS,GMT ,Hcomp .Incoming() Cont.

1: procedure Handle Notify Error(msg)

2: if msg.m.error = ‘Equivocation’ then Handle dishonest CA

3: if msg.m.error = ‘Bad MTH’ ∨ ‘Conflicting logs’ then Handle dishonest logger

4: end procedure

5: procedure Handle Gossip Entries(msg)

6: if S.Ver(s.PubInfomsg.j .vk,msg.m.STH.MTH,msg.m.STH.σ) 6= > then return ⊥

7: s.logmsg.m.logger.msgs += msg.m

8: if |s.logi.entries| < msg.m.to then

9: s.logi.entries += m.entries[|s.logi.entries| −msg.m.start : msg.m.to−msg.m.start]

10: s.logmsg.j .STH ← GMT .GenTree(sec, s.logmsg.j .entries)

11: end if

12: if msg.m.sth 6= s.logmsg.j .STH then

13: m = (type=‘notify-error’, data = (msg.m, s.log[msg.m.data.id]), error = ‘Conflicting logs’)

14: out← {(‘send’,m, j)}j∈s.N−s.ι
15: end if

16: end procedure

17: procedure Handle Get Entries(msg)

18: if S.Ver(s.PubInfomsg.j .vk,msg.m.STH.MTH,msg.m.STH.σ) 6= > then return ⊥

19: s.logmsg.j .msgs += msg.m

20: if GMT .GenTree(1κ, s.logi.entries || msg.m.entries) 6= msg.m.sth then

21: m = (type=‘notify-error’, data = msg.m, error = ‘Bad MTH’)

22: out← {(‘send’,m, j)}j∈s.N−s.ι
23: else . Check for equivocation

24: for ψ ∈ msg.m.entries do

25: if ∃ψ’ ∈ s.certs s.t. Core(ψ) = Core(ψ’) then

26: m = (type=’notify-error’, id = s.ι, data =

(msg.m,ψ, ψ’), error = ‘Equivocation’)

27: out← {(‘send’,m, j)}j∈s.N−s.ι
28: end if

29: end for

30: m = (type=’gossip-entries’, id = s.ι, data = msg.m)

31: out← {(‘send’,m, j)}j∈s.N−s.ι
32: end if

33: s.logi.entries += msg.m.entries

34: s.logi.STH = msg.m.sth

35: end procedure

92

2. Then, we define a game called Exp
CTcomp−Forge,M
A,PoC-PKIS,E,T S , where we execute an

adversaryA with the PoC-PKI
S,E,T S,OSign(sk,·)
N,ι,vk scheme, and askA to output

a message m and signature σ over m, signed using the public verification key
vk, namely, without A knowing the matching signing key sk, nor A can use
the oracle access to sign m, see Section E.2.2.

3. We then formulate Lemma 6, showing that the existence of an adversary that

‘wins’ the Exp
CTcomp−Forge,M
A,PoC-PKIS,E,T S game with non-negligible probability means

that S is not a secure signature scheme, see Section E.2.3.
4. We then prove that if CTcomp

S,GMT ,H does not achieves∆CTcomp -transparency,

we can construct an adversary that wins the Exp
CTcomp−Forge,M

CTcomp
∆com,∆clk

A,PoC-PKIS,E,T S

game with non-negligible probability, see Section E.2.4.
5. After that, we combine steps 1− 4, see Section E.2.5.
6. Finally, we show that the security argument also holds for the original

CTcomp
S,GMT ,H scheme, see Theorem 5 in Section E.2.6.

E.2.1 The CTcomp
OSign(sk,·)
N,ι,vk Scheme

We now define a variation of the CTcomp
S,GMT ,H scheme called CTcomp

OSign(sk,·)
N,ι,vk .

Definition 22. Let S, GMT and H be a signature, generalized Merkle tree and
CRHF schemes, respectively, and let (sk, vk)← S.Gen(1κ), for a given security

parameter 1κ. Given a PPT oracle OSign(sk, ·), CTcomp
OSign(sk,·)
N,ι,vk is a PKI

scheme which is identical to the implementation of the CTcomp
S,GMT ,H scheme

with the following changes:

1. The CTcomp
OSign(sk,·)
N,ι,vk .Init algorithm is the same as CTcomp

S,GMT ,H.Init

(Alg. 22), except for replacing line 2 of CTcomp
S,GMT ,H.Init with the fol-

lowing line:

(s.PrivInfo.sk, s.PubInfos.ι.vk)← (nil, vk)

where vk is the public verification key of S, given as input to CTcomp
OSign(sk,·)
N,ι,vk .

2. In all the algorithms that use the signing key, replace the following code:

S.Sign(s.PrivInfo.sk, data)

with the following code:
OSign(sk, data)

namely, generate proof by signing data using the oracle access to the sign
operation S.Sign.

3. In the CTcomp
OSign(sk,·)
N,ι,vk .Time algorithm, replace the following code:

GMT .GenTree(s.entries)

with the following code:
s.entries

93

Note that the security of CTcomp
OSign(sk,·)
N,ι,vk relies solely on the security of the

signature scheme used, as opposed to the (original) CTcomp
S,GMT ,H scheme

which also relies on the security of the generalized Merkle tree and CRHF used.

E.2.2 The Exp
CTcomp−Forge,M
A,CTS,GMT ,H

comp
Game

We now define the Exp
CTcomp−Forge,M
A,CTS,GMT ,Hcomp

(1κ,N) game:

1. Generate key pair (sk, vk)← S.Gen(1κ).

2. Randomly choose an authority ι
R← N.

3. Execute A with the CTcomp
OSign(sk,·)
N,ι,vk scheme, i.e.,

(NF, R, t, outA)← ExecA,CTcomp
OSign(sk,·)
N,ι,vk

(1κ,N)

4. A outputs message m and signature σ, i.e., (m,σ)← outA.
5. The experiment outputs 1 if:

(a) S.Ver(vk,m, σ) = >
(b) A did not use the oracle access on m.
(c) A satisfies model M (see Def. 1).
(d) ι is an honest authority, i.e., ι ∈ N− NF

Otherwise, the experiment outputs 0.

E.2.3 The Relation Between Exp
CTcomp−Forge,M
A,CTS,GMT ,H

comp
and the Security of

the Signature Scheme S

We now show that the existence of an adversary that ‘wins’ the Exp
CTcomp−Forge,M
A,CTS,GMT ,Hcomp

game with non-negligible probability means that S is not a secure signature
scheme.

Lemma 6. If there is a PPT adversary A that satisfies

Pr

[
Exp

CTcomp−Forge,M
CTcomp
∆com,∆clk

A,CTS,GMT ,Hcomp
(1κ,N) = 1

]
6∈ Negl(1κ) (43)

then S is not a secure signature scheme.

Proof. Assume to the contrary that such adversary A exists, yet S is a secure
signature scheme.

Following Section E.2.2, if A ‘wins’ the Exp
CTcomp−Forge,M

CTcomp
∆com,∆clk

A,CTS,GMT ,Hcomp
game

with non-negligible probability, then this means that A can output a message m
and a valid signature σ over m, where A has only access to the verification key
and oracle accesses to the signing key, without requesting the oracle to sign m.

Therefore, according to definition of existential unforgeability (Def. 8), the

following holds for A

Pr
[
ExpEUA,S(1

κ) = 1
]
6∈ Negl(1κ) (44)

thus contradicting the security of S.

94

E.2.4 Linking∆CTcomp-transparency to the Exp
CTcomp−Forge,M

CTcomp
∆com,∆clk

A,CTS,GMT ,H
comp

Game

We now show that if CTcomp
OSign(sk,·)
N,ι,vk does not ensures ∆CTcomp -transparency

under model MCTcomp
∆com,∆clk

, then we can construct an adversary that wins in the

Exp
CTcomp−Forge,M

CTcomp
∆com,∆clk

A,CTS,GMT ,Hcomp
game.

Claim 8. If CTcomp
OSign(sk,·)
N,ι,vk does not ensures ∆CTcomp -transparency under

model MCTcomp
∆com,∆clk

, then there exists a PPT adversary A∆TRA such that

Pr

[
Exp

CTcomp−Forge,M
CTcomp
∆com,∆clk

A∆TRA,CT
S,GMT ,H
comp

(1κ,N) = 1

]
6∈ Negl(1κ) (45)

Proof. From Definition 2, if CTcomp
OSign(sk,·)
N,ι,vk does not ensures∆CTcomp -transparency

under modelMCTcomp
∆com,∆clk

, then there exists a PPT adversaryA∆TRA that satisfies

Pr

[
(NF, R, t, outA∆TRA

)← ExecA∆TRA,CTcomp
OSign(sk,·)
N,ι,vk

(1κ,N)

Exp∆TRA

CTcomp
OSign(sk,·)
N,ι,vk

(1κ,N,NF, R, t, outA∆TRA
) = >

]
/∈ Negl(1κ)

(46)

Therefore, all that is left is to show that if Eq 46 holds then Eq 45 also holds.

First, according to the description of the security experiment Exp∆TRA

CTcomp
OSign(sk,·)
N,ι,vk

(Alg. 5), the return value of the experiment is true only if, among other criteria,

the following is true:

CTcomp
OSign(sk,·)
N,ι,vk .WasValid(ψ,∆TRA) ∧

R.out[t], R.out[t-1] 6= IA
(47)

for a certificate ψ outputted by the adversary, and there exists two honest au-
thorities that are not aware of ψ although they should, and they cannot indicate
any problem with ψ nor with the authority that issued ∆TRA for ψ.

Second, according to the implementation of CTcomp
OSign(sk,·)
N,ι,vk .WasValid, as

described in Alg. 20, the algorithm executes

S.Ver(S.PubInfo.pkη.ι, (Core(ψ), ∆TRA, η.clk), η.σ) (48)

for η = ψr.ρ[∆TRA].

Lastly, the only place in CTcomp
OSign(sk,·)
N,ι,vk where an honest authority ι com-

putes its keys is in the CTcomp
OSign(sk,·)
N,ι,vk .Init algorithm (Algorithm 14); specifi-

cally the sign/verify key pair is generated in line 2, using the S.Gen algorithm.

95

Furthermore, the signing key is only used in algorithms: CTcomp
OSign(sk,·)
N,ι,vk .Issue,

CTcomp
OSign(sk,·)
N,ι,vk .Revoke, CTcomp

OSign(sk,·)
N,ι,vk .IsRevoked and CTcomp

OSign(sk,·)
N,ι,vk .Upgrade,

and only with the S.Sign algorithm.
Thus, following Eq. 46, the value described in Eq. 47 must be true, and

as a result, Eq. 48 must also equal true. Accordingly, with accordance to

CTcomp
OSign(sk,·)
N,ι,vk ’s implementation, adversary A∆TRA is a PPT adversary that

for a message m = (Core(ψ), ∆TRA, η.clk) was able to generate a signature
σ = η.σ that is validated with non-negligible probability with the verification
key vk = s.PubInfoη.ι.vk, without access to the signing key, and without ever
having the honest authority ι sign m. Hence, such A∆TRA adversary satisfies
Eq. 45.

E.2.5 Completing the Proof that CTcomp
OSign(sk,·)
N,ι,vk Ensures ∆CTcomp-

transparency

Lemma 7. CTcomp
OSign(sk,·)
N,ι,vk ensures ∆CTcomp-transparency under modelMCTcomp

∆com,∆clk
.

Proof. Assume to the contrary that CTcomp
OSign(sk,·)
N,ι,vk does not ensures ∆CTcomp -

transparency; we will show that this implies that S is not a secure signature
scheme. According to Claim 1, this means there exists a PPT adversary A

that wins the Exp
CTcomp−Forge,M

CTcomp
∆com,∆clk

A,CTcomp
OSign(sk,·)
N,ι,vk

game with non-negligible probabil-

ity. However, Lemma 6 shows that if there exists a PPT adversary A that wins

the Exp
CTcomp−Forge,M

CTcomp
∆com,∆clk

A,CTcomp
OSign(sk,·)
N,ι,vk

game with non-negligible probability, then S

is not a secure signature scheme.

E.2.6 Proving That (Original) CTcomp
S,GMT ,H Also Ensures∆CTcomp-

transparency

We complete our proof with the last phase of our proof methodology. We al-

ready showed that CTcomp
OSign(sk,·)
N,ι,vk ensures ∆CTcomp -transparency under model

MCTcomp
∆com,∆clk

. To prove that CTcomp
S,GMT ,H also ensures equivocation preven-

tion under model MCTcomp
∆com,∆clk

, we need to show that the fact that CTcomp
S,GMT ,H uses generalized Merkle tree to ensure ∆CTcomp -transparency does not

provide any advantage to the adversary in comparison to CTcomp
OSign(sk,·)
N,ι,vk .

To that end, we define the following indistinguishability game Exp
CPA−IND
A,E (1κ):

1. The game randomly chooses b ∈ {0, 1}.
2. If b = 0, we execute A with the CTcomp

OSign(sk,·)
N,ι,vk scheme, and if b = 1, we

execute A with the CTcomp
S,GMT ,H scheme.

3. A outputs b’ ∈ {0, 1}.
4. The game outputs 1 if b = b’, otherwise 0.

96

Now, we revisit Theorem 3 presented in Section 5.1, and complete the proof
that PoC-PKI ensures equivocation prevention.

Theorem 5. CTcomp
S,GMT ,H satisfies security requirement ∆CTcomp-transparency

under model MCTcomp
∆com,∆clk

, under the same assumptions as in Theorem 6.

Proof. The only difference between the CTcomp
S,GMT ,H and the CTcomp

OSign(sk,·)
N,ι,vk

schemes is that the adversary has an advantage in CTcomp
S,GMT ,H, because

the generalized Merkle tree scheme GMT is used to hash the sorted list of cer-

tificates logged by the logger. Lemma 3 shows that CTcomp
OSign(sk,·)
N,ι,vk ensures

∆CTcomp -transparency under modelMCTcomp
∆com,∆clk

, since S is secure; we now show

that security in the CTcomp
S,GMT ,H scheme also holds.

Assume to the contrary that although GMT is secure; there exists an adver-

saryA that negates the claim that CTcomp
S,GMT ,H ensures∆CTcomp -transparency

under the MCTcomp
∆com,∆clk

model, namely:

Pr

[
(NF, R, t, outA)← ExecA,CTS,GMT ,Hcomp

(1κ,N)

Exp∆TRA
CTS,GMT ,Hcomp

(1κ,N,NF, R, t, outA) = >

]
/∈ Negl(1κ) (49)

Since the only difference between CTcomp
S,GMT ,H and CTcomp

OSign(sk,·)
N,ι,vk is the

use of E to encrypt the individual secret information, it means that A uses this
advantage to win the experiment.

Since∆CTcomp > MMD, and following the implementation of CTcomp
S,GMT ,H.Time

and CTcomp
S,GMT ,H.Incoming that state that every MMD time loggers update

their Merkle tree root to accommodate the new certificate from the previous
update, we know that after ψ.ρ[∆TRA].clk there was at least one Merkle tree
update. Thus, either the logger includes ψ in that Merkle tree update, or not.

Since A wins with non-negligible probability in the Exp∆TRA

MCTcomp
∆com,∆clk

game,

then according to the game’s description (Req. 5), two honest entities received ψ
(a ∆CTcomp -transparent certificate) which they were unaware of, yet they cannot
present IA or proof of misbehavior.

Since the honest authorities are unaware of ψ, then the logger could not have
included ψ in the tree update. However, if it did not included ψ in the tree,
then according to CTcomp

S,GMT ,H.Audit, would have output a valid proof of
misbehavior, by outputting the signed updated tree root that does not include
ψ along with the logger’s signature of ψ. Thus, since neither of these options is
possible, this negates the possibility that such adversary exists.

Therefore, CTcomp
S,GMT ,H also ensures ∆CTcomp-transparency under model

MCTcomp
∆com,∆clk

.

97

E.3 Proof of VAS, NF, NFA, and UFAT

Lemma 8. CTcomp
S,GMT ,H achieves Verifiable Attribution of Statements (VAS)

for S under model MCTcomp
∆com,∆clk

, assuming security of S, GMT , and H, under
their respective definitions.

Proof. Assume to the contrary, that there exists an adversary A that ‘wins’ in
the verifiable attribution of statements experiment ExpVAS

CTS,GMT ,Hcomp
, yet S is a

secure signature scheme.
First, following the definition of honest entities from the execution process

(Algorithm 1), A cannot change the execution of CTcomp algorithms by honest
entities.

Second, following the convention described in §3.3.1, in every CTcomp algo-
rithm where the S.Sign algorithm is used, the algorithm ‘automatically’ produces
an attribution statement of the signed data.

Therefore, with accordance to the definition of ExpVAS
CTS,GMT ,Hcomp

from Req 1,

A is capable of producing a message m and a signature σ over m signed by an
honest authority ι, without executing S.Sign on ι with message m, with non-
negligible probability.

However, if such adversary A exists, then according to definition of existential

unforgeability (Def. 8), the following holds for A

Pr
[
ExpEUA,S(1

κ) = 1
]
6∈ Negl(1κ) (50)

thus contradicting the security of S.

Lemma 9. CTcomp
S,GMT ,H achieves Verifiable non-frameability (NFA) under

modelMCTcomp
∆com,∆clk

, assuming security of S, GMT , and H, under their respective
definitions.

Proof. The only misbehavior proof generated in CTcomp is via the Audit al-
gorithm, when a ∆CTcomp -transparent certificate is inputted which the entity is
supposed to be aware of, yet it does not. According to CTcomp

S,GMT ,H.Time and
CTcomp

S,GMT ,H.Incoming, an honest logger always inform its monitors of new
logged certificates, i.e., ∆CTcomp -transparent certificates, every MMD. Therefore,

since according to MCTcomp
∆com,∆clk

messages that contain new ∆CTcomp -transparent
certificates arrive to the respective monitors with ∆com at most, honest monitors
will always receive all newly logged certificates from honest loggers.

Theorem 6. CTcomp
S,GMT ,H achieves Verifiable Attribution of Statements

(VAS) for S, Non-frameability (NF), No False Accusations (NFA) and Use First-

Accuse Time (UFAT) under model MCTcomp
∆com,∆clk

, assuming security of S, GMT ,
and H, under their respective definitions.

Proof. See Lemmas 8-9.

98

E.4 Properties That CTcomp Does Not Achieves

Theorem 7. CTcomp
S,GMT ,H does not ensure ∆-revocation transparency un-

der model MCTcomp
∆com,∆clk

.

Proof. CTcomp does not have a built-in mechanism, e.g., Revocation Trans-
parency, to ensure that a revoked certificate is known to all the monitor that
watch a specific logger.

Theorem 8. CTcomp
S,GMT ,H does not ensure ∆−equivocation detection under

modelMCTcomp
∆com,∆clk

. Consequently, CTcomp
S,GMT ,H does not ensure equivocation

prevention under model MCTcomp
∆com,∆clk

.

Proof. Recall the definition of ∆−equivocation detection (Requirement 11): Ad-
versary A wins in the ∆-equivocation detection experiment Exp∆EQ-D

P if it pro-
duces two valid, non-revoked certificates ψ, ψ’ for the same identifier (ψ.id =
ψ’.id) and for overlapping validity periods which both have the ∆EQ-D prop-
erty, where each certificate has different public information (ψ.pub 6= ψ’.pub),
yet none of the entities in N was able to detect the equivocation before the ∆
time of the ∆EQ-D property has passed.

Consider a scenario where two loggers L1, L2 do not share an honest monitor,

which modelMCTcomp
∆com,∆clk

does not prohibits. In such scenario, logger L1 can store
a certificate ψ that conflicts with certificate ψ’ which is stored on L2. However,
since there is no shared honest monitor that monitors both L1 and L2, there is
no guarantee that at some point a monitor would detect this conflict. Moreover,
even if the monitors that monitor L1 gossip with the monitors of L2, but they
only gossip for consistency, i.e., the tree roots and not the actual certificates,

then the conflict might not be detected. Hence, under the MCTcomp
∆com,∆clk

model,
∆EQ-D is not achieved.

Since equivocation can occur in CTcomp
S,GMT ,H, then CTcomp

S,GMT ,H

does not ensures equivocation prevention.

99

	Provably Model-Secure PKI Schemes It is possible to build a cabin with no foundations, but not a lasting building. - Eng. Isidor Goldreich goldreich2009foundations.

