
Provably Secure PKI Schemes

Abstract—PKI schemes have significantly evolved since X.509,
with more complex goals, e.g., transparency, to ensure security
against corrupt issuers. However, due to the significant challenges
involved and lack of suitable framework, the security properties
of PKI schemes have not been rigorously defined or established.
This is concerning as PKIs are the basis for security of many
critical systems, and security concerns exist, even for well known
and deployed PKI schemes, e.g., Certificate Transparency (CT).

We present precise definitions allowing provably secure PKI
schemes, with properties such as accountability, transparency and
non-equivocation. We demonstrate usage of the PKI framework
against X.509 version 2.

Index Terms—

I. INTRODUCTION

Public Key Infrastructure (PKI) provides an essential foun-
dation for applications which rely on public key cryptography,
and it is crucial to achieve security in open networks and
systems. Since its introduction in 1988, the deployment of
PKI has been dominated by the X.509 standard [1], likely
due to its integration with the TLS/SSL protocol [2], the
most widespread protocol used to secure connections between
servers and clients, most commonly web browsers. The result-
ing ‘web-PKI’ is necessary to provide confidentiality, integrity
and authenticity of web services, and as such, is critical for
the secure use of the web.

Unfortunately, the web-PKI deployment has inherent weak-
nesses. In particular, any CA is trusted to issue certificates for
any domain [3], resulting in the weakest-link security model
and making individual CAs prime targets for attacks. Over the
years, we have seen many failures of this trusted-CA approach.
For example, hackers stole the master keys of CAs [4], [5]
and issued fake certificates for major websites. Furthermore,
some CAs abused their powers by improperly delegating
their certificate-issuing authority or even intentionally issuing
unauthorized certificates [6]. Such PKI failures allow attackers
to issue fake certificates, launch website spoofing and man-in-
the-middle attacks, possibly leading to identity theft, surveil-
lance, compromises of personal and confidential information,
and other serious security breaches.

For many years, accountability was considered a sufficient
deterrent. Namely, the fact that X.509 certificates are signed
by a specific issuing CA, ensures that the issuing CA cannot
deny having issued a certificate - or, more precisely, that its
private key was used to sign the certificate. However, the many
PKI failures brought the realization that accountability is not
sufficient. Accountability is only effective if and when the
fake certificate is found - which may not occur, especially
if abused ‘stealthily’, and only if the misbehaving authority
can be effectively punished.

These failures motivated efforts to develop and adopt
improved-security PKI schemes, i.e., PKI schemes that ensure

security against corrupt CAs. During the recent years, there
have been extensive efforts toward this goal by researchers,
developers and the IETF. These efforts focus on security prop-
erties such as transparency, non-equivocation and more. Pro-
posals and designs include Certificate Transparency (CT) [7],
[8], Enhanced-CT [9], Sovereign Key [10], CONIKS [11],
AKI [12], PoliCert [13], ARPKI [14], DTKI [15], CoSi [16],
[17], IKP [18], CertCoin [19], PB-PKI [20], Catena [21],
CertLedger [22], among others.

The goals of these designs are beyond those of X.509, and
are significantly more complex than the X.509 goals. However,
so far, these goals have not been rigorously defined and proven.
Only few works present any analysis: [23], [24] analyze (only)
the logging mechanism of CT, and ARPKI [14], [15] use
automated symbolic analysis for system-specific properties.
However, no work defines security goals (or proves such
properties hold). In fact, even for the simple, ‘classical’ X.509
PKI, there is no definition of security requirements (and
no proof). Arguably, this may not be as critical, since for
X.509, both definitions and proof are quite straightforward (see
within). However, this lack of definition (and proof) implies
that works analyzing security of PKI-based protocols, e.g.,
IPsec/IKE [25], [26] and TLS [27], [28], mostly completely
ignore the PKI and simply assume the use of correct public
keys. Few works [29]–[31] study security of cryptographic
protocols based on a simplification of X.509; however, the
simplification ignores revocation and other advanced aspects
of X.509, not to mention the properties of post-X.509 PKI
schemes, such as transparency.

This is alarming, as most practical applications of cryptog-
raphy involve certificates, and their security depends on the
security of the PKI. The extensive efforts to prove security
of cryptographic protocols may be moot when these protocols
are deployed over a PKI scheme which was not proven secure.
The concerns are even greater, considering that attacks against
PKI are not only a theoretical threat, but are a major concern
in practice.

Indeed, defining and proving security for PKI schemes is
a non-trivial challenge, especially for post-X.509 schemes,
with more advanced and complex goals. PKI proposals vary
greatly - even in terms of the types of parties involved, and
in the communication and attack models. As a result, existing
definitions and requirements are often informally defined and
tailored to a specific design. The lack of proper definitions and
proofs makes it challenging to build (provably) secure systems,
which depend on PKI schemes, and to improve, compare and
select PKI schemes. Evaluation of PKI schemes with new
properties is especially challenging; for example, there are
several schemes designed to achieve different privacy goals,
but these cannot be properly compared - and, of course, are not

proven secure. It is impossible to design and analyze schemes
modularly, by provable reductions to simpler, already-analyzed
schemes.

In this work, we present well-defined security specifications
for PKI schemes, with reduction-based proofs of security. The
definitions supports a wide range of PKI schemes, from X.509
to advanced, improved-security PKI schemes, independently
of their specific designs. We focus on the classical security
challenge of dealing with misbehaving parties, e.g., corrupt
CAs, by detecting misbehavior and/or preventing damage due
to misbehavior. Note that we do not address trust-management
issues, such as the decision to trust a particular CA, typically
based on cross-certification by already-trusted CAs (‘basic
constraints’ in X.509), or restricting a CA to particular name-
space (‘naming constraints’ in X.509). Other works address
other important aspects of PKI schemes, mainly the trust
decision - essentially, which CA should be trusted for a given
certificate. A model of trust for PKI systems was proposed by
Mauer [32], subsequently extended by [33], [34], and others
[35]–[40].

To define the security specifications, we reviewed and
analyzed existing PKI schemes and the properties they claim
to provide. We present game-based definitions for the basic
security specifications for PKI schemes designed for possi-
bly faulty CAs. These include the following security spec-
ifications: accountability, ∆-transparency, non-equivocation
(detection and prevention), revocation accountability, non-
revocation accountability and ∆-revocation status trans-
parency. We map these security specifications to existing PKIs
in Table I.

Contributions. This work makes the following contribu-
tions:

1) PKI framework for provably-secure PKI schemes.
2) Formal definitions of PKI security specifications.
3) Specification comparison of popular PKI schemes.
Organization. Section II reviews the PKI landscape with re-

spect to the security specifications we identify in PKI schemes
and summarizes the related work. Section III briefly discusses
the Modular Specifications Security Framework (MoSS) [41]
which is used to formally prove the specifications achieved
by PKI schemes under formally defined models and presents
the PKI framework and its security specifications. Section IV
defines the basic concepts of PKI schemes. Section V present
the PKI framework, which includes the formal definition
of PKI scheme’s operations and security specifications. Sec-
tion VI presents how the PKI framework can be applied in
practice, and defines the X.509 version 2 protocol using the
PKI framework and then formally analyzes the security of the
protocol in Section VII. We conclude and discuss future work
in Section VIII.

II. SECURITY SPECIFICATIONS OF PKI SCHEMES

The first step in developing the PKI framework was the
identification of the security specifications of PKI schemes,
where we focus on schemes designed for security against
corrupt authorities (typically, corrupt CA). In this section, we

first discuss, informally, these security specifications which we
later formally define in §V-C as game-based definitions.

We put an extensive effort into a thorough comparison of
the existing schemes with respect to the properties we identify.
We present the results in Table I.

A. X.509 PKI Schemes and Related Specifications

The basic goal of a PKI scheme is to ensure authenticity of
information in public key certificates. Certificates are issued
and endorsed by Certificate Authorities (CAs). A typical
certificate links an identifier with some public information,
typically, a public key. A certificate also typically includes a
signature generated by the issuing CA, over the certificate’s
information; the signature serves as the CA’s endorsement of
the mapping between the identifier and the public information
in the certificate. An honest CA issues a certificate only after
it verifies that the entity requesting the certificate is entitled
to receive it. This establishes the following basic goal of PKI
schemes: accountability.

1) Accountability Specification (ACC): Accountability is
the ability to identify the CA that issued a given certificate.
Accountability provides a reactive defense against a corrupt
CA; such CA can be ignored or otherwise punished. In most
PKI schemes, including X.509, accountability is achieved by
having the CA digitally sign certificates, i.e., a CA is account-
able for any certificate signed using the CA’s private key.
CA accountability, in this sense, includes unauthorized use
of the CA’s private key, e.g., due to exposure or penetration,
as well as intentionally issuing ‘fake’ certificate, where the
public information does not correctly match the identifier. In
particular, accountability serves as a motivation for honest CAs
to take any available precaution to ensure that the certificates
they issue are authentic, because if not, they will be held
accountable. Note that we use the term accountability as a
technical, well-defined specification, which does not necessar-
ily have any specific legal or financial implications.

2) Revocation Accountability Specification (ReACC): Sim-
ilarly to the accountability specification which focuses on issu-
ing certificates, revocation accountability ensures accountabil-
ity of revoked certificates. Namely, while certificates’ validity
period starts from their issue date and ends on their expiration
date (both of which specified in the certificate), certificates
can be invalidated before their expiration date, i.e., revoked.
Hence, revocation accountability requires that each revoked
certificate can be traced back to the revoking CA. This helps
to ensures that clients will not have their certificates revoked
without a legitimate reason (e.g., their request), unless the CA
is malicious, or an attacker corrupts or tricks the CA - in
which case, this can be exposed. A user can request to have
its certificate revoked for a variety of reasons, including a loss
or compromise of the private key corresponding to the public
key endorsed in the certificate.

3) Non-Revocation Accountability Specification
(NReACC): Since any certificate can be revoked at any
time, it is imperative to verify that a valid certificate is
still not-revoked, prior to using it. The non-revocation

accountability specification ensures that an honest CA would
never sign a revoked certificate as non-revoked; in fact, if a
CA signs such statement, this provides a proof of misbehavior.
In X.509, and even most post-X.509 PKI schemes, only the
certificate’s issuer can revoke it, making this specification
easy to define and achieve. However, considering the history
of CA failures, it may be useful to allow revocation of
certificates by other authorities, but would be harder to define
and achieve.

There are several revocation/non-revocation mechanisms
which are used in practice, including Certification Revoca-
tion List (CRL) [42] and Online Certificate Status Protocol
(OCSP) [43]. However, the actual guarantees that such mech-
anisms provide are more complex than intuitively implied. For
example, some browsers often employ a soft-fail approach,
which means that an adversary that can block CRL/OCSP
responses could trick browsers into accepting revoked cer-
tificates. Therefore, the actual security guarantee of such
mechanisms must be defined with respect to the actual used
model.

B. Post-X.509 PKI schemes and specifications

Until now, we discussed accountability, revocation account-
ability and non-revocation accountability, which correspond to
the basic PKI properties, provided already by X.509. We now
discuss additional security goals, pursued by more recent PKI
schemes, designed to improve security against corrupt CAs.
These include ∆-transparency (∆TRA), ∆-revocation status
transparency (∆ReST), ∆-equivocation detection (∆EQ-D)
and equivocation prevention (EQ-P).

1) ∆-Transparency Specification (∆TRA): Accountability,
as described above, mainly serves as a deterrent against
misbehavior, i.e., only offers retroactive security by punishing
a CA ‘caught’ misbehaving, e.g., issuing a fraudulent certifi-
cate. For many years this reactive measure was viewed as a
sufficient defense, under the assumption that CAs were highly
respectable and trustworthy entities who would not risk, inten-
tionally or otherwise, being implicated in issuing fraudulent
certificates. However, repeated cases of fake-certificates, by
compromised or dishonest CAs, have proven this assumption
to be overly-optimistic. It turned out that punishing CAs is
non-trivial: beyond negative publicity, any punishment was
arbitrary, short-lived and overall ineffective [44]–[46].

Furthermore, ‘punishment’ could only be applied after the
damage was committed and discovered - if it is discovered
at all. An attacker or corrupt CA could reduce the risk of
discovery, by minimizing the exposure of the fraudulent cer-
tificate. Except for efforts such as the Perspectives Project [47],
or the EFF SSL Observatory [48] that aim to gather and
inspect all SSL certificates used in practice, the burden of
detecting and responding to fraudulent certificates is mostly
on the clients that receive them; browsers typically cannot
detect fraudulent certificates, much less to report them to a
(non-existing) ‘enforcement agency’.

This significant issue has motivated more recent PKI de-
signs, e.g., CT, where valid certificates must be transparently

published, i.e., publicly available, allowing third parties (e.g.,
trusted ‘monitors’) to inspect and detect any fraudulent cer-
tificates. Transparency requires a certificate to be recognized
(signed) by a party which takes responsibility for making
the certificate available to all monitoring-entities, within a
specified time frame ∆. To clarify, ∆ describes the maximum
time it takes for the certificate to become publicly available,
referred to as the Maximum Merge Delay (MMD) in CT, but
∆ also includes the maximum time it takes for monitors to
discover it once it is publicly available. By demanding trans-
parency, a PKI system prevents a CA from ‘silently’ generating
fraudulent yet validly-formed certificates, and exposing them
only to selected victims during an attack, and furthermore,
facilitates detection of fraudulent certificates, issued by a
corrupt or compromised CA.

2) ∆-Revocation Status Transparency Specification
(∆ReST): While ∆−transparency guarantees that every valid
certificate is available to all interested monitors within ∆
time, ∆−transparency does not guarantee protection against
revoked certificates. That is to say, while ∆−transparent
certificates are available to monitors, there is no guarantee
regarding what happens to those certificates later, and
therefore, ∆−transparency impose no guarantees regarding
to certificates’ revocation status. For example, if the private
keys of a ∆−transparent certificate were compromised and
the subject of the certificate had the certificate revoked, there
is no guarantee that others will learn of this revocation,
and especially, there is no clear time frame describing when
others will learn of this event.

This fundamental issue motivates ∆−revocation status
transparency. When an entity attests for a given certificate’s
revocation status, either revoked or non-revoked, is transparent
(∆ReST), that entity commits to making this status available
to all interested third parties, again, within a predetermined ∆
time frame.

3) Detection and Prevention Specifications: Although the
aforementioned transparency specifications require that certifi-
cates and their status are available to interested parties, it does
not guarantee that a problematic certificate, either malicious or
benign, will be detected nor it guarantees that such detection
would in fact occur before certificate misuse occurs. In fact,
even where detection is guaranteed to occur, this can only be
guaranteed some time after the issuance of the fake certificate
- although, this aspect is often overlooked. Finally, detection
is only a passive measure, and some specifications could be
instead active, i.e., strive for prevention instead of after the
fact detection.

Fraudulent certificates which use the same identifier as the
victim, may be abused for phishing, and for other attacks,
e.g., stealing web cookies. For example, consider a scenario
where two equivocating certificates are transparent, but they
are logged over two different entities which are monitored
by different monitors. In such scenario, ∆-transparency is not
enough, as no single entity is guaranteed to be aware of both
certificates.

In this work we focus on two examples of such specifica-

tions: ∆-equivocation detection and equivocation prevention.
Future work can extended and support additional detection and
prevention specifications.

4) ∆-Equivocation Detection Specification (∆EQ-D): The
∆-equivocation detection specification ensures that any equiv-
ocating certificate is detected within ∆ time of its issuance by
at least one honest entity.

Often, a certificate is considered fraudulent when it uses a
misleading identifier, such as a domain name which is identical
or similar to that of a victim domain, e.g., g00gle.com, or with
an identifier which users may expect to belong to a known
domain, e.g., googleaccounts.com. Such misleading identifiers
are often abused, e.g., for phishing attacks. A PKI which
supports transparency, allows a domain to vigilantly watch
for any certificate issued with identifiers which are identical,
similar or otherwise misleading to be associated with its own
domain names.

This design makes it possible to quickly detect misbehavior,
such as issuing of a fraudulent certificate. Ideally, fraudulent
certificates could likely be detected before they can be abused,
or at least, before they can cause much harm.

5) Equivocation Prevention Specification (EQ-P): A PKI
which prevents equivocation, will prevent a corrupt CA from
issuing a fake certificate for an already-certified identifier, e.g.,
domain name. This could prevent, rather than merely detect,
man-in-the-middle and other attacks impersonating existing
secure domains [49].

Note that transparency implies ∆EQ-D, but not EQ-P. We
still define equivocation detection as a separate specification,
since it does not imply transparency, i.e., ∆EQ-D is not
equivalent to transparency. In fact, some PKI schemes, notably
CONIKS [11], offer equivocation detection but not trans-
parency - indeed, transparency would conflict with some of
CONIKS privacy goals. Of course, providing non-equivocation
but not transparency, may still allow issuing of misleading (but
not identical) identifiers, e.g., misleading domain names which
may be abused for phishing attacks.

We emphasize that specifications can be either a global
requirement that applies to all the certificates in the system,
or alternatively, to only a subset. To illustrate, consider some
prevention specification such as equivocation prevention. One
approach for a system would be to require all valid certificates
to be unequivocal by default. Alternatively, another approach
would be to allow certificates to choose whether they are un-
equivocal or not, yet they can be valid either way. One possible
reasoning for that might be monetary, since unequivocability
might require additional effort which involve additional costs.

C. PKI Schemes Comparison

The goal of the PKI framework is to allow analysis and
provable-security, for existing and future PKI schemes. We
designed the framework in a way that embraces, complements
and reflects current PKI designs. To this end, we have me-
thodically examined the existing PKI schemes by identifying
and analyzing their properties. We present the results of our
analysis in Table I, and summarize them below. The table

includes twelve existing PKI systems, and, in addition, a
“proof-of-concept” PKI we defined, and X.509v2, a minor
extension of the CT specifications, which appears essential
to ensure CT’s security properties. We compared all schemes
with respect to the specifications formally presented in §V;
we also mention two additional properties, privacy and global
name-spaces.

Notations in Table I. We use the n/s (not supported)
symbol to indicate when a scheme does not seem to support
a specification. Otherwise, we use one of the three following
symbols, , �, or G#, to indicate the support of a specification
by the scheme. The symbol indicates that a system comes
with rigorous, reduction-based proof of the specification. We
indicate with an appropriate comment when a scheme is
supported by automated symbolic proof for a given property;
note that such proofs are often of property specific to that
scheme, not properties defined for arbitrary PKI schemes.
The G# symbol indicates that although no formal proofs were
provided, it seems intuitively true that the system achieves a
specification; e.g., accountability in X.509 follows from the
use of signature scheme to sign the certificate. The � symbol
depicts the property is justified using an (informal) security
argument; note that this may imply that additional assumptions
or details may be needed to ensure security.

Following our discussion of the ‘basic’ PKI security prop-
erties in §II-A, we observe that most systems aim to achieve
accountability, with the exception of CertCoin and PB-PKI.
Both CertCoin and PB-PKI build on top of Namecoin [50],
which is a decentralized namespace system rather than a cen-
tralized, CA-oriented system, where the CAs grant identifiers
to clients. Instead, due to the fully decentralized nature, anyone
can claim an identifier so long it is available; consequently,
there is no accountability for assigning identifiers. Notice also
that Catena is a witnessing (logging) scheme that allows to
witness public-key directories using the Bitcoin blockchain.
As a result, accountability of issuing certificates is handled by
the directories themselves, which require unusual additional
assumptions (which can be modelled using the framework).

Interestingly, many systems directly focus on more ad-
vanced properties, such as transparency and non-equivocation,
and treat more ‘basic’ properties, such as accountability and
revocation, as intrinsic to PKI, often without even stating
them. This phenomenon is especially apparent in case of
revocation; many systems (e.g., CertCoin, Catena, PB-PKI,
CoSi) do not directly address revocation at all, and do not
discuss how revocation should be handled, by whom and under
which conditions. Other PKI schemes use the X.509 notion
of a certificate, and implicitly rely on the X.509 revocation
mechanisms (CRLs and OCSP). This approach is somewhat
understandable due to the pervasiveness of X.509, but also
establishes the X.509 revocation mechanisms as the status quo
of revocation, despite known weaknesses.

In Table I, we label accountability, revocation accountability
and non-revocation accountability as ‘intuitively true’ for all
systems, except for CertCoin, Catena, PB-PKI, and CoSi.
These properties are typically achieved using a secure signing

System [reference]

Safety requirements Additional req.

ACC ∆TRA ∆EQ-D EQ-P
ReACC/
NReACC ∆ReST Privacy1 Global

namespace
Provably-secure X.509v2 2 (this work) n/s n/s n/s n/s n/s 3

X.509v3 2 G# n/s n/s n/s G# n/s n/s 3

Catena [21] �7 � � � �7 � n/s 3

CertCoin [19] n/s � � � n/s � n/s 3

PB-PKI [20] n/s � � � n/s � � 3

CoSi [17] G# � � � n/s n/s n/s 3

Enhanced-CT [9]
G# � � n/s G# � n/s 3

DTKI [15] 3

AKI [12] G# � � n/s G# � � 3

CONIKS [11] G# n/s � n/s G# � � 7

ARPKI [14] 4 G# � � � G# � n/s 3

CertLedger [22] G# � � � � � n/s 3

Certificate Transparency (CT) [7] G# �5 �5 n/s G# n/s6 n/s 3

PoC-PKI n/s 3

TABLE I
COMPARISON OF PKI SCHEMES WITH RESPECT TO PKI FRAMEWORK. SYMBOLS: - REDUCTION-BASED PROOFS, G# - INTUITIVELY TRUE, � -

SECURITY ARGUMENTS (A PROOF MAY REQUIRE ASSUMPTIONS), n/s - NOT SUPPORTED. 1DIFFERENT PRIVACY DEFINITIONS, GOALS. 2X.509 WITH
PKIX, AND CRL OR OCSP (OCSP ENSURES NReACC). 3DTKI HAS SYMBOLIC PROOFS OF SOME ASPECTS. 4ARPKI HAS SYMBOLIC PROOFS OF SOME

ASPECTS. 5PROOFS OF LOGGING PROPERTIES IN [23], [24]. 6CT IS EXTENDED TO INCLUDE REVOCATION TRANSPARENCY IN [8].

scheme, and therefore a formal proof seems straightforward
and not essential. Note that CertCoin, PB-PKI and CONIKS
allow clients to revoke their own certificates, but revocation
can also be done by an adversary that compromised the
client’s secret keys, or alternatively, the client may be unable
to perform revocation if the secret keys are lost.

Transparency, on the other hand, is supported by all post-
X.509 PKI schemes, except CONIKS. The fact that trans-
parency is so pervasively provided is likely in response to one
of the main weaknesses of X.509 widely abused in practice,
i.e., the lack of a mechanism to effectively propagate all
issued certificates among CAs and clients. CONIKS, on the
other hand, offers a limited notion of transparency of the
identity / value map, which hides the actual identifiers and
their corresponding values, as a trade-off between security and
privacy. The clients can only query for individual identifiers.
Furthermore, even that must be within a specific namespace, as
CONIKS does not support global namespaces, where multiple
CAs are authorized to issue for the same namespace. The
use of separate namespaces, while problematic for the web
PKI, works well for many applications such as chat rooms or
messaging boards, that require secure key distribution but are
under control of a single entity.

As Table I indicates, most previously-published PKI
schemes have only informal security arguments for trans-
parency. The exception are CT, DTKI, and ARPKI, which
have different types of automated proofs for scheme-specific
properties. Namely, the properties and their proofs are not
relevant to PKIs per se. Rather, they focus on details of
the design of the particular scheme. Specifically, Dowling et
al. [23] formalized security properties and provided reduction-
based proofs for logging aspects of CT, that cover two classes
of security goals involving malicious loggers and malicious
monitors. Chase and Meiklejohn [24], on the other hand, focus

on formalizing transparency through “transparency overlays”,
a generic construction they use to rigorously prove trans-
parency in CT and Bitcoin. While their approach is elegant
and can be used in other systems as a primitive that achieves
transparency, it focuses on the “CT-style transparency” and
does not consider other PKI properties such as revocation or
non-equivocation.

Some of the systems, such as DTKI and ARPKI, verify
their core security properties using automated symbolic proofs
via the Tamarin prover [51]. Symbolic proofs provide an
important added value for the security of proposed systems.
Unfortunately, symbolic proofs often use abstractions; for
example, in DTKI and ARPKI, a Merkle tree is modeled as a
list. Such abstractions present an obstacle towards ‘air-tight’
security proofs. This strengthens the importance of a formal
framework which on the one hand does not rely on specific
implementations, yet, on the other, can be easily used by any
implementation. We leave it to future work to explore ways to
use symbolic proofs to add automatic verification capabilities
to the framework described in this paper.

The post-X.509 safety specifications - transparency and non-
equivocation - are significantly more complex to understand,
define and to achieve, compared to the X.509 properties of
accountability, revocation accountability and non-revocation
accountability. Hence, we did not consider any of these post-
X.509 properties to be ‘intuitively true’ - we believe they all
require a proper definition and proof, as we provide in this
paper; we spent considerable effort in properly defining these
specifications in a precise and complete manner, and made
every effort to keep things simple - but we admit that these
definitions still require considerable effort to fully understand.

We separated between properties which are not-supported,
and properties which are claimed to be supported using some
security arguments. Note also that most systems do not discuss

revocation status transparency at all, even though in certain
cases, e.g., CoSi, it seems relatively easy to achieve it. CT
originally did not have a built-in support for revocation status
transparency, and it was only later formalized as Revocation
Transparency [8].

III. PRELIMINARIES

In this section, we discuss the Modular Specifications Se-
curity (MoSS) [41] framework, which we use to define and
analyze PKI schemes. In Section III-A, we briefly describe the
MoSS framework, specifically, the concepts of an execution
process, models and specifications. Later, in Sections VI-VII
we formally analyze the security of X.509 version 2 using the
MoSS framework. This analysis also relies on the security of
a the signature scheme used. For the traditional definitions of
a signature scheme and its security, i.e., indistinguishability,
see Appendix A.

A. MoSS Concepts: Execution Process, Model and Specifica-
tions.

The MoSS framework establishes three components: an ex-
ecution process, model and specifications. We now briefly ex-
plain each component, focusing on the ‘classical’ asymptotic-
security definitions1. Note, however, that we omit some of
the advanced tools provided by the framework which are not
relevant to this work. For the full description of the framework,
see [41].

1) Execution Process: The first component is an adversary-
driven execution process, which defines the process of exe-
cuting a protocol P under adversary A, giving the adversary
extensive control over the operation of the environment, in-
cluding communication, local-clock values, inputs from the
application, and faults. The execution process is a precise,
algorithmic process that outputs a transcript containing the
events in a run of the protocol with a given adversary. All
events are serializable on a ‘real-time’ axis, and defined
iteratively, as a sequence of invocations of specific entity.

More precisely, Exec is a randomized algorithm, which
receives three inputs: two efficient (PPT) algorithms, A for the
adversary and P for the PKI scheme, and a security parameter,
which in our case is simply a unary string 1κ. The execution
process outputs a transcript T ← ExecA,P(1κ), which
provides details on the events in the execution, specifically:
T.outA Adversary’s output.
T.e Number of events in the execution.
T.N Set of entities (determined by adversary).
T.F Faulty (adversary-controlled) entities.
T.ent[ê] Entity invoked in event ê ≤ T.e.
T.opr[ê] Operation invoked in event ê ≤ T.e.
T.inp[ê] Input to event ê ≤ T.e.
T.clk[ê] Clock value of entity T.ent[ê], at event ê ≤ T.e.
T.τ [ê] Global real-time at event ê ≤ T.e.
T.out[ê] Output of entity T.ent[ê], at event ê ≤ T.e.

1It is not difficult to extend our results to concrete security, as modeled
in [41].

Appendix C contains the pseudo-code of the execution
process, from [41].

2) Models: The second component of the framework is
the definition of models. A model predicate M classifies the
execution of a protocol P under adversary A as ‘valid’ (>)
or ‘invalid’ (⊥), effectively enforcing one or multiple restric-
tions on the adversarial control of the execution, including
initialization assumptions, limitations on number and type of
faults, maximal delay and/or maximal clock drift. Furthermore,
a model predicate may enforce restrictions on the use of
resources by the adversary, such as numbers of queries or
running time.

The execution process allows the adversary to fully control
the execution. Assumptions and restrictions on the execution,
such as communication, synchronization and adversary model,
are defined by efficient model predicates. The model predicate
M is applied to the execution transcript T ; we say that
execution transcript T satisfies model M, if M (T) = >.
Intuitively, a PPT adversary A satisfies model M, which we
denote by A |=M, if for every protocol P , executions of P
withA satisfyM with overwhelming probability. In this work,
we assume a simple model, that enforces bounded-drift clocks
and that T.F would contain every entity that the adversary
‘corrupted’ by reading its state. This model is formally defined
in Appendix C.

Definition 1. (Model-satisfying adversary.) Let a model M
be an algorithm with binary output, i.e., a predicate. We
say that adversary A (asymptotically) satisfies model M,
denoted as A |=M, if for every PKI scheme P and security
parameter 1κ, the model predicate M, applied to a random
resulting execution-transcript T ← ExecA,P(1κ), is satisfied
with overwhelming probability, i.e.:

A |=M def
= (∀ P, 1κ) εMA,P(1κ) ∈ Negl(1κ) (1)

Where, for any predicate π, e.g., π ≡ M, we define the π-
advantage of adversary A against protocol P as:

επA,P(1κ)
def
= Pr

[
π (T) = ⊥ :
T ← ExecA,P(1κ)

]
(2)

3) Specifications: The third component of the framework is
the definition of specifications, which define what is provided
by a protocol or scheme, given some model.

Similarly, specifications are also defined as efficient pred-
icates applied to the transcript T applied to execution tran-
scripts. We define that a protocol P (e.g., in our case, a PKI
scheme), satisfies a specification as follows.

Definition 2. (Specification-satisfying protocol.) We say that
protocol P (asymptotically) satisfies specification ξ under
model M, denoted as P |=M ξ, if for every PPT adversary A
that satisfies M and security parameter 1κ, the specification
ξ, applied to a random resulting execution-transcript T ←
ExecA,P(1κ), is satisfied with overwhelming probability, i.e.:

P |=M ξ
def
= (∀ A, 1κ |A |=M) εξA,P(1κ) ∈ Negl(1κ) (3)

Where εξA,P(1κ) is defined as in Equation 2.

IV. PKI CONCEPTS

In this section, we formally define the building blocks of a
PKI. In §IV-A, we define who are the entities involved and
what is a certificate. Then, in Section IV-B, we explain what
it means for certificates to have attributes.

A. Entities and Certificates

PKI schemes are protocols for a set N of authorities, such as
certificate authorities (CAs). A certificate authority (CA), also
referred to as an issuer, is an authority that issues certificates
to subjects, where a certificate is a verifiable association of
the subject’s identifier with some public information; in a
public key certificate, the public information includes the
subject’s public key. PKI schemes that wish to satisfy non-
trivial specification, can introduce more authorities into N.
For example, in a specific PKI scheme such as CT, the set
of authorities N contains additional types of authorities, such
as loggers, monitors etc., which are imperative for advance
specifications, e.g., transparency.

PKI schemes have two types of users (clients): subjects,
which typically use a CA to obtain and manage their public
key certificate, and relying parties, which use the certificates of
the subjects, in order to determine if they want to communicate
with the subject (using the certified public key). Note, however,
that we do not explicitly include the clients as part of the set
of entities N.

In Definition 3, we define the structure of a typical certifi-
cate.

Definition 3 (Certificate). A certificate is a tuple:

ψ = (serial, subject, pub, from, to, issuer, τ, γ, σ)

where:
• ψ.serial: CA-assigned serial number.
• ψ.subject: to whom the certificate is issued.
• ψ.pub: public information associated with ψ.subject.
• ψ.from: when the validity period starts.
• ψ.to: when the validity period ends.
• ψ.issuer: the CA that issued the certificate.
• ψ.τ : issue time.
• ψ.γ: certificate’s extensions (may contain any additional

data that the issuer is certifying along with the public
information and subject fields).

• ψ.σ: the CA’s signature over the certificate’s fields.

B. Attribute Attestations

Each certificate can be accompanied with different attributes
attestations. For example, a certificate ψ can be attested as
non-revoked using an additional attestation information, which
contains the additional information needed to verify the claim
that ψ was indeed not revoked. Note that the notion of
attestation is closely-related yet significantly different from
notion a certification extension.

In practice, the structure of an attestation can be of any
form; that said, we now define and later use a specific format,
which we found useful in defining different PKI specifications.

Definition 4 (Attribute attestation). An attestation of attribute
is a tuple:

ρ = (attr, serial, ι, tbs, σ, τ)

where:
• ρ.attr is the attribute attested, e.g., NREV.
• ρ.serial is the serial number of the corresponding cer-

tificate.
• ρ.ι is the identifier of the attesting entity.
• ρ.tbs is the data To Be Signed (tbs) by the attestation.
• ρ.σ is the proof of the ρ.tbs data.
• ρ.τ is the time of attestation.

V. THE PKI FRAMEWORK

We now define the PKI framework. In Section V-A, we
informally describe the operations which a PKI scheme is
required to support, and then formally define what is a PKI
scheme using these operations in Section V-B. Then, we
formally define the security specifications used in PKI scheme,
which we informally introduced in Section II. In Section V-C
we define the basic PKI security specifications and in Sec-
tion V-D we define the advanced security specifications, used
in post-X.509 PKI schemes.

A. Informal Overview of PKI Functionalities

We now identify the basic functionalities required to be sup-
ported by a PKI scheme, and present an informal description
of the PKI scheme definition, which will be formally defined
next in §V-B. We begin with the most basic PKI operation,
certificate issuance.

1) Certificate issuance: Certificates are issued by an entity
ι ∈ N, as a result of a request generated by the certificate’s
subject. The subject provides the certificate’s details, i.e., the
subject identifier and public information (e.g., public key).
Then, the issuing entity uses a dedicated operation, which
we denote as the Issue operation, to generate the certificate.
Namely, this Issue operation bundles the certificate details
together according to the relevant format, along with a proof
that the issuer has issued that exact certificate. As a result, the
issuer’s proof (signature) attests that the issuer has sufficiently
verified the eligibility of the requesting client to request
certificate issuance for the relevant subject. That said, the
actual verification process is not part of the properties we
model.

2) Certificate revocation: Revocation is a major aspect
of PKI schemes, addressed already in X.509. The revoking
entity uses a dedicated operation, which we denote as the
Revoke operation. Namely, this Revoke operation will mark
the certificate as revoked, and optionally, can output relevant
related attestations, e.g., revocation attestation (REV). Notice,
however, that such output attestations are non-mandatory;
indeed, in practice, when CAs are requested to revoke a cer-
tificate, they often output an indication whether the certificate

was revoked or not, but the actual proof of revocation, i.e.,
attestation, is acquired through other mechanisms, e.g., CRLs.

3) Attribute attestation: Once a certificate is issued, author-
ities in N can attest for attributes regarding this certificate. In
fact, certificates can be attested to have any kind of attribute,
however, such attestations needs to be: (1) well defined, and (2)
acceptable by relying parties. A valid non-expired certificate
can (theoretically) be attested to be revoked or not revoked by
any authority; nevertheless, usually relying parties would only
accept such attestations from relevant authorities. For example,
accepting revoked and not revoked attestation only from the
authority that issued the certificate. We denote a dedicated op-
eration Attest to produce attestations. In this work, we identify
two basic types attestations: revocation and non-revocation,
along with more advanced attributes: ∆-transparency, ∆-
revocation status transparency, ∆-equivocation detection and
equivocation prevention. We discuss these attributes in depth
in §V-C-§V-D.

Note, however, that the Attest operation might not be able
to immediately output the requested attestation. The reason is
that in some PKI systems, advanced attributes might involve
interaction with other authorities, e.g., to avoid equivocation
(when required). Therefore, to support such non-immediate
response mechanism, the Attest operation can output a pend-
ing attestation, i.e., a commitment to produce the requested
attestation (or failure indication), within Λ time, where Λ is
typically known from the given attribute or request. Whenever
the Λ time period ends, an execution of the Attest algorithm
with the pending attestation guaranteed to output the final
response, which is either the expected non-pending attribute
attestation, or ⊥, i.e., the request was declined.

4) Attestation validity: While Issue, Revoke and Attest are
stateful operations, checking whether a specific certificate is
valid with respect to a specific attribute attestation must be a
stateless operation, since anyone can perform this operation,
including clients. As clients do not have any certificate-related
state, thus, they must be able to validate certificates without
any extra information beyond the actual data to be validated.

Thus, we denote the stateless WasValid function which
checks whether a given attribute attestation ρ attested for a
certificate ψ was valid when ρ was attested with respect to a
public key pk. Note that pk can be either an entity’s public key,
or alternatively, a group public key, e.g., threshold signature
verification key.

5) Audit and misbehavior: In order to formalise some of
the PKI-related specifications, it is required to be able to
query entities with respect to their local state. For example,
consider the ∆-transparency specification, which requires that
a ∆-transparent certificate will be available to all interested
entities within ∆ time. Such specification needs a way to
query the local state of those interested entities, to make sure
that ∆-transparent certificate were indeed available to them.
Furthermore, entities might produce a proof-of-misbehavior,
i.e., verifiable accusation against other entities’ misdeeds.

Hence, we denote the Audit function, which can be invoked
in a couple of ways. When Audit is invoked with a subject

subject and an attribute attr ∈ AttrSet, it either returns a
valid set of certificates Ψ issued for subject along with their
attribute attestations set P , according to the local state, or
⊥ otherwise (no such certificates). When Audit is invoked
with a certificate ψ and an attribute attestation ρ, it outputs
> if the current state indicates that ψ is valid with respect
to ρ. In contrast, if the current state indicates that ρ.attr
should not have been attested to ψ, then Audit outputs an
Indicator of Accusation (IA) or a proof of misbehavior ζ.
Otherwise, e.g., if the current state does not provide the
necessary information, then the algorithm returns ⊥. To verify
if an output proof of misbehavior is valid, we denote the PoM
operation.

6) Monitoring: As discussed earlier, non-trivial specifi-
cations, e.g., equivocation, require that certificates will be
monitored; otherwise, they cannot be guaranteed. Therefore,
we denote the Monitor operation which is used to assign
entities to monitor other entities. Namely, an entity invoking
the Monitor operation with an input ι ∈ N starts to monitor
ι. As a result, the monitoring entity receives periodic updates
from the monitored entity with any changes made from the
last update.

7) Additional operations: Finally, a PKI scheme also re-
quires a few basic functions that will help bind the entire
scheme together. Namely, a PKI scheme requires an initializa-
tion operation, denoted as Init, to allow entities to perform any
required operation at the beginning, e.g., generating crypto-
graphic keys locally, exchanging initial information with other
entities etc. A second required operation regards handling
time-based events, e.g., the ability to perform operations
periodically. The assigned operation, denoted as Wakeup,
is expected to be invoked whenever a predefined event has
occurred. To illustrate, consider CT loggers which are required
to periodically update and sign the log; handling such periodic
event is done by the Wakeup operation. Lastly, since each
entity receives incoming requests, either from other entities
or from clients, these requests are handled via a dedicated
function, denoted as the Incoming algorithm.

B. Formal Definition

We now define the basic set of operations which are
required from a PKI scheme. However, we emphasize that
not all PKI schemes requires to implement all of them, as
we demonstrate for X.509 in section VI. Furthermore, some
schemes might require additional or optional inputs. Therefore,
our specifications should be interpreted as holding for any
values of these additional inputs.

For simplicity of exposition, we use a simplified notations
and explicitly write only the input parameters of each opera-
tion, although the implementation will, obviously, also refer to
the clock and the state. (Note that the WasValid operation is
stateless, hence, its implementation cannot refer to the clock
or state.)

Definition 5 (PKI scheme). A PKI scheme P is a PPT algo-
rithm, that supports (at least) the following set of operations:

P = (Init, Issue,Revoke,Attest,Audit,WasValid,

Wakeup, Incoming,PoM,Monitor)

where:
• Init(x) → y: The algorithm takes as input information
x, performs the relevant initialization operations and
outputs y.

• Issue(subject, pub, from, to) → (ψ, P)/⊥: The algo-
rithm takes as input a subjects identifier subject, public
information pub, start of validity date from and expi-
ration date to, and outputs either a matching certificate
ψ ∈ Ψ along with a set of attribute attestations P , or
failure indicator ⊥.

• Revoke(ψ) → P/⊥: The algorithm takes as input a
certificate ψ ∈ Ψ, and outputs either a set of attribute
attestations P , or failure indicator ⊥.

• Attest(ψ, attr) → ρ/⊥: The algorithm takes as input a
certificate ψ ∈ Ψ and an attribute attestation attr ∈,
and outputs either an attribute attestation ρ, or failure
indicator ⊥.

• Audit(subject, attr) → (Ψ, P)/⊥ or Audit(ψ, ρ) →
>/IA/ζ/⊥: The algorithm subject identifier subject and
attribute attr ∈ AttrSet, and outputs either a valid set of
certificates Ψ along with a set of attribute attestations P ,
or failure indicator ⊥. Alternatively, the algorithm takes
as input a certificate ψ ∈ Ψ and attribute attestation ρ,
and outputs either > or ⊥.

• WasValid(ψ, pk, ρ) → >/⊥: This stateless algorithm
takes as input a certificate ψ ∈ Ψ, a public key pk, and
an attribute attestation ρ, and outputs either > or ⊥.

• Wakeup(data): The algorithm takes as input a wake-
up event information data and perform the time-related
operation.

• Incoming(x): The algorithm takes as input information
x and process it accordingly.

• PoM(pk, σ) → >/⊥: The algorithm takes as input a
public key pk and proof σ, and outputs either > or ⊥.

• Monitor(ι): The algorithm takes as input an entity iden-
tifier ι and starts to periodically monitor ι.

C. Basic PKI Security Specifications

In algorithms 1-7, we define the specification predicates
for PKI schemes, corresponding to the security requirements
informally introduced in Section II. As per Definition 2, PKI
scheme P fails to satisfy specification ξ, if there is significant
(non-negligible) probability that an execution of some PPT
adversaryA will result in execution transcript T s.t. ξ(T) = ⊥,
i.e., that A will ‘win’. In this subsection we present the ‘basic’
specifications: accountability, revocation and non-revocation,
which are relevant even to ‘classical’ PKI schemes such as
X.509 [52] and PKIX [53]. The more advanced specifications
are in the following subsection.

1) The public-key association convention ‘PubKey’ and
role-based certificates: The goal of PKI is to establish public

keys, however, PKI also utilizes known public keys asso-
ciated with specific identifiers. For example, in TLS, these
are referred to as ‘anchor’ public keys, and associated with
well-known entities - the ‘root CAs’; and threshold/proactive
public-key systems, use keys which are associated with a role
rather than with any single entity, for example, the public key
used to verify periodical re-certifications by the set of entities
in the proactive authenticated communication scheme of [54].
Some PKI schemes need such a ‘role’ which is not a specific
entity, e.g., to identify public keys trusted to attest for non-
equivocation. We adopt a simple convention to identify such
associations of a public key pk with an identifier role (which
may be a ‘named role’ or simply an entity role ∈ N). The
convention is that a non-faulty party output the ‘reserved tuple’
(‘PubKey’, role, pk).

2) Functions, e.g. ISVALIDATTR: We define few functions,
for operations used by multiple predicates; the definition
of each function appears with the first predicate using this
function. For example, the ISVALIDATTR function checks
that the given attestation of a given certificate is valid with
for one of the attributes in a given set2 ATTR of attributes,
and signed properly with the specified public key (given as
one of the inputs). Furthermore, ISVALIDATTR validates that
this public key, is indeed a public key associated with either
an entity or an attribute, denoted as role, which is also
input to ISVALIDATTR. To validate this, ISVALIDATTR uses
the public-key association convention just introduced, i.e., it
checks that a non-faulty entity ι ∈ T.N − T.F, has output
the ‘reserved tuple’ (‘PubKey’, role, pk). In most calls, role
identifies one of the entities, role ∈ N, in fact usually role = ι;
but sometimes role is not an entity, e.g., we use it to refer to
the public key trusted to attest for non-equivocation.

3) Accountability specification: The accountability predi-
cate (Algorithm 1) returns ⊥ if accountability fails, namely, if
there exists a valid, accountable certificate ψ, whose issuer is
honest ψ.issuer ∈ T.N − T.F, yet during the execution, the
issuer ψ.issuer was not instructed to issue a certificate with
the subject, public key and validity period in ψ, i.e., there was
no ‘Issue’ operation in ψ.issuer with these inputs.

4) Revocation and non-revocation accountability specifica-
tions: The revocation accountability predicate (Algorithm 2)
checks for a valid revocation attestation ρ for a certificate ψ
s.t. ψ.issuer ∈ T.N − T.F (ψ.issuer is honest), yet, until
the time specified in the attestation (as time of revocation),
ψ.issuer was not instructed to revoke ψ. In this case, the
attacker ‘wins’ (predicate returns ⊥).

Similarly, the non-revocation accountability predicate
checks for a valid non-revocation attestation ρ for a certificate
ψ s.t. ψ.issuer is honest, although, before the revocation
time as specified in the attestation, ψ.issuer was instructed
to revoke ψ. Again, if this holds, then the attacker ‘wins’
(predicate returns ⊥).

5) Extensions: Our specification does not address exten-
sions, an important part of X.509 from version 3. Some

2Usually we check for only a specific attribute, but in some predicates,
we only care if the attestation is for one of multiple attributes.

Algorithm 1 Accountability predicate ACC(T)

1: (ψ, ρ, pk)← T.outA .
Certificate ψ,
attribute attestation
ρ, and public key pk

2: test← ISVALIDATT(T, {ACC}, ψ, ρ, pk,
ψ.issuer, ψ.issuer)

.

ψ.issuer is honest
and ψ was attested by
ψ.issuer to be ac-
countable on time ρ.τ

3:

and @ē s.t. T.ent[ē] = ψ.issuer

and T.opr[ē] = ‘Issue’
and T.inp[ē] = (ψ.subject, ψ.pub,

ψ.from,ψ.to)

.
Yet, ψ.issuer was
not asked to issue ψ

4: if test then return ⊥ else return >

5: procedure ISVALIDATT(T,ATTR,ψ, ρ, pk, ι, role)

6:

return ι ∈ T.N− T.F
and ρ.attr ∈ ATTR
and P.WasValid(ψ, pk, ρ)

and ∃ê s.t. T.ent[ê] = ι

and T.out[ê] = (‘PubKey’, role, pk)

.

Certificate ψ has a
valid attestation ρ
with an attribute from
set2 ATTR, verified
by the public key pk
of entity role. The
mapping of pk to
role was outputted
by a honest entity
ι (so should be
correct).

7: end procedure

Algorithm 2 Revocation accountability predicate ReACC(T)

1: (ψ, ρ, pk)← T.outA .
Certificate ψ,
attribute attestation
ρ, and public key pk

2: test← ISVALIDATT(T, {REV}, ψ, ρ, pk,
ψ.issuer, ψ.issuer)

.

ψ.issuer is honest
and ψ was attested
by ψ.issuer as re-
voked on time ρ.τ
(see Alg. 1)

3:

and @ ē s.t. T.ent[ē] = ψ.issuer

and T.opr[ē] = ‘Revoke’
and T.inp[ē] = ψ

and T.τ [ē] ≤ ρ.τ

.
Yet, ψ.issuer was
not asked to revoke ψ
before time ρ.τ

4: if test then return ⊥ else return >

Algorithm 3 Non-revocation accountability predicate NReACC(T)

1: (ψ, ρ, pk)← T.outA .
Certificate ψ,
attribute attestation
ρ, and public key pk

2: test← ISVALIDATT(T, {NREV}, ψ, ρ, pk,
ψ.issuer, ψ.issuer)

.

ψ.issuer is honest
and ψ was attested
by ψ.issuer as non-
revoked on time ρ.τ
(see Alg. 1)

3:

and ∃ē s.t. T.ent[ē] = ψ.issuer

and T.opr[ē] = ‘Revoke’
and T.inp[ē] = ψ

and T.τ [ē] ≤ ρ.τ

.
Yet, ψ.issuer was
asked to revoke ψ be-
fore time ρ.τ

4: if test then return ⊥ else return >

Algorithm 4 Equivocation-prevention predicate EQ-P(T)

1: if EQUIVOCATIONOCCURED(T, EQ-P) then return ⊥ else return >

2: procedure EQUIVOCATIONOCCURED(T, attr)

3:
(
ψ,ψ′, ρe, ρ

′
e, pke, pk

′
e, ι, ι

′
)
← T.outA .

Certificates ψ,ψ′,
attribute attestations
ρe, ρ

′
e, public keys

pke, pk
′
e and two

(honest) entities ι, ι′

4: return ISVALIDATT(T, {attr}, ψ, ρe, pke,
ι, attr)

.
ψ was attested by ρe.ι
to be unequivocal on
time ρe.τ (see Alg. 1)

5: and ISVALIDATT(T, {attr}, ψ′, ρ′e, pk
′
e,

ι′, attr)
.
ψ′ was attested by ρ′e.ι
to be unequivocal on
time ρ′e.τ (see Alg. 1)

6:
and ψ.subject = ψ′.subject

and ψ.from < ψ′.from < ψ.to

and ψ.pub 6= ψ′.pub

.

ψ and ψ′ have the
same subject identifier
and overlapping valid-
ity periods, yet, they
have different public in-
formation, i.e., ψ and
ψ′ are equivocating

7:

and ∀ι ∈ T.N− T.F
∃ė s.t. T.opr[ė] = ‘Audit’

and T.ent[ė] = ι

and T.inp[ė] = ψ.subject

and T.τ [ė] > ρ′e.τ

and @ρ ∈ T.out[ė] s.t. ρ.attr = ‘REV’

.

None of the honest enti-
ties think that ψ was re-
voked before the equiv-
ocating certificate ψ′

was attested as unequiv-
ocal

8: end procedure

Algorithm 5 ∆−Equivocation detection predicate ∆EQ-D(T)

1:

 ψ,ψ′, pks, pke, pk
′
e,

pkt, ρe, ρ
′
e, ρt

← T.outA .

Certificates ψ,ψ′,
entity ι, public keys
pks, pke, pke, pkt,
and attribute
attestations
ρe, ρ

′
e, ρt, ρ

′
t

2: test← EQUIVOCATIONOCCURED(T,∆EQ-D) . See Alg. 4

3:

and ∀ι ∈ T.N− T.F
∃ė s.t. T.opr[ė] = ‘Audit’

and T.ent[ė] = ι

and T.inp[ė] = (ψ′,∆EQ-D)

and T.out[ė] = >
and T.τ [ė] > ∆ +max(ρe.τ, ρ

′
e.τ)

.
No one detected the
equivocation during
the ∆ time frame

4: if test then return ⊥ else return >

* Note that not all the parameters that are outputted by the adversary in line 1, are used
in the algorithm, due to the call for EQUIVOCATIONOCCURED in line 3. However, we
explicitly wrote all these arguments here, since otherwise, it is harder to understand the
context of line 4, for example, the fact that ψ′ in line 4 is the second equivocating
certificate.

extensions are very important and relevant to PKI security,
e.g., the basic, naming and length constraints. It is easy to add
the extensions as content to the certificates and validate that
certificates only contain the extensions specified in ‘issue’; the
challenge is to reflect the security implications of extensions,
mainly, their extensive, non-trivial use for cross-certification.
This important issue is beyond our scope.

6) Role-based issuers and subjects: We usually think of
the subject and issuer fields in certificates as identifiers,
e.g., X.509 distinguished name or domain name. However,
these fields may also contain a ‘label’ identifying the issuer
or subject by their role or property, or as belonging to a
group. This type of more general attribution of issuers and/or
subjects may have different advantages, such as allowing role-
based access control and preserving anonymity; see [55], [56].
In particular, there may be value in systems where (some)
certificates are issued by a group of cooperating entities - for
example, for non-equivocation. This may require extensions
to the predicates.

7) Non-issuer revocations: Current predicates only allow
revocation and non-revocation attestations by the issuer of the
certificate. This is the common approach also in deployed
PKI schemes, but there may be value in extending this in
the future. Specifically, certain systems might allow entities
other than the issuers to revoke certificates and attest for their
status. Such change, however, must be carefully designed, to
avoid undesirable side effects; for instance, if multiple entities
may revoke a certificate, then they must be coordinated, to
avoid one entity issuing non-revoked attestation to a certificate
revoked by another entity.

8) Issuer public key: The predicates rely on the (stateless)
function P.WasValid to check whether the certificate outputted
by the adversary has a claimed attribute. P.WasValid needs
to be provided with the issuer’s public key, to verify thtat
the certificate has a specific attribute endorsed with respect to
that key. This public key, however, comes from the adversary
controlled output T.outA and cannot be trusted on its own.
Hence, we rely on the following convention: each entity ι
outputs its own public key in the form (‘PubKey’, ι, pk).
Each time the adversary outputs an attribute attestation, it
also outputs the public key of the attesting entity, and the
ISVALIDATTR function checks that this public key was indeed
outputted by a honest entity (in the (‘PubKey’, ι, pk) form).

D. Post-X.509-PKI Security specifications

We now define more advanced security specifications, rel-
evant to ‘post-X.509’ PKI systems, such as Certificate Trans-
parency (CT) [7]. We start the discussion with specifications
related to equivocation prevention and detection, and then
transparency. While this order of describing the ’strongest’
specification, and hence usually most complex to achieve,
might be counter intuitive, it results in a more comprehensible
presentation.

1) Equivocation prevention (EQ-P): The equivocation pre-
vention predicate (Algorithm 4) is designed to ensure that if
equivocation prevention holds, then at no point in time will

there exist two unequivocal certificates with different public
information issued for the same identifier with overlapping va-
lidity periods. This property is relatively easy to achieve if we
disregard possible scenarios where an unequivocal certificate
ψ is revoked and an unequivocal replacement certificate ψ′

needs to be issued, since, in theory ψ′ would conflict with
ψ due to the same identifier, different public information and
overlapping validity.

An overly simplistic solution would be to simply prohibit
unequivocal certificates replacements prior to their stated
expiration date. We adopt a different approach (described in
Algorithm 4), however, that allows replacements and require
that if a replacement is issued, then the original certificate must
be revoked first. The equivocation prevention predicate checks
if an adversary is able to present two conflicting, unequivocal
certificates and that none of the honest entities considered
the first certificate as revoked prior to the replacement being
issued. This approach ensures that the second certificate was
not issued in good faith by an honest entity who was led
to believe that the first certificate is revoked, i.e., based on
a fraudulent revocation attestation issued by an adversary
controlled entity.

2) ∆-Equivocation detection (∆EQ-D): The ∆-
equivocation detection predicate (Algorithm 5) is designed to
ensure that if the specification holds, then each occurrence
of equivocating certificates will be detected within ∆
time by (at least) one honest authority. Equivocation
detection provides a ‘weaker’ guarantee than prevention,
since equivocating certificates can be issued, unlike in case
of prevention, and only after some time are discovered.
However, in terms of complexity of their specifications, the
∆-equivocation detection specification has more requirements
than equivocation prevention. Namely, to break equivocation
prevention, the adversary needs to show that it is able
to produce two equivocating certificates; however, for
the adversary to break equivocation detection, it must, in
addition to the existence of such certificates, show that
no honest entity detected the equivocation within ∆. Both
specifications rely on a procedure to detect equivocation
(EQUIVOCATIONOCCURED, described in Algorithm 4) but
the specification of equivocation detection includes additional
check that ensures that no honest entity detected equivocation
within the ∆ time frame.

3) ∆-Transparency (∆TRA): The ∆-transparency predi-
cate (Algorithm 6) is designed to ensure that if ∆-transparency
holds, then a ∆-transparent certificate is available to “inter-
ested” parties, i.e., monitors, within ∆ time of its transparency
attestation being issued. In order for the adversary to break the
transparency guarantee, the adversary must show that for some
valid ∆-transparent certificate ψ, which was attested by an
entity ρ.ι on time ρ.τ as ∆-transparent, there is a honest entity
ιM which monitors ρ.ι, yet ιM is not aware of ψ although it
should, i.e., ιM is not aware of ψ after ρ.τ + ∆, and ιM did
not accuse ρ.ι of some misbehavior or has a proof of any
misbehavior.

In a typical scenario ιM monitors ρ.ι, i.e., it receives peri-

odic updates from ρ.ι about the set of certificates ρ.ι maintains
and has committed to make transparent. If ρ.ι is honest, then
ιM will receive the certificates and the transparency guarantee
will hold. If, on the other hand, ρ.ι is compromised, i.e., in
any way controlled by the adversary, then ρ.ι can choose
one of two strategies: to completely cease to communicate
(in which case, ιM will formally accuse ρ.ι) or to continue
to communicate but to withhold a specific certificate ψ from
ιM (in which case ιM will eventually have a proof that ρ.ι
withheld ψ once it obtains ρ which commits ρ.ι to make ψ
transparent at a specific time). The predicate checks for the
proof using the ‘Audit’ operation. Consequently, the adversary
must be able to withhold ρ from ιM without ιM being able
to detect it (through an accusation or a proof of misbehavior
produced as a result of an ‘Audit’ operation on ιM).

4) ∆-Revocation status transparency (∆ReST): While ∆-
transparency focuses on the transparency of certificates, the
∆-revocation status transparency specification applies to the
certificates’ revocation status. A ∆ReST attestation ρs spec-
ifies a certificate status as either revoked or not revoked as
endorsed by a specific entity ρs.ι. The ∆-revocation sta-
tus transparency predicate (Algorithm 7) ensures that if the
specification holds, then whenever an entity ρt.ι produces an
transparency attestation ρt of ρs, then ρt.ι commits to make
ρs available to monitors within the ∆ time frame. Therefore,
similarly to the ∆-transparency predicate, the ∆-revocation
status transparency predicate checks if the adversary is able to
produce a transparency attestation ρt of ρs such that there
exists a honest monitor ιM that monitors ρt.ι, yet ιM is
unaware of ρs after ∆ and ιM did not accuse ρt.ι during
∆ as uncooperative, nor it (eventually) has a proof of ρt.ι’s
misbehavior.

VI. PROVABLY-SECURE X.509 PKI SCHEME

In this section, we formalize the design of the X.509 version
2 scheme (Algorithms 8-13). The resulting construction fol-
lows the common practices of the currently deployed X.509-
based systems, except for allowing certain extensions for sim-
plicity and clarity of exposition, e.g., naming constraints for
cross-certification. The construction supports two revocation
mechanisms commonly used in practice, CRLs and OCSP.

A. System Entities and their Local State

In X.509, the set of authorities N consists of certificate
authorities (CAs) only who perform the same tasks. Each CAs
is responsible for issuing and revoking certificates as well as
providing information about the certificates it revoked. Each
CA maintains a local state s which contains the following
information:
• s.serial : a counter for the issued certificates; initialized

to 0.
• s.ι : the global identifier of the entity.
• s.sec : the system’s security parameter; initialized within

the execution process.
• s.sk : the secret signing key.
• s.pk : the public verification key.

• s.certs : the list of all issued certificates by the specific
entity; initialized as an empty list.

• s.CRL : the list of all revoked certificates; initialized as
an empty list.

• s.SignedCRL : proof over the latest CRL.
• s.τ : the value of the current local clock of the specific

entity.

B. PKI Algorithms

We now present the implementations of the PKI algorithms
specified in Definition 5 relevant to X.509 in Algorithms 8-
13. We do not present the Incoming, Monitor,PoM and Audit
algorithms as they are not required given the X.509 design
and goals. Specifically, there is no interaction between the
CAs and consequently, no need for Incoming. X.509 does not
provide advanced PKI security features, such as transparency
and equivocation, and therefore does not need Monitor,PoM
and Audit algorithms.

1) The Init Algorithm: The initialization algorithm Init
(Algorithm 8) enables each entity to generate a private/public
signing key pair; the secret key is stored locally and the
algorithm outputs the public key following the convention
presented in §V-C. The security parameter s.sec used to
generate the keys is defined as a part of the execution process.

2) The Issue Algorithm: The certificate issuing algorithm
Issue (Algorithm 9) is used by a CA to issue an accountable
certificate ψ. An honest CA invokes the algorithm only if the
requesting client is eligible for the subject to be included
in ψ; the specific process of verifying such eligibility varies
from CA to CA and is beyond the scope of this paper. The
algorithm uses the signing algorithm S.Sign to produce a
signature over the specific certificate fields (its serial number,
subject, public information, and validity period). The resulting
signature serves as the accountability proof, and therefore, the
accountability attestation outputted along with the certificate
contains the certificate and proof. The algorithm stores the
certificate locally and then outputs the certificate along with
the accountability attestation.

3) The Revoke Algorithm: The certificate revocation
Revoke algorithm (Algorithm 10) is used by an eligible CA
to revoke a certificate ψ. In X.509, an eligible CA is the
one who initially issued the specific certificate. CAs revoke
certificates which are not expired or already revoked at the
time of the revocation request. Similarly to the process of
issuing certificates, an honest CA revokes a certificate only
following a legitimate revocation request from the certificate
subject.

In X.509, CAs revoke a certificate by locally adding it to
their CRLs; however, CAs do not immediately produce and
output a proof of revocation. Such a proof is only produced
later on: either by issuing a periodic CRL update or in response
to an OCSP request.

4) The Wakeup Algorithm: The time-based operations
Wakeup algorithm (Algorithm 11) is used in X.509 for only
one operation. Namely, whenever it is time to re-publish the
latest CRL, the algorithm is executed. The algorithm takes the

Algorithm 6 ∆−Transparency predicate ∆TRA(T)

1: (ψ, pk, ρ, ιM)← T.outA .

Certificate ψ,
attribute attestation
ρ, public key pk, and
entity ιM

2: test← ISVALIDATT(T, {∆TRA}, ψ, ρ, pk,
ρ.ι, ρ.ι)

.

ψ was attested by ρ.ι
to be ∆−transparent
on time ρ.τ (see
Alg. 1)

3:

and ιM ∈ T.N− T.F
and ∃ẽ s.t. T.ent[ẽ] = ιM

and T.opr[ẽ] = ‘Monitor’
and T.inp[ẽ] = ρ.ι

and T.τ [ẽ] ≤ ρ.τ −∆

.

ιM is honest and ιM
monitors ρ.ι since
(at least) ∆ before
the transparency-
attestation.

4: and WASNOTACCUSED(T, ψ, pk, ρ, ιM) .

Monitor ιM did not
accuse entity ρ.ι as
uncooperative or mis-
behaving

5:

and ∃ē s.t. T.ent[ē] = ιM
and T.opr[ē] = ‘Audit’
and T.inp[ē] = ψ.id

and ψ 6∈ T.out[ē]
and T.τ [ē] ≥ ρ.τ + ∆

.
ιM is not aware of
ψ even though the ∆
time period passed

6: if test then return ⊥ else return >

7: procedure WASNOTACCUSED(T, ψ, pk, ρ, ι)

8:
return @ë s.t. T.ent[ë] = ι

and T.out[ë] = (IA, ρ.ι)
and T.τ [ë] ≤ ρ.τ + ∆

.

ι did not
‘indicate/accuse’
ρ.ι, at least not until
∆ time units after
attestation

9:

and ∃ě s.t. T.ent[ě] = ι

and T.opr[ě] = ‘Audit’
and T.inp[ě] = (ψ, ρ)

and P.PoM(pk, T.out[ě]) = ⊥
and T.τ [ě] > ρ.τ + ∆

.

ι failed to produce
‘proof’ of ρ.ι’s mis-
behavior, upon ‘Au-
dit’ with input ψ and
ρ

10: end procedure

Algorithm 7 ∆−Revocation Status Transparency predicate ∆ReST(T)

1: (ψ, ρt, pks, pkt, ιM)← T.outA .

Certificate ψ,
attribute attestation
ρt, public keys
pks, pkt and entity
ιM

2: ρs ← ρt.data .
Extract attestation ρs
from attestation ρt

3: test← ISVALIDATT(T, {REV,NREV}, ψ, pks, ρs,
ψ.issuer, ψ.issuer)

.

ψ was attested
by ψ.issuer as
revoked/non-revoked
on time ρs.τ (see
Alg. 1)

4: and ISVALIDATT(T, {∆ReST},
ψ, pkt, ρt, ρt.ι, ρt.ι)

.

ψ’s revocation status
ρs was attested
by ρt.ι to be
∆−revocation status
transparent on time
ρt.τ (see Alg. 1)

5:

and ιM ∈ T.N− T.F
and ∃ẽ s.t. T.ent[ẽ] = ιM

and T.opr[ẽ] = ‘Monitor’
and T.inp[ẽ] = ρt.ι

and T.τ [ẽ] ≤ ρt.τ −∆

.

ιM is honest and ιM
monitors ρt.ι since
(at least) ∆ before
the transparency-
attestation

6: and WASNOTACCUSED(T, ψ, pkt, ρt, ιM) .

Monitor ιM did not
accuse entity ρt.ι as
uncooperative or mis-
behaving

7:

and ∃ē s.t. T.ent[ē] = ιM
and T.opr[ē] = ‘Audit’
and T.inp[ē] = ψ.id

and T.τ [ē] ≥ ρt.τ + ∆

and (

(ρs.attr = NREV

and @ρ′ ∈ T.out[ē] s.t.
ρ′.attr = NREV and ρ′.τ ≥ ρs.τ)

or
(ρs.attr = REV

and @ρ′ ∈ T.out[ē] s.t.
ρ′.attr = REV)

)

.

However, there is an
event ē in T proving
that ρs did not be-
come transparent af-
ter ∆, i.e., there ex-
ists an honest mon-
itor ιM that is not
aware of ρs although
it should. Namely, ei-
ther ρs attests ψ as
non-revoked on ρs.τ
but all non-revocation
attestations known to
ιM are older, or ρs
attests ψ was revoked
on ρs.τ but ιM has a
non-revocation attes-
tation for ψ- attested
after ρt.τ

8: if test then return ⊥ else return >

latest CRL, signs it and store it locally, so it can be retrieved
via the Attest algorithm (Algorithm 12). According to the
rfc, the CRL should be republished periodically, even if no
new certificates were revoked. Specifically, each publication
contains the next update time, and the next publication should
occur before the latest one ‘expires’. In practice, many CAs
publish updated CRLs frequently, a lot before the ‘next update’
statement; some even republish the CRL after every certificate
revocation. Therefore, the Wakeup algorithm outputs the next
wake-up request time, specifying when the next CRL update
will occur. CAs who wish to sign the CRL after every
revocation can do so by outputing a matching wake-up request
in the Revoke algorithm (Algorithm 10).

5) The Attest Algorithm: In X.509, the certificate attesta-
tion algorithm Attest (Algorithm 12) supports two types of
attestations: REV, indicating that a certificate is revoked and
NREV, indicating that a certificate is not revoked. As in the
case of revocation, certificate attestation requests are handled

by the issuing CAs. Before issuing a specific attestation, the
algorithm verifies the request to ensure that only revoked
certificates receive the REV attestation and only non-revoked
certificates receive the NREV attestation. The algorithm does
not check the expiration date of the certificate as it only issues
an attestation to the existing state of the certificate and it does
not alter it.

An attestation can be produced for both revocation ap-
proaches, CRLs and OCSP, and the optional input α is used
to indicate the specific method. The output of the algorithm is
always in the same format and only the value of attr varies.
The procedure of verifying the attestation will vary based on
the specific attribute endorsed, however.

6) The WasValid Algorithm: The stateless certificate attes-
tation validation algorithm WasValid (Algorithm 13) is used
to check the validity of the following attestations: account-
ability, revocation and non-revocation. For accountability, the
algorithm verifies, using the provided public key pk, that the

Algorithm 8 X.509: initialization algorithm

1: procedure Init ()

2: (s.sk, s.pk)← S.Gen(s.sec) . Generate signature keys

3: return (‘PubKey’, s.ι, s.pk) . Output public key, see §V-C

4: end procedure

Algorithm 9 X.509: certificate issuance algorithm

1: procedure Issue(subject, pub, from, to)

2: s.serial← s.serial + 1 . Increase counter

3:
ψ ← (s.serial, subject, pub, from,

to, s.ι, s.τ)
. Initialize certificate fields

4: ψ.σ ← S.Sign(s.sk, ψ) . Sign certificate

5: s.certs += ψ . Store certificate locally

6: ρ← (ACC, ψ.serial, s.ι, ψ, ψ.σ, ψ.τ) . Accountability attestation

7: return (ψ, {ρ})

8: end procedure

Algorithm 10 X.509: certificate revocation algorithm

1: procedure Revoke(ψ)

2: if ψ /∈ s.certs or ψ.to < s.τ then

3: return ⊥ .
ψ was issued by another CA
or is expired

4: end if

5: if ψ.serial /∈ s.CRL then . If ψ was not already revoked

6: s.CRL += ψ.serial . Add to local CRL

7: end if

8: return {}

9: end procedure

Algorithm 11 X.509: time-based operations

1: procedure Wakeup (DATA)

2: tbs← {‘CRL’, s.ι, s.τ, s.CRL} . Local CRL data to be signed

3: σ ← S.Sign(s.sk, tbs) . Sign CRL data

4: s.SignedCRL← (tbs, σ) . Store proof locally

5: return (‘Wake-up request’, x) .
Set next wake-up for CRL
update

6: end procedure

Algorithm 12 X.509: certificate attestation algorithm

1: procedure Attest(ψ, attr, α)

2: if ψ /∈ s.certs or . ψ issued by another CA

3: attr /∈ {REV,NREV} or . or attr not supported

4: (attr = REV and ψ.serial /∈ s.CRL) or

(attr = NREV and ψ.serial ∈ s.CRL) then
.

or wrong req. (attest
non-revoked ψ as re-
voked or vice-versa)

5: return ⊥

6: end if

7: if α = ‘CRL’ then

8: ρ← (attr, ψ.serial, s.SignedCRL) . attr attestation

9: else if α = ‘OCSP’ then

10: tbs← {attr, α, ψ.serial, s.ι, s.τ} . OCSP data to be signed

11: σ ← S.Sign(s.sk, tbs) . Sign OCSP data

12: ρ← (attr, tbs, σ) . attr attestation

13: end if

14: return ρ

15: end procedure

Algorithm 13 X.509: stateless validation algorithm

1: procedure WasValid(ψ, pk, ρ)

2: if ρ.attr = ‘ACC’ then . Check accountability

3: return S.Ver(pk, ψ, ρ.σ) . Verify signature

4: else if ρ.attr = ‘REV’ then . Check revocation

5: if ρ.α = ‘CRL’ then . If CRL is used

6: return ψ.serial ∈ ρ.tbs.CRL . Ensure ψ is in the CRL

7: and S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed CRL

8: else if ρ.α = ‘OCSP’ then . If OCSP is used

9: return ψ.serial ∈ ρ.tbs and

S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed OCSP

10: end if

11: else if ρ.attr = ‘NREV’ then . Check non-revocation

12: if ρ.α = ‘CRL’ then . If CRL is used

13: return ψ.serial /∈ ρ.tbs.CRL . Ensure ψ is not in the
CRL

14: and S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed CRL

15: else if ρ.α = ‘OCSP’ then . If OCSP is used

16: return S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed OCSP

17: end if

18: end if

19: return ⊥ . In any other case

20: end procedure

certificate ψ was correctly signed by ψ.issuer at the time
specified in the attribute attestation ρ.

For revocation, the algorithm checks whether the certificate
is included in the (correctly) signed CRL provided in the attes-
tation or that the attestation contains a (correctly) signed OCSP
revocation statement. Correspondingly, for non-revocation, the
algorithm checks whether the certificate does not appear in the
signed CRL or that the attestation contains a signed OCSP
non-revocation statement.

VII. X.509V2 ANALYSIS

A. Model

We now define the model for X.509v2.

1) Adversarial assumptions: Given a set of entities N, the
adversary might control any subset of entities F of N (F ⊆ N)
it desires. Hence, since the definitions of the specifications
satisfied by X.509v2 rely on the whether a given entity in
N belongs in F or not, the adversarial model must enforce
that the set of faulty entities T.F which was outputted by the
adversary as part of the execution transcript T , matches the
set of entities that the adversary actually controlled during T .
We capture this using the MF predicate (Algorithm 14).

Algorithm 14 MF(T) Predicate

1: return
(

2: ∀ê ∈ T.e : . For each event

3: if T.opr[ê] ∈ {‘Get-state’, ‘Set-state’, ‘Set-output’} .
If the operation
means the adversary
controls the entity

4: then T.ent[ê] ∈ T.F . Then entity is in T .F)

2) Communication assumptions: None of the entities in
X.509v2 directly communicate with one another, thus, there
are no communication assumptions.

3) Synchronization assumptions: The only clock-
synchronization assumption in X.509v2 is that the drift
between clock values provided by the adversary (as input
during the execution process), and the ‘real time’ values is
bounded. We present this as the MDrift

∆clk
predicate. It enforces

two requirements on the execution: each local-clock value
(clk[ê]) must be within ∆clk drift from the real time τ [ê],
and the real time values should be monotonously increasing.
As a special case, when ∆clk = 0, this predicate corresponds
to a model where the local clocks are fully synchronized,
i.e., there is no difference between entities’ clocks. See
Algorithm 15.

Algorithm 15 MDrift
∆clk

(T) Predicate

1: return
(

2: ∀ê ∈ T.e: . For each event

3: |T.clk[ê]− T.τ [ê]| ≤ ∆clk .
Local clock is within ∆clk

drift from real time

4: and

5: if ê ≥ 2 . And if ê is not the first event

6: then T.τ [ê] ≥ T.τ [ê− 1] .
Then the real time is ≥ the
real time at the previous event)

Finally, we get theMX.509v2
∆clk

model for the X. 509v2 proto-
col, which is a conjunction of the aforementioned assumptions,
i.e.:

MX.509v2
∆clk

=MF ∧ MWake-up
∆clk

∧ MDrift
∆clk

(4)

In addition, the model verifies that the X.509v2.Wakeup
algorithm was invoked in the beginning of the execu-
tion and at the correct time-based intervals. To that end,
we define the MWake-up

∆clk
predicate, which ensures that if

(‘Wake-up request’, x) was part of the output out[ê] of any
operation during the execution process and the execution did
not terminate by ’real’ time τ [ê] + x + ∆clk, then at some
event ê′ > ê (where τ [ê′] was within ∆clk from τ [ê] +x), the
same entity (ent[ê]) was indeed ‘Woken up’. The MWake-up

∆clk

predicate appears in Algorithm 16.

Algorithm 16 MWake-up
∆clk

(T) Predicate

1: return
(

2: and ∀ê ∈ T.e : . For each event

3: if
(

(‘Wake-up request’, x) ∈ T.out[ê] .
If the output includes a
(‘Sleep’, x) tuple

4: and T.τ [T.e] ≥ T.τ [ê]+x+∆clk

)
.

And execution did not ter-
minate yet after x+ ∆clk

real time
5: then ∃ê′ > ê . Then there is a later event

6: s.t. |T.τ [ê′]− T.τ [ê]− x| ≤ ∆clk .
With real time x greater
than at ê (within ∆clk)

7: and T.ent[ê′] = T.ent[ê] . In which the entity is the
same as in ê

8: and T.opr[ê′] = ‘Wakeup’ .
And the operation is
‘Wakeup’)

B. Security Analysis

Theorem 1 (X. 509v2 (asymptotically) satisfies accountability,
revocation accountability and non-revocation accountability
under modelMX.509v2

∆clk
). Let S be an existentially-unforgeable

signature scheme and let N be a set of entities. Then
X. 509v2SN satisfies the accountability, revocation account-
ability and non-revocation accountability specifications under
model MX.509v2

∆clk
.

Proof sketch. To prove that X. 509v2SN satisfies accountability,
revocation accountability and non-revocation accountability,
we use the following methodology:

1) We first define a variation of X. 509v2SN called
X. 509v2

S,OSign(sk,·)
N,ι,pk , where a PPT oracle algorithm

OSign(sk, ·) is used to generate signatures using a
secret key sk instead of entity ι ∈ N, where sk is the
matching secret signing key of the verification key pk.

2) Then, we define a game called Exp
Forge,M
A,X.509v2SN

,
where we execute an adversary A with the
X. 509v2

S,OSign(sk,·)
N,ι,pk scheme, and ask A to output a

message m and signature σ over m, where σ can be
verified using the public verification key pk; namely,
without A knowing the matching signing key sk, nor
A can use the oracle access to sign m.

3) We then formulate Lemma 1, showing that the existence
of an adversary that ‘wins’ the Exp

Forge,M
A,X.509v2SN

game
with non-negligible probability means that S is not a
secure signature scheme.

4) We then prove that if X. 509v2SN does not IA-satisfies
ξACC, ξREV and ξNReACC, then we can construct an ad-
versary that wins the Exp

Forge,M
A,X.509v2SN

game with non-
negligible probability.

5) Finally, we revisit Theorem 1 and complete its proof
by combining steps 1− 4. For the detailed analysis, see
Appendix B.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we presented a PKI framework to achieve
provably-secure PKI schemes. Our construction can be easily
adopted by existing and future PKI schemes, and if necessary,

can also be extended to provide additional properties not cap-
tured in this work. The next steps are to apply the framework
into other PKI schemes, e.g., X.509 version 3 and CT, and
provably analyze the specifications achieved by such schemes.

REFERENCES

[1] B. B. CCITT, “Recommendations X. 509 and ISO 9594-8,” Informa-
tion Processing Systems-OSI-The Directory Authentication Framework
(Geneva: CCITT), 1988.

[2] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446 (Proposed Standard), RFC Editor, Fremont, CA, USA,
pp. 1–160, Aug. 2018. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc8446.txt

[3] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis
of the HTTPS Certificate Ecosystem,” in Proceedings of the 2013
conference on Internet measurement conference. ACM, 2013, pp. 291–
304.

[4] J. Prins, “DigiNotar Certificate Authority breach “Operation Black
Tulip”,” 2011.

[5] Comodo™, “Incident Report,” Published online, http://www.comodo.
com/Comodo-Fraud-Incident-2011-03-23.html, March 2011.

[6] J. Dyer, “China Accused of Doling Out Counterfeit Digital Certificates
in ‘Serious’ Web Security Breach,” VICE News, April 2015.

[7] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC
6962 (Experimental), RFC Editor, Fremont, CA, USA, Jun. 2013.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc6962.txt

[8] B. Laurie and E. Kasper, “Revocation Transparency,” Google Research,
September, 2012.

[9] M. D. Ryan, “Enhanced certificate transparency and end-to-end en-
crypted mail,” in NDSS, 2014.

[10] P. Eckersley, “Sovereign Key Cryptography for Internet Domains,”
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.
txt;hb=HEAD, 2012.

[11] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J.
Freedman, “CONIKS: Bringing Key Transparency to End Users,” in
USENIX Security Symposium, 2015, pp. 383–398.

[12] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor,
“Accountable Key Infrastructure (AKI): A Proposal for a Public-Key
Validation Infrastructure,” in Proceedings of the 22nd international
conference on World Wide Web. ACM, 2013, pp. 679–690.

[13] P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure and
Flexible TLS Certificate Management,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 406–417.

[14] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Sza-
lachowski, “ARPKI: Attack Resilient Public-Key Infrastructure,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 382–393.

[15] J. Yu, V. Cheval, and M. Ryan, “DTKI: A New Formalized PKI with
Verifiable Trusted Parties,” The Computer Journal, vol. 59, no. 11, pp.
1695–1713, 2016.

[16] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, and B. Ford, “Certificate
Cothority: Towards Trustworthy Collective CAs,” Hot Topics in Privacy
Enhancing Technologies (HotPETs), vol. 7, 2015.

[17] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping Authorities “Honest or Bust”
with Decentralized Witness Cosigning,” in Security and Privacy (SP),
2016 IEEE Symposium on. Ieee, 2016, pp. 526–545.

[18] S. Matsumoto and R. M. Reischuk, “IKP: Turning a PKI Around with
Decentralized Automated Incentives,” in Security and Privacy (SP),
2017 IEEE Symposium on. IEEE, 2017, pp. 410–426.

[19] C. Fromknecht, D. Velicanu, and S. Yakoubov, “A Decentralized Public
Key Infrastructure with Identity Retention,” IACR Cryptology ePrint
Archive, vol. 2014, p. 803, 2014.

[20] L. Axon and M. Goldsmith, “PB-PKI: A Privacy-aware Blockchain-
based PKI,” in SECRYPT, 2017.

[21] A. Tomescu and S. Devadas, “Catena: Efficient Non-equivocation via
Bitcoin,” in 2017 38th IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 393–409.

[22] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar, “CertLedger: A new
PKI model with Certificate Transparency based on blockchain,” arXiv
preprint arXiv:1806.03914, 2018.

[23] B. Dowling, F. Günther, U. Herath, and D. Stebila, “Secure Logging
Schemes and Certificate Transparency,” in European Symposium on
Research in Computer Security. Springer, 2016, pp. 140–158.

[24] M. Chase and S. Meiklejohn, “Transparency Overlays and Applications,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 168–179.

[25] C. Cremers, “Key Exchange in IPsec revisited Formal Analysis of IKEv1
and IKEv2,” in European Symposium on Research in Computer Security.
Springer, 2011, pp. 315–334.

[26] R. Canetti and H. Krawczyk, “Security Analysis of IKE’s Signature-
Based Key-Exchange Protocol,” in Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 18-22, 2002, Proceedings, ser. Lecture
Notes in Computer Science, M. Yung, Ed., vol. 2442. Springer, 2002,
pp. 143–161.

[27] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “Authenticated Con-
fidential Channel Establishment and the Security of TLS-DHE,” J.
Cryptology, vol. 30, no. 4, pp. 1276–1324, 2017.

[28] P. Morrissey, N. Smart, and B. Warinschi, “The TLS Handshake Proto-
col: A Modular Analysis,” Journal of Cryptology, vol. 23, pp. 187–223,
Apr. 2010.

[29] R. Canetti, D. Shahaf, and M. Vald, “Universally Composable Au-
thentication and Key-exchange with Global PKI,” in Public-Key
Cryptography–PKC 2016. Springer, 2016, pp. 265–296.

[30] A. Boldyreva, M. Fischlin, A. Palacio, and B. Warinschi, “A Closer
Look at PKI: Security and Efficiency,” in International Workshop on
Public Key Cryptography. Springer, 2007, pp. 458–475.

[31] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk,
“Universally Composable Security Analysis of TLS,” in International
Conference on Provable Security. Springer, 2008, pp. 313–327.

[32] U. Maurer, “Modelling a Public-Key Infrastructure,” in European Sym-
posium on Research in Computer Security. Springer, 1996, pp. 325–350.

[33] J. Marchesini and S. Smith, “Modeling Public Key Infrastructure in
the Real World,” in European Public Key Infrastructure Workshop.
Springer, 2005, pp. 118–134.

[34] J. Braun, F. Kiefer, and A. Hülsing, “Revocation & Non-Repudiation:
When the first destroys the latter,” in European Public Key Infrastructure
Workshop. Springer, 2013, pp. 31–46.

[35] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access Con-
trol Meets Public Key Infrastructure, Or: Assigning Roles to Strangers,”
in Proceeding 2000 IEEE Symposium on Security and Privacy. S&P
2000. IEEE, 2000, pp. 2–14.

[36] D. Lekkas, “Establishing and managing trust within the Public Key
Infrastructure,” Computer Communications, vol. 26, no. 16, pp. 1815–
1825, 2003.

[37] M. Zhou, P. Bisht, and V. Venkatakrishnan, “Strengthening XSRF
Defenses for Legacy Web Applications Using Whitebox Analysis and
Transformation,” in Information Systems Security. Springer, 2011, pp.
96–110.

[38] W. A. Samer, L. Romain, B. Francois, and B. AbdelMalek, “A formal
model of trust for calculating the quality of X. 509 certificate,” Security
and Communication Networks, vol. 4, no. 6, pp. 651–665, 2011.

[39] J. Braun, “Maintaining Security and Trust in Large Scale Public Key
Infrastructures,” Ph.D. dissertation, Technische Universität, 2015.

[40] J. Huang and D. M. Nicol, “An anatomy of trust in public key
infrastructure,” International Journal of Critical Infrastructures, vol. 13,
no. 2-3, pp. 238–258, 2017.

[41] H. Leibowitz, A. Herzberg, E. Syta, and S. Wrótniak, “The Modular
Specifications Security Framework,” Cryptology ePrint Archive, Report
2020/1040, 2020, https://eprint.iacr.org/2020/1040.

[42] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” Tech. Rep., 2008.

[43] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin,
and C. Adams, “X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP,” RFC 6960 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Jun. 2013. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6960.txt

[44] S. B. Roosa and S. Schultze, “The ”Certificate Authority” Trust Model
for SSL: A Defective Foundation for Encrypted Web Traffic and a Legal
Quagmire,” Intellectual property & technology law journal, vol. 22,
no. 11, p. 3, 2010.

https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.rfc-editor.org/rfc/rfc6962.txt
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=HEAD
https://eprint.iacr.org/2020/1040
https://www.rfc-editor.org/rfc/rfc6960.txt

[45] H. Asghari, M. Van Eeten, A. Arnbak, and N. A. van Eijk, “Security
Economics in the HTTPS Value Chain,” in Twelfth Workshop on the
Economics of Information Security (WEIS 2013), Washington, DC, 2013.

[46] J. Hruska, “Apple, Microsoft buck trend, refuse to block unauthorized
Chinese root certificates,” ExtremeTech, April 2015.

[47] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving
SSH-style Host Authentication with Multi-Path Probing.” in USENIX
Annual Technical Conference, vol. 8, 2008, pp. 321–334.

[48] Electronic Frontier Foundation (EFF). The EFF SSL Observatory.
[Online]. Available: https://www.eff.org/observatory

[49] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-Middle Attack
to the HTTPS Protocol,” IEEE Security & Privacy, vol. 7, no. 1, pp.
78–81, 2009.

[50] “Namecoin.” [Online]. Available: https://www.namecoin.org/
[51] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN

Prover for the Symbolic Analysis of Security Protocols,” in International
Conference on Computer Aided Verification. Springer, 2013, pp. 696–
701.

[52] International Telecommunication Union, “Recommendation ITU-T
X.509, OSI – The Directory: Public-Key and Attribute Certificate
Frameworks,” 2016. [Online]. Available: https://www.itu.int/rec/
T-REC-X.509-201610-I/en

[53] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008. [Online].
Available: https://rfc-editor.org/rfc/rfc5280.txt

[54] R. Canetti, S. Halevi, and A. Herzberg, “Maintaining authenticated
communication in the presence of break-ins,” J. Cryptology, vol. 13,
no. 1, pp. 61–105, 2000.

[55] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid, “Access control
meets public key infrastructure, or: Assigning roles to strangers,” in
IEEE Symposium on Security and Privacy, 2000, pp. 2–14.

[56] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen, “SPKI Certificate Theory,” RFC 2693 (Experimental),
RFC Editor, Fremont, CA, USA, Sep. 1999. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2693.txt

APPENDIX A
SECURE SIGNATURE SCHEME

We recall the definition and security game of a secure
signature scheme, which X. 509v2’s security relies upon.

Definition 6. A signature scheme S = (Gen,Sign,Ver)
consists of the following probabilistic algorithms:

• Key generation Gen(1κ) → (sk, vk), with input security
parameter 1κ and output private signing key sk and
public verification key vk.

• Signing Sign(sk,m) → (σ), with input private signing
key sk and a message m, and output signature σ.

• Verification Ver(vk,m, σ) → (>/⊥), with inputs public
verification key vk, message m and signature σ, and
output: true (>) if σ is a valid signature over m,
otherwise false (⊥).

Definition 7. A signature scheme S = (Gen,Sign,Ver) is
existentially unforgeable if for every PPT adversary A:

Pr
[
ExpEUS,A(1

κ) = 1
]
∈ Negl(1 κ)

where ExpEUS,A(1κ):

1) (sk, vk)← S.Gen(1κ)
2) Adversary A receives vk and has an oracle access to
S.Sign to sign any message it desires.

3) A outputs message m and signature σ.

4) The experiment outputs 1 if S.Ver(vk,m, σ) = > and
A did not use the oracle access on m, otherwise, the
experiment outputs 0.

APPENDIX B
X.509V2 ANALYSIS DETAILED PROOFS

A. The X. 509v2
OSign(sk,·)
N,ι,pk scheme

We begin by defining a variation of the X. 509v2SN scheme,
denoted as X. 509v2

S,OSign(sk,·)
N,ι,pk .

Definition 8. Let S be a signature scheme and let (sk, pk)←
S.Gen(1κ), for a given security parameter 1κ. Given a
PPT oracle OSign(sk, ·), let X. 509v2

S,OSign(sk,·)
N,ι,pk be a PKI

scheme where one designated authority ι ∈ N executes the
X. 509v2SN scheme with the following changes, and the rest of
the authorities in N execute X. 509v2SN without any changes:

1) The X. 509v2
S,OSign(sk,·)
N,ι,pk .Init algorithm only executes

the following code:

return (‘PubKey’, s.ι, pk)

where pk is the public verification key of the sk signing
key, given as input to X. 509v2

S,OSign(sk,·)
N,ι,pk and s.ι is

the identifier of the local entity.
2) In all the algorithms that use the signing key, replace the

use of the signing key with OSign(sk, ·) oracle access.
Namely, replace every:

S.Sign(s.sk, ·)

with matching:
OSign(sk, ·)

B. The Exp
Forge,M
A,X.509v2SN

Game

We now define the Exp
Forge,M
A,X.509v2SN

(1κ,N) game:
1) Generate key pair (sk, pk)← S.Gen(1κ).
2) Randomly choose an authority ι R← N.
3) Execute A with the X. 509v2

S,OSign(sk,·)
N,ι,pk scheme, i.e.,

T ← ExecA,X.509v2
S,OSign(sk,·)
N,ι,pk

(1κ)

4) A outputs message m and signature σ, i.e., (m,σ) ←
T.outA.

5) The experiment outputs 1 if:
a) S.Ver(pk,m, σ) = >
b) A did not use the oracle access on m.
c) A satisfies model M (see Def. 1).
d) ι is an honest authority, i.e., ι ∈ N− F

Otherwise, the experiment outputs 0.

C. The Relation Between Exp
Forge,M
A,X.509v2SN

and the Security of
the Signature Scheme S

We now show that the existence of an adversary that
‘wins’ the Exp

Forge,M
A,X.509v2SN

game with non-negligible proba-
bility means that S is not a secure signature scheme.

https://www.eff.org/observatory
https://www.namecoin.org/
https://www.itu.int/rec/T-REC-X.509-201610-I/en
https://www.itu.int/rec/T-REC-X.509-201610-I/en
https://rfc-editor.org/rfc/rfc5280.txt
https://www.rfc-editor.org/rfc/rfc2693.txt

Lemma 1. If there is a PPT adversary A that satisfies

Pr

[
Exp

Forge,MX.509v2
∆clk

A,X.509v2SN
(1κ,N) = 1

]
6∈ Negl(1κ)

(5)
then S is not a secure signature scheme.

Proof. Assume to the contrary that such adversary A exists,
yet S is a secure signature scheme.

Following §B-B, if A ‘wins’ the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game

with non-negligible probability, then this means that A can
output a message m and a valid signature σ over m, where A
has only access to the verification key and oracle accesses to
the signing key, without requesting the oracle to sign m.

Therefore, according to definition of existential unforgeabil-
ity (Def. 7), the following holds for A

Pr
[
ExpEUA,S(1

κ) = 1
]
6∈ Negl(1κ) (6)

thus contradicting the security of S.

D. Linking Accountability, Revocation Accountability, and
Non-Revocation Accountability to the Exp

Forge,M
A,X.509v2 Game

We now show that if X. 509v2SN does not ensures account-
ability under model MX.509v2

∆clk
, then we can construct an

adversary that wins in the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game.

Claim 1. If X. 509v2SN does not ensures accountability under
model MX.509v2

∆clk
, then there exists a PPT adversary AACC

such that

Pr

[
Exp

Forge,MX.509v2
∆clk

AACC,X.509v2
S
N
(1κ,N) = 1

]
6∈ Negl(1κ)

(7)

Proof. From Equation 3, if X. 509v2SN does not ensures ac-
countability under model MX.509v2

∆clk
, then there exists a PPT

adversary AACC that satisfies

Pr

[
(T)← ExecAACC,X.509v2

S
N
(1κ)

ExpACC
X.509v2SN

(T, 1κ) = >

]
6∈ Negl(1κ)

(8)

Therefore, all that is left is to show that if Eq. 8 holds then
Eq. 7 also holds.

First, according to the description of the security experiment
ExpACC

X.509v2SN
(Alg. 1), the return value of the experiment is

TRUE only if, among other criteria, the following is TRUE:

X. 509v2SN .WasValid(ψ, pk , ρ) (9)

for a certificate ψ outputted by the adversary, ρ is account-
ability attestation (ρ.attr = ACC), and pk is the public key
of ψ.issuer (the issuer of the certificate), which is an honest
authority that did not issue ψ by executing the X. 509v2SN.Issue
algorithm.

Second, according to the implementation of
X. 509v2SN.WasValid, as described in Alg. 13, the algorithm
executes

S.Ver(pk, ψ, ρ.σ) (10)

Lastly, the only place in X. 509v2SN where an honest au-
thority ι computes its keys is in the X. 509v2SN.Init algo-
rithm (Algorithm 8); specifically the sign/verify key pair is
generated in line 2, using the S.Gen algorithm. Furthermore,
the signing key is only used in algorithms: X. 509v2SN.Issue,
X. 509v2SN.Wakeup, and X. 509v2SN.Attest, and only with the
S.Sign algorithm; however, certificates can only be issued in
X. 509v2 using the X. 509v2SN.Issue algorithm.

Thus, following Eq. 8, the value described in Eq. 9 must
be TRUE, and as a result, Eq. 10 must also equal TRUE.
Accordingly, with accordance to X. 509v2’s implementation,
adversary AACC is a PPT adversary that for a message m = ψ
was able to generate a signature σ = ρ.σ that is validated
with non-negligible probability with the verification key pk,
without access to the signing key, and without ever having
the honest authority ψ.issuer sign m. Hence, such AACC

adversary satisfies Eq. 7.

We now show that if X. 509v2SN does not ensures revocation
accountability under model MX.509v2

∆clk
, then we can construct

an adversary that wins in the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game.

Claim 2. If X. 509v2 does not achieves revocation account-
ability under modelMX.509v2

∆clk
, then there exists a PPT adver-

sary AReACC such that

Pr

[
Exp

Forge,MX.509v2
∆clk

AReACC,X.509v2
S
N
(1κ,N) = 1

]
6∈ Negl(1κ)

(11)

Proof. From Equation 3, if X. 509v2 does not ensures revoca-
tion accountability under modelMX.509v2

∆clk
, then there exists a

PPT adversary AReACC that satisfies

Pr

[
(T)← ExecAReACC,X.509v2

S
N
(1κ)

ExpReACC
X.509v2SN

(T, 1κ) = >

]
/∈ Negl(1κ)

(12)

Therefore, all that is left is to show that if Eq 12 holds then
Eq 11 also holds.

First, according to the description of the security experiment
ExpReACC

X.509v2SN
(Alg. 2), the return value of the experiment is

TRUE only if, among other criteria, the following is TRUE:

X. 509v2SN .WasValid(ψ, pk , ρ) (13)

for a certificate ψ outputted by the adversary, ρ is non-
revocation accountability attestation (ρ.attr = REV), and pk
is the public key of ρ.issuer (the issuer of the certificate),

that did not revoke ψ by executing the X. 509v2SN.Revoke
algorithm.

Second, according to the implementation of
X. 509v2SN.WasValid, as described in Alg. 13, the algorithm
executes

S.Ver(pk, ρ.tbs, ρ.σ) (14)

Lastly, the only place in X. 509v2SN where an honest au-
thority ι computes its keys is in the X. 509v2SN.Init algo-
rithm (Algorithm 8); specifically the sign/verify key pair is
generated in line 2, using the S.Gen algorithm. Furthermore,
the signing key is only used in algorithms: X. 509v2SN.Issue,
X. 509v2SN.Wakeup, X. 509v2SN.Attest, and only with the
S.Sign algorithm; however, certificates can only be have the
non-revocation accountability attribute in X. 509v2 using the
X. 509v2SN.Attest algorithm.

Thus, following Eq. 12, the value described in Eq. 13 must
be TRUE, and as a result, Eq. 14 must also equal TRUE.
Accordingly, with accordance to X. 509v2SN’s implementation,
adversary ANREV is a PPT adversary that for a message
m = ρ.tbs was able to generate a signature σ = ρ.σ that is
validated with non-negligible probability with the verification
key pk, without access to the signing key, and without ever
having the honest authority ρ.ι sign m. Hence, such ANREV

adversary satisfies Eq. 15.

We now show that if X. 509v2SN does not ensures non-
revocation accountability under modelMX.509v2

∆clk
, then we can

construct an adversary that wins in the Exp
Forge,MX.509v2

∆clk

A,X.509v2SNgame.

Claim 3. If X. 509v2 does not achieves non-revocation ac-
countability under model MX.509v2

∆clk
, then there exists a PPT

adversary AReACC such that

Pr

[
Exp

Forge,MX.509v2
∆clk

ANREV,X.509v2
S
N
(1κ,N) = 1

]
6∈ Negl(1κ)

(15)

Proof. From Equation 3, if X. 509v2 does not ensures non-
revocation accountability under model MX.509v2

∆clk
, then there

exists a PPT adversary ANREV that satisfies

Pr

[
(T)← ExecANREV,X.509v2

S
N
(1κ)

ExpNREV
X.509v2SN

(T, 1κ) = >

]
/∈ Negl(1κ)

(16)

Therefore, all that is left is to show that if Eq 16 holds then
Eq 15 also holds.

First, according to the description of the security experiment
ExpNREV

X.509v2SN
(Alg. 3), the return value of the experiment is

TRUE only if, among other criteria, the following is TRUE:

X. 509v2SN .WasValid(ψ, pk , ρ) (17)

for a certificate ψ outputted by the adversary, ρ is non-
revocation accountability attestation (ρ.attr = NREV), and
pk is the public key of ρ.issuer (the issuer of the certificate),
is an honest authority that did not revoke ψ by executing the
X. 509v2SN.Revoke algorithm.

Second, according to the implementation of
X. 509v2SN.WasValid, as described in Alg. 13, the algorithm
executes

S.Ver(pk, ρ.tbs, ρ.σ) (18)

Lastly, the only place in X. 509v2SN where an honest au-
thority ι computes its keys is in the X. 509v2SN.Init algo-
rithm (Algorithm 8); specifically the sign/verify key pair is
generated in line 2, using the S.Gen algorithm. Furthermore,
the signing key is only used in algorithms: X. 509v2SN.Issue,
X. 509v2SN.Wakeup, X. 509v2SN.Attest, and only with the
S.Sign algorithm; however, certificates can only be have the
non-revocation accountability attribute in X. 509v2 using the
X. 509v2SN.Attest algorithm.

Thus, following Eq. 16, the value described in Eq. 17 must
be TRUE, and as a result, Eq. 18 must also equal TRUE.
Accordingly, with accordance to X. 509v2SN’s implementation,
adversary ANREV is a PPT adversary that for a message
m = ρ.tbs was able to generate a signature σ = ρ.σ that is
validated with non-negligible probability with the verification
key pk, without access to the signing key, and without ever
having the honest authority ρ.ι sign m. Hence, such ANREV

adversary satisfies Eq. 15.

E. Completing the Proof

Now, we revisit Theorem 1, and complete its proof.

Theorem 1 (X. 509v2 (asymptotically) satisfies accountability,
revocation accountability and non-revocation accountability
under modelMX.509v2

∆clk
). Let S be an existentially-unforgeable

signature scheme and let N be a set of entities. Then
X. 509v2SN satisfies the accountability, revocation account-
ability and non-revocation accountability specifications under
model MX.509v2

∆clk
.

Proof. The proof for all four properties is essentially identical;
we present the argument for accountability and later discuss
the (trivial) adaptions for the other three properties.

Assume, therefore, that X. 509v2SN does not achieve ac-
countability, and we will show that this implies that S
is not a secure signature scheme. According to Claim 1,
this means there exists a PPT adversary A that wins the

Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game with non-negligible probability.

Note that Claim 1 refers to this adversary as AACC; the
argument follows by substituting A in Eq. (7).

Similarly, from Claims 2-3, if X. 509v2 does not achieve
revocation accountability or non-revocation accountability,

then there a PPT adversary that wins the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game with non-negligible probability.

However, Lemma 1 shows that if there exists a PPT
adversary A that wins the Exp

Forge,MX.509v2
∆clk

A,X.509v2SN
game with

non-negligible probability, then S is not a secure signature
scheme.

APPENDIX C
EXECUTION PROCESS

Algorithm 17 Adversary-Driven Execution Process ExecA,P(p)

1: (sA,N)← A(p) . Initialize adversary

2: ∀i ∈ N : si ← P (⊥, ‘Init’, (i, p),⊥) . Initialize entities’ local state

3: e← 0 . Initialize loop’s counter

4: repeat

5: e← e+ 1 . Advance loop’s counter

6: (ent[e], opr[e], inp[e], clk[e], τ [e])← A(sA) .
A selects entity ent[e], operation
opr[e], input inp[e], clock clk[e], and
real time τ [e] for event e

7: if opr[e] =‘Set-state’ then .
When A wants to change the local state
of entity ent[e]

sent[e], out[e], sec-out[e][·]← inp[e],⊥,⊥

8: else if opr[e] =‘Set-output’ then .
When A wants to change the output of
entity ent[e]

out[e], sec-out[e][·]← inp[e]

9: else if opr[e] =‘Get-state’ then .
When A wants to get the current local
state of entity ent[e]

out[e], sec-out[e][·]← sent[e],⊥

10: else if opr[e] =‘Sec-in’ then .
When A wants entity ent[e] to receive
secure output

.

A specifies a previous event in
inp[e] and then the process uses
(ent[inp[e]], sec-out[inp[e]][ent[e]])
as input to P

(
sent[e], out[e], sec-out[e][·]

)
← P

(
sent[e], ‘Sec-in’, (ent[inp[e]], sec-out[inp[e]][ent[e]]), clk[e]

)

.
P returns the state of entity ent[e], the
output, and the secure output

11: else .
Otherwise, A wants to execute opera-
tion opr[e] of P with input inp[e] over
entity ent[e] with local clock of clk[e](

sent[e], out[e], sec-out[e][·]
)
← P

(
sent[e], opr[e], inp[e], clk[e]

)
12: end if

13: (sA, outA, F)← A (sA, out[e]) .

Inform A of the value of out[e] and
allow A to decide whether to continue
(outA = ⊥), or to terminate the loop
(outA 6= ⊥)

14: until outA 6= ⊥

15: T ← (outA, e,N, F, ent[·], opr[·], inp[·], clk[·], τ [·], out[·], sec-out[·][·]) . Output

16: Return T

	Introduction
	Security Specifications of PKI Schemes
	X.509 PKI Schemes and Related Specifications
	Accountability Specification (ACC)
	Revocation Accountability Specification (ReACC)
	Non-Revocation Accountability Specification (NReACC)

	Post-X.509 PKI schemes and specifications
	Delta-Transparency Specification (TRA)
	Delta-Revocation Status Transparency Specification (ReST)
	Detection and Prevention Specifications
	Delta-Equivocation Detection Specification (DeltaEQ-D)
	Equivocation Prevention Specification (EQ-P)

	PKI Schemes Comparison

	Preliminaries
	MoSS Concepts: Execution Process, Model and Specifications.
	Execution Process
	Models
	Specifications

	PKI Concepts
	Entities and Certificates
	Attribute Attestations

	The PKI Framework
	Informal Overview of PKI Functionalities
	Certificate issuance
	Certificate revocation
	Attribute attestation
	Attestation validity
	Audit and misbehavior
	Monitoring
	Additional operations

	Formal Definition
	Basic PKI Security Specifications
	The public-key association convention `PubKey' and role-based certificates
	Functions, e.g. IsValidAttr
	Accountability specification
	Revocation and non-revocation accountability specifications
	Extensions
	Role-based issuers and subjects
	Non-issuer revocations
	Issuer public key

	Post-X.509-PKI Security specifications
	Equivocation prevention (EQ-P)
	Delta-Equivocation detection (DeltaEQ-D)
	Delta-Transparency (TRA)
	Delta-Revocation status transparency (ReST)

	Provably-secure X.509 PKI Scheme
	System Entities and their Local State
	PKI Algorithms
	The Init Algorithm
	The Issue Algorithm
	The Revoke Algorithm
	The Time Algorithm
	The Attest Algorithm
	The WasValid Algorithm

	X.509v2 Analysis
	Model
	Adversarial assumptions
	Communication assumptions
	Synchronization assumptions

	Security Analysis

	Conclusions and Future Work
	References
	Appendix A: Secure Signature Scheme
	Appendix B: X.509v2 Analysis Detailed Proofs
	The scheme
	The Game
	The Relation Between and the Security of the Signature Scheme S
	Linking Accountability, Revocation Accountability, and Non-Revocation Accountability to the Game
	Completing the Proof

	Appendix C: Execution Process

