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Abstract—Public Key Infrastructure (PKI) schemes were first
proposed in 1978 and standardized in 1988, yet, unlike most
cryptographic schemes, PKI schemes were never rigorously
defined. Achieving provable security for PKI is necessary and
long overdue, as PKI provides the foundation for important
applications of public key cryptography, such as TLS/SSL. In
response, we present the first precise specifications of a secure
PKI scheme, suitable for a variety of PKI designs.

PKI schemes have significantly evolved since X.509, with
more complex goals, e.g., transparency, to ensure security against
corrupt issuers. In addition to the basic PKI properties, our
definitions encompass these more recent and advanced aspects.

Our results have important implications. First, our specifica-
tions allow a better scrutiny and comparison of the multitude of
new PKI designs recently proposed, such as Google’s Certificate
Transparency (CT) and related PKIs, as well as future designs.
Second, the specifications facilitate proper analysis of protocols
and systems that use PKI, such as TLS/SSL, code signing,
IPsec, DNSSEC, RPKI, BGPsec, permissioned blockchains, vot-
ing, recommendations, which is of critical importance as most
real-world security schemes inherently rely on PKI. Finally, we
use our specifications to formalize and prove X.509 version 2
PKI, showing that provable security is achievable for ‘real’ PKI
designs.

Index Terms—

I. INTRODUCTION

Public Key Infrastructure (PKI) provides an essential foun-
dation for applications which rely on public key cryptography,
and, specifically, it is crucial to ensure security in open net-
works and systems. Since the early PKI ideas were proposed
in 1978 [1], the deployment of PKI has been dominated by
the X.509 standard [2], whose first version was published in
1988. The practical importance of PKI grew after its adoption
by Internet standards, most notably, the TLS/SSL protocol [3],
which is the most widespread protocol used to secure con-
nections between servers and clients, most commonly web
browsers. The resulting ‘web-PKI’ is necessary to provide
confidentiality, integrity and authenticity of web services, and
as such, is critical for the secure use of the web.

Unfortunately, the web-PKI deployment has inherent weak-
nesses. In particular, any certificate authority (CA) is trusted to
issue certificates for any domain [4], resulting in the weakest-
link security model and making individual CAs prime targets
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for attacks. Over the years, we have seen many failures of
this trusted-CA approach. For example, hackers stole the
master keys of CAs [5], [6] and issued fake certificates for
major websites. Furthermore, some CAs abused their powers
by improperly delegating their certificate-issuing authority or
even intentionally issuing rogue certificates [7]. Such PKI
failures allow attackers to issue fake certificates, launch phish-
ing and website spoofing attacks, and perform man-in-the-
middle attacks, possibly leading to identity theft, surveillance,
compromises of personal and confidential information, and
other serious security breaches.

A basic property ensured by X.509 certificates is account-
ability, i.e., the CA issuing a given X.509 certificates is
identifiable. For many years, accountability was considered a
sufficient deterrent against rogue or negligent CAs; the issuing
CA cannot deny having issued a rogue certificate - or, more
precisely, that its private key was used to sign the rogue
certificate. However, the many PKI failures brought the re-
alization that accountability is not a sufficient deterrent, since
the CA suffer repercussions only if and when the certificate in
question is found - which may not occur, especially if abused
‘stealthily’.

This realization motivated efforts to develop and adopt
improved-security PKI schemes, i.e., PKI schemes that ensure
security against corrupt CAs. During the recent years, there
have been extensive efforts toward this goal by researchers,
developers and the IETF. These efforts focus on security prop-
erties such as transparency, non-equivocation and more. Pro-
posals and designs include Certificate Transparency (CT) [8],
[9], Enhanced-CT [10], Sovereign Key [11], CONIKS [12],
AKI [13], PoliCert [14], ARPKI [15], DTKI [16], CoSi [17],
[18], IKP [19], CertCoin [20], PB-PKI [21], Catena [22],
CertLedger [23], among others.

As PKI schemes and their security properties become more
complex, it becomes more and more important to clearly define
and analyze their security. The current PKI situation stands in
a sharp contrast to the accepted norms in cryptography, where
it is expected to always develop rigorous specifications for
cryptographic schemes. These norms began in the 1980s with
the seminal papers defining secure encryption [24] and secure
signature schemes [25], not long after these concepts were first
proposed in [26]. The concepts of certificates and PKI were
also developed in the 1980s, culminating with the release of
the X.509 recommendation in 1988 [2]; however, until the
current paper, there were no rigorous security specifications



for PKI schemes.
A specification of a cryptographic scheme defines its func-

tionality and security requirements, independently of a specific
construction/design. For example, many designs of encryption
and signature schemes were proven secure using the definitions
of [24] and [25], respectively, or conjectured to satisfy them,
as is often done for applied schemes such as RSA or DSA.
Specifications of cryptographic schemes are needed to evaluate
the security of different variants and designs, to facilitate the
use of cryptographic schemes as building blocks for more
complex schemes and protocols, and to evaluate the security
of those composite schemes and protocols.

The concepts of certificates and (rudimentary) PKI were
already introduced in 1978 [1], almost as soon as the concepts
of public key encryption and signatures [26]. More than 40
years later, and after multiple PKI proposals and failures, it
is time for our community to define security specifications
for PKI schemes, and to properly analyze the security of the
proposed PKI designs. The current situation is especially baf-
fling as practical deployments of public key cryptography are,
almost always, based on the underlying PKI. It is impossible
to fully analyze the security of a cryptographic system when
this critical component is not well defined and analyzed.

The goals of the new, ‘post-X.509’ PKI proposals, go far
beyond the goals of X.509, and the ‘post-X.509’ designs are
significantly more complex than the X.509 designs. However,
so far, these goals have not been rigorously defined, and the se-
curity of PKI designs was not fully analyzed. Only few works
present any analysis: [27], [28] analyze (only) the logging
mechanism of CT, and both ARPKI [15] and DTKI [16] use
automated symbolic analysis for system-specific properties.

In fact, even for the simple, ‘classical’ X.509 PKI, there are
no definitions of security requirements and consequently, no
proofs. Arguably, this may not be as critical, since for X.509,
both definitions and proof are, arguably, relatively straightfor-
ward (see within). However, this lack of any definitions and
proofs implies that works analyzing security of PKI-based pro-
tocols, e.g., IPsec/IKE [29], [30] and TLS [31], [32], mostly
completely ignore the underlying PKI and simply assume the
use of correct public keys. As one of the consequences, real-
world deployments of such schemes often fail to properly
implement the (relatively simple) requirements for a secure
X.509 scheme. In particular, many browsers do not properly
deploy the X.509 revocation mechanisms [33], such as CRLs
and OCSP [34], [35], potentially allowing attackers to trick
browsers into using revoked certificates.

A number of works [36]–[38] study security of crypto-
graphic protocols based on a grossly-simplified notion of a
PKI; however, they rely on extreme simplifications which even
ignore revocation, a critical aspect of X.509 and other PKI
schemes. Furthermore, some of these works define PKI using
the ideal functionality approach of Universally Composable
(UC) framework [36], and as such, there is no methodology to
extend this notion and support other PKI requirements, such as
revocation-related properties, transparency or other properties
of post-X.509 PKI schemes.

Indeed, defining and proving security for PKI schemes is a
non-trivial challenge, especially for post-X.509 schemes with
more advanced and complex goals. PKI proposals vary greatly
- even in terms of the types of parties involved or in the specific
communication and attack models. As a result, if requirements
are presented at all, they are informally defined and tailored
to a specific construction.

The lack of proper definitions and proofs makes it chal-
lenging to build (provably) secure systems which use PKI,
and to improve, compare and select PKI schemes. Evaluation
of PKI schemes with new properties is especially challenging;
for example, there are several schemes designed to achieve
different privacy goals, but these cannot be properly compared
- and, of course, are not proven secure, due to the lack of
formal specifications. Lastly, it is impossible to design and
analyze schemes in a modular manner by provable reductions
to simpler, already analyzed schemes.

In summary, the current situation, where there are no precise
security specifications for PKI schemes, is alarming, as most
practical applications of cryptography involve certificates, and
their security depends on the security of the PKI. The extensive
efforts to prove security of cryptographic protocols may be
moot when these protocols are deployed over an insecure PKI
scheme. The concerns are even greater, considering that attacks
against PKI are not only a theoretical threat, but are a major
concern in practice.

In this work, we present rigorous security specifications
for PKI schemes, allowing for reduction-based proofs of
security. Our definitions support a wide range of PKI schemes,
from X.509 to advanced, improved-security PKI schemes
such as Google’s Certificate Transparency, independently of
their specific designs. We focus on the challenge of dealing
with misbehaving parties, e.g., corrupt CAs, by detecting
misbehavior and/or preventing damage due to misbehavior.

We do not address trust-management issues, such as the
decision to trust a particular CA, currently dealt with in web-
PKI by the defining root CAs in root stores of individual ap-
plications or systems, together with intermediary CAs certified
by root CAs, and in X.509v3, by the basic, name and policy
constraints. A model of the trust decision for PKI systems was
proposed by Mauer [39], subsequently extended by [40], [41],
and others [42]–[47]. These solutions are complementary but
orthogonal to our results.

To define the security specifications, we reviewed and
analyzed the existing PKI schemes and the properties they
claim to provide. This analysis allowed us to identify the
relevant requirements and define corresponding specifications
for PKI systems in a way that embraces, complements and
reflects the current PKI designs and enables future ones. These
security specifications include: accountability (ACC), ∆-
transparency (∆TRA), non-equivocation (detection, ∆EQ-D,
and prevention, EQ-P), revocation accountability (ReACC),
non-revocation accountability (NReACC) and ∆-revocation
status transparency (∆ReST). We map these security spec-
ifications to existing PKIs in Table I.

Contributions. This work:



1) Presents the first rigorous definition for a PKI scheme
and its security specifications.

2) Reviews the PKI landscape, comparing the major pro-
posed and deployed PKI schemes using the security
specifications we identify.

3) Formally defines and proves the security of the X.509
version 2 PKI scheme.

Organization. §II informally introduces our security speci-
fications and reviews the PKI landscape with respect to them;
it also discusses related works. §III provides an overview of
the Modular Specifications Security Framework (MoSS) [48],
which we use for specifications and analysis. §IV defines a
PKI scheme and §V its security specifications. §VI discusses
security of the X.509 version 2 protocol; the complete speci-
fications and proofs appear in Appendix A and Appendix C .
Finally, §VII concludes and discusses future work.

II. SECURITY GOALS OF PKI SCHEMES

As a first step towards defining the PKI specifications, we
analyzed the goals and properties of existing PKI schemes,
focusing on security against corrupt CAs. In this section,
we informally discuss these security goals and later formally
define them as game-based specifications (§V-A).

We first discuss the goals of X.509 (§II-A) and the goals
of post-X.509 PKI schemes (§II-B). We then compare the
existing PKI schemes with respect to these goals (§II-C),
summarizing the results in Table I.

A. X.509 Security Goals

PKI schemes define how to issue and use public key certifi-
cates. Certificates are issued by Certificate Authorities (CAs),
and typically contain an identifier and public information,
including a public key. A certificate also typically includes
a signature generated by the issuing CA over the certificate’s
information; the signature serves as the CA’s endorsement of
the mapping between the identifier and the public information
in the certificate. An honest CA issues a certificate only after
it receives a public key and verifies that the identity and
other information in the certificate correspond to the entity
requesting the certificate and providing the public key. The
CA is accountable for any failure to properly perform this
validation; accountability is the first property we discuss.

1) Accountability (ACC): Accountability is the ability to
identify the CA that issued a given certificate. Accountability
provides a reactive defense against a corrupt CA; a CA which
issues a rogue certificate, once or repeatedly, can be ignored
or otherwise punished. Typically, a CA is accountable for any
certificate which is validated using the CA’s public key. CA
accountability, in this sense, includes unauthorized use of the
CA’s private key, e.g., due to exposure or penetration, as well
as issuing rogue certificate intentionally or due to negligence.
Accountability motivates CAs to take precautions to protect
their private keys and to ensure that the certificates they issue
are authentic. Note that we use the term accountability as a
technical goal, and do not refer to any specific legal or other
repercussions of attribution of a rogue certificate to a CA.

2) Revocation Accountability (ReACC): Certificates’ va-
lidity period starts from their issue date and ends on their
expiration date, both of which are specified in the certificate;
however, certificates can be revoked, i.e., invalidated before
their expiration date. A certificate may be revoked for a
variety of reasons, including a loss or compromise of the
private key corresponding to the public key endorsed in the
certificate, or when the CA determines that the certificate
contains misleading information. Revocation accountability
requires that each revoked certificate can be traced back to
the revoking CA. This ensures accountability of the CA if it
revokes a certificate without a legitimate reason, e.g., a request
from the certificate owner.

3) Non-Revocation Accountability (NReACC): Since any
certificate can be revoked at any time, relying parties need to
verify that a certificate is still non-revoked when attempting
to use it. PKI should ensure non-revocation accountability
(NReACC) so that when a relying party checks a certificate and
verifies it as non-revoked, then the information used to make
this determination is attributable to a specific entity - typically,
the issuing CA. This goal is important to detect rogue CAs
who might provide relying parties with bad revocation infor-
mation, e.g., stating that a certificate is non-revoked while it
was actually revoked. If revocation information is attributable
to a specific CA, then a combination of the non-revoked
and revoked responses would provide a Proof of Misbehavior
(PoM). In X.509, the non-revocation status is indicated by
the Certification Revocation List (CRL) [49] or the Online
Certificate Status Protocol (OCSP) [50] mechanisms.

Often, as done in X.509, only the certificate’s issuer can
revoke it; if the issuer is also the only entity providing the non-
revocation responses, then this goal is very easy to achieve.
However, there may be reasons to allow other entities to revoke
certificates, e.g., to force revocation of certificates issued by
a rogue CA, or to allow other entities to issue non-revoked
responses, e.g., as supported by the X.509 OCSP protocol.

B. Post-X.509 Security Goals

We now discuss additional security goals, pursued by re-
cent PKI schemes and designed to improve security against
corrupt CAs. These goals include ∆-transparency (∆TRA),
∆-revocation status transparency (∆ReST), ∆-equivocation
detection (∆EQ-D) and equivocation prevention (EQ-P).

Most of these security goals depend on time, i.e., their
corresponding security guarantees are defined with respect to
some pre-defined time bound ∆. To emphasize this fact, such
goals include ∆ in their names.

1) ∆-Transparency (∆TRA): Accountability, as described
above, mainly serves as a deterrent against misbehavior, i.e.,
only offers retroactive security by punishing a CA ‘caught’
misbehaving, e.g., issuing a rogue certificate. For many years
this reactive measure was viewed as a sufficient defense, under
the assumption that CAs were highly respectable and trustwor-
thy entities who would not risk, intentionally or otherwise, be-
ing implicated in issuing rogue certificates. However, repeated
cases of such certificates issued by compromised or dishonest



CAs, have proven this assumption to be overly optimistic. It
turned out that punishing CAs is non-trivial: beyond negative
publicity, punishment was often ineffective [51]–[53].

Furthermore, ‘punishment’ could only be applied after the
damage was committed and discovered - if it was discovered
at all. An attacker or corrupt CA could reduce the risk of
discovery by minimizing the exposure of the rogue certificate.
Except for efforts such as the Perspectives Project [54] or the
EFF SSL Observatory [55] that aim to gather and inspect all
SSL certificates used in practice, the burden of detecting and
responding to rogue certificates is mostly on the clients that re-
ceive them; browsers typically cannot detect these certificates,
much less to report them to a (non-existing) ‘enforcement
agency’.

This significant issue has motivated more recent PKI de-
signs, e.g., Certificate Transparency (CT), where valid certifi-
cates must be published, allowing third parties (e.g., trusted
‘monitors’) to inspect and detect any discrepancies and suspect
certificates. Transparency requires a certificate to be recog-
nized (signed) by one or more parties committed to publish the
certificate, making it available to interested parties, within a
specified time frame ∆. In other words, transparency prevents
a CA from ‘silently’ generating rogue yet validly-formed
certificates and exposing them only to selected victims during
an attack, and it facilitates detection of rogue certificates issued
by a corrupt, compromised or negligent CA. By demanding
that a certificate is transparent in order for it to be considered
valid, the question is no longer whether rogue certificates will
be detected, but rather how soon.

2) ∆-Revocation Status Transparency (∆ReST): While
∆−transparency forces certificates to be publicly available
within some ∆, the transparency guarantee is not extended
to the revocation status of the certificate. To illustrate why
such a guarantee is important, consider a scenario where a
private key of a ∆−transparent certificate is compromised.
Even after the subject of the compromised certificate has the
certificate revoked, there is no guarantee that others will learn
of this revocation, and especially, there is no clear time frame
describing when others will learn of this event. Attackers
can take advantage of this issue by withholding revocation
information from the victims, thus convincing them that the
revoked compromised certificate is transparent, as needed, and
still valid since no information to the contrary is available.

This fundamental issue motivates the goal of ∆−revocation
status transparency. When an entity attests that a given certifi-
cate’s revocation status, either as revoked or non-revoked, is
transparent (∆ReST), then that entity commits to making this
status available to all interested third parties, again, within a
predetermined ∆ time period.

3) Equivocation Detection and Prevention: The aforemen-
tioned transparency goals ensure that interested parties can
learn when certificates are issued and revoked. This allows
detection of suspect certificates, e.g., certificates using mis-
leading domain names. However, this does not prevent the
issuing of such rogue certificates; furthermore, detection is
not ensured as a part of the PKI scheme itself - it has to

be done by some external process that inspects the published
certificates. More specifically, it seems impossible to have an
automated process that would reliably detect all forms of rogue
or misleading domains names.

However, it may be possible for the PKI to detect, or
even prevent, issuing of certificates which can be identified
by a well-defined, computable process. We focus on one
important category, equivocating certificates. An equivocating
certificate is one which has the same identifier as a legitimate,
previously-issued certificate, which was defined in advance as
a certificate which should not be equivocated. We consider
two non-equivocation goals:
• ∆-equivocation detection (∆EQ-D): ensures that any

equivocating certificate is detected within ∆ time of its
issuance by at least one honest entity.

• Equivocation Prevention (EQ-P): prevents issuing of
equivocating certificates, i.e., certificates containing an
already-certified identifier.

∆−transparency implies ∆−equivocation detection,
but not equivocation prevention. Furthermore, we define
∆−equivocation detection separately from ∆−transparency,
since it does not imply ∆−transparency, i.e., ∆−equivocation
detection is not equivalent to transparency. In fact, some
PKI schemes, notably CONIKS [12], offer ∆−equivocation
detection but not ∆−transparency - indeed, transparency
would conflict with some of CONIKS privacy goals. Other
detection and prevention goals might be desirable for specific
PKI systems. For example, equivocation prevention still
allows issuance of misleading (but not identical) identifiers,
e.g., misleading domain names which may be abused for
phishing attacks such as g00gle.com or googleaccounts.com.

The aforementioned goals can have a global impact, i.e.,
apply to all the certificates in the system, or they can alterna-
tively be relevant to only a subset of certificates.

C. Comparison of Existing PKI Schemes

One of the outcomes of rigorously defining PKI specifica-
tions is the ability to achieve provable security, for existing
and future PKIs. It is therefore crucial to define a PKI scheme
in a way that embraces, complements and reflects the current
PKI designs. To this end, we have methodically examined
the existing PKI schemes by identifying and analyzing their
properties. We present the results of our analysis in Table I,
and summarize the results below. We compared all schemes
with respect to the specifications formally presented in §IV;
we also mention two additional properties, privacy and global
name-spaces, which we do not address.

Notations in Table I. We use the n/s (not supported) symbol
to indicate when a scheme does not seem to support a property.
Otherwise, we use one of the three following symbols,  , �,
or G#, to indicate that a scheme supports the property. The
 symbol indicates that a scheme comes with a rigorous,
reduction-based proof of the property. We indicate with an
appropriate comment when a scheme is supported by an
automated symbolic proof; note that such proofs are often
of a property specific to that scheme, not properties defined



System [reference]

Safety requirements Additional req.

ACC ∆TRA ∆EQ-D EQ-P
ReACC/
NReACC ∆ReST Privacy1 Global

namespace
X.509v2 2 (provably-secure, this work)  n/s n/s n/s  n/s n/s 3

X.509v3 2 G# n/s n/s n/s G# n/s n/s 3

Catena [22] � � � � � � n/s 3

CertCoin [20] n/s � � � n/s � n/s 3

PB-PKI [21] n/s � � � n/s � � 3

CoSi [18] G# � � � n/s n/s n/s 3

Enhanced-CT [10]
G# � � n/s G# � n/s 3

DTKI [16] 3

AKI [13] G# � � n/s G# � � 3

CONIKS [12] G# n/s � n/s G# � � 7

ARPKI [15] 4 G# � � � G# � n/s 3

CertLedger [23] G# � � � � � n/s 3

Certificate Transparency (CT) [8] G# �5 �5 n/s G# n/s6 n/s7 3

TABLE I
COMPARISON OF PKI SCHEMES WITH RESPECT TO PKI FRAMEWORK. SYMBOLS:  - REDUCTION-BASED PROOFS, G# - INTUITIVELY TRUE, � -

SECURITY ARGUMENTS (A PROOF MAY REQUIRE ASSUMPTIONS), n/s - NOT SUPPORTED. 1DIFFERENT PRIVACY DEFINITIONS, GOALS. 2X.509 WITH
PKIX, AND CRL OR OCSP (OCSP ENSURES NReACC). 3DTKI HAS SYMBOLIC PROOFS OF SOME ASPECTS. 4ARPKI HAS SYMBOLIC PROOFS OF SOME

ASPECTS. 5PROOFS OF LOGGING PROPERTIES IN [27], [28]. 6CT IS EXTENDED TO INCLUDE REVOCATION TRANSPARENCY IN [9]. 7CT: EXTENDED TO
INCLUDE PRIVACY [56].

for an arbitrary PKI scheme. The G# symbol indicates that
although no formal proofs were provided, it seems intuitively
true that the system achieves the property; e.g., accountability
in X.509 follows from the use of a signature scheme to sign
the certificate. The � symbol indicates that the property seems
justified, using an (informal) security argument; note that this
may imply that additional assumptions or details may be
needed to ensure security or to formally prove it.

Following our discussion of the ‘basic’ PKI security proper-
ties in §II-A, we observe that most systems aim to achieve ac-
countability, with the exception of CertCoin and PB-PKI. Both
CertCoin and PB-PKI build on top of Namecoin [57], which
is a decentralized namespace system rather than a centralized,
CA-oriented system, where the CAs grant identifiers to clients.
Instead, due to the fully decentralized nature, anyone can claim
an identifier so long it is available; consequently, there is no
accountability for assigning identifiers. Notice also that CoSi is
a general-purpose witnessing (logging) scheme and Catena is a
witnessing scheme that allows to witness public key directories
using the Bitcoin blockchain. As a result, accountability of
issuing certificates is handled by the directories themselves,
requiring additional assumptions.

Interestingly, many systems directly focus on more ad-
vanced properties, such as transparency and non-equivocation,
and treat more ‘basic’ properties, such as accountability and
revocation, as intrinsic to PKI, often without even stating
them. This phenomenon is especially apparent in the case of
revocation; many systems (e.g., CertCoin, Catena, PB-PKI,
CoSi) do not directly address revocation at all, and do not
discuss how revocation should be handled, by whom and under
which conditions. Other PKI schemes use the X.509 notion
of a certificate, and implicitly rely on the X.509 revocation
mechanisms (CRLs and OCSP). This approach is somewhat
understandable due to the pervasiveness of X.509, but also

establishes the X.509 revocation mechanisms as the status quo
of revocation, despite known weaknesses.

In Table I, we label accountability, revocation accountability
and non-revocation accountability as ‘intuitively true’ for all
systems, except for CertCoin, Catena, PB-PKI, and CoSi.
These properties are typically achieved using a secure signing
scheme, and therefore a formal proof seems straightforward
and not essential. Note that CertCoin, PB-PKI and CONIKS
allow clients to revoke their own certificates, but revocation
can also be done by an adversary that compromised the
client’s secret keys, or alternatively, the client may be unable
to perform revocation if the secret keys are lost.

Transparency, on the other hand, is supported by all post-
X.509 PKI schemes, except CONIKS. The fact that trans-
parency is so pervasively provided is likely in response to one
of the main weaknesses of X.509 widely abused in practice,
i.e., the lack of a mechanism to effectively propagate all
issued certificates among CAs and clients. CONIKS, on the
other hand, offers a limited notion of transparency of the
identity / value map, which hides the actual identifiers and
their corresponding values, as a trade-off between security and
privacy. The clients can only query for individual identifiers.
Furthermore, even that must be within a specific namespace, as
CONIKS does not support global namespaces, where multiple
CAs are authorized to issue for the same namespace. The
use of separate namespaces, while problematic for the web
PKI, works well for many applications such as chat rooms or
messaging boards, that require secure key distribution but are
under control of a single entity.

As Table I indicates, most previously-published PKI
schemes have only informal security arguments for trans-
parency. The exceptions are CT, DTKI, and ARPKI, which
have different types proofs or automated proofs for scheme-
specific properties. Namely, the properties and their proofs are



not relevant to PKIs per se. Rather, they focus on details of
the design of the particular scheme. Specifically, Dowling et
al. [27] formalized security properties and provided reduction-
based proofs for logging aspects of CT that cover two classes
of security goals involving malicious loggers and malicious
monitors. Chase and Meiklejohn [28], on the other hand, focus
on formalizing transparency through “transparency overlays”,
a generic construction they use to rigorously prove trans-
parency in CT and Bitcoin. While their approach is elegant
and can be used in other systems as a primitive that achieves
transparency, it focuses on the “CT-style transparency” and
does not consider other PKI properties such as revocation or
non-equivocation.

Some of the systems, such as DTKI and ARPKI, verify
their core security properties using automated symbolic proofs
via the Tamarin prover [58]. Symbolic proofs provide an
important added value for the security of proposed systems.
Unfortunately, symbolic proofs often use abstractions; for
example, in DTKI and ARPKI, a Merkle tree is modeled as a
list. Such abstractions present an obstacle towards ‘air-tight’
security proofs. This strengthens the importance of a formal
framework which on the one hand does not rely on specific
implementations, yet, on the other, can be easily used by any
implementation.

The post-X.509 safety specifications - transparency and non-
equivocation - are significantly more complex to understand,
define and to achieve, compared to the X.509 properties of
accountability, revocation accountability and non-revocation
accountability. Hence, we did not consider any of these post-
X.509 properties to be ‘intuitively true’ - we believe they all
require a proper definition and proofs, as we provide in this
paper; we spent considerable effort in properly defining these
specifications in a precise and complete manner, and made
every effort to keep things simple - but we admit that these
definitions still require considerable effort to fully understand.

III. THE MOSS FRAMEWORK

We now discuss the Modular Specifications Security
(MoSS) [48] framework, which we use to define the PKI
specifications and analyze PKI constructions.

We chose to use MoSS for several reasons. First, MoSS
follows the game-based approach [59], [60], offering simple
and intuitive definitions and proofs of security, both asymptotic
and concrete. Further, it provides a well-defined execution
process and well-defined and reusable, ‘generic’ models of
delays, synchronization and faults, which we indeed reuse in
our analysis (§VI).

Lastly, the other frameworks we considered [61]–[63]
use monolithic specifications, e.g., UC’s ideal functionalities.
However, different PKI designs are designed for different
security goals as illustrated in Table I. For example, most post-
X.509 PKIs support transparency except for CONIKS, which
supports detection of non-equivocation but not transparency,
in order to provide certain privacy goals. As another exam-
ple, CertCoin and PB-PKI do not require accountability and
revocation accountability, two very basic PKI properties. PKI

designs may also differ in their assumptions, e.g., different
trust models.

Given these significant differences, it is infeasible to define
a single PKI functionality that reflects all current PKIs. On
the other hand, defining multiple PKI functionalities would
be complex, repetitive, difficult to understand, and, most
critically, difficult to compare, reuse and extend. In short,
monolithic specifications are inappropriate for specification
and analysis of PKI constructions.

In contrast, MoSS supports modular specifications, and
cleanly separates requirement specifications (goals) which a
protocol should achieve, from model specifications (assump-
tions) under which the protocol is analyzed; each specification
is defined by an efficiently-computable predicate that reflects a
single, focused assumption or requirement. These assumptions
and requirements can then be combined in a modular fashion,
facilitating their reuse and incremental design of protocols, an
important feature for PKI schemes.

In the rest of this section, we briefly explain the three
components of the MoSS framework: an execution process,
model specifications and requirement specifications, focusing
on the ‘classical’ asymptotic-security definitions. For the full
description of the framework, see [48].

A. The MoSS Execution Process

The MoSS execution process Exec defines the process of
executing a protocol P under an adversary A, giving the
adversary an extensive control over the environment, including
communication, local clock values, inputs and faults. The
execution process is a well-defined algorithm (Algorithm 15 in
Appendix B) that outputs a transcript T containing all events
in a randomly sampled run of protocol P with adversary A.
All events are serializable on a ‘real-time’ axis, and defined
iteratively, as a sequence of invocations of specific operations
on specific entities.

The execution process ExecA,P(params) is a randomized
algorithm, which receives several inputs: parameters params
and two efficient (PPT) algorithms, A for the adversary and
P for the protocol.

The execution process outputs a transcript T ←
ExecA,P(params), which provides details on the events in
the execution, specifically:
T.outA Adversary’s output.
T.e Number of events in the execution.
T.N Set of entities (determined by the adversary).
T.F Faulty (adversary-controlled) entities.
T.ent[ê] Entity invoked in event ê ≤ T.e.
T.opr[ê] The operation that was invoked in event ê ≤ T.e.
T.inp[ê] Input to event ê ≤ T.e.
T.clk[ê] Clock value of entity T.ent[ê], at event ê ≤ T.e.
T.τ [ê] Global real-time at event ê ≤ T.e.
T.out[ê] Output of entity T.ent[ê], at event ê ≤ T.e.

B. Specifications

MoSS uses a general notion of specifications in order to
formally define models and requirements. Model specifications



define the adversarial capabilities, communication and clock
synchronization assumptions. Requirement specifications de-
fine the properties ensured by different PKI constructions.

A specification ξ is defined as a pair ξ = (π, β), where ξ.π
is the specification predicate and ξ.β is the base function1. A
specification predicate takes as input an execution transcript
T and input parameters params. Definition 1 specifies the
advantage of an adversary with respect to a given specification.

Definition 1 (Advantage of adversary A against protocol P
for specification ξ). Let A,P ∈ PPT and let ξ = (π, β) be
a specification. The advantage of an adversary A against a
protocol P for a specification ξ is defined as:

εξA,P (params)
def
=

max

{
0,Pr

[
ξ.π (T ) = ⊥, where

T ← ExecA,P (params)

]
− ξ.β(params)

} (1)

Definition 2 defines model specifications, which allow to
restrict the capabilities of an adversary or the events that are
allowed to happen in the execution process. §VI describes a
model specification for our security analysis of X.509 version
2.

Definition 2 (Adversary A satisfies model M with negligible
advantage). Let A ∈ PPT , and let M = (π, β) be a model
specification. Also, let params ∈ {0, 1}∗, where params
includes a unary parameter params.P.1κ and |params| ≤
2 · 1κ. We say that adversary A satisfies model M with
negligible advantage, denoted as A |=

poly
M, if for every

protocol P ∈ PPT and params, the advantage of A against
P for M and is negligible in params.P.1κ, i.e.:

εMA,P(params) ∈ Negl(params.P.1κ)

Definition 3 defines requirement specifications, which de-
scribe what a protocol or scheme ensures, assuming a given
model. §V presents PKI requirements.

Definition 3 (Protocol P satisfies requirement R with neg-
ligible advantage under model M). Let R = (π, β) be a
requirement specification. We say that protocol P satisfies
requirement R under modelM, denoted P |=M

poly
R, if for every

PPT adversary A that satisfies M with negligible advantage
and parameters params ∈ {0, 1}∗, where params includes a
unary parameter params.P.1κ, the advantage of A against
P for R is negligible in params.P.1κ, i.e:

P |=M
poly
R def

=(
∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=

poly
M
)

:

εRA,P,(params) ∈ Negl(params.P.1κ)
(2)

IV. PKI SCHEME

In this section, we formally define a PKI scheme. We start
by describing entities involved in PKI and formally define

1The base function is used for cases where the adversary has some
‘trivial’, allowed success probability, e.g., 1

2l
when using l bit MAC. Often,

and throughout this paper, β = 0, so β can be essentially ignored.

what a certificate is (§IV-A). Then, we define the notion of
certificate attribute attestation (§IV-B), i.e., how certificates
can be attested to have different properties. Lastly, we provide
an informal description of the operations that a PKI consists
of (§IV-C) and then formalize them (§IV-D).

A. Entities and Certificates

A PKI scheme consists of protocols for a set of authorities
such as certificate authorities (CAs), which we denote as N.
A PKI scheme also includes stateless functions, which may
be invoked by any entity, (i.e., any entity not in N). Most
significantly, these stateless functions are used by two types
of users (clients) of the CAs: subjects, which typically use
a CA to obtain and manage their public key certificates, and
relying parties, which use the certificates of the subjects, to
determine if they want to communicate with the subject (using
the certified public key). We do not need to refer explicitly
to the set of clients, since we never refer to the state of a
particular client or to whether a particular client is honest or
not.

A certificate authority (CA), also referred to as an issuer,
is an authority that issues certificates to subjects. A certificate
is a verifiable association of the subject’s identifier with some
public information; in a public key certificate, the public infor-
mation includes the subject’s public key. In some PKI schemes,
e.g., Certificate Transparency (CT), the set of authorities N
contains additional, non-CA authorities, such as loggers and
monitors, which are used to ensure certain properties, e.g.,
transparency.

Definition 4 defines the elements of a typical certificate,
which are used in the security specifications.

Definition 4 (Certificate). A certificate is a tuple:

ψ = (serial, subject, pub, from, to, issuer, τ, σ)

where:
• ψ.serial: CA-assigned serial number.
• ψ.subject: to whom the certificate is issued.
• ψ.pub: public information associated with ψ.subject.
• ψ.from: when the validity period starts.
• ψ.to: when the validity period ends.
• ψ.issuer: the CA that issued the certificate.
• ψ.τ : issue time.
• ψ.σ: the CA’s signature over the certificate’s fields.

Note that the above elements are (intentionally) abstract and
may be encoded in different ways. Certificates may contain
additional data, such as extensions, to include further data that
the issuer wishes to certify.

B. Attribute Attestations

A PKI scheme can use different methods to allow the
certificate issuer, or other entities, to confirm that certificate
possesses a certain attribute. For example, a certificate ψ can
be attested to as non-revoked (or revoked) by the issuer who
can produce an attribute attestation, i.e., a signed statement
to that effect. An attribute attestation contains the necessary



information to identify the certificate and the corresponding
property along with additional information needed to verify
the statement. Similarly to our definition of a certificate, we
define the elements of an attribute attestation in an abstract
way, independent of the actual attestation process.

Definition 5 (Attribute attestation). An attribute attestation is
a tuple:

ρ = (attr, serial, ι, tbs, σ, τ)

where:

• ρ.attr is the attribute attested, e.g., ACC or NREV.
• ρ.serial is the serial number of the corresponding cer-

tificate.
• ρ.ι is the identifier of the attesting entity.
• ρ.τ is the time of attestation.
• ρ.tbs is data to be signed (tbs) by the attestation.
• ρ.σ is a signature using the attesting entity’s private key,

over the ρ.tbs data, the attribute ρ.attr and the time of
attestation ρ.τ .

C. Informal Overview of PKI Functionalities

We begin with the main PKI operation, issuing certificates.
1) Certificate issuance: A certificate is issued by some

entity ι ∈ N following a request generated from a client, the
subject of a certificate. The subject provides the certificate’s
details, i.e., the subject identifier and public information (e.g.,
a public key). Then, the issuing entity uses a dedicated
operation, which we denote as Issue, to produce the certificate.
Issue creates a certificate following some prescribed format
(e.g., X.509), by specifying the certificate information along
with a proof (typically, a signature, and sometimes additional
information) that the issuer has in fact issued the certificate.

The issuer’s proof (signature) attests that the issuer has
verified the validity of the certified information, typically, that
the identifier corresponds to the endorsed public key and that
the client knows the corresponding private key. We do not
model nor analyze this verification process as it might be
unique to each issuer and type of certificate.

2) Certificate revocation and attestations: Revocation is an
important component of a PKI scheme, already addressed in
X.509. To revoke a certificate, the issuer typically labels the
certificate as revoked, using a Revoke operation, following
a request from a client. A PKI scheme must include some
mechanism to allow relying parties to check if a certificate was
revoked. For example, X.509 defines two such mechanisms:
Certificate Revocation Lists (CRLs) and the Online Certificate
Status Protocol (OCSP), both of which produce a signed
statement by the issuing CA that attest to the revocation status
of a certificate (OCSP) or a set of certificates (CRLs). More
specifically, both mechanisms may be used to attest whether
or not a certificate is revoked at a given time.

Post-X.509 PKIs use additional types of attestations, e.g.,
related to transparency and equivocation. We found it conve-
nient to define a generic concept of an attestation, as well as a
PKI operation, Attest, that can be used to produce an arbitrary

attestation by “upgrading” or extending a set of attestations
associated with a certificate.

Specifically, we define the following attribute attestations:
three attestations related to revocation (revocation, non-
revocation, and ∆-revocation status transparency), one trans-
parency attestation (∆-transparency), and two attestations re-
lated to equivocation (∆-equivocation detection, and equiv-
ocation prevention). We discuss these attributes in detail in
§V-A-§V-B.

The relying parties usually expect attestations to be made by
specific entities; for example, the relying parties usually accept
attestations of revocation and non-revocation only if signed
(attested) by the issuer of the certificate. Similarly, relying
parties would usually accept attestations of ∆-transparency
and ∆-revocation status transparency only if signed by a
trusted entity, e.g., a trusted logger.

The Attest operation might not always be able to imme-
diately output the requested attestation because, for example,
in some PKI systems advanced attributes might involve in-
teraction with other authorities or take time to be processed
(e.g., in CT, a signed certificate timestamp (SCT) is returned
when a certificate is submitted for logging as a promise to
actually log the certificate within a maximum merge delay
(MMD). To support such non-immediate response mechanism,
the Attest operation can output a pending attestation, which is
a commitment to produce the requested attestation (or a failure
indication), within some defined amount of time after which
the Attest algorithm with the pending attestation is guaranteed
to output the final response, which is either the expected non-
pending (final) attribute attestation, or a failure indication (⊥).

3) Validating attestations with WasValid: While Issue,
Revoke and Attest are stateful operations, checking whether a
specific certificate is valid with respect to a specific attribute
attestation must be a stateless operation to allow anyone,
specifically the relying parties, to perform this operation.
Relying parties typically do not maintain any certificate-related
state, thus, they must be able to validate certificates without
any extra information beyond the information included in the
certificate.

Thus, we define a stateless WasValid function which checks
whether a given attribute attestation ρ attested for a certificate
ψ was valid when ρ was created with respect to a given public
key pk. Note that pk can be either a single entity’s public key,
or alternatively, a group public key, e.g., threshold signature
verification key.

4) Audit and Proof-of-Misbehavior (PoM): Since the main
PKI operations are performed by authorities, typically CAs,
their actions need to be auditable to guard against any mis-
behavior. Consider the ∆-transparency specification, which
requires that if a certificate is ∆-transparent, then it must be
available to all interested entities within ∆ time. To uphold this
specification, we need a way to query the local state of those
interested entities to make sure that ∆-transparent certificate
were indeed made available to them. Accordingly, we define
an Audit function, which can be invoked in a couple of ways:



• Audit may be invoked with a subject subject and an
attribute attr ∈ AttrSet. In this case, Audit either returns
a valid set of certificates Ψ issued for subject along with
their attribute attestations set P , according to the local
state, or ⊥ to signal that there are no such certificates.

• Audit may be invoked with a certificate ψ and an at-
tribute attestation ρ. In this case, Audit outputs > if
the current state indicates that ψ is valid with respect
to ρ. If the current state indicates that ρ.attr should
not have been attested to ψ, then Audit outputs an
Indicator of Accusation (IA) or a Proof-of-Misbehavior
ζ. If the current state does not provide any relevant
indication, then Audit returns ⊥.

A Proof-of-Misbehavior, as referred to above, is any con-
flicting pair of attestations issued by an entity, such as a
revocation attestation and a non-revocation attestation (for the
same certificate and the same time). The PoM operation is
used to verify purported proofs of misbehavior.

5) Monitoring: In most of the advanced PKI schemes,
misbehavior is deterred and detected by having authorities’
behavior monitored. The Monitor operation instructs entities
to monitor other entities. Namely, an entity invoked with the
Monitor operation with an input ι ∈ N, would monitor an
entity ι. As a result, the monitoring entity would perform
periodic Audit operations on the monitored entity to receive an
update from the monitored entity, e.g., to receive from a logger
new certificates issued (since previous Audit). Monitoring is
required for some post-X.509 to achieve certain specifications,
e.g., transparency and equivocation.

6) Additional operations: Finally, a PKI scheme also re-
quires a few basic functions necessary to bind the entire
scheme together. First, a PKI scheme (typically) requires an
initialization operation, denoted as Init, to allow entities to
perform any required initialization operations, e.g., generating
cryptographic keys locally and exchanging them, exchanging
other set up information with others, such as the set of all
authorities in a specific system, etc. Second, all authorities
need to be able to appropriately handle time-based events to
ensure that repeating operations are performed as needed. The
Wakeup operation is expected to be invoked periodically to
execute repeated events. To illustrate, consider CT loggers
which are required to periodically update and sign the log
within each MMD. In this case, each CT log would invoke
Wakeup once during an MMD to handle its periodic events.
Lastly, to handle requests sent to each entity, either from
other entities or from clients, we define a Receive operation
to handle them.

D. Definition of a PKI Scheme

We now formally define a PKI scheme. Note that some
schemes might require additional inputs or operations. In this
case, our specifications should be interpreted as holding for
any values of these additional inputs.

Most of the operations are stateful, i.e., they have access to
the state and the local clock of the entity, and return a new
state value; the only exceptions are the stateless WasValid and

PoM operations. For simplicity, we abuse notation and omit
the state and clock from the inputs to the operations (and the
new state from the outputs), although, these values are actually
always passed as parameters for stateful operations (in the PKI
execution process) .

Definition 6 (PKI scheme). A PKI scheme P is a PPT
algorithm, with the following minimal set of operations:

P = (Init, Issue,Revoke,Attest,Audit,WasValid,

Wakeup,Receive,PoM,Monitor)

where:
• Init(x) → y: initialize the state using input x, with

optional output y.
• Issue(subject, pub, from, to) → (ψ, P )/⊥: Takes as

input a subjects identifier subject, public information
pub, start of validity date from and expiration date to,
and outputs either a matching certificate ψ along with a
set of attribute attestations P , or failure indicator ⊥.

• Revoke(ψ) → P/⊥: Takes as input a certificate ψ, and
outputs either a set of attribute attestations P , or failure
indicator ⊥.

• Attest(ψ, attr) → ρ/⊥: Takes as input a certificate ψ
and an attribute attestation attr, and outputs either an
attribute attestation ρ, or failure indicator ⊥.

• Audit(subject, attr) → (Ψ, P )/⊥ or Audit(ψ, ρ) →
>/IA/ζ/⊥: If the input is a subject identifier subject
and attribute attr ∈ AttrSet, then the output is either a
valid set of certificates Ψ along with a set of attribute
attestations P , or failure indicator ⊥. Otherwise, the
input is a certificate ψ and attribute attestation ρ, and
the output can be >, i.e., the audit is successful, or one
of three failure indicators: a Proof-of-Misbehavior (PoM)
that shows misbehavior by the signer of the attestation, an
accusation IA stating that the signer is faulty but without
‘proof’, or ⊥ for invalid inputs.

• WasValid(ψ, pk, ρ) → >/⊥: This stateless algorithm
takes as input a certificate ψ ∈ Ψ, a public key pk, and
an attribute attestation ρ, and outputs either > or ⊥.

• Wakeup(data): Takes as input a wake-up event informa-
tion data and perform a time-based operation.

• Receive(x): Process input information x received via the
network.

• PoM(pk, σ)→ >/⊥: a stateless function which takes as
input a public key pk and proof σ, and outputs either >
or ⊥.

• Monitor(ι): Takes as input an entity identifier ι and starts
to periodically monitor ι.

V. PKI SECURITY REQUIREMENTS

We now define PKI security requirements based on the
security goals which we informally discussed in §II. We use
the MoSS framework, introduced in §III, to do so.

The framework allows the requirements to be modular in
two ways. First, we are able to separately define each require-
ment, e.g., accountability or transparency, which is necessary



as different PKI schemes aim for different requirements and
there is no single ‘PKI functionality’. Second, the definitions
of the requirements are independent of the definitions of
the model, e.g., adversary or communication, assumed by
a particular PKI construction. This approach is not only
beneficial but also intuitive; indeed, defining what transparency
means in the context of PKI is independent of whether or not
transparency holds in a given construction under synchronous
or asynchronous communication model or honest-but-curious
or Byzantine adversary model, for example.

Once we have a specific PKI construction, then we can
analyze and prove that it satisfies a specific subset of the
requirements under a given model, per Definition 3. For
example, in this work, we formalize and analyze X.509 version
2 PKI (see §VI-A for the model and §VI-B for the theorem
and a proof sketch).

Following the MoSS framework, we define requirements,
and later also models, as specifications (§III-B). Namely, a
requirement is a pair ξ = (π, β), where ξ.π is the requirement
predicate and ξ.β is the requirement base function, which
gives the ‘base’ probability of success for an adversary.
For the PKI requirements, we always use the trivial base
function ξ.β = 0; hence, each requirement is defined by the
corresponding predicate ξ.π. As per Equation 1, the input to
the predicate is the execution transcript T , which is the output
of a run of the execution process.

In the rest of this section, we define and discuss these re-
quirement predicates (algorithms 1-7); we use the requirement
names, e.g., ACC, to denote the corresponding predicates. We
first present, in §V-A, the ‘classical’ requirements, as expected
from ‘X.509-like PKI’ and then, in §V-B, the ‘post-X.509’
requirements.

A. X.509-PKI Security Requirements

We now present the ‘basic’ security requirements of a PKI
scheme: accountability, revocation accountability and non-
revocation accountability, which the ‘classical’ PKI schemes,
such as X.509 [64], focus on. We define these requirements
in the (commented) Algorithms 1-3 as predicates that return
⊥ if the corresponding requirement does not hold, i.e., the
adversary ‘wins’ in the game defined by the predicate. The
input to the predicates is the transcript T from a run of the
MoSS execution process (§III-A).

1) Accountability requirement ACC(T ): The predicate (Al-
gorithm 1) returns ⊥ if accountability fails, namely, if there
exists a valid, accountable certificate ψ, where its issuer
ψ.issuer is honest, yet during the execution, the issuer was
not instructed to issue a certificate with the subject, public key
and validity period in ψ, i.e., there was no ‘Issue’ operation
invoked on ψ.issuer with these inputs. Notice the use of
the ISVALIDATT procedure, which is (also) a predicate, and
returns > if the issuer is honest and the certificate is valid and
accountable; this procedure is used also by other requirements
to validate certificate attributes.

2) Revocation accountability requirement REV(T ): The
predicate (Algorithm 2) returns ⊥ if revocation accountability

fails, namely, if there exists a valid revocation attestation ρ
for a certificate ψ with honest issuer ψ.issuer, yet, ψ.issuer
was not instructed to revoke ψ, or instructed to revoke after
the specified revocation time.

3) Non-revocation accountability requirement
NReACC(T ): Similarly to revocation accountability, the
non-revocation accountability predicate (Algorithm 3) returns
⊥ if non-revocation accountability fails, namely, if there
exists a valid non-revocation attestation ρ for a certificate
ψ with honest issuer ψ.issuer, although ψ.issuer was
instructed to revoke ψ (before the revocation time specified
in the attestation).

Next, we discuss the details and conventions used in Algo-
rithms 1-3.

1) The public-key association convention ‘PubKey’ and
role-based certificates: The goal of PKI is to establish public
keys, however, PKI also utilizes known public keys associated
with specific identifiers. For example, in TLS, these are
referred to as ‘anchor’ public keys, and associated with well-
known entities - the ‘root CAs’. Another example are threshold
and proactive public-key systems, that use keys which are
associated with a role rather than with any single entity,
for example, the public key used to verify periodical re-
certifications by the set of entities in the proactive authen-
ticated communication scheme of [65]. Some PKI schemes
use such a role which is not a specific entity, e.g., to identify
public keys trusted to attest for non-equivocation. We adopt
a simple convention to identify such associations of a public
key pk with an identifier role (which may be a ‘named role’
or simply an entity role ∈ N). The convention is that a honest
party outputs the reserved tuple (‘PubKey’, role, pk). See
ISVALIDATT (line 6).

2) Functions, e.g. ISVALIDATT: We define a few functions,
for operations used by multiple predicates; the definition
of each function appears with the first predicate using this
function. For example, the ISVALIDATT function checks that
the given attestation of a given certificate is valid for one of
the attributes in a given set ATTR of attributes, and signed
properly with the specified public key (given as one of the
inputs). Furthermore, ISVALIDATT validates that this public
key, is indeed a public key associated with the role specified
in the input to ISVALIDATT. To validate this association,
ISVALIDATT uses the public-key association convention just
introduced, i.e., it checks that a honest entity ι ∈ T.N− T.F,
has output the reserved tuple (‘PubKey’, role, pk). In most
calls, role is simply an identifier of an authority, i.e., role ∈ N;
in fact, usually role = ι.

3) Issuer public key: The predicates rely on the (stateless)
P.WasValid function to check whether the certificate outputted
by the adversary has the claimed attribute. P.WasValid needs
to be provided with the issuer’s public key to verify the
attribute endorsed with respect to that key. This public key,
however, comes from the adversary controlled output T.outA
and cannot be trusted on its own. Hence, we rely on the
aforementioned public-key association convention, and expect
that each entity ι outputs its own public key in the form



Algorithm 1 Accountability predicate ACC(T )

1: (ψ, ρ, pk, ι)← T.outA .

Certificate ψ,
attribute attestation
ρ, public key pk, and
entity ι

2: AdvWins←
[

ISVALIDATT(T, {ACC}, ψ, ρ, pk, ι, ψ.issuer)
.

ψ.issuer is honest
and ψ was attested by
ψ.issuer to be ac-
countable on time ρ.τ

3:

and @ē s.t. T.ent[ē] = ψ.issuer

and T.opr[ē] = ‘Issue’
and T.inp[ē] = (ψ.subject, ψ.pub,

ψ.from,ψ.to)]
.

Yet, ψ.issuer was
not asked to issue ψ

4: if AdvWins then return ⊥ else return >

5: procedure ISVALIDATT(T,ATTR,ψ, ρ, pk, ι, role)

6:

return ι ∈ T.N− T.F
and ρ.attr ∈ ATTR
and P.WasValid(ψ, pk, ρ)

and ∃ê s.t. T.ent[ê] = ι

and (‘PubKey’, role, pk) ∈ T.out[ê]

.

Certificate ψ has a
valid attestation ρ
with an attribute from
set ATTR, verified by
the public key pk
of entity role. The
mapping of pk to
role was outputted
by a honest entity ι
(as such, should be
correct).

7: end procedure

Algorithm 2 Revocation accountability predicate ReACC(T )

1: (ψ, ρ, pk, ι)← T.outA .

Certificate ψ,
attribute attestation
ρ, public key pk and
entity ι

2: AdvWins←
[

ISVALIDATT(T, {REV}, ψ, ρ, pk, ι, ψ.issuer)
.

ψ.issuer is honest
and ψ was attested
by ψ.issuer as re-
voked on time ρ.τ
(see Alg. 1)

3:

and @ ē s.t. T.ent[ē] = ψ.issuer

and T.opr[ē] = ‘Revoke’
and T.inp[ē] = ψ

and T.τ [ē] ≤ ρ.τ]
.

Yet, ψ.issuer was
not asked to revoke ψ
before time ρ.τ

4: if AdvWins then return ⊥ else return >

Algorithm 3 Non-revocation accountability predicate NReACC(T )

1: (ψ, ρ, pk, ι)← T.outA .

Certificate ψ,
attribute attestation
ρ, public key pk, and
entity ι

2: AdvWins←
[

ISVALIDATT(T, {NREV}, ψ, ρ, pk, ι, ψ.issuer)
.

ψ.issuer is honest
and ψ was attested
by ψ.issuer as non-
revoked on time ρ.τ
(see Alg. 1)

3:

and ∃ē s.t. T.ent[ē] = ψ.issuer

and T.opr[ē] = ‘Revoke’
and T.inp[ē] = ψ

and T.τ [ē] ≤ ρ.τ]
.

Yet, ψ.issuer was
asked to revoke ψ be-
fore time ρ.τ

4: if AdvWins then return ⊥ else return >

Algorithm 4 Equivocation-prevention predicate EQ-P(T )

1: if EQUIVOCATIONOCCURRED(T, EQ-P) then return ⊥ else return >

2: procedure EQUIVOCATIONOCCURRED(T, attr)

3:
(
ψ,ψ′, ρe, ρ

′
e, pke, pk

′
e, ι, ι

′
)
← T.outA .

Certificates ψ,ψ′,
attribute attestations
ρe, ρ

′
e, public keys

pke, pk
′
e and two

(honest) entities ι, ι′

4: return ISVALIDATT(T, {attr}, ψ, ρe, pke,
ι, attr)

.
ψ was attested by ρe.ι
to be unequivocal on
time ρe.τ (see Alg. 1)

5: and ISVALIDATT(T, {attr}, ψ′, ρ′e, pk
′
e,

ι′, attr)
.
ψ′ was attested by ρ′e.ι
to be unequivocal on
time ρ′e.τ (see Alg. 1)

6:
and ψ.subject = ψ′.subject

and ψ.from < ψ′.from < ψ.to

and ψ.pub 6= ψ′.pub

.

ψ and ψ′ have the
same subject identifier
and overlapping valid-
ity periods, yet, they
have different public in-
formation, i.e., ψ and
ψ′ are equivocating

7:

and ∀ι ∈ T.N− T.F
∃ė s.t. T.opr[ė] = ‘Audit’

and T.ent[ė] = ι

and T.inp[ė] = ψ.subject

and T.τ [ė] > ρ′e.τ

and @ρ ∈ T.out[ė] s.t. ρ.attr = ‘REV’

.

None of the honest enti-
ties think that ψ was re-
voked before the equiv-
ocating certificate ψ′

was attested as unequiv-
ocal

8: end procedure

Algorithm 5 ∆−Equivocation detection predicate ∆EQ-D(T )

1:
(
ψ,ψ′, ρe, ρ

′
e, pke, pk

′
e, ι, ι

′
)
← T.outA .

Certificates ψ,ψ′,
attribute attestations
ρe, ρ

′
e, public keys

pke, pk
′
e and two

(honest) entities ι, ι′

2: AdvWins←
[

EQUIVOCATIONOCCURED(T,∆EQ-D)
. See Alg. 4

3:

and ∀ι ∈ T.N− T.F
∃ė s.t. T.opr[ė] = ‘Audit’

and T.ent[ė] = ι

and T.inp[ė] = (ψ′,∆EQ-D)

and T.out[ė] = >
and T.τ [ė] > ∆ +max(ρe.τ, ρ

′
e.τ)]

.
No one detected the
equivocation during
the ∆ time frame

4: if AdvWins then return ⊥ else return >



(‘PubKey’, ι, pk). Each time the adversary outputs an attribute
attestation, it also outputs the public key of the attesting entity,
and the ISVALIDATT function checks that this public key was
indeed outputted by a honest entity (in the (‘PubKey’, ι, pk)
form).

B. Post-X.509-PKI Security Requirements Specifications

We now define more advanced security requirements, rele-
vant to ‘post-X.509’ PKI systems, such as Certificate Trans-
parency (CT) [8]. We present in a rough order of complexity,
beginning with requirements related to equivocation preven-
tion and detection, and then transparency requirements.

1) Equivocation prevention requirement (EQ-P): The pred-
icate (Algorithm 4) ensures that if equivocation prevention
holds, then at no point in time will there exist two certificates
with different public information issued for the same identifier
with overlapping validity periods - yet both with the EQ-P
attribute. Note that the requirement, as defined, allows the
(legitimate) scenario where an unequivocal certificate ψ is
revoked and an unequivocal replacement certificate ψ′ is
issued, still within the validity period of the (revoked) ψ.
Forbidding such replacements would be simpler - but prevent
support for this realistic scenario.

The equivocation prevention predicate checks if an adver-
sary is able to present two conflicting, unequivocal certificates
and that none of the honest entities considered the first
certificate as revoked prior to the replacement being issued;
see line 7. This ensures that the second certificate was not
issued in good faith by an honest entity who was led to believe
that the first certificate is revoked, i.e., based on a fraudulent
revocation attestation issued by an adversary controlled entity.

2) ∆-Equivocation detection requirement (∆EQ-D): The
predicate (Algorithm 5) checks that each equivocating cer-
tificate is detected within ∆ time by (at least) one honest
authority. Namely, we first confirm, using the EQUIVOCA-
TIONOCCURRED procedure described in Algorithm 4, that
the adversary produced two equivocating certificates then, we
confirm that no honest entity detected the equivocation within
∆ (line 3).

3) ∆-Transparency requirement (∆TRA): The predicate
(Algorithm 6) is designed to ensure that if ∆-transparency
holds, then a ∆-transparent certificate is available to “inter-
ested” parties, i.e., monitors, within ∆ time of its transparency
attestation being issued by an authority, typically referred to
as a logger.

Of course, we cannot ‘force’ transparency to hold; the
logger may either just not send responses to the monitors, or
may attempt to omit a specific certificates from its responses
to the monitor. The requirement ensures that such behaviors
would be detected in timely manner. The type of detection
depends on the type of misbehavior:

• If the logger omits the certificate from its responses, this
should be detected upon ‘Audit’ of the monitor with this
certificate, and result in a Proof-of-Misbehavior (PoM).
This is confirmed in line 9 of Algorithm 6.

• If the logger stops responding, this should be detected
upon the following request from the monitor. In this case,
the monitor can only output an Indicator of Accusation
(IA). This is confirmed in line 8 of Algorithm 6.

4) ∆-Revocation status transparency requirement
(∆ReST): While ∆-transparency focuses on the transparency
of certificates, the ∆-revocation status transparency
specification applies to the certificates’ revocation status. A
∆ReST attestation ρs specifies a certificate status as either
revoked or not revoked as endorsed by a specific entity ρs.ι.
The predicate (Algorithm 7) ensures that if the specification
holds, then whenever an entity ρt.ι produces a transparency
attestation ρt of ρs, then ρt.ι commits to make ρs available
to monitors within the ∆ time frame. Therefore, similarly
to the ∆-transparency predicate, the ∆-revocation status
transparency predicate checks if the adversary is able to
produce a transparency attestation ρt of ρs such that there
exists a honest monitor ιM that monitors ρt.ι, yet ιM is
unaware of ρs after ∆ and ιM (1) did not accuse ρt.ι during
∆ as uncooperative and (2) upon audit, did not output a proof
of ρt.ι’s misbehavior.

VI. PROVABLY-SECURE PKI: X.509 VERSION 2

To demonstrate the feasibility of our approach, we for-
malized and analyzed X.509 version 2 (X.509v2), a simple
yet realistic PKI scheme. In this section, we present the
model specification we used to prove that X.509v2 satisfies
accountability, revocation accountability and non-revocation
accountability as well as the main theorem and its proof
sketch. Due to the space constraints, we refer the reader to
Appendix A and Appendix C for the complete construction
and proofs.

A. Model Specification

We assume a simple model specification MX.509v2
∆clk

=
(πX.509v2

∆clk
, 0), which is a conjunction of four model predicates,

defined in [48], that formalize standard adversary, communi-
cation and synchronization assumptions.

πX.509v2
∆clk

= πF ∧ π2-rounds
SecInit ∧ πDrift

∆clk
∧ πWake-up

∆clk
(3)

Specifically, πF ensures that the adversary outputs all faulty
entities in T.F, π2-rounds

SecInit ensures two secure ‘rounds’ of initial-
ization to securely exchange of the public keys of authorities,
πDrift

∆clk
ensures bounded clock drift, and πWake-up

∆clk
ensures reli-

able ‘wake-up’ service. Algorithm 8 shows the construction
of the πF to illustrate this approach. The remaining predicates
can be found in [48].

B. Security Analysis

Theorem 1. Let S be an existentially-unforgeable signature
scheme and let N be a set of entities. Then, X. 509v2SN
satisfies the accountability, revocation accountability and
non-revocation accountability specifications under model
MX.509v2

∆clk
.



Algorithm 6 ∆−Transparency predicate ∆TRA(T )

1: (ψ, pk, ρ, ιM )← T.outA .

Certificate ψ,
attribute attestation
ρ, public key pk, and
entity ιM

2:
AdvWins←

[
ISVALIDATT(T, {∆TRA}, ψ, ρ, pk,

ρ.ι, ρ.ι)

.

ψ was attested by ρ.ι
to be ∆−transparent
on time ρ.τ (see
Alg. 1)

3:

and ιM ∈ T.N− T.F
and ∃ẽ s.t. T.ent[ẽ] = ιM

and T.opr[ẽ] = ‘Monitor’
and T.inp[ẽ] = ρ.ι

and T.τ [ẽ] ≤ ρ.τ −∆

.

ιM is honest and ιM
monitors ρ.ι since
(at least) ∆ before
the transparency-
attestation.

4: and WASNOTACCUSED(T, ψ, pk, ρ, ιM ) .

Monitor ιM did not
accuse entity ρ.ι as
uncooperative or mis-
behaving

5:

and ∃ē s.t. T.ent[ē] = ιM
and T.opr[ē] = ‘Audit’
and T.inp[ē] = ψ.id

and ψ 6∈ T.out[ē]
and T.τ [ē] ≥ ρ.τ + ∆]

.
ιM is not aware of
ψ even though the ∆
time period passed

6: if AdvWins then return ⊥ else return >

7: procedure WASNOTACCUSED(T, ψ, pk, ρ, ι)

8:
return @ë s.t. T.ent[ë] = ι

and T.out[ë] = (IA, ρ.ι)
and T.τ [ë] ≤ ρ.τ + ∆

.

ι did not
‘indicate/accuse’
ρ.ι, at least not until
∆ time units after
attestation

9:

and ∃ě s.t. T.ent[ě] = ι

and T.opr[ě] = ‘Audit’
and T.inp[ě] = (ψ, ρ)

and P.PoM(pk, T.out[ě]) = ⊥
and T.τ [ě] > ρ.τ + ∆

.

ι failed to produce
‘proof’ of ρ.ι’s mis-
behavior, upon ‘Au-
dit’ with input ψ and
ρ

10: end procedure

Algorithm 7 ∆−Revocation Status Transparency predicate ∆ReST(T )

1: (ψ, ρt, pks, pkt, ιM )← T.outA .

Certificate ψ,
attribute attestation
ρt, public keys
pks, pkt and entity
ιM

2: ρs ← ρt.data .
Extract attestation ρs
from attestation ρt

3:
AdvWins←

[
ISVALIDATT(T, {REV,NREV}, ψ, pks, ρs,

ψ.issuer, ψ.issuer)

.

ψ was attested
by ψ.issuer as
revoked/non-revoked
on time ρs.τ (see
Alg. 1)

4: and ISVALIDATT(T, {∆ReST},
ψ, pkt, ρt, ρt.ι, ρt.ι)

.

ψ’s revocation status
ρs was attested
by ρt.ι to be
∆−revocation status
transparent on time
ρt.τ (see Alg. 1)

5:

and ιM ∈ T.N− T.F
and ∃ẽ s.t. T.ent[ẽ] = ιM

and T.opr[ẽ] = ‘Monitor’
and T.inp[ẽ] = ρt.ι

and T.τ [ẽ] ≤ ρt.τ −∆

.

ιM is honest and ιM
monitors ρt.ι since
(at least) ∆ before
the transparency-
attestation

6: and WASNOTACCUSED(T, ψ, pkt, ρt, ιM ) .

Monitor ιM did not
accuse entity ρt.ι as
uncooperative or mis-
behaving

7:

and ∃ē s.t. T.ent[ē] = ιM
and T.opr[ē] = ‘Audit’
and T.inp[ē] = ψ.id

and T.τ [ē] ≥ ρt.τ + ∆

and (

(ρs.attr = NREV

and @ρ′ ∈ T.out[ē] s.t.
ρ′.attr = NREV and ρ′.τ ≥ ρs.τ)

or
(ρs.attr = REV

and @ρ′ ∈ T.out[ē] s.t.
ρ′.attr = REV)

)]

.

However, there is an
event ē in T proving
that ρs did not be-
come transparent af-
ter ∆, i.e., there ex-
ists an honest mon-
itor ιM that is not
aware of ρs although
it should. Namely, ei-
ther ρs attests ψ as
non-revoked on ρs.τ
but all non-revocation
attestations known to
ιM are older, or ρs
attests ψ was revoked
on ρs.τ but ιM has a
non-revocation attes-
tation for ψ- attested
after ρt.τ

8: if AdvWins then return ⊥ else return >

Algorithm 8 πF(T ) Predicate

1: return
(

2: ∀ê ∈ {0, . . . , T.e} : . For each event

3: if T.opr[ê] ∈ {‘Get-state’, ‘Set-state’, ‘Set-output’} .
If the operation
means the adversary
controls the entity

4: then T.ent[ê] ∈ T.F . Then entity is in T .F)

Proof sketch. To prove that X. 509v2SN satisfies accountability,
revocation accountability and non-revocation accountability,
we use the following methodology:

1) We first define a variation of X. 509v2SN called
X. 509v2

S,OSign(sk,·)
N,ι,pk , where a PPT oracle algorithm

OSign(sk, ·) is used to generate signatures using a
secret key sk instead of entity ι ∈ N, where sk is the

matching secret signing key of the verification key pk.
2) Then, we define a game called Exp

Forge,M
A,X.509v2SN

,
where we execute an adversary A with the
X. 509v2

S,OSign(sk,·)
N,ι,pk scheme. Adversary A ‘wins’ if

it outputs a message m and valid signature σ over m,
using public verification key pk, without A receiving
the signing key sk or asking the oracle to sign m.

3) After that, we show that the existence of an adversary
that ‘wins’ the Exp

Forge,M
A,X.509v2SN

game with non-negligible
probability contradicts the security of S.

4) We construct an adversary A and show it wins the
Exp

Forge,M
A,X.509v2SN

game with non-negligible probability, if
X. 509v2SN does not satisfy each of ξACC, ξReACC and
ξNReACC.

5) The proof follows from 1− 4; see Appendix C.



VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented specifications for a secure PKI
scheme. Our specifications can be applied to both classical,
proposed and future PKI schemes. Future work includes
an analysis of existing and proposed PKI schemes using
these specifications; e.g., we hope to soon present proofs for
X.509v3 and for secure variants of CT. We also expect future
work to extend and refine our specifications, as well as to
explore alternative methods for specifications of PKI schemes.
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APPENDIX A
X.509 VERSION 2: CONSTRUCTION

In this section, we formalize the design of the X.509 version
2 scheme (Algorithms 9-14). The resulting construction fol-

lows the common practices of the currently deployed X.509-
based systems, except for allowing certain extensions, e.g.,
naming constraints for cross-certification, for simplicity and
clarity of exposition, the construction supports two revocation
mechanisms commonly used in practice, CRLs and OCSP.

A. System Entities and their Local State

In X.509v2, the set of authorities N consists of only certifi-
cate authorities (CAs), who perform the same tasks. Each CA
is responsible for issuing and revoking certificates as well as
providing information about the certificates it revoked. Each
CA maintains a local state s which contains the following
information:
• s.serial : a counter for the issued certificates; initialized

to 0.
• s.ι : the global identifier of the entity.
• s.κ : the system’s security parameter.
• s.sk : the secret signing key.
• s.pk : the public verification key.
• s.certs : the list of all certificate issued by the local

entity; initialized as an empty list.
• s.CRL : the list of all revoked certificates; initialized as

an empty list.
• s.SignedCRL : proof over the latest CRL.
• s.interval : when to produce an updated CRL proof.
• s.τ : the value of the current local clock of the specific

entity.
• s.initRound : a counter to track the initialization rounds;

initialized to 0.

B. Algorithms

We now present the implementations of the PKI algo-
rithms (Algorithms 9-14) specified in Definition 6 relevant
to X.509v2. We do not present the Receive, Monitor,PoM
and Audit algorithms as they are not required given X.509v2
design and goals. Specifically, there is no interaction between
the CAs and consequently, no need for Receive. X.509v2
does not provide advanced PKI security features, such as
transparency and equivocation, and therefore does not need
Monitor,PoM or Audit algorithms.

1) The Init Algorithm: The initialization algorithm Init
(Algorithm 9) operates in rounds. In the first round, each
entity stores (locally) its identifier, security parameter and
CRL update interval, and generates a private/public signing
key pair. In addition, it outputs a ‘Wake-up request’, to make
sure that the X.509v2.Wakeup algorithm will be executed at
the inputted interval s.interval. In the second round, the
algorithm outputs the local entity’s public key, according to
the convention discussed in §V-A. In the third and last round,
the algorithm receives the public keys of all other entities
and outputs those keys. The third steps is required to support
secure communication assumptions described in theMX.509v2

∆clk

model.
2) The Issue Algorithm: The certificate issuing algorithm

Issue (Algorithm 10) is used by a CA to issue an accountable
certificate ψ. An honest CA invokes the algorithm only if the

https://sites.google.com/view/provablysecure/moss
https://www.rfc-editor.org/rfc/rfc6960.txt
https://www.eff.org/observatory
https://www.namecoin.org/
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https://eprint.iacr.org/2000/067.pdf
https://www.itu.int/rec/T-REC-X.509-201610-I/en
https://www.itu.int/rec/T-REC-X.509-201610-I/en


Algorithm 9 X.509: initialization algorithm

1: procedure Init (ι, params, keys)

2: Switch s.initRound

3: case 1:

4: s.initRound← 2 . Expect next round

5: return (‘PubKey’, s.ι, s.pk) . Output public key, see §V-A

6: case 2:

7: s.initRound← 3 . Indicates init process done

8: return keys . Output inputted public keys

9: default:

10: s.ι← ι . Store identifier

11: s.κ← params.κ . Store security parameter

12: s.interval← params.interval . Store CRL interval

13: (s.sk, s.pk)← S.Gen(s.κ) . Generate signature keys

14: s.initRound← 1 . Expect next round

15: return (‘Wake-up request’, s.interval) . Next wake-up for CRL up-
date

16: end switch

17: end procedure

Algorithm 10 X.509: certificate issuance algorithm

1: procedure Issue(subject, pub, from, to)

2: s.serial← s.serial + 1 . Increase counter

3: ψ ← (s.serial, subject, pub, from,

4: to, s.ι, s.τ) . Initialize certificate fields

5: ψ.σ ← S.Sign(s.sk, ψ) . Sign certificate

6: s.certs += ψ . Store certificate locally

7: ρ← (ACC, ψ.serial, s.ι, ψ, ψ.σ, ψ.τ) . Accountability attestation

8: return (ψ, {ρ})

9: end procedure

Algorithm 11 X.509: certificate revocation algorithm

1: procedure Revoke(ψ)

2: if ψ /∈ s.certs or ψ.to < s.τ then

3: return ⊥ .
ψ was issued by another CA
or is expired

4: end if

5: if ψ.serial /∈ s.CRL then . If ψ was not already revoked

6: s.CRL += ψ.serial . Add to local CRL

7: end if

8: return {}

9: end procedure

Algorithm 12 X.509: time-based operations

1: procedure Wakeup (DATA)

2: tbs← {‘CRL’, s.ι, s.τ, s.CRL} . Local CRL data to be signed

3: σ ← S.Sign(s.sk, tbs) . Sign CRL data

4: s.SignedCRL← (tbs, σ) . Store proof locally

5: return (‘Wake-up request’, s.interval) .
Set next wake-up for CRL
update

6: end procedure

Algorithm 13 X.509: certificate attestation algorithm

1: procedure Attest(ψ, attr, α)

2: if ψ /∈ s.certs or . ψ issued by another CA

3: attr /∈ {REV,NREV} or . or attr not supported

4: (attr = REV and ψ.serial /∈ s.CRL) or

(attr = NREV and ψ.serial ∈ s.CRL) then
.

or wrong req. (attest
non-revoked ψ as re-
voked or vice-versa)

5: return ⊥

6: end if

7: if α = ‘CRL’ then

8: ρ← (attr, ψ.serial, s.SignedCRL) . attr attestation

9: else if α = ‘OCSP’ then

10: tbs← {attr, α, ψ.serial, s.ι, s.τ} . OCSP data to be signed

11: σ ← S.Sign(s.sk, tbs) . Sign OCSP data

12: ρ← (attr, tbs, σ) . attr attestation

13: end if

14: return ρ

15: end procedure

Algorithm 14 X.509: stateless validation algorithm

1: procedure WasValid(ψ, pk, ρ)

2: if ρ.attr = ‘ACC’ then . Check accountability

3: return S.Ver(pk, ψ, ρ.σ) . Verify signature

4: else if ρ.attr = ‘REV’ then . Check revocation

5: if ρ.α = ‘CRL’ then . If CRL is used

6: return ψ.serial ∈ ρ.tbs.CRL . Ensure ψ is in the CRL

7: and S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed CRL

8: else if ρ.α = ‘OCSP’ then . If OCSP is used

9: return ψ.serial ∈ ρ.tbs and

S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed OCSP

10: end if

11: else if ρ.attr = ‘NREV’ then . Check non-revocation

12: if ρ.α = ‘CRL’ then . If CRL is used

13: return ψ.serial /∈ ρ.tbs.CRL . Ensure ψ is not in the
CRL

14: and S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed CRL

15: else if ρ.α = ‘OCSP’ then . If OCSP is used

16: return S.Ver(pk, ρ.tbs, ρ.σ) . Ensure signed OCSP

17: end if

18: end if

19: return ⊥ . In any other case

20: end procedure



requesting client is eligible for the subject to be included in
ψ; the specific process of verifying such eligibility varies from
CA to CA and is beyond the scope of this paper. The algorithm
uses the signing algorithm S.Sign to produce a signature
over the specific certificate fields (its serial number, subject,
public information, validity period, issuer identity, and time of
issuance). The resulting signature serves as the accountability
proof, and therefore, the accountability attestation outputted
along with the certificate contains the certificate and proof.
The algorithm stores the certificate locally and then outputs
the certificate along with the accountability attestation.

3) The Revoke Algorithm: The certificate revocation
Revoke algorithm (Algorithm 11) is used by an eligible CA
to revoke a certificate ψ. In X.509v2, an eligible CA is the
one who initially issued the specific certificate. CAs revoke
certificates which are not expired or already revoked at the
time of the revocation request. Similarly to the process of
issuing certificates, an honest CA revokes a certificate only
following a legitimate revocation request from the certificate
subject.

In X.509v2, CAs revoke a certificate by locally adding it
to their CRLs; however, CAs do not immediately produce and
output a proof of revocation. Such a proof is only produced
later on: either by issuing a periodic CRL update or in response
to an OCSP request.

4) The Wakeup Algorithm: The time-based operations
Wakeup algorithm (Algorithm 12) is used in X.509v2 for only
one operation. Namely, whenever it is time to re-publish the
latest CRL, the algorithm is executed. The algorithm takes the
latest CRL, signs it and store the signature locally, so it can be
retrieved via the Attest algorithm (Algorithm 13). According
to the rfc, the CRL should be republished periodically, even if
no new certificates were revoked. Specifically, each publication
contains the next update time, and the next publication should
occur before the latest one ‘expires’. In practice, many CAs
publish updated CRLs frequently, a lot before the ‘next update’
statement; some even republish the CRL after every certificate
revocation. Therefore, the Wakeup algorithm outputs the next
wake-up request time, specifying when the next CRL update
will occur. CAs who wish to sign the CRL after every
revocation can do so by outputing a matching wake-up request
in the Revoke algorithm (Algorithm 11), which will result in
immediate execution of the X.509v2.Wakeup algorithm and
immediate publish of the latest CRL.

5) The Attest Algorithm: In X.509v2, the certificate attes-
tation algorithm Attest (Algorithm 13) supports two types of
attestations: REV, indicating that a certificate is revoked and
NREV, indicating that a certificate is not revoked. As in the
case of revocation, certificate attestation requests are handled
by the issuing CAs. Before issuing a specific attestation, the
algorithm verifies the request to ensure that only revoked
certificates receive the REV attestation and only non-revoked
certificates receive the NREV attestation. The algorithm does
not check the expiration date of the certificate as it only issues
an attestation to the existing state of the certificate and it does
not alter it.

An attestation can be produced for both revocation ap-
proaches, CRLs and OCSP, and the optional input α is used
to indicate the specific method. The output of the algorithm is
always in the same format and only the value of attr varies.
The procedure of verifying the attestation will vary based on
the specific attribute endorsed, however.

6) The WasValid Algorithm: The stateless certificate attes-
tation validation algorithm WasValid (Algorithm 14) is used
to check the validity of the following attestations: account-
ability, revocation and non-revocation. For accountability, the
algorithm verifies, using the provided public key pk, that the
certificate ψ was correctly signed by ψ.issuer at the time
specified in the attribute attestation ρ.

For revocation, the algorithm checks whether the certificate
is included in the (correctly) signed CRL provided in the attes-
tation or that the attestation contains a (correctly) signed OCSP
revocation statement. Correspondingly, for non-revocation, the
algorithm checks whether the certificate does not appear in the
signed CRL or that the attestation contains a signed OCSP
non-revocation statement.

APPENDIX B
MOSS’S EXECUTION PROCESS

See Algorithm 15 for the pseudo-code definition of MoSS’s
execution process. For more details about the framework,
see [48].

APPENDIX C
X.509V2 DETAILED SECURITY ANALYSIS

A. Preliminaries

We recall the definition and security game of a secure
signature scheme, which X. 509v2’s security relies upon.

Definition 7. A signature scheme S = (Gen,Sign,Ver)
consists of the following probabilistic algorithms:

• Key generation Gen(1κ) → (sk, vk), with input security
parameter 1κ and output private signing key sk and
public verification key vk.

• Signing Sign(sk,m) → (σ), with input private signing
key sk and a message m, and output signature σ.

• Verification Ver(vk,m, σ) → (>/⊥), with inputs public
verification key vk, message m and signature σ, and
output: true (>) if σ is a valid signature over m,
otherwise false (⊥).

Definition 8. A signature scheme S = (Gen,Sign,Ver) is
existentially unforgeable if for every PPT adversary A:

Pr
[
ExpEUS,A(1

κ) = 1
]
∈ Negl(1 κ)

where ExpEUS,A(1κ):

1) (sk, vk)← S.Gen(1κ)
2) Adversary A receives vk and has an oracle access to
S.Sign to sign any message it desires.

3) A outputs message m and signature σ.



Algorithm 15 Adversary-Driven Execution Process ExecA,P(params)

1: (sA,N)← A(params.A, params.P) .
Initialize adversary with
params.A, params.P

2: ∀i ∈ N : si ← P[‘Init’] (⊥, (i, params.P),⊥) . Initialize entities’ local state

3: s ← params . Initial exec state

4: e← 0 . Initialize loop’s counter

5: repeat

6: e← e+ 1 . Advance the loop counter

7: (ent[e], opr[e], type[e], inp[e], clk[e], τ [e])← A(sA) .

A selects entity ent[e], operation opr[e],
operation type type[e] ∈ {‘’,‘P’}, input
inp[e], clock clk[e], and real time τ [e] for
event e.

8:
(
sent[e], out[e], sec-out[e][·]

)
← P [opr[e]]

(
sent[e], inp[e], clk[e]

)
9: (sA, outA, F)← A (sA, out[e]) .

A decides when to terminate the loop
(outA 6= ⊥), based on out[e]

10: sLog[e]← (sA, sent[e], s) . Save state of all entities to return as part of
T

11: until outA 6= ⊥

12: T ← (outA, e,N, F, ent[·], opr[·], type[·], inp[·], clk[·], τ [·], out[·], sec-out[·][·], sLog[·])

13: Return T . Output transcript of run

4) The experiment outputs 1 if S.Ver(vk,m, σ) = > and
A did not use the oracle access on m, otherwise, the
experiment outputs 0.

B. The X. 509v2
OSign(sk,·)
N,ι,pk scheme

The first step towards the proof is to define a variation of the
X. 509v2SN scheme, denoted as X. 509v2

OSign(sk,·)
N,ι,pk , where the

cryptographic signing operations of entity ι ∈ N are performed
via an oracle instead by ι itself.

Definition 9. Let S be a signature scheme and let (sk, pk)←
S.Gen(1κ), for a given security parameter 1κ. Given a PPT
oracle OSign(sk, ·), let X. 509v2

OSign(sk,·)
N,ι,pk be a PKI scheme

where one designated authority ι ∈ N executes the X. 509v2SN
scheme with the following changes, and the rest of the author-
ities in N execute X. 509v2SN without any changes:

1) In the X. 509v2
OSign(sk,·)
N,ι,pk .Init algorithm, for entity ι,

replace the following line:

(s.sk, s.pk)← S.Gen(s.sec)

with:
(s.sk, s.pk)← (⊥, pk)

where pk is the public verification key of the sk signing
key, given as input to X. 509v2

OSign(sk,·)
N,ι,pk .

2) When ι runs an algorithm that use the signing key,
replace the use of the signing key with OSign(sk, ·)
oracle access. Namely, replace every:

S.Sign(s.sk, ·)

with matching:
OSign(sk, ·)

C. The Exp
Forge,M
A,X.509v2SN

Game

We now define the Exp
Forge,M
A,X.509v2SN

(1κ,N) game, where an

adversary A is executed with the X. 509v2
OSign(sk,·)
N,ι,pk scheme

defined in §C-B. A wins if it was able to produce a message m
and signature σ, where σ is a valid signature over m according
to the public key pk, which the adversary has no access to its
matching secret key sk, andA did not ask the oracle to sign m.
The motivation here is that if there exists an adversary A that
wins the Exp

Forge,M
A,X.509v2SN

(1κ,N) game, then such adversary
could be used to contradict the security of the signature scheme
itself (as we show below).

The Exp
Forge,M
A,X.509v2SN

(1κ,N) game:

1) Generate key pair (sk, pk)← S.Gen(1κ).
2) Randomly choose an authority ι R← N.
3) Execute A with the X. 509v2

OSign(sk,·)
N,ι,pk scheme, i.e.,

T ← Exec
A,X.509v2

OSign(sk,·)
N,ι,pk

(params)

4) A outputs message m and signature σ, i.e., (m,σ) ←
T.outA.

5) The experiment outputs 1 if:
a) S.Ver(pk,m, σ) = >
b) A did not use the oracle access on m.
c) A satisfies model M.
d) ι is an honest authority, i.e., ι ∈ N− F

Otherwise, the experiment outputs 0.

D. The Relation Between Exp
Forge,M
A,X.509v2SN

and the Security of
the Signature Scheme S

We now show that the existence of an adversary that
‘wins’ the Exp

Forge,M
A,X.509v2SN

game with non-negligible proba-
bility means that S is not a secure signature scheme.



Lemma 1. If there is a PPT adversary A that satisfies

Pr

[
Exp

Forge,MX.509v2
∆clk

A,X.509v2SN
(1κ,N) = 1

]
6∈ Negl(1κ) (4)

then S is not a secure signature scheme.

Proof. Assume to the contrary that such adversary A exists,
yet S is a secure signature scheme.

Following §C-C, if A ‘wins’ the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game

with non-negligible probability, then this means that, with non-
negligible probability, A outputs a message m and a valid
signature σ over m, for a random (sk, pk) and where A has
only the verification key pk and oracle access to OSign(sk, ·)
(with sk being the signing key). To ‘win’, A must not request
the oracle to sign m.

Therefore, according to definition of existential unforgeabil-
ity (Def. 8), the following holds for A

Pr
[
ExpEUA,S(1κ) = 1

]
6∈ Negl(1κ) (5)

thus contradicting the security of S.

We will now show that if X. 509v2SN does not satisfy any of
the requirements (accountability, revocation accountability and
non-revocation accountability), then an adversary A may win,

with non-negligible advantage, the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game.

E. Linking Accountability to the Exp
Forge,M
A,X.509v2 Game

We next show that if X. 509v2SN does not ensure account-
ability under model MX.509v2

∆clk
, then we can construct an

adversary that wins in the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game.

Claim 1. If X. 509v2SN does not satisfy accountability under
model MX.509v2

∆clk
, then there exists a PPT adversary AACC

such that

Pr

[
Exp

Forge,MX.509v2
∆clk

AACC,X.509v2SN
(1κ,N) = 1

]
6∈ Negl(1κ) (6)

Proof. From Definition 3, if X. 509v2SN does not sat-
isfy accountability under model MX.509v2

∆clk
, then there ex-

ists a PPT adversary AACC that satisfies MX.509v2
∆clk

, i.e.,
AACC |=poly

MX.509v2
∆clk

, yet

εACC
AACC,X.509v2SN

(params) 6∈ Negl(params.P.1κ) (7)

In other words, from Definition 1, AACC satisfies

Pr

[
ACC (T ) = ⊥, where

T ← Exec
AACC,X.509v2S

N
(params)

]
6∈ Negl(1κ) (8)

Note that for ACC (T ) = ⊥, the adversary must have shown
an accountability failure for some non-corrupt entity; let us
denote this party by ι′.

Now, the inputs and outputs (and T ) of an execution of

Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
with the a non-faulty entity ι, are identical

to these resulting from an execution of the ‘regular experi-
ment’ ExecAACC,X.509v2SN

(params) (with the same protocol,
adversary and random strings). This is since the OSign(sk, ·)
oracle returns exactly the same result as the signature function
it replaces. In particular, the transcript T of the execution is
independent of the random choice of the party ι in line 2 of

Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
. Since the behavior of ι is the same as

any other honest entity, this holds also when ι′ = ι; and since
ι was selected randomly, this occurs with probability at least
1
|N| . Hence:

εACC

AACC,X.509v2
OSign(sk,·)
N,ι,pk

(params) ≥
1

|N|
· εACC

AACC,X.509v2
S
N
(params)

(9)
which means that

εACC

AACC,X.509v2
OSign(sk,·)
N,ι,pk

(params) 6∈ Negl(params.P.1κ)

(10)
Therefore, following Definition 1, AACC satisfies

Pr

[
ACC (T ) = ⊥, where

T ← Exec
AACC,X.509v2

OSign(sk,·)
N,ι,pk

(params)

]
6∈ Negl(1κ) (11)

Now, all that is left to show is that if Eq. 11 holds then
Eq. 6 also holds. First, the return value of the accountability
predicate (Alg. 1) is ⊥, i.e., A wins, only if WasValid holds,
among other criteria. More precisely, A wins only if it outputs
a valid certificate ψ with an honest authority listed as issuer
ψ.issuer, an accountability attestation ρ (i.e., ρ.attr = ACC),
and the public key pk of ψ.issuer, although ψ.issuer did not
issue ψ (by invoking the X. 509v2SN.Issue algorithm). Namely,
it holds:

X. 509v2SN .WasValid(ψ, pk , ρ) = > (12)

Second, according to the implementation of WasValid
(Alg. 14), when given an accountability attestation (ρ.attr =
ACC), X. 509v2SN.WasValid returns S.Ver(pk, ψ, ρ.σ), i.e.,
returns > iff:

S.Ver(pk, ψ, ρ.σ) = > (13)

Lastly, the only place in X. 509v2SN where an honest au-
thority ι computes its keys is in the X. 509v2SN.Init algorithm
(Algorithm 9); specifically the sign/verify key pair is gen-
erated in line 13, using the S.Gen algorithm. Furthermore,
the signing key is only used in algorithms: X. 509v2SN.Issue,
X. 509v2SN.Wakeup, and X. 509v2SN.Attest, and only with the
S.Sign algorithm; however, certificates can only be issued in
X. 509v2 using the X. 509v2SN.Issue algorithm.

Thus, following Eq. 11, the value described in Eq. 12
holds with non-negligible probability, and as a result, Eq. 13
also holds with non-negligible probability. Accordingly, with
accordance to X. 509v2’s implementation, adversary AACC is
a PPT adversary that for a message m = ψ was able to
generate a signature σ = ρ.σ that is validated with non-
negligible probability with the verification key pk, without



access to the signing key, and without ever having the honest
authority ψ.issuer sign m. Hence, such AACC adversary
satisfies Eq. 6.

F. Linking Revocation Accountability, and Non-Revocation
Accountability to the Exp

Forge,M
A,X.509v2 Game

We now show that if X. 509v2SN does not ensure revocation
accountability under model MX.509v2

∆clk
, then we can construct

an adversary that wins in the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game.

Claim 2. If X. 509v2SN does not satisfy revocation account-
ability under modelMX.509v2

∆clk
, then there exists a PPT adver-

sary AReACC such that

Pr

[
Exp

Forge,MX.509v2
∆clk

AReACC,X.509v2SN
(1κ,N) = 1

]
6∈ Negl(1κ) (14)

Proof. From Definition 3, if X. 509v2SN does not satisfy re-
vocation accountability under model MX.509v2

∆clk
, then there

exists a PPT adversary AReACC that satisfies MX.509v2
∆clk

, i.e.,
AReACC |=poly

MX.509v2
∆clk

, yet

εReACC
AReACC,X.509v2SN

(params) 6∈ Negl(params.P.1κ) (15)

In other words, from Definition 1, AReACC satisfies

Pr

[
ReACC (T ) = ⊥, where

T ← Exec
AReACC,X.509v2S

N
(params)

]
6∈ Negl(1κ) (16)

Note that for ReACC (T ) = ⊥, the adversary must have
shown a revocation accountability failure for some non-corrupt
entity; let us denote this party by ι′.

Now, the inputs and outputs (and T ) of an execution of

Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
with the a non-faulty entity ι, are identical

to these resulting from an execution of the ‘regular experi-
ment’ ExecAReACC,X.509v2SN

(params) (with the same protocol,
adversary and random strings). This is since the OSign(sk, ·)
oracle returns exactly the same result as the signature function
it replaces. In particular, the transcript T of the execution is
independent of the random choice of the party ι in line 2 of

Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
. Since the behavior of ι is the same as

any other honest entity, this holds also when ι′ = ι; and since
ι was selected randomly, this occurs with probability at least
1
|N| . Hence:

εReACC

AReACC,X.509v2
OSign(sk,·)
N,ι,pk

(params) ≥
1

|N|
·εReACC

AReACC,X.509v2
S
N
(params)

(17)
which means that

εReACC

AReACC,X.509v2
OSign(sk,·)
N,ι,pk

(params) 6∈ Negl(params.P.1κ)

(18)
and therefore, following Definition 1, AReACC satisfies

Pr

[
ReACC (T ) = ⊥, where

T ← Exec
AReACC,X.509v2

OSign(sk,·)
N,ι,pk

(params)

]
6∈ Negl(1κ) (19)

Now, all that is left to show is that if Eq. 19 holds then
Eq. 14 also holds. First, according to the description of

the revocation accountability requirement (Alg. 2), the return
value of the revocation accountability predicate is ⊥, i.e., A
wins, only if, among other criteria, holds:

X. 509v2SN .WasValid(ψ, pk , ρ) (20)

for a certificate ψ outputted by the adversary, ρ is non-
revocation accountability attestation (ρ.attr = ReACC), and
pk is the public key of ρ.issuer (the issuer of the certificate),
that did not revoke ψ by executing the X. 509v2SN.Revoke
algorithm.

Second, according to the implementation of
X. 509v2SN.WasValid, as described in Alg. 14, the algorithm
executes

S.Ver(pk, ρ.tbs, ρ.σ) (21)

Lastly, the only place in X. 509v2SN where an honest au-
thority ι computes its keys is in the X. 509v2SN.Init algorithm
(Algorithm 9); specifically the sign/verify key pair is gen-
erated in line 13, using the S.Gen algorithm. Furthermore,
the signing key is only used in algorithms: X. 509v2SN.Issue,
X. 509v2SN.Wakeup, X. 509v2SN.Attest, and only with the
S.Sign algorithm; however, certificates can only be have the
non-revocation accountability attribute in X. 509v2 using the
X. 509v2SN.Attest algorithm.

Thus, following Eq. 19, the value described in Eq. 20 holds
with non-negligible probability, and as a result, Eq. 21 also
holds with non-negligible probability. Therefore, adversary
AReACC is a PPT adversary that for a message m = ρ.tbs
was able to generate a signature σ = ρ.σ that is validated
with non-negligible probability with the verification key pk,
without access to the signing key, and without ever having the
honest authority ρ.ι sign m. Hence, such AReACC adversary
satisfies Eq. 14.

We now show that if X. 509v2SN does not ensure non-
revocation accountability under modelMX.509v2

∆clk
, then we can

construct an adversary that wins in the Exp
Forge,MX.509v2

∆clk

A,X.509v2SNgame.

Claim 3. If X. 509v2SN does not satisfy non-revocation ac-
countability under model MX.509v2

∆clk
, then there exists a PPT

adversary ANReACC such that

Pr

[
Exp

Forge,MX.509v2
∆clk

ANReACC,X.509v2SN
(1κ,N) = 1

]
6∈ Negl(1κ) (22)

Proof. From Definition 3, if X. 509v2SN does not satisfy non-
revocation accountability under model MX.509v2

∆clk
, then there

exists a PPT adversary ANReACC that satisfies MX.509v2
∆clk

, i.e.,
ANReACC |=poly

MX.509v2
∆clk

, yet

εNReACC
ANReACC,X.509v2SN

(params) 6∈ Negl(params.P.1κ) (23)

In other words, from Definition 1, ANReACC satisfies

Pr

[
NReACC (T ) = ⊥, where

T ← Exec
ANReACC,X.509v2S

N
(params)

]
6∈ Negl(1κ) (24)



Note that for NReACC (T ) = ⊥, the adversary must have
shown a non-revocation accountability failure for some non-
corrupt entity; let us denote this party by ι′.

Now, the inputs and outputs (and T ) of an execution of

Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
with the a non-faulty entity ι, are identical

to these resulting from an execution of the ‘regular experiment’
ExecANReACC,X.509v2SN

(params) (with the same protocol, ad-
versary and random strings). This is since the OSign(sk, ·)
oracle returns exactly the same result as the signature function
it replaces. In particular, the transcript T of the execution is
independent of the random choice of the party ι in line 2 of

Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
. Since the behavior of ι is the same as

any other honest entity, this holds also when ι′ = ι; and since
ι was selected randomly, this occurs with probability at least
1
|N| . Hence:

εNReACC

ANReACC,X.509v2
OSign(sk,·)
N,ι,pk

(params) ≥
1

|N|
·εNReACC
ANReACC,X.509v2

S
N
(params)

(25)
which means that

εNReACC

ANReACC,X.509v2
OSign(sk,·)
N,ι,pk

(params) 6∈ Negl(params.P.1κ)

(26)
and therefore, following Definition 1, ANReACC satisfies

Pr

[
NReACC (T ) = ⊥, where

T ← Exec
ANReACC,X.509v2

OSign(sk,·)
N,ι,pk

(params)

]
6∈ Negl(1κ)

(27)

Now, all that is left to show is that if Eq. 27 holds then
Eq. 22 also holds.

First, according to the description of the non-revocation
accountability requirement (Alg. 3), the return value of the
non-revocation accountability predicate is ⊥, i.e., A wins, only
if, among other criteria, holds:

X. 509v2SN .WasValid(ψ, pk , ρ) (28)

for a certificate ψ outputted by the adversary, ρ is non-
revocation accountability attestation (ρ.attr = NReACC), and
pk is the public key of ρ.issuer (the issuer of the certificate),
is an honest authority that did not revoke ψ by executing the
X. 509v2SN.Revoke algorithm.

Second, according to the implementation of
X. 509v2SN.WasValid, as described in Alg. 14, the algorithm
executes

S.Ver(pk, ρ.tbs, ρ.σ) (29)

Lastly, the only place in X. 509v2SN where an honest au-
thority ι computes its keys is in the X. 509v2SN.Init algorithm
(Algorithm 9); specifically the sign/verify key pair is gen-
erated in line 13, using the S.Gen algorithm. Furthermore,
the signing key is only used in algorithms: X. 509v2SN.Issue,
X. 509v2SN.Wakeup, X. 509v2SN.Attest, and only with the
S.Sign algorithm; however, certificates can only be have the

non-revocation accountability attribute in X. 509v2 using the
X. 509v2SN.Attest algorithm.

Thus, following Eq. 27, the value described in Eq. 28 holds
with non-negligible probability, and as a result, Eq. 29 also
holds with non-negligible probability. Therefore, adversary
ANReACC is a PPT adversary that for a message m = ρ.tbs
was able to generate a signature σ = ρ.σ that is validated
with non-negligible probability with the verification key pk,
without access to the signing key, and without ever having the
honest authority ρ.ι sign m. Hence, such ANReACC adversary
satisfies Eq. 22.

G. Completing the Proof

Now, we revisit Theorem 1, and complete its proof.

Theorem 1. Let S be an existentially-unforgeable signature
scheme and let N be a set of entities. Then, X. 509v2SN
satisfies the accountability, revocation accountability and
non-revocation accountability specifications under model
MX.509v2

∆clk
.

Proof. Assume that X. 509v2SN does not achieve accountabil-
ity, and we will show that this implies that S is not a secure
signature scheme. According to Claim 1, this means there

exists a PPT adversary A that wins the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game with non-negligible probability. Note that Claim 1 refers
to this adversary asAACC; the argument follows by substituting
A in Eq. (6).

Similarly, from Claims 2,3, if X. 509v2 does not achieve
revocation and non-revocation accountability, then there is a

PPT adversary that wins the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game with

non-negligible probability.
However, Lemma 1 shows that if there exists a PPT ad-

versary A that wins the Exp
Forge,MX.509v2

∆clk

A,X.509v2SN
game with non-

negligible probability, then S is not a secure signature scheme.
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