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Abstract

The basic Supersingular Isogeny Diffie-Hellman (SIDH) key agreement
protocol is insecure due to an attack described by Galbraith, Petit, Shani
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1 Introduction
Despite its relatively young age isogeny-based cryptography has become an attractive
candidate for building quantum resistant cryptosystems among the other branches of
post-quantum cryptography. This is partly due to the very small key sizes it offers.
The Supersingular Isogeny Diffie-Hellman (SIDH) key exchange protocol was introduced
by Jao and De Feo [3] as a promising quantum secure cryptographic primitive and
subsequently improved by various people [4, 1, 2]. Besides offering the smallest key
sizes in post-quantum cryptography, SIDH features a Diffie-Hellman style message flow.
Alice and Bob exchanges their public curves together with the images of the pairs of
torsion points under their secret isogenies. This message flow enables them to arrive
at isomorphic curves so that they can use the common j-invariant as the shared secret.
Unfortunately, the static variant of SIDH is not secure due to an attack described by
Galbraith et al. [5]: Bob maliciously sends to Alice malformed points so that algorithm
success or failure reveals some bits of the Alice’s private key. Therefore, it is possible
for an attacker to obtain the victim’s long-term private key over multiple sessions.

Previously, Kirkwood et al. identified the key leakage problem in the isogeny-based
key agreement schemes [6]. The usual way to solve this problem is to validate public
keys of the participants as a requirement of the protocol specification. However, unlike
classical public key cryptosystems, in supersingular isogeny setting validating public keys
directly, i.e., performing a check on the key itself, is a non-trivial problem. To circumvent
this issue Kirkwood et al. proposed the so-called indirect key validation that can be
performed using a Fujisaki-Okamoto type transformation. This solution requires one of
the parties to disclose its private key by the end of the session. Therefore, Kirkwood et
al.’s approach is not satisfactory if static-static key agreement is desired. As a side note
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it seems static-static key agreement (with ephemeral values) is possible if both sides
encapsulates the other side’s public key (compare with AKE-SIDH protocol in [10]).

The problem of direct key validation was studied by Costello et al. [1, Section 9]
in the SIDH setting, whereby they show how to check that the two torsion points are
of full order and independent within their algorithm suite. As is shown by Galbraith
et al. [5] an attacker can modify the torsion points in a way that passes these checks
and still learn the secret bits of the receiver’s private key. Moreover, the known direct
key validation methods are not enough to prevent Galbraith et al.’s attack. A solution
to this problem would be validating the existence of a corresponding isogeny which is
the private key of the sender. In [11] Urbanik and Jao has shown that determining the
existence of such an isogeny (key validation problem) is equivalent to the supersingular
isogeny problem in which the security of SIDH lies. An alternative route would be
to employ a zero-knowledge proof of knowledge protocol to this end, such as the one
described by Jao, De Feo and Plût [4, Section 3.1], possibly with the aid of a certification
authority [9, Section 7.2].

In [8] Azarderakhsh, Jao and Leonardi introduced a generic transformation to make
the key agreement protocols satisfying certain security properties immune to the attacks
using specialized public keys to leak information about the private key such as the Gal-
braith et al.’s attack. This transformation requires the use of k different keys for each
party and to establish the shared secret k2 key exchange must be performed for each
of the k2 combinations of those keys. It has shown that SIDH satisfies the necessary
security properties and k = 92 is enough to guarantee 128-bit quantum security level.

Our Contributions. In this note we present two variants of SIDH to achieve static-
static key agreement both featuring a Diffie-Hellman style message flow. Two attack
models can be defined in terms of access to an oracle in this setting. In the first model
given the (possibly malformed) public key of the attacker oracle answers whether the
victim and the attacker would compute the same shared secret; and in the second model
oracle outputs the victim’s shared secret.

• Protocol A: Each party uses two “complementary” SIDH private keys and to
establish the shared secret four instances of SIDH protocol must be performed.
This protocol is secure against Galbraith et al.’s attack in the first model, but not
secure in the second model.

• Protocol B: Each party uses a single SIDH private key and computes the j-
invariants of two curves which are distant away from each other by specific paths
in the isogeny graph. This protocol is secure against Galbraith et al.’s attack in
the second model.

In Section 2 we review the background material and fix a notation. Section 3 briefly
introduces two attack models that is relevant to this work. In Section 4 and Section 5
we describe and discuss two possible solutions, Protocol A and Protocol B, respectively
to the problem of static-static key exchange from supersingular isogenies. Finally, in
Section 6 we conclude the paper.

2 Preliminaries
Elliptic Curves and Isogenies. For general background on elliptic curves the reader
may refer to [12]. Let E and E′ be two elliptic curves defined over the finite field Fq. An

2



isogeny φ : E → E′ is a rational map (i.e., quotients of polynomials with coefficients from
Fq) which is also a group homomorphism. For a separable isogeny its degree (as a rational
map) is equal to the order of its kernel (as a homomorphism). The map φ is called an
isomorphism provided that only the identity OE lies in the kernel. For a positive integer
m, the map [m] taking the point P on E to the point mP (scalar multiplication by m)
is an example of an isogeny from E to itself. Each isogeny φ : E → E′ has a dual isogeny
φ̂ : E′ → E satisfying φ ◦ φ̂ = [m] and φ̂ ◦ φ = [m], where m is the degree of φ. We say
φ is a m-isogeny if its degree is equal to m.

The set of isogenies from E to itself over the algebraic closure Fq of Fq together
with the zero map taking any point on E to the identity element form a ring, where
addition is pointwise addition and multiplication is function composition. This ring,
denoted End(E), is called the endomorphism ring of E. The curve E is said to be a
supersingular curve if End(E) is an order in a quaternion algebra. Otherwise, we say E
is ordinary. If E is a supersingular elliptic curve, any curve which is isogenous to E is
also supersingular.

Any two elliptic curves E and E′ over Fq share the same j-invariant if and only if they
are isomorphic over Fq. Thus, the isomorphism class of E over Fq can be represented
by its j-invariant j(E). If the curve is given in Weierstrass form E : y2 = x3 + ax + b
with a, b ∈ Fq, then the associated j-invariant is

j(E) = 1728 4a3

4a3 + 27b2 ∈ Fq.

Since any isogeny has a dual, being isogenous is an equivalence relation over the set of
isomorphism classes of elliptic curves over Fq. If E is a supersingular curve, then its
j-invariant lies in Fp2 , where p is the characteristic of the field Fq. Therefore, there
are only finitely many isomorphism classes of supersingular elliptic curves. In fact this
number is approximately p/12 [12, V.4.1].

Up to isomorphism an isogeny is determined uniquely by its kernel. That is, if
φ : E → E′ and ψ : E → E′′ are two isogenies having the same kernel K, then there
exists an isomorphism ι : E′ → E′′ such that ι ◦φ = ψ. Given a finite subgroup K of E,
the corresponding isogeny φ can be calculated by using Vélu’s formulas [13]. We shall
denote the image curve φ(E) by E/K.

For a positive integer m, the m-torsion subgroup E[m] is defined as the kernel of
[m], the multiplication by m mapping. Let E be a supersingular elliptic curve defined
over Fp2 , where p is the characteristic of the field; and let ` be a positive integer which is
not divisible by p. Then the `-torsion subgroup E[`] is isomorphic to Z/`Z⊕Z/`Z and,
consequently, up to isomorphism there are ` + 1 distinct isogenies whose domain is E
and degree is `. Let L be a set of primes. The isogeny graph X(Fq, L) is defined as the
directed graph whose vertices are isomorphism classes of supersingular curves over Fq
labeled with the associated j-invariants and edges are equivalence classes of `-isogenies
where ` ∈ L.

SIDH Key Exchange. SIDH requires a prime of special form p = `eA
A `eB

B f ± 1,
where `A and `B are small prime numbers and f is a cofactor. Normally, we choose
`eA
a ≈ `eB

B ≈ 2λ, where λ is the security parameter. Construct a supersingular elliptic
curve E over Fp2 so that the number of points of E(Fp2) is (`eA

A `eB
B f)2. To motivate the

construction of SIDH, let us consider the following commutative diagram, where TA and
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Table 1: SIDH Key Exchange Protocol

Public parameters: E, PA, QA, PB , QB

Alice Bob

α ∈R Z/`eA

A Z β ∈R Z/`eB

B Z

φA : E → E/〈PA + αQA〉 φB : E → E/〈PB + βQB〉

EA := φA(E) EB := φB(E)

RB := φA(PB), SB := φA(QB) RA := φB(PA), SA := φB(QA)
(EA,RB ,SB)−−−−−−−−→
(EB ,RA,SA)←−−−−−−−−

ψA : EB → EB/〈RA + αSA〉 ψB : EA → EA/〈RB + βSB〉

EBA := ψA(EB) EAB := ψB(EA)

j(EBA) j(EAB)

TB are some points of order `eA
A and `eB

B respectively:

E E/〈TA〉

E/〈TB〉 E/〈TA, TB〉

φ

ψ

Notice that the isogenies φ and ψ determines two paths consisting of `A- and `B-
isogenies respectively in the isogeny graph X(Fp2 , {`A, `B}). Using Vélu’s formulas di-
rectly to compute φ or ψ requires exponentially large space in terms of the security
parameter λ. However, we can write them as the composition of `A- or `B-isogenies
so that φ or ψ would be computed by applying Vélu’s formulas to those low degree
isogenies. To make this diagram commutative one should also compute the isogenies
φ′ : E/〈TB〉 → E/〈TA, TB〉 and ψ′ : E/〈TA〉 → 〈TA, TB〉 taking 〈ψ(TA)〉 and 〈φ(TB)〉
respectively to the identity element in the image curve. Given E, E/〈TA〉 and E/〈TB〉
it is supposed to be difficult to find E/〈TA, TB〉.

With those remarks, SIDH key exchange proceeds as follows. Take a pair of basis
points PA, QA generating the torsion subgroup E[`eA

A ] and a pair of basis points PB, QB
generating E[`eB

B ]. Alice chooses an integer α uniformly at random from Z/`eA
A Z and

computes the isogeny φA : E → EA = E/〈PA + αQA〉. Alice’s private key is α and
her public key is the tuple (EA, φA(PB), φA(QB)). Similarly, Bob chooses an integer
β ∈R Z/`eB

B Z and form his public key (EB, φB(PA), φB(QA)), where φB : E → EB =
E/〈PB + βQB〉. Upon receiving each other’s public key Alice and Bob compute the
j-invariant of E/〈PA +αQA, PB + βQB〉 as their shared secret (see Table 1 for details).

Notice that to arrive at the same isomorphism class of a curve, parties must share
with each other the image of some torsion points under their secret isogenies. The SIDH
Problem can be formulated as follows.

Problem S (SIDH Problem). With the notation of Table 1, given E, PA, QA, PB, QB,
EA, RA, SA, EB, RB, SB to determine j(EAB).

Galbraith et al.’s Attack. If T is a point on E of order `e, then the isogeny ψ : E →
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E/〈T 〉 can be factored into `-isogenies

E = E1
ψ1−→ E2

ψ2−→ · · · ψe−→ Ee+1 = E/〈T 〉,

where T1 = T, Ti+1 = ψi(Ti) and the kernel of ψ1 is 〈`e−1T 〉, the kernel of ψi, for
i > 1, is 〈`e−iψi−1(Ti−1)〉. With the notation of Table 1, put E := EB, `e := `eA

A ,
T := RA +αSA and ψ := ψA. Write α = α′`A +α0 where α0 ∈ {0, 1, . . . , `A − 1}. Since
`e−1T = `eA−1

A RA +α0`
eA−1
A SA, the value of α0 determines which neighbor of EB in the

isogeny graph X(Fp2 , {`A}) would be ψ1(EB).
Suppose Bob acts maliciously to learn about the secret bits of Alice’s private key α.

To be more precise, Bob makes a guess α∗0 on the value of α0 and accordingly modifies
the torsion points RA and SA as

R∗A = RA − α∗0`
eA−1
A SA, S∗A = (1 + `eA−1

A )SA.

Upon receiving the tuple (EB, R∗A, S∗A) Alice would compute E∗BA = EB/〈R∗A + αS∗A〉
which is isomorphic to EAB = EA/〈RB + βSB〉 if α∗0 = α0. In other words, Bob learns
some of the least significant bits of Alice’s private key after a successful run of the
protocol. Actually, even the failure of key agreement reveals one bit of information.
Moreover, algorithm failure implies that the curve E∗BA = EB/〈R∗A+αS∗A〉 would be `2A-
isogenous to EBA = EB/〈RA+αSA〉. To see this observe that the subgroups 〈R∗A+αS∗A〉
and 〈RA + αSA〉 of EB intersects at a subgroup of order `eA−1

A . In other words, even
in the case of failure, Bob knows that there are at most `A(`A + 1) possibilities for the
value of j(E∗BA) computed by Alice.

This attack can be turned into an adaptive attack in which the attacker learns the
private key of the victim over multiple sessions. Let αi be the coefficient of `iA in the
base `A expansion of α and write

α = α′`iA + κi with κi < `iA.

Suppose Bob knows κi. Then he makes a guess α∗i on the value of αi and modifies his
public key by setting

R∗A = RA − (α∗i `iA + κi)`eA−i−1
A SA, S∗A = (1 + `eA−i−1

A )SA.

It can be easily verified that success or failure of the key agreement reveals at least one
bit of information as in the previous case. We shall remark that the values of R∗A and
S∗A can be further fine tuned by a scaling so that the known key validation methods
would not detect them.

3 Attack Models
Following [5], two attack models can be defined in terms of access to an oracle. Let
E1, E2 be two elliptic curves isogenous to E and let T1, T2 be two torsion points in
E1[`e]. We assume Bob may act dishonestly and use specially designed public key in a
key agreement.

• Oracle1(E1, T1, T2, E2) =
{

1 if j(E2) = j(E1/〈T1 + αT2)〉
0 otherwise

Normally, Bob feeds this oracle with E1 = EB, T1 = R∗A, T2 = S∗A, E2 =
EA/〈RB + βSB〉 and sees whether the key agreement would be successful if Alice
computes the shared secret with (EB, R∗A, S∗A).
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• Oracle2(E1, T1, T2) = E1/〈T1 + αT2〉
This oracle outputs the shared secret computed by Alice if the provided public
key is (E1, T1, T2). Recall that, in a SIDH instance, even if the key agreement
results in failure, Bob would still guess the shared secret computed by Alice with
high probability. By calling this oracle Bob may verify his guess.

4 Protocol A
Description. We choose a prime of special form p = `eA

A `eB
B f ± 1 and construct a

supersingular elliptic curve E so that the number of elements in E(Fp2) is (`eA
A `eB

B f)2.
As in the case of SIDH key exchange protocol, we take a pair of basis points PA, QA
generating the torsion subgroup E[`eA

A ] and a pair of basis points PB, QB generating
E[`eB

B ]. Alice chooses an integer α uniformly at random from Z/`eA
A Z. Let α be the

bitwise complement of α. Alice computes two isogenies

φA : E → EA = E/〈PA + αQA〉 and φA : E → EA = E/〈PA + αQA〉.

Alice’s private key is α and her public key is (EA, φA(PB), φA(QB), EA, φA(PB), φA(QB)).
Similarly, Bob chooses an integer β ∈R Z/`eB

B Z, computes isogenies

φB : E → EB = E/〈PB + βQB〉 and φB : E → EB = E/〈PB + βQB〉

and form his public key (EB, φB(PA), φB(QA), EB, φB(PA), φB(QA)), where β is the
bitwise complement of β. Notice that each party uses a public key which is equivalent
to the concatenation of two SIDH public keys. Upon receiving each other’s public key,
Alice and Bob computes the j-invariants of the curves obtained by completing all possi-
ble four SIDH key exchange instance on their side. Let H be a preimage resistant hash
function. The shared secret is the value of the function H computed on the concatena-
tion of four j-invariants (see Table 2 for details).

Discussion. The correctness of Protocol A follows from the correctness of SIDH key
exchange protocol. This protocol is secure against Galbraith et al.’s attack if the attacker
has access to Oracle1. Suppose Bob made a guess on some bits of Alice’s private key α
and altered the torsion points RA and SA into R∗A and S∗A. Observe that whether Bob
is right on his guess or not, the session would end-up with algorithm failure, since the
equalities

j(EBA) = j(E∗BA) and j(EBA) = j(E∗
BA

)

does not hold simultaneously.
Protocol A is not secure against Galbraith et al.’s attack if the attacker has access to

Oracle2. Recall that even if key agreement results in failure, Bob can compute a small
set of possible values for the shared secret computed by Alice. By making a query to
Oracle2 Bob compares Alice’s shared secret with the possible values and so can decide
whether his guess on the bits of α was right or wrong. Thus, Bob would be able to
proceed with the attack.

Protocol A is very similar to the generic solution presented in [8] to make SIDH key
exchange protocol secure against Galbraith et al.’s type attacks. This transformation
requires the use of k different SIDH key pair by each party and k2 SIDH instance must
be performed to compute the shared secret. Since private keys are independent, there
is always a possibility for the attacker to successfully guess secret key bits. However,
by taking k large enough this possibility can be made negligible. Further, even the
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Table 2: Protocol A

Public parameters: E, PA, QA, PB , QB , H

Alice Bob

α ∈R Z/`eA

A Z β ∈R Z/`eB

B Z

φA : E → E/〈PA + αQA〉 φB : E → E/〈PB + βQB〉

EA := φA(E) EB := φB(E)

RB := φA(PB), SB := φA(QB) RA := φB(PA), SA := φB(QA)

φA : E → E/〈PA + αQA〉 φB : E → E/〈PB + βQB〉

EA := φA(E) EB := φB(E)

RB := φA(PB), SB := φA(QB) RA := φB(PA), SA := φB(QA)

α, (EA, RB , SB , EA, RB , SB) static
parameters

β, (EB , RA, SA, EB , RA, SA)

(EA,RB ,SB ,E
A

,RB ,SB)
−−−−−−−−−−−−−−−−→

(EB ,RA,SA,E
B

,RA,SA)
←−−−−−−−−−−−−−−−

ψA : EB → EB/〈RA + αSA〉 ψB : EA → EA/〈RB + βSB〉

EBA :=ψA(EB), jBA :=j(EBA) EAB :=ψB(EA), jAB :=j(EAB)

ψA : EB → EB/〈RA + αSA〉 ψB : EA → EA/〈RB + βSB〉

EBA :=ψA(EB), jBA :=j(EBA) EAB :=ψB(EA), jAB :=j(EAB)

ψA : EB → EB/〈RA + αSA〉 ψB : EA → EA/〈RB + βSB〉

EBA :=ψA(EB), jBA :=j(EBA) EAB :=ψB(EA), jAB :=j(EAB)

ψA : EB → EB/〈RA + αSA〉 ψB : EA → EA/〈RB + βSB〉

EBA :=ψA(EB), jBA :=j(EBA) EAB :=ψB(EA), jAB :=j(EAB)

H(jBA, jBA, jBA, jBA) H(jAB , jAB , jAB , jAB)
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queries to Oracle2 might become useless as the number of possibilities for the shared
secret computed by Alice would be to much.

In Protocol A parties use a secret key and its bitwise complement in two different
SIDH instance with the same public key. This might be a concern.

Problem A. With the notation of Table 2, given E, PA, QA, PB, QB, EA, RA, SA,
EA, RA, SA, EB, RB, SB, EB, RB, SB to determine H(jAB, jAB, jAB, jAB).

5 Protocol B
Description. We choose a prime of special form p = `eA

A `eB
B f ± 1 and construct a

supersingular elliptic curve E so that the number of elements in E(Fp2) is (`eA
A `eB

B f)2.
As in the case of SIDH key exchange protocol, we take a pair of basis points PA, QA
generating the torsion subgroup E[`eA

A ] and a pair of basis points PB, QB generating
E[`eB

B ]. Let eA = fA + gA and eB = fB + gB. Typically, we require `fA
A ≈ `gA

A ≈ `fB
B ≈

`gB
B ≈ 2λ, where λ is the security parameter. Alice chooses an integer α uniformly at
random from Z/`fA

A Z and computes the isogeny

φA : E → EA = E/〈`gA
A (PA + αQA)〉.

Let KA := φA(PA + (`eA−1
A +α)QA), RB := φA(PB) and SB := φA(QB). Alice’s private

key is α and her public key is the tuple (EA,KA, RB, SB). Similarly, Bob chooses an
integer β ∈R Z/`fB

B Z and computes the isogeny

φB : E → EB = E/〈`gB
B (PB + βQB)〉.

Let KB := φB(PB + (`eB−1
B + β)QB), RA := φB(PA) and SA := φB(QA). Bob’s pri-

vate key is β and his public key is the tuple (EB,KB, RA, SA). Consider the following
diagram:

E EA E′A

EB EAB

E′B E′AB

φA

φB ψB

φ′
A

ΨB
ψA

φ′
B

ΨA

Upon receiving each other’s public key, Alice and Bob computes the isogenies φ′B,
ψA, ΨA and φ′A, ψB, ΨB respectively on their side so that the diagram would be com-
mutative. Let H be a preimage resistant hash function. The shared secret is the value
of the function H computed on the concatenation of j(EAB) and j(E′AB) (see Table 3
for details).

Discussion. The correctness of Protocol B follows from the commutativity of the
diagram on page 8. This protocol is secure against Galbraith et al.’s attack if the
attacker has access to Oracle2. Suppose Bob made a guess on some bits of Alice’s
private key α and altered the torsion points RA and SA into R∗A and S∗A. Additionally,
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Table 3: Protocol B

Public parameters: E, PA, QA, PB , QB , fA, fB , H

Alice Bob

α ∈R Z/`fA

A Z β ∈R Z/`fB

B Z

φA : E → E/〈`gA

A (PA + αQA)〉 φB : E → E/〈`gB

B (PB + βQB)〉

EA := φA(E) EB := φB(E)

KA := φA(PA + (`eA−1
A + α)QA) KB := φB(PB + (`eB−1

B + β)QB)

RB := φA(PB), SB := φA(QB) RA := φB(PA), SA := φB(QA)

α, (EA,KA, RB , SB) static
parameters

β, (EB ,KB , RA, SA)

(EA,KA,RB ,SB)−−−−−−−−−−−→

(EB ,KB ,RA,SA)←−−−−−−−−−−−

φ′B : EB → EB/〈KB〉 φ′A : EA → EA/〈KA〉

E′B := φ′B(EB) E′A := φ′A(EA)

ψA : EB → EB/〈`gA

A (RA+αSA)〉 ψB : EA → EA/〈`gB

B (RB + βSB)〉

EBA := ψA(EB) EAB := ψB(EA)

UA := φ′B(RA), VA := φ′B(SA) UB := φ′A(RB), VB := φ′A(SB)

ΨA :E′B→E′B/〈UA+(`eA−1
A +α)VA〉 ΨB :E′A→E′A/〈UB+(`eB−1

B +β)VB〉

E′BA := ΨA(E′B) E′AB := ΨB(E′A)

H(j(EBA), j(E′BA)) H(j(EAB), j(E′AB))

Bob would also modify the kernel point KB into K∗B. Then, Alice would compute E′∗B ,
U∗A, V ∗A and get the value of j(E′∗BA) = j(E′∗B/〈U∗A + (`eA−1

A + α)V ∗B). The success of
Bob’s attack depends on whether he could pick K∗B, R∗A and S∗A in such way that the
possible values for j(E′∗BA) is sufficiently few. The security parameter λ should be large
enough to prevent this.

Comparing to SIDH in Protocol B the bit-length of the chosen prime should at least
be doubled as intermediate values are exposed. Moreover, the secret isogeny φA or
φB are not calculated on full torsion points and the values of KA or KB are revealed
during protocol instance which might raise concern on the computational hardness of
computing φA or φB.

Problem B. With the notation of Table 3, given E, PA, QA, PB, QB, EA, KA, RA,
SA, EB, KB, RB, SB to determine H(j(EAB), j(E′AB)).

6 Conclusion
In this note we present two different solutions to the static-static key exchange prob-
lem from supersingular isogenies featuring Diffie-Hellman style message flow. If these
solutions are viable, Problem A and Problem B should be studied more extensively.
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