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ABSTRACT
This article, for the first time, demonstrates Cross-device Deep
Learning Side-Channel Attack (X-DeepSCA), achieving an accuracy
of > 99.9%, even in presence of significantly higher inter-device
variations compared to the inter-key variations. Augmenting traces
captured from multiple devices for training and with proper choice
of hyper-parameters, the proposed 256-class Deep Neural Network
(DNN) learns accurately from the power side-channel leakage of
an AES-128 target encryption engine, and a N-trace (N ≤ 10)
X-DeepSCA attack breaks different target devices within seconds
compared to a few minutes for a correlational power analysis (CPA)
attack, thereby increasing the threat surface for embedded devices
significantly. Even for low SNR scenarios, the proposed X-DeepSCA
attack achieves ∼ 10× lower minimum traces to disclosure (MTD)
compared to a traditional CPA.

KEYWORDS
Side-channel Attacks, Profiling attacks, Cross-device Attack, Deep
Learning, Neural Networks.

1 INTRODUCTION
In today’s computing and communication systems, cryptographic
algorithms are designed to provide integrity and confidentiality of
data. The mathematical security of these implementations depend
on the secrecy of a short key, which provides a computational ad-
vantage to the communicating parties over the adversary. Hence,
a brute-force attack on these algorithms can only succeed with
negligible probability. Side-channel analysis (SCA) is a form of
cryptanalytic attack which breaks the secret key of an embedded
device by utilizing the unintended ‘side-channel’ leakage resulting
from the physical implementation of the cryptographic algorithm.
These side-channel leakage can be obtained by monitoring the
power consumption of the device running the algorithm [14], elec-
tromagnetic emanations [9] during the cryptographic operations,
processing time [4], cache hits/misses, and so on.

This article focuses on the power SCA attacks. Non-profiled
power SCA attack techniques include differential and correlational
power analysis (DPA/CPA), which have been utilized to break many
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Figure 1: (a) Histogram plot showing that the mean of
device-to-device variations of the power traces is signifi-
cantly higher than the mean of key-to-key (class) variations
for one device. (b) Training with one device (TR1), the 256-
classDNN is able to classify unseen test traces from the same
device (TR1) accurately as seen from the confusion matrix,
while it does not generalize for other devices and misclassi-
fies many test traces from a different device (D1).

real-world encryption devices [8, 21, 22]. Profiled power SCA at-
tacks comprise of two stages: profiling and attack [6]. In the pro-
filing phase, multiple traces from an identical device are collected
with varying sub-keys (part of the cryptographic key), and a model
is built. During the attack stage, the model is utilized to classify
each sub-key of the device under attack.

In recent years, various machine-learning (ML) techniques have
been evaluated to perform profiling power SCA attacks [2, 12, 18].
Although successful attacks have been shown, these ML techniques
require pre-processing of the traces with proper time-alignment.
In 2017, Cagli et al. [5] proposed a deep-learning based approach
utilizing convolutional neural networks (CNNs) to provide an end-
to-end profiling strategy, even in presence of trace misalignments.
Masking-based countermeasures were also shown to be broken us-
ing neural networks [10, 19]. Deep Learning (DL) based SCA is still
a new research paradigm [23] and all the previous works till date
have focused on evaluating and improving the attack on the
same device which has been used to train the neural network.

This work, for the first time, demonstrates a Cross-Device Deep
Learning based Side-Channel Attack (X-DeepSCA) using a 256-class
DNN. Figure 1(a) shows the measured cross-device variations in
the form of a histogram (red plot) of the absolute difference of the
averaged traces from the 2 different devices (TR1,D1) running the



Debayan Das1, Anupam Golder2, Josef Danial1, Santosh Ghosh3, Arijit Raychowdhury2, Shreyas Sen1

Figure 2: (a) Trace Capture Set-up using the Chipwhisperer
platform. (b) Traces are captured frommultiple Atmega mi-
crocontroller devices (TR1−4) for training a deep neural net-
work (DNN) so that the model is able to generalize to any
other target device (D1−4).

same AES-128. For the device TR1, the green curve shows the his-
togram of the variation between 2 different key bytes (classes). We
see that the inter-device variations for the same key are significantly
higher than the inter-key variations of the same device, which makes
the cross-device attack particularly challenging. The confusion ma-
trices in Figure 1(b) show that although the test accuracy on the
same device (DNN trained with device TR1 and tested with unseen
traces from the same device) is very high (red dots represent the
misclassified key bytes), the accuracy on a different test device (D1)
is significantly lower. Hence, training with one profiling device
overfits to that particular device leakage and may not be able to
generalize well to other devices.

Hence, in this work, we augment traces from multiple profil-
ing devices (Figure 2(b)) and build a DNN architecture to per-
form cross-device deep-learning based power side-channel analysis
(X-DeepSCA) attack. In addition, we analyze the individual class
(key byte) accuracies and demonstrate the practicality of an N-trace
(N ≤ 10) X-DeepSCA attack to achieve > 99.9% success of attack.
Finally, we study the effect of varying SNR scenarios, and show
that the X-DeepSCA attacks require ∼ 10× lower number of traces
to attack (minimum traces to disclosure: MTD) than the traditional
correlation power analysis (CPA) attacks [3].

In summary, the key contributions of this work are:
• A combination of designing the appropriate 256-class DNN
with proper choice of the hyperparameters to prevent over-
fitting, utilizing traces from multiple devices (TR1−4) during
training, coupled with the proposed N-trace attack leads to
the first successful demonstration of a cross-device deep-
learning SCA (X-DeepSCA) attack.

• Using the Keras library with a Tensorflow backend [1], we
show that the single-trace X-DeepSCA attack using the DNN
model achieves an average accuracy of > 99.9% for all the
test devices (D1−4) under attack using 200K total traces for
the training (Sec. 3).

• Further, we investigate the individual class accuracies by
introducing a measure of entropy, leading to the proposed N-
trace X-DeepSCA attack to guarantee > 99.9% attack success
with N ≤ 10 encryptions (Sec. 4).

Table 1: Overview of the RelatedWorks on Profiling Attacks

• Finally, we show that the X-DeepSCA attack performs > 10×
better in terms of MTD, with different signal-to-noise ratio
(SNR) scenarios, reducing the time of attack from minutes
to seconds (Sec. 5).

The remainder of the paper is organized as follows. Section 2
summarizes the existing works on machine-learning based profiling
SCA attacks. In Section 3, the DNN architecture for the X-DeepSCA
attack is proposed and single-trace attacks are analyzed. Section
4 introduces the N-trace X-DeepSCA attack. Section 5 discusses
the effect of varying SNR scenarios on the X-DeepSCA attack and
provides future directions. Section 6 concludes the paper.

2 BACKGROUND & RELATEDWORK
Template-based profiling power SCA attacks are extremely power-
ful as they can potentially break the encryption key within a few
encryption traces [6, 20]. Recently, machine learning (ML) based
profiling attacks have been studied extensively [2, 12, 15–18]. These
ML-based attacks use supervised learning models like the support
vector machine (SVM), Self-Organizing Map (SOM) or Random
Forest (RF) for classification.

Deep neural networks (DNNs) have generated significant interest
in the recent years. It has been shown that the clock-jitter based
countermeasures against power/EM SCA can be broken using a
convolutional neural network (CNN) [5, 23, 24]. Also, masking
based countermeasures have been shown to be broken with neural
networks [10, 19].

A summary of the related works is shown in Table 1. Most of
the existing works [2, 5, 6, 10, 15–18] on profiling attacks have
tested their attack on the same device used for the template genera-
tion. [7, 20, 25] have evaluated cross-device template-based attacks
(TA) using statistical multivariate analysis, Principal Component
Analysis (PCA), Mutual Information Analysis (MIA) and Linear
Discriminant Analysis (LDA). [11] showed a multi-device profiling
using statistical TA.

However, none of the ML-based works have focused on the
cross-device attacks yet. Also, the previous works based on neural
networks (NNs) have evaluated their models with the same device
used for training. We have seen in Figure 1(a), the inter-device
variation is typically much higher than the inter-key (or inter-class)
variations. Hence, a NN model evaluated against the same device
may not necessarily work well on a different target device. This
work shows the first cross-device profiling attack using a deep
neural network (DNN).
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Figure 3: Architecture of the proposed FullyConnectedDNN
for X-DeepSCA. The input layer consists of N = 500 neurons.
The 1st fully-connected (FC) hidden layer consists of 200
hidden neurons, followed by Batch Normalization, Recti-
fied Linear Unit (ReLU) activation, and a dropout layer. The
2nd hidden layer is similar without the dropout layer. Fi-
nally, the output layer has 256 neurons for predicting the
correct key byte utilizing the softmax function. If the traces
are not aligned in time, a convolutional layer as the input
layer would be required. In this work, we use the Fully Con-
nected DNN as the traces captured from the Chipwhisperer
are time-aligned.

To train a neural network, the typical leakage models used for
the power consumption are the Hamming Weight (HW) model
(9-class classification), and the identity (ID) model (256-class classi-
fication) [23]. In this work, we use the identity model for 256-class
classification and train our DNN to learn the leakage information
accurately. For all the analyses shown in this work, the attacks are
performed on the 1st key byte of the AES-128 encryption engine.

Also, most of the previous NN models have been evaluated
on the available DPA v4 contest dataset, or the newly published
ASCAD database [24] which do not contain traces from multi-
ple devices. Hence, to evaluate our cross-device attack, we build a
new database by capturing traces from multiple devices using the
Chipwhisperer platform (Figure 2(a)). Separate sets of Atmega mi-
crocontrollers (Figure 2(b)) running AES-128 are used for profiling
and testing the X-DeepSCA attacks.

Figure 4: Effect of Model Hyper-parameters on the Test Ac-
curacy (on the test device D1 after training with TR1−4): (a)
Learning rate (LR) of ∼ 0.01 provides the maximum test ac-
curacy, and higher LR leads to overfitting of the DNN re-
ducing the test accuracy. (b) Lower dropout shows higher
accuracy which implies that the data gathered from the mi-
crocontroller devices has sufficient electronic noise which
helps generalize to unseen data. Dropout higher than 0.3 re-
duces the accuracy.

Figure 5: (a) Training and Validation Accuracy of the DNN
reaches ∼ 100% within 25 epochs and does not show any
overfitting. (b) Loss function of the DNN for both the train-
ing/validation sets. Note that training and validation have
been performed with data from all the 4 devices (TR1−4).

3 SINGLE TRACE X-DeepSCA ATTACK
In this section, we evaluate a single-trace X-DeepSCA attack. A
256-class classifier is necessary to perform a single-trace cross-
device SCA attack (X-DeepSCA). However, designing a 256-class
classifier is significantly difficult compared to the HW-based 9-class
classifier. Hence, choice of the hyperparameters like the learning
rate, number of hidden neurons, dropout, are extremely critical to
prevent overfitting or underfitting.

3.1 DNN Architecture
Figure 3 shows the architecture of the proposed fully-connected (FC)
DNN for the X-DeepSCA attack. Note that, for our work, the traces
collected from the Chipwhisperer platform are time-synchronized
and hence use of a convolutional layer is not necessary. Although
the captured traces from the AES-128 encryption engine had 3000
time samples for an entire encryption operation, it was initially fed
to the DNN and verified that the network learns accurately from
the points of leakage (cross-verified using a CPA attack) within
the first 200 time samples for the 1st key byte under attack. After
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Figure 6: Attack Accuracy on the test devices (D1−4) with the
DNN model trained with varying number of training traces
gathered from the 4 training devices, where each of them
(TR1−4) contributed equally .

this verification1, to reduce the model complexity (and the time for
training the DNN), only the first 500 time samples from each power
trace were fed to the DNN.

The first FC layer of the DNN consists of 200 neurons, and in-
creasing the number of hidden neurons could lead to overfitting.
This corroborates our observation that the leakage is within the first
200 time samples of the input traces. Batch normalization layer [13]
and the dropout layers provide regularization to prevent overfitting
and encourage generalization to unseen data. The Rectified Linear
Unit (ReLU) is used as the non-linear activation function to learn
non-linear mappings from the input to the output. The second FC
layer is similar without the dropout layer, and is finally followed
by the output layer with 256 neurons, which predicts the correct
key byte in a single trace utilizing the softmax function.

Figure 4(a, b) shows the effect of choice of some of the hyper-
parameters of the DNN model on the accuracy of a different test
device. Figure 4(a) shows that a learning rate of 0.01 provides the
maximum test accuracy, while a higher learning rate could lead
to overfitting resulting in reduced test device accuracy. From Fig-
ure 4(b), we see that even in case of low dropout, the test accuracy
remains high, which implies that the data gathered from the real-
world devices has sufficient electronic noise. However, dropout more
than 30% leads to reduced classification accuracy.

To train the DNN, for all our experiments, 10K traces (unless
otherwise mentioned) each from four devices are augmented to-
gether, and 20% of the total number of traces are kept for validation
of the DNN during the profiling phase.

3.2 Performance Analysis of Single-Trace
X-DeepSCA Attack

Figure 5(a,b) shows the training and validation accuracies of the
DNN. We can see that the DNN model reaches an accuracy of
> 99.9% within 25 epochs and also that the training and validation

1It is also worth noting that the DNN model can also serve as a leakage assessment
tool for cryptographic devices.

Figure 7: Confusionmatrix for each of the test devices (D1−4).
At most 3 key bytes out of the 256 (∼ 99% overall accuracy)
are getting misclassified for each of the test devices, with
the DNN model trained with 10K traces from each of the 4
training devices (TR1−4).

Figure 8: Effect of augmenting traces fromMultiple Devices
during training: As the number of devices is increased, the
DNNmodel generalizes well to new devices (D1−4) and hence
the accuracy improves and reaches 99% with 4 training de-
vices (TR1−4 - 10K traces each).

loss reduce to 0. The validation set accuracy remains same as that
of the training set, implying that the DNN model is not overfitting.

Figure 6 shows the performance of the trained DNNmodel on the
test devices (D1−4) with varying number of training traces, drawn
equally from all the four devices (TR1−4) reserved for training.
The X-DeepSCA attack on all the 4 test devices shown reaches 99%
accuracy with 10K training traces, and > 99.9% with 200K training
traces in total(drawn equally from each of TR1−4).

Note that for the test devices, traces are collected for different
keys to evaluate the accuracy of all the classes (key bytes). Fig-
ure 7(a-d) shows the confusion plots on the test devices (D1−4) after
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Figure 9: Individual Key Byte (Class) Accuracy Distribution
for the test deviceD4 (showed theworst average accuracy out
of the D1−4): The black plot represents the accuracy for each
key byte, and the red plot denotes the maximum percent-
age of a particular class misprediction for the test device D4.
(a) With 1-device training (TR1 - 10K traces), for some of the
key bytes the black and red curves overlap, while (b) with
4-device (TR1−4 - 10K traces each) training, there is a signif-
icant reduction in the measure of entropy and an N-trace
attack would be able to predict even the lowest accuracy key
byte with high success probability (refer Fig. 10).

training with 40K traces (10K from each of the 4 training devices).
As expected, for all the test devices, we see that at most 3 key bytes
are misclassified (marked in red, outside the diagonal line) out of
the all 256 different key bytes.

Figure 8 shows the effect of augmenting traces from multiple
devices (with 10K traces each) for training the DNN. We see that
with only 1 training device, the accuracy on a test device goes to
∼ 80%, while it increases to ∼ 99% after augmenting traces from
all the 4 training devices with only 10K traces captured from each
device.

4 N-TRACE X-DeepSCA ATTACK
In the previous section, we have shown that a single-trace X-DeepSCA
attack with an accuracy of > 99.9% can be performed on a test de-
vice, with 200K training traces (equally from each of the devices
TR1−4) used to build the DNNmodel. In this section, we analyze the

Figure 10: N-trace X-DeepSCA Attack: Number of traces re-
quired by an attacker to achieve a confidence of 99.9%. Even
for classes with low accuracies, the N-trace X-DeepSCA attack
would reveal the correct key byte within N ≤ 10 traces, as
long as the individual class accuracy remains higher than
the % of maximummispredicted key byte for that class.

individual class (key byte) accuracies to evaluate the practicality of
a single-trace attack.

4.1 Individual Key Byte Accuracy
Figure 9(a, b) shows the individual key byte (class) accuracies and
the percentage of the misclassified key byte with the highest occur-
rence in prediction (for every key byte class) for the test device D4
(as it showed the lowest accuracy of the 4 test devices and poses the
worst case scenario for an attacker). The separation between the
class accuracy (Kpred = Ktarдet ) and the maximum mispredicted
class (the particular key byte which is wrongly predicted maximum
number of times - Kx , Ktarдet ) gives a measure of the entropy
(ηKtarдet ) of the X-DeepSCA attack, as shown in Eqn. 1,

ηKtarдet = 1 −
[
|Kpred = Ktarдet |

|Ktotal |

−
arдmax(|Kpred = Kx | : Kx , Ktarдet )

|Ktotal |

]
(1)

where, Kpred represents the predicted key byte, Ktarдet is the
target key byte, Kx is any other key byte (mispredicted) which
has the maximum occurrence for the Ktarдet class, and |Ktotal |
denotes the total number of queries (traces) for that particular
Ktarдet class.

Figure 9 shows that training with 4 devices has significantly
lower entropy (ηKtarдet ) compared to 1-device training. Also, we
see from Figure 9 that although the test device D4 achieves an
average accuracy of > 99% (most of the key bytes can be broken
with a single-trace), as seen from Figure 6, 8, the minimum accuracy
of few key byte drops below 80%. Hence, although the single-trace
attack will succeed on most key bytes, it may not work for a few
key bytes, and a multi-trace attack is required.
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Figure 11: (a) Number of traces (averaged) required for a suc-
cessful X-DeepSCA attack (with > 99.9% accuracy) in different
SNR scenarios. For SNR=20dB, averaging with less than 10
traces is sufficient to achieve > 99.9% accuracy, while it re-
quires ∼ 100 traces for SNR=10dB, and ∼ 1000 traces to be
averaged over to achieve the 99.9% accuracy. (b) Comparison
of the X-DeepSCA attack with traditional CPA attack shows a
lower MTD for X-DeepSCA compared to CPA for all SNRs.

4.2 Success Probability of the N-trace
X-DeepSCA attack

Using the concept ofmajority voting, we propose anN-trace X-DeepSCA
attack. The number of encryption traces required to gather in order
to achieve a confidence (probability of success) of 99.9% can be
mathematically derived, as shown in Eqn. 2 (valid for N ≥3):

Pr (Maj(N ) = Ktarдet ) =
N∑
x=2

Pr (x)

=

N∑
x=2

(
N

x

)
px (1 − p)N−x

255PN−x

255N−x (2)

where, Pr (Maj(N ) = Ktarдet ) gives the probability of a successful
target key recovery using the majority voting with N traces. Note
that the underlying assumption of Eqn. 2 is that the class accuracy
and the class misprediction distributions are uniform, and there
is no overlap between them for any of the individual key bytes.
Hence, as seen from Figure 9(b), majority voting works as the en-
tropy is reduced, and even for the lowest accuracy key byte (with
70% accuracy), N-trace X-DeepSCA attack achieves an accuracy (suc-
cess probability) of 99.9% with N ≤ 10 encryptions, as shown in
Figure 10 (derived from Eqn. 2).

5 DISCUSSIONS
5.1 X-DeepSCA Attack: Effect of SNR Variation
Now, we evaluate the effect of varying Signal-to-Noise Ratio (SNR)
on the efficacy of the X-DeepSCA attack. Figure 11(a) shows the
number of traces required to average for a successful X-DeepSCA
attack with > 99.9% accuracy on the test device D1 using the train-
ing set with TR1−4 (10K traces each). Figure 11(b) shows that the
number of traces required to retrieve the correct key byte of the
AES-128 engine under attack is ∼ 10× lower than the traditional
CPA attack for different levels of SNR.

5.2 Future Work
For the future scope of this work, the efficacy of the proposed
X-DeepSCA attacks can be further improved if we can guarantee
that the accuracy of each key byte and the mispredicted classes for
that key byte are uniformly distributed. This could be achieved by
ensuring that the DNN has minimum bias during a misclassifica-
tion, which would lower the number of traces (N) required for a
successful N-trace X-DeepSCA attack. Overall, the proposed attack
can put a huge dent to the security of embedded devices.

6 CONCLUSIONS
For the first time, this work shows a Cross-device Deep Learning
based Side-Channel Analysis (X-DeepSCA) attack. Utilizing multiple
(4) devices for training a fully-connected DNN, results showed that
an average accuracy of 99.9% can be achieved with all the 4 test
devices using 200K training traces, showing the possibility of a
single-trace attack. However, deeper analysis utilizing the proposed
measure of entropy revealed that few individual key bytes had
lower accuracies, and hence an N-trace X-DeepSCA attack (N ≤ 10)
is proposed to break the key with > 99.9% confidence. Finally,
we show that for varying SNR scenarios, the proposed X-DeepSCA
attack achieves ∼ 10× lower MTD, which breaks the target devices
within seconds compared to a few minutes for the traditional CPA
attack, increasing the threat surface significantly.
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