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Abstract

We design an efficient method for sampling a large batch of d independent coins with
a given bias p ∈ [0, 1]. The folklore secure computation method for doing so requires
O(λ + log d) communication an computation per coin to achieve sampling error 2−λ. We
present an exponential improvement over the folklore method that uses just O(log(λ+ log d))
gates per coin when sampling d coins with total sampling error 2−λ. We present a variant of
our work that also concretely beats the folklore method for λ ≤ 2−60 which are parameters
that are often used in practice. Our new technique relies on using specially designed oblivious
data structures to achieve biased coin samples that take an expected 2 random bits to sample.

Using our new sampling technique, we present an implementation of the differentially
private report-noisy-max mechanism [BLST10] (a more practical implementation of the cele-
brated exponential mechanism [MT07]) as a secure multi-party computation. Our benchmarks
show that one can run this mechanism on a domain of size d = 212 in 6 seconds and up to
d = 219 in 14 minutes. As far as we know, this is the first complete distributed implementation
of either of these mechanisms.

1 Introduction

This paper presents asymptotically and concretely superior secure computation methods
for sampling a batch of d coins with bias p ∈ [0, 1]. The problem of sampling biased coins
plays a fundamental role in implementing many randomized algorithms, in running Monte Carlo
simulations, and in producing differentially private data summaries. Furthermore, as explained
in [DKM+06], the tasks of sampling from binomial, Poisson, Laplace, or geometric distributions
can all be reduced to the task of sampling biased coins. Thus, we consider this task an essential
primitive in the area of secure computation.

Biased Sampling with (and without) Secure Computation. In order to explain our
contributions, we provide some background on methods for sampling biased coins and their
complexity. If we are willing to sample “in the clear,” then the folklore method for sampling a
coin with bias p is to first sample a uniform number r ∈ [0, 1] and then output heads if r ≤ p
and tails otherwise. A näıve implementation of this first method that achieves error at most 2−λ

is to sample r discretely in the following way: flip λ fair coins, interpret these coins as the binary
expansion of r, and perform the comparison. A downside of this method is that it flips λ coins
to sample one biased coin, and thus the running time is at least Ω(λ). One can address this issue
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using the following lazy flipping strategy: flip the first coin and compare against the first digit in
the binary expansion of p, if the digits differ than a decision can be made, and otherwise, the
process is repeated with a fresh coin and the next digit of the expansion. A simple calculation
shows that lazy flipping requires just 2 coins and O(1) time in expectation, regardless of λ!
Thus, sampling biased coins “in-the-clear” is essentially solved in a Turing-machine model of
computation. In this work we focus on achieving complexity similar to the lazy flipping method
but in a secure computation.

Unfortunately, the lazy flipping method cannot be easily implemented in a two- or multi-party
secure computation. Recall that the goal of Secure Multi-Party Computation is to allow a set
of parties P1, . . . , Pn to securely evaluate a function y = f(x1, . . . , xn), where each Pi provides
input xi. Here securely evaluating a function means computing the function jointly in such a
way that no Pi learns anything other than what is revealed by the output y and their own input
xi. In particular, each Pi must not learn xj for i 6= j, nor any intermediate value derived from
xj during the computation of f . To achieve this property, implementing an MPC version of an
algorithm usually requires that all parts of the algorithm be converted into static circuits. This
means that loops for example cannot stop early, since the stopping time may reveal something
about the inputs.

Since the lazy flipping method implicitly leaks the number of fair coins that were flipped, it
cannot be directly implemented as a secure computation while preserving its efficiency. Specifically,
if we transform the algorithm to a binary circuit, the circuit that samples r must have size
proportional to the worst case where all λ bits are compared against the binary expansion of
p. Thus a secure computation for the folklore sampling mechanisms generally requires λ fair
coins per sample instead of an expected 2. When expressed in terms of boolean gates—which
generically represents the running time and communication complexity of such a protocol—this
requirement leads to O(λ) gates per coin.

A natural approach to overcome this inefficiency is to use a secure computation protocol
along with an oblivious RAM data structure, implemented as a circuit, to emulate lazy sampling.
Oblivious RAM data structures, first introduced by Goldreich and Ostrovsky [GO96] allow the
implementation of a RAM program while hiding the addresses of the memory locations that
are accessed during the execution. By hiding the memory access pattern, this approach could
allow the lazy sampling of coins that requires only an expected 2 fair coins per sample. However,
to implement one read operation on a memory of size λ, most ORAM data-structures require
polylog(λ) additional read and write memory operations [GO96, LO14, SCSL11, WCS15].

The state of the art in terms of asymptotic complexity is Panorama [PPRY18], which
requires Õ(log λ) extra operations (albeit with astronomically high constants). However, even
ignoring the large constants, all known ORAM schemes require read operations on machine
words of size log(λ) bits when accessing a memory with λ elements. Since our application only
requires reads of single bits to implement lazy sampling, all of the schemes will incur Õ(log2 λ)
overhead which is asymptotically worse than our scheme. Ignoring asymptotics, the most recent
practical implementations of ORAM for secure computation [Das17] concretely perform worse
than our approach (and also only support two-party secure computation).

Our Contributions. The first main contribution of this paper is to develop a new secure
computation sampling procedure that takes a string of fair coins1 and samples a string of d biased
coins that has statistical distance at most 2−λ from a string of d independent coins with bias
p, using an amortized O(log(λ+ log d)) and gates per coin. This result improves exponentially

1The fair coins can be obtained securely by taking the xor of fair coins obtained from each party.
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over the folklore technique that uses O(λ+ log d) gates per coin, and is polynomially better than
schemes that use the state-of-the-art ORAM techniques.

Our main technique is to employ new oblivious data structures that allow us to amortize the
cost of the lazy sampling method by “blurring” when the sampling of one biased coin ends the
the next begins. In §2.1, we describe these two data structures that enable our improvements: an
oblivious push-only stack, and an oblivious pop-only stack with reset. The first push-only stack
allows obliviously pushing elements onto a stack. When the stack is full, the data structure
obliviously ignores the operations and does not change the underlying data. The second data
structure allows the opposite—it only supports pop operations, and returns the last element
repeatedly when it is empty. It additionally supports an oblivious reset which returns the stack
to an arbitrary original configuration. Both of these data structures are inspired by the oblivious
stack proposed by Zahur and Evans [ZE13].

Using these data structures, our new sampling method works as follows. We first initialize a
pop-only stack with the binary expansion of the bias p. At each step, we pop from the stack
and compare against the next fair coin. We obliviously compare the coins and if they agree, we
make an “empty” oblivious push to the push-only stack, and we simply repeat the procedure
by popping and comparing with the next fresh fair coin. If the two coins disagree, then we can
output a biased coin sample by performing a true oblivious push to the push-only stack and
obliviously resetting the pop-only stack. Thus, each iteration of the loop requires one oblivious
push, one oblivious pop, one oblivious reset, and one comparison. As we show in §2.1, these
operations can all be done in O(log(λ+ log d)) gates per coin.

While our method asymptotically beats the standard secure sampling methods, our implemen-
tation efforts reported in §6 show that the constant overheads in our careful stack implementation
only beat the standard methods when the statistical parameter λ > 200, i.e., when the sampling
error is set to be quite small. As a second contribution, we show that for larger statistical errors
λ ∈ [60, 512], an alternative method often beats the näıve strategy. In particular, let Cp(·) be a
circuit that on input j produces the jth bit in the binary expansion of bias p. We can replace
the pop-only stack that holds the bits of p used in the method described above by this circuit.
We show that for an appropriate range of λ ∈ [60, 512], it is indeed possible to build such circuits
for any arbitrary bias p. In §6, we utilize circuits that output the first 128 bits of any p using at
most 13 and gates. Such a circuit is simply a 7-bit boolean predicate, and Peralta et al. [ÇTP18]
show that every 6-bit predicate can be computed in at most 6 and gates. Our result follows
from simply muxing the top and bottom halves of the 7-bit predicate truth table. In practice, we
implemented this for many p and found that all of them could in fact be expressed in 11 gates.
However, as the statistical parameter increases, the size of our predicate also increases linearly,
and thus this method eventually becomes more expensive than the pop-only data structure. We
evaluate the cross-over point and determine this to be λ > 512. In all cases, these methods
surpass the näıve sampling circuit at λ ≥ 60. We summarize all (asymptotic) amortized gate
complexities and random coins used to make a single biased coin in Table 1.

Application to Differential Privacy. As an application of our sampling methods, we give
improved secure multiparty implementations of fundamental algorithms from differential privacy
[DMNS06]. Differential privacy is a strong formal model of data privacy tailored to statistical
applications. Intuitively, a randomized algorithm is differentially private if it does not reveal “too
much” about the data of any one individual. At a high level, these algorithms introduce random
noise that masks the contribution of one individual, while preserving the overall utility of the
dataset when the number of users is sufficiently large. Differential privacy has been the subject
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of an enormous body of literature (see e.g. [DR14] for a textbook treatment) and has now been
implemented by companies such as Apple [TVV+17a, TVV+17b] and Google [EPK14, BEM+17]
and statistical agencies such as the U.S. Census Bureau [HMA+17].

The most powerful differentially private algorithms are designed in a centralized model where
a trusted party collects the data and agrees to publish only the output of the algorithm. In
many industrial applications, this trust assumption is problematic, and so companies have mostly
opted to use the local model [War65, DMNS06, KLN+08], which is essentially a weak model
of information-theoretic secure computation where each party applies a separate differentially
private algorithm to their own data. Unfortunately the local model severely limits the utility of
the algorithm both in theory [KLN+08, CSS11, DJW13, Ull18] and in practice, often requiring
billions of users to achieve reasonable utility (see e.g. [BEM+17]).

To resolve this tension between the central and local models, the prescient work of Dwork et
al. [DKM+06] posed the question of secure multi-party implementations of differentially private
algorithms, and gave algorithms for sampling the noise required to implement simple counting
mechanisms. Using our secure sampling methods, we give improved algorithms for sampling the
noise in fundamental differentially private algorithms.

In particular, as far as we are aware, we give the first full secure implementation of the report-
noisy-max mechanism (which is a more practical implementation of the celebrated exponential
mechanism [MT07]). This is a highly versatile mechanism that is the driving force in numerous
applications of differential privacy (see e.g. [BLST10, BLR13, HLM12, TTZ15] for a tiny sample).
This mechanism is particularly crucial in applications of distributed differential privacy, as any
implementation of this mechanism in the local model provably suffers an exponential loss of
utility [KLN+08, Ull18], even in some of its simplest applications.

Our experiments reported in §6 show that datasets of size 212 up to 219 can easily be handled in
seconds to minutes. These figures give encouraging evidence that one can process moderate-sized
datasets using the noisy-max mechanism.

Discussion of Prior Work. The closest prior work is the celebrated result of Dwork et
al. [DKM+06], which presents the idea of using secure computation protocols to implement
differentially private processing of datasets by the data owners themselves. Indeed, our results in
§3 make use of their observation that sampling Poisson and related distributions can be reduced
to sampling several fair coins with different biases. Their paper also makes note of the inefficiency
of standard sampling, however the approaches that they suggest to overcome the λ bottleneck
have very large gate overheads.

Anandan and Clifton [AC15] present a two-party protocol based on homomorphic encryption
to generate a single sample from a Laplace distribution in the presence of a malicious adversary.
Their first protocol takes the approach of inverting the CDF and therefore is computationally
expensive and was not implemented. They propose a second cut-and-choose style protocol that
offers only polynomial security and report that 500 samples can be generated in 9 seconds.

Several prior works present tailored MPC protocols for specific differentially private algo-
rithms. The problem of computing a differentially private sum was first considered by Dwork et
al. [DKM+06] and has many follow-up works [BNO08, SCR+11, CRFG12, BDG+13, EKM+14].
Shi et al. [SCR+11] also present a DP mechanism for computing sums that uses a single round,
allows users to drop out, but does not match the accuracy achievable in the central model,
and require a trusted setup phase. Pettai and Laud [PL15] use the sharemind MPC system
to report on another implementation of the sum-and-aggregate mechanism for differentially
private processing of counts, averages, medians, etc. These mechanisms are much simpler than
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Algorithm and Gates Random Bits

ODO-1 [DKM+06] O((λ+ log d)2 log d) 2
ODO-2 [DKM+06] O(λ+ log d) O(λ+ log d)
ODO-3 [DKM+06] O(d(λ+ log d)) 2
ODO-4 [DKM+06] O((λ+ log d) log(λ+ d)) 2

MNM-1 O(log(λ+ log d)) 2
MNM-2 O((λ+ log d) log(λ+ log d)) 2

Table 1: Amortized O(·) cost per biased coin. The amortization is over d coins in total. We
denote λ as the total statistical error for d coins. ODO-1, ODO-2, ODO-3, and ODO-4 are
from [DKM+06] in the order they appear in that work starting at section 4.3. ODO-2 is the
algorithm we implement due to its simplicity and low gate count. MNM refers to our coin flipping
algorithm, and our numbering is 1 for the algorithm with asymptotic improvements and 2 for
the algorithm used in practice.

report-noisy-max.
Eigner et al. [EKM+14] present PrivaDA as an architecture for distributed differential privacy

that uses secure computation on floating point arithmetic to compute the distributed Laplace, the
distributed discrete Laplace, and the distributed exponential mechanism. Their main technical
contribution is to explain how to handle floating-point arithmetic, exponentiation and logarithm
functions in secure computation, as well as converting between integer and floating representations.
These operations are extremely complicated as secure computations; their experimental results
for computing a single logarithm take 10s of seconds. In comparison, we are able to sample
roughly 8000 geometric samples in the same time. As a result of these costs, they were unable to
implement any full DP mechanisms. More concerning, Mironov [Mir12] shows the hazards of
using floating point approximations in differential privacy applications.

Recently, He et al. [HMFS17] addressed subtleties in combining differential privacy and
secure computation for the private record-linkage problem, which is outside of the scope of our
proposal. Several works have shown the necessity of secure computation (i.e. oblivious transfer) to
achieve optimal accuracy without a trusted aggregator [MPRV09, MMP+10, GMPS13, GKM+16].
Other work has considered securely implementing differentially private algorithms for gradient
descent [BIK+17] and continually monitoring sums [RN10, SCR+11, EKM+14] and heavy-
hitters [CLSX12].

2 Securely Flipping Many Coins of the Same Bias

The fundamental problem we solve in this paper is to design a boolean circuit C(d, p;λ) that
can sample d coins of a bias p efficiently in both gates, communication, and number of random
input bits required to perform the sampling with overall chance of failure 2−λ. The näıve circuit
described in the introduction C0(d, p;λ) has amortized gate count |C0(d, p;λ)| = O(log d + λ).
Our circuit Cmnm-1(d, p;λ) reduces this complexity to O(log(log d+ λ)) by taking advantage of
the expected two random bits needed per biased coin. Our algorithm does this by ending every
comparison when the first difference in the p bias and stream of unbiased bits occurs. Informally,
doing this privately requires the following functionalities:
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1. Sequential production of p’s binary expansion

2. A way to obliviously produce biased coins

3. A method for reseting p’s expansion obliviously

Note that all of these must be achieved within a secure computation, which does not provide
many intuitive options for finishing random comparisons early while still being secure. We will
describe how to acquire (1) and (3) in two ways later in the section. For (2) and one of those
ways, we design oblivious data structures, which can store a number of coins at once, while
providing operations to push and pop coins obliviously.

2.1 Oblivous data structures

The notion of an oblivious data structure was introduced by Goldreich and Ostrovsky [GO96]
in the context of protecting the privacy of a CPU’s memory access pattern against an adversary
who can tap the memory channel bus. Subsequently several works have studied the overhead
tradeoffs involved in implementing such data structures. The classical notion of security for
oblivious data structures is stated in a RAM model and specified through the notion of a simulator
and indistinguishably of the traces resulting from any two sequence of operations.

Instead of considering arbitrary RAM datastructures, we only consider a pair of very limited
datastructures that support 1 and 2 operations. We only allow circuit-model implementations of
these operations, and then evaluate the AND-gate complexity of these circuits as our measure
of interest. This notion implies the standard simulator-based one for the limited scope and is
consequently much simpler.

A data structure D = (O;B,C) = D(O) is a tuple consisting of a sequence of bits B =
b1, . . . , bM , a set of bookkeeping bits C,2 and a fixed set of operators O which act on B and C.
For the following let C = {c, r}, where c represents the current count of bits and r is a reset
flag. We define three members (the ones relevant to our data structures) of the set of possible
operators O∗:

1. cpush(f,D, b): returns (B = (b, b1, . . . , bM−1), c+ 1) if f = 1 and (B, c) otherwise.

2. creset(B,C′)(f,D): returns (B,C ′) if f = 1 and (B,C) otherwise. C ′ is typically the
modification of a reset bit r.

3. rpop(B′,C′)(f,D): returns the bit b′1 and (B′ = (b′2, . . . , b
′
M , 0), Cc′−1) if r = 1, b1 and

(B = (b2, . . . , bM , 0), Cc−1) otherwise. Here the values B′, c′ are hard-coded values of the
datastructure (typically, the initialized values before any operations). We denote Cc−1 as
C with only c (the count) modified to value c− 1.

These operations take a conditional flag f as an input that determine whether the operation is
performed or not. In the case of rpop, f is ignored in favor of an internal bit in C.

We consider boolean circuits that implement these operations on D. However, instead of
requiring uniform circuits, we allow the circuit that implements the ith operation on D to depend
on i, i.e., the number of previous operations that have been applied to the data structure. The
circuit that implements an operation cannot, however, depend on the specific operations that
have been applied to D—only on the count. This extra ability allows scheduling “clean-up tasks”

2Conceptually, the bits in C can be included in the sequence of bits, but we separate them for convenience.
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c r s 1 2 3

ctr reset shift data data data

2 1 1 2` 2` 2`

Figure 1: Depiction of the recursive data structure at level `. The top row indicates how we name
each field in the subsequent discussion. The bottom row indicates the field size in bits. Each
level includes 4 bits of bookkeeping and 3 “buckets” that hold 2` bits each. Our implementation
also includes a pointer to the next level for convenience, but this can be omitted if successive
levels are arranged in memory as an array.

that simplify the datastructure at periodic intervals that are independent of the data being stored.
We use the natural notion of correctness in which the circuit for each operation implements the
semantics defined above.

Each of these circuits consist of boolean gates (and and xor), simple wires, and desigation
of each wire as an input wire, an ouptut wire, or an internal wire. We measure the complexity of
a circuit by counting the number of its and gates.

We now proceed to describe our implementations of this data structure.

Construction We use two data structures, both of which are essentially constructed as in
Figure 1, and are hierarchical; level i of the structures contain a single bit to represent whether a
level needs to be reset, two bits which store a count of the number of elements at this level, 3
data slots each of size 2i bits, and finally a pointer to the next level of the data structure. The
pointer is for convenience of notation and can be omitted in implementation by arranging the
levels adjacent to one another in an array. The total capacity of the data structure is the sum of
the sizes of the data slots at all of the levels. This design is inspired by the stack construction
from [ZE13]. Our first data structure, Dpop(Opop), is a data structure with Opop = {rpop, creset},
and follows Figure 1 precisely. Our second data structure is Dpush(Opush), with Opush = {cpush},
and it omits the reset bit from Figure 1.

All pushes and pops initially take place in level 0, but level 0 will become empty or full at
different points during a sequence of stack operations. To address this, when level i is full it
shifts some of its contents to level i+ 1 below, and when level i is empty, level i+ 1 shifts its
contents to level i. To keep this operation oblivious, these shifts occur on a regular schedule: level
i checks if it needs to make a shift every 2i+1 operations of a given type (push or pop). Notice
this oblivious schedule ensures that overflows (or underflows) never occur except at possibly the
last level (where they are ignored in our case). Thus, we use a shift circuit every second time
a level is accessed, meaning shifts must be made not only when a level is empty/full but also
when it could be empty/full after the next operation of a given type. The advantage of this
shifting scheme is that, even though moving data twice as large is twice as expensive, level i+ 1
is accessed half as often as level i, so all levels have the same amortized cost. This makes the
complexity per operation a favorable O(log n) for n element capacity, since a level 0 access has
constant gate count and there are O(log n) levels total.

In constrast to the implementation in [ZE13], our structures only support either push or pop
operations, but not both. As a result, it suffices to have only 3 data elements per level (instead
of 5), allowing us to use fewer bucket per level and thus cut down our gate count by a constant
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factor.

Oblivious Reset Intuitively, we will be using our pop datastructure to store bits of the binary
expansion of p and pop them off sequentially to give the functionality of (1). To achieve (3), we
add a secret reset bit to each level of the stack which determines whether the level will set its
slots to their original values of the datastructure before popping normally. After every oblivious
reset, we set the reset bit to 0. When we pop the next bit of p’s binary expansion and it is not
equal to the next random bit, we set the reset bit of each level to 1 so that the next pop will
start from the first bit of p’s bias again.

Below we provide pseudo-code to more formally express the intuition above. We use the
notation mux(f, a0, a1) to represent a0 + f · (a0 + a1) where the operations are performed over
F2; in other words, this step returns af using |a0| AND gates. We show the pseudo-code for the
pop operation first; the cpush operation is similar. The creset operation recursively sets the reset
flag at each level of the hierarchy.

1: procedure rpop(f, stk) . ret success bit s, data d
2: stk.{1, 2, 3, c} ← mux(stk.r, stk.{1, 2, 3, c}, {1̂, 2̂, 3̂, 3})
3: stk.r ← 0 . handle reset
4: if stk.next 6= ⊥ then
5: if stk.s = 1 then

6: c1 ← (stk.c
?
≤ 1)

7: stk.1← mux(c1, stk.1, stk.3)
8: s, d← rpop(c1, stk.next)
9: stk.1, stk.2← d

10: stk.c← mux(s ∧ c1, stk.c, stk.c+ 2)

11: c2 ← (stk.c
?≡ 0 (mod 2))

12: stk.1← mux(c1 ∧ c2, stk.1, stk.2)
13: stk.2← mux(c1 ∧ c2, stk.2, stk.3)
14: stk.s← 0
15: else
16: stk.s← 1
17: end if
18: end if
19: s← 1 . pop always successful in our case
20: (d, stk.c)← (stk.1, c− 1)
21: stk.1← stk.2, stk.2← stk.3
22: return (s, d)
23: end procedure

1: procedure cpush(f, input, stk) . ret success bit s
2: if stk.next 6= ⊥ then
3: if stk.s = 1 then

4: c1 ← (stk.c
?
≥ 2)
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5: s′ ← mux(c1, 0,cpush(c1, stk.next))
6: stk.3← mux(s′, stk.3, stk.1)
7: stk.c← mux(s′, stk.c, stk.c− 2)
8: stk.s← 0
9: else

10: stk.s← 1
11: end if
12: end if
13: s← ¬(stk.c

?
= 3) . check fullness

14: for i = 1 to 3 do
15: stk.i← mux(f ∧ (stk.c

?
= 3− i), stk.i, input)

16: end for
17: stk.c← mux(f ∧ s, stk.c, stk.c+ 1)
18: return s
19: end procedure

1: procedure creset(f, stk) . return nothing
2: stk.r ← mux(f, stk.r, 1)
3: if stk.next 6= ⊥ then
4: creset(f, stk.next)
5: end if
6: end procedure

Analysis. We now state and prove the following theorem.

Theorem 2.1. Let data structure D have capacity n bits. The total number of and gates
required to implement n calls to pop, creset (respectively cpush) on D is Θ(n log n).

Consider a data structure that is designed to hold n bits. The ith level of the data structure
holds 3 ·2i bits, and therefore k = O(log n) levels are needed. Thus, it is easy to see that the creset
operation on such a data structure requires O(log n) AND gates to implement since it performs
one mux operation on a single bit per level. Each mux(·, a0, a1) operation can be implemented
using |a0| and gates.

The analysis of pop is slightly more complicated but also require O(n log n) and gates across
n operations. Let T (i) represent the number of and gates required to implement a call of pop
on level i of the hierarchy. When the shift bit at this level is 0, then only the and gates from the
mux operation in line 2 are required, and so T (i) = 3 · 2i. When shift is odd, then lines 7,10,12,13
contribue another 3 · 2i + 2 gates, and the recursive call in line 8 contributes T (i+ 1) gates. Over
a sequence of n operations, the n calls to hierarchy level 1 contribute n ·T (1) gates. Half of these
calls require 3 · 20 gates, while the other n/2 calls require 3 · 20 + (3 · 20 + 3 + T (2)) gates. Of
these, n/4 terms of T (2) add 3 · 21 gates, while the other n/4 contribute 3 · 21 + (3 · 21 + 3 +T (3)).
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Expanding all such T () terms and collecting, the total number of and gates is

k∑
i=1

dn/2ie · 3 · 2i−1 + dn/2ie(3 · 2i + 3)

≤
k∑
i=1

dn/2ie
[
3 · 2i + 3 · 2i−1 + 3

]
≤

k∑
i=1

5n = O(n log n)

An analysis of cpush is similar.

Discussion of Batching Parameters Returning to the task of producing d biased coins of
the same bias, we come to the problem of when to stop pushing coins on the output stack. To
use the least number of pushes, we could check if the stack is full before every push and stop
when it is. However, this would potentially lose some privacy since we are revealing the total
number of unbiased coined needed to make d coins. Additionally, stopping early does not mesh
with the constraint of a static circuit. Given that it is unknown how many pushes will be needed
to generate a group of d coins, we choose a small constant c such that the chance of needing
more than cd pushes to make d biased coins is less than 2−λ. If we assume the stack is full after
cd pushes, we can also empty out the stack for free by simply wiring the slots to d coins. The
final question is to choose what size stack will be used to make a total of d coins. The obvious
choice is to use a stack large enough to store all d coins at once, which would also minimize c.
However, by making coins in batches of some size g < d we can reduce the number of levels and
thus the amortized cost per push of the stack, while increasing c very marginally, reducing our
complexity. The process for choosing c and g is described thoroughly in §6.

2.2 Make-Batch 1

In this section, we describe our first method for producing a batch of g biased coins via c · g
cpush operations on a push-only stack. This method for make-batch yields an asymptotic
complexity which cleanly dominates that of ODO-2 for making d coins, but does not win in
practice until λ+ log d (union for overall statistical difference) is large for practical standards.
This make-batch uses a pop-only resettable stack described above to achieve properties (1) and
(3). Informally, the loop mimics the “lazy sampling” method in which the binary expansion of
the bias p is compared bit-by-bit with fair random coins. As soon as the random coin differs
from a bit of the expansion, the loop pushes a new sample onto a stack that collects samples.
Each iteration of the loop thus consists of one pop operation, one cpush operation, and one creset
operation in case of success. The pseudocode is as follows:

1: Let rstackp be the resettable, pop-only stack that contains a given p
2: Let rpop(rstackp) be a pop that is preceded by a reset if the reset bit is 1
3: Let cstack be the push-only stack of size g
4: procedure make-batch(c, g, p)
5: for w = 1 to cg do
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6: b←next(1, coins) . next fair bit
7: t←rpop(rstackp) . next bias bit
8: f ← b⊕ t . f = 1 if difference found
9: cpush(full? ∧ f,¬b, cstack)

10: . push ¬b if cstack has room and f = 1
11: creset(f, rstackp) . oblivious reset
12: end for
13: end procedure

Theorem 2.2. Let λ be the security parameter and d be the total number of coins. Then the
amortized circuit complexity of make-batch for making d coins is O(log(λ+ log d)).

Proof. Note that to make a total of d coins we repeat the procedure above a total of d/g
times. Thus, to find our total cost, we must reduce this expression: O(d(C(cpush) +C(rpop) +
C(creset))), where C(...) is the cost function. The other operations in this part of the loop are
constant and thus need not be considered in the cost. We wish to find the asymptotic complexity
of cpush, rpop, and creset. Since there are g slots in cstack, the cost for each conditional
push comes out to O(log g) by Theorem 2.1. Recall that we do cg pushes for each batch of g
coins, where c is chosen to ensure that the chance of needing more than cg pushes for a batch of
g at any point in the algorithm is less than 2−λ. We fix c > 2 to determine the growth rate of g.
Hoeffding’s inequality [Hoe63] yields:

P[cg pushes yield < g coins] ≤ exp

(
−2

( cg
2 − (g − 1)

)2
cg

)
.

When P[cg pushes yield < g coins] ≤ 2−(λ+log d) must be met we have:

exp

(
−2

( cg
2 − (g − 1)

)2
cg

)
≤ exp(− ln 2(λ+ log d))

=⇒ 2

( cg
2 − (g − 1)

)2
cg

≥ ln 2(λ+ log d)

=⇒ (cg)2

cg
≥ O(λ+ log d)

=⇒ g ≥ O(λ+ log d).

So, g = O(λ+ log d), bringing our complexity to O(d(log(λ+ log d) + C(rpop) + C(creset)))
so far. To find the complexity of rpop and creset, note that the size of rstackp is λ + log d,
since it simply contains the bits of p needed for 2−λ statistical difference over d coins. Thus,
Theorem 2.1 lets us conclude that the cost of both rpop and creset is O(log(λ+ log d)). This
yields a total complexity of O(d log(λ + log d)) for producing d coins, meaning the amortized
cost is simply O(log(λ+ log d)).

2.3 Make-Batch 2

Our second algorithm for make-batch does better than the first when λ+ log d is less extreme,
which is generally the case in practice. Instead of using a stack for satisfying property 1, a
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predicate function is constructed to take an integer j as input and return the jth bit of some
probability p. This predicate function is used in conjunction with a counter that tracks what j
should be at a given step. To satisfy 3, we reset this counter depending on the XOR of the next
unbiased bit and the next bit of p. We present the pseudocode below:

1: Let get(p, j) be the predicate function that gets the jth bit of a binary expansion p
2: procedure make-batch(c, g, p)
3: count← 0
4: for w = 1 to cg do
5: b←next(1, coins) . next fair bit
6: t←get(p, count) . next bias bit
7: f ← b⊕ t . f = 1 if difference found
8: cpush(full? ∧ f,¬b, cstack)
9: count← count + 1

10: if f = 1 then
11: count← 0
12: end if
13: end for
14: end procedure

Theorem 2.3. Let λ be the security parameter and d be the total number of coins. Then the
amortized circuit complexity of make-batch for making d coins is O((λ+ log d) log(λ+ log d)).

Proof. Noticing the similarities between this make-batch and our first make-batch, we have a
total cost of O(d(C(cpush) + C(get))), where C(cpush) = O(log(λ+ log d)). Note that count
need only be enough bits to represent the length of p’s binary expansion, λ+ log d = `. Since
adding to an integer is linear in the number of bits, as is obliviously setting an integer to 0,
we have that manipulating count costs O(log(λ+ log d)) gates, meaning we can absorb it into
C(cpush). To find the complexity of get, first note that the cost is based on the number of
input bits, which in our analysis of manipulating count we found to be log(λ + log d) = log `.
The predicate function will take the log `-bit count as input and output the correct bit of p. For
log ` ≤ 6, the cost of the predicate function is a constant number of AND gates [ÇTP18]. When
log ` > 6 the additional bit(s) can be used in a multiplexer to choose the correct 6-bit function.
This means in a secure computation, we must compute all d`/64e 6-bit functions every time
get is called, effectively making the complexity O(`) since every time ` doubles the number
of 6-bit functions doubles. Moreover, increasing log ` when log ` > 6 means that more bits per
function must be checked to determine which function’s result will be the output of get. This
complexity can be halved by only checking the number of 1s in the additional bits instead of
checking that all 0s and 1s match like in a standard multiplexer. However, we are checking
O(log `) bits asymptotically, and this is multiplied by O(`) since we check bits for each 6-bit
function, yielding an additive O(` log `) to the complexity of get. Thus we have complexity
O(`+` log `) = O(` log `) = O((λ+log d) log(λ+log d)) for get overall. This brings our complexity
for d coins to O(d(log(λ + log d) + (λ + log d) log(λ + log d))) = O(d(λ + log d) log(λ + log d)),
giving an amortized cost of O((λ+ log d) log(λ+ log d)).
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3 Sampling Exponential Noise via Poisson

In this section, we review the techniques from [DKM+06] showing how to sample the Poisson
distribution in order to approximate the exponential distribution. Recall that the celebrated
Poisson distribution is a discrete probability distribution that expresses the probability of
a given number of events occurring in a fixed interval if these events occur with a known
constant rate λ. For example, such a distribution can model the number of soldiers in the
Prussian army killed accidentally by horse kicks [vB98]. Specifically, the support of the Poisson
distribution are the non-negative integers 0, 1, 2, . . ., and the probability mass function is defined
as f(k;λ) = Pr[X = k] = λke−λ

k! . As in [DKM+06], we sample from this distribution in order to
approximate the exponential distribution.

Naive methods Generically, one can sample any function with cumulative distribution function
ρ by first sampling r ∈ [0, 1] and then finding the maximum x such that r < cdf(x). The latter
maximization problem can be solved by inverting the CDF. Thus, in the case of drawing Poisson
or exponential noise, the complexity of this naive sampling approach will be dominated by the
complexity of computing lnx (which appears in the inverse CDF).

Bitwise sampling The main observation in [DKM+06] is that the special structure of an
exponential distribution enables the generation of the binary representation of an exponential
variable using a number of coins that is independent of the bias. Thus, by calling the noise sample
some κ bit number, one can compute the probability that bit i of a sample is 0 or 1 as seen
in [DKM+06]. This bounds the distribution to the interval (−2κ, 2κ), since after generating a κ
bit noise sample we flip a fair coin to choose whether the noise is negative or positive, as we desire
two-sided exponential noise. Since Pr[X = x] ∝ exp(−|x|/R) in the exponential distribution
(with scaling constant R), the probability that bit κ is 1 diminishes at a doubly exponential
rate, meaning κ will stay nearly constant as the number of samples and privacy requirements
grow. We note that sampling in this way implicitly makes the noise an integer, meaning we
are actually sampling from the geometric distribution. This is ideal since geometric noise still
satisfies our differential privacy needs in §4, while avoiding the expensive computation of the
natural logarithm.

4 Report-Noisy-Max Application

In this section we demonstrate how we can use our new methods for batch-sampling biased
coins to securely implement one of the foundational algorithms in differential privacy (DP), the
report-noisy-max mechanism [BLST10] (a variant of the widely known exponential mechanism).
We begin by recalling the definition of DP.

Definition 4.1 ([DMNS06]). Let X be the universe of possible dataset entries, R be a range
of outputs, and ε, δ ≥ 0 be parameters. We say a randomized algorithm A : Xn → R is
(ε, δ)-differentially private if for every two datasets x = (x1, . . . , xi, . . . , xn) ∈ Xn and x′ =
(x1, . . . , x

′
i, . . . , xn) ∈ Xn that are the same except for one individual’s data, and for every set of

outcomes S ⊆ R, we have P[A(x) ∈ S] ≤ eεP[A(x′) ∈ S] + δ.

We typically view ε as the “privacy level” and require it to be a small constant, as having
ε too small leads to poor utility, and leaving it too large provides meaningless privacy. For
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example, Google’s RAPPOR [EPK14] and PROCHLO [BEM+17] use ε = ln 3 and ε = 2.25,
respectively. We think of δ as a “failure probability” for the algorithm, and require that it be
“cryptographically small”, e.g. 2−80.

4.1 Report-Noisy-Max

One of the most useful differentially private algorithms is the report-noisy-max mecha-
nism [BLST10] (see [DR14] for a textbook treatment). This mechanism is a more practical
implementation of the widely known exponential mechanism [MT07], and the two mechanisms
solve the same problem with identical privacy and utility guarantees.

Given a dataset Xn and discrete set of choices Y (denote |Y| = d), as well as a utility function
u : Xn × Y→ R such that u(x, y) is the utility of choice y ∈ Y on dataset x ∈ Xn, a user would
naturally want to select a y ∈ Y that has high utility on the given dataset. For example, Y

might be a set of classifiers for a machine learning model, and u(x, y) might be the number of
examples in the dataset that y classifies correctly. The report-noisy-max mechanism is a way to
privately select an element ŷ such that u(x, ỹ) ≥ maxy∈Y u(x, y)−O(log d). The importance of
this mechanism comes from the fact that the error grows only logarithmically in the number of
choices.

The report-noisy-max algorithm works in two steps: First, securely compute noisy scores
ûy = s(x, y) + zy for each y ∈ Y, where zy is a suitably chosen random variable typically Laplace
or geometric. Second, return ỹ that maximizes the noisy score ûỹ. It is crucial for privacy
that the intermediate noisy scores are not revealed, only the final choice ỹ. For our purposes,
we draw from geometric noise in the first step. We label the noisy max mechanism that adds
Geo(2/ε) (the discrete version of Lap(2/ε)) to each score as NM-Geo(2/ε). Since we are drawing
samples from the geometric distribution, we restrict the output space of our utility function to
u : Xn × Y→ Z. We note that rounding down scores to integers for utility functions that have
output space R increases the error by at most 1, which is small in comparison to log d. Since this
mechanism can be implemented by sampling many independent noise variables, each of which
require sampling many biased coins, it is ideally suited to our methods.

Theorem 4.2 ([DR14, Vad16]). NM-Geo(2/ε) is (ε, 0)-differentially private.

Implementing Report-Noisy-Max. Using bitwise sampling from §3 and make-batch from
§2, we can construct a secure implementation of noisy max. We present the pseudocode below:

1: Let λ be the security parameter, ε be the DP parameter, and κ restrict our noise domain
to (−2κ, 2κ)

2: Let p0, p1, . . . be the binary expansions (out to f bits, derived from ε) for the biased
coins needed to compute k bit noise, where k ≤ κ is derived from κ to optimize run time

3: Let cstack be the push-only stack of size g used for making batches of g coins, where g is
picked along with a small constant c to optimize run time

4: procedure MNMλ,ε,κ(u1, . . . , ud) . ui = u(x, yi)
5: for i = k to 0 do
6: for j = 1 to d/g do
7: make-batch(c, g, pi)
8: s1, . . . , sg ←purge(cstack) . output coins
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9: ng(j−1)+1, . . . , ngj ← ng(j−1)+1|s1, . . . , ngj |sg . concat noise, sample ni
corresponds to ui

10: end for
11: end for
12: return max-idx(u1 ± n1, . . . , ud ± nd)
13: end procedure

We note that the pseudocode for ODOλ,ε,κ, the algorithm that uses comparator circuits to
flip all biased coins, follows directly from the bitwise sampling in §3 and the definition of noisy
max, so we do not provide it.

4.2 Complexity Theorems

We now present the following theorems which follow very simply from the proofs of make-
batch:

Theorem 4.3. Let ε ∈ [0.001, 10] and the number of bits for all ui (potentially padded) be
constants, λ be as above, d be the number of choices, and κ = O(log(λ+ log d)). Then the circuit
complexity of MNMλ,ε,κ with make-batch from §2.2 is O(d log2(λ+ log d)).

Proof. Going forward, cost, complexity, and circuit complexity will all refer to the number of
non-XOR gates. First note that since each ui is the same fixed number of bits, the addition and
max operations yield total complexity O(d) which will be dominated by the cost of sampling.
The only difference between sampling d times from Geo(2/ε) and producing d coins is that we
make d coins of the same bias k times instead of once. This does change the length of the bias
needed to maintain λ security, so we will address the effect this has. We want the statistical
difference for κn biased coins to be less than 2−λ overall. This gives the following inequality for
f (bias length):

(1− 2−f )κd ≥ 1− 2−fκd = 1− 2−f+log κ+log d ≥ 1− 2−λ,

so f ≥ λ+ log κ+ log d =⇒ f = O(λ+ log d). Part of the proof in §2.2 lets us conclude that the
cost per coin is thus O(log f). We pick k such that the bias for the kth bit is the last non-zero
bias for f bits of precision. Choosing k this way makes it so full comparisons are only done for
the coins that are not all 0s in their expansions to f bits. From [DKM+06] we know that the
chance of bit j being 1 is 1/(1 + exp(2j−1ε)). Thus, k will be κ or the lowest integer such that
1/(1 + exp(2kε)) < 2−f , which means k = O(log f) = O(log(λ+ log d)). Since we are making dk
coins each at cost log f , the complexity comes to O(d log2(λ+ log d)), as desired.

Theorems 4.4 and 4.5 follow directly from the above proof, the proof in §2.3, and the knowledge
that ` bit comparisons take O(`) gates.

Theorem 4.4. Let ε ∈ [0.001, 10] and the number of bits for all ui (potentially padded) be
constants, λ be as above, d be the number of choices, and κ = O(log(λ+ log d)). Then the circuit
complexity of MNMλ,ε,κ with make-batch from §2.3 is O(d(λ+ log d) log2(λ+ log d)).

Theorem 4.5. Let ε ∈ [0.001, 10] and the number of bits for all ui (potentially padded) be
constants, λ be as above, d be the number of choices, and κ = O(log(λ+ log d)). Then the circuit
complexity of ODOλ,ε,κ is O(d log(λ+ log d)(λ+ log d)).
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4.3 Proof of Differential Privacy

Let M : Xn → Y be the noisy max algorithm using geometric noise with finite domain (−2κ, 2κ)
such that:

M(x) =

{
NM-Geo(2/ε) w.p. 1− δ
F(x) w.p. δ

,

where F is the function executed when a sample is out of the range (−2κ, 2κ) and NM-Geo(2/ε)
is the ”perfect” noisy max algorithm defined as above. By the privacy of NM-Geo(2/ε), M is

(ε, δ)-differentially private. Let M̃ : Xn → N be MNM, which is the same as M except for the
possibilities of a biased coin failing and/or that cg pushes (for c and g as in the pseudocode)

create less than g coins. We define M̃ like so:

M̃(x) =

{
M(x) w.p. 1− (ρ+ ν) (¬E)

G(x) w.p. ρ+ ν (E)
,

where E is the event in which any biased comparator fails (represented by ρ) and/or any set of
cg pushes fails to produce g coins (represented by ν). We let G be the function executed when E
happens.

Theorem 4.6. M̃ is (ε, δ + ρ+ ν)-differentially private.

Proof.

P[M̃(x) ∈ S] = P[M̃(x) ∈ S ∧ E] + P[M̃(x) ∈ S ∧ ¬E]

≤ P[E] + P[¬E]P[M̃(x) ∈ S|¬E]

= ρ+ ν + P[¬E]P[M(x) ∈ S|¬E]

≤ ρ+ ν + P[¬E](eεP[M(x′) ∈ S|¬E] + δ)

≤ ρ+ ν + eεP[M̃(x′) ∈ S ∧ ¬E] + (1− (ρ+ ν))δ

≤ eεP[M̃(x′) ∈ S] + δ + ρ+ ν.

Here we have

δ = 2e−(2
κε−ln d)

ρ = 2−λ, and

ν ≤ d

g
exp

(
−2

( cg
2 − (g − 1)

)2
cg

)
≤ 2−λ

for some choice of κ, ε, λ, c, and g, which are defined the same way as in the pseudocode.
We choose c and g given λ such that the last inequality holds. Note that ODO can be proven
(ε, δ + ρ)-differentially private in the same way.

Discussion Since our algorithm introduces three addends that sum to δ, its a good idea to set
λ = log(4/δ) for the goal of (ε, δ)-DP. This will make ν and ρ both less than or equal to δ/4,
making their sum less than or equal to δ/2. If κ is set such that δ′ = 2e−(2

κε−ln d) ≤ δ/2 as well
(which happens when κ = O(λ+ log d)), we have δ′+ρ+ν ≤ δ. Choosing κ and λ this way yields
a complexity of O(d log2 log(d/δ)) for the first make-batch, and O(d log(d/δ) log2 log(d/δ))
for the second. Since ε is a parameter to the algorithm that determines the exact biases for
computing the bits of noise, it is already attained. It is worth noting however, that smaller ε for
the same desired δ may increase the algorithm’s complexity slightly.
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5 Optimizations

In this section we will describe some of the additional methods used to further cut down
gates when implementing MNM.

Special Values of ε Our primary reduction comes from choices of ε that have especially easy
biases to produce, namely ε of the form ε = 2−i ln 2 for i ∈ Z. When ε takes this form, the
expression for the probability of bit j being 1 is reduced from

1/(1 + exp(2j−1ε)) to 1/(1 + 22
j−i−1

).

When the expression j − i− 1 ≥ 0, we have a fully periodic binary expansion for the probability
that bit j is 1 (e.g. 01010101... for j− i− 1 = 0). This allows us to produce the binary expansion
for P[bit j = 1] by simply taking bit j − i− 1 of count (see §2.3), making get a 0 gate function!
Thus, if one does not have precise needs for ε, one can find the first expression of the form 2−i ln 2
less than their approximate ε threshold and have a number of periodic expansions among the k
biases flipped in the MNM protocol.

Remainder Batch A lesser reduction we use is when finding the optimal c and g for batches,
having the last group be a potentially smaller size, in order to make the least amount of total
coins possible. With a total of d coins to make, this is done by simply taking w = d (mod g)
and finding the least expression of the form 3(2i) > w, which is then used as the size of the final
group.

6 Evaluation

The main contribution of this paper is the design of a new circuit family for sampling biased
coins that is suitable for use in secure computation protocols. To illustrate the benefits of this
new design, we have implemented our new sampling schemes, the ODO sampling scheme, and
the report-noisy-max mechanism. The focus of the paper is not on secure computation, and
therefore we consider the simpler two-party honest-but curious model; our techniques, however,
apply equally to multi-party computation protocols that handle a variety of adversarial models.

Setup We implemented and benchmarked both ODO and MNM, using Obliv-C [ZE15], an
extension of C that compiles and executes Yao’s Garbled Circuits protocols with many protocol-
level optimizations.

Benchmarks were performed using Ubuntu 18.04 with Linux kernel 4.18.0-1009-gcp 64-bit,
running on pairs of identical Google Cloud Instance n1-highcpu-4 instances. Code was compiled
using gcc version 8.2.0 (Ubuntu 8.2.0-7ubuntu1), with the -O3 -march=native flags.

We evaluated performance in two network settings. In the first network setting that mimics
a LAN setup, all instances ran in the same us-east1-b datacenter. Using iperf, we measured
the bandwidth between the pairs of instances to be 7.5 gigabits per second and the ping times to
be 0.4ms. The second network setting reflects a typical WAN in which one machine was in the
us-east1 datacenter while the others were in the us-west1 datacenter. Again using iperf, we
measured the bandwidth between the two instances to be 330 megabits per second. These two
network settings highlight the difference in network communication requirements between the
various algorithms.
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Selection of parameters Using our MNM sampler requires choosing the following parameters:

1. u: This parameter represents the number of pushes (cg as described above) needed to
produce g coins with a desired chance of failure. In our experiments for ε = 2−3 ln 2, δ = 2−60,
this parameter ranged from 1941 to 6947.

2. g: The primary batch size used to make all groups except for the remainder group (which
in some cases is still size g). In our experiments for ε = 2−3 ln 2, δ = 2−60, this parameter
ranged from 765 to 3069.

3. `: The length of the bias for a desired 2−λ statistical difference overall (f in the MNM
pseudocode). In our experiments for ε = 2−3 ln 2, δ = 2−60, this parameter ranged from 78
to 85.

4. v: This represents the number of pushes needed to produce q coins with the same desired
chance of failure as each of the batches of g. In our experiments for ε = 2−3 ln 2, δ = 2−60,
this parameter ranged from 1066 to 6947.

5. q: The remainder batch size, used as an optimization (to make as few extra coins as
possible). In our experiments for ε = 2−3 ln 2, δ = 2−60, this parameter ranged from 381 to
3069.

In choosing these parameters, we picked κ as in our differential privacy discussion thus letting
us solve for k as described in Theorem 4.3. Then we iterated over the choices for g, which are
3(2i) for i = 0, 1, 2, . . . , 15 (for i > 15, the cost per operation is too high compared to the minor
reduction of c). For each g, we found the minimum number of pushes needed to make

P[cg pushes yield < g coins] ≤ 2−(f−log g),

with f defined as in the proof of Theorem 4.3. By taking d (mod g) we could easily deduce
what the remainder group would be, and the number of pushes needed for that to satisfy our
desired overall chance of failure. With this done, we calculated what the total concrete gate
count would be for noisy max based on our benchmarks of data structure operations and the
cost of evaluating a log f bit predicate using multiple efficient 6-bit predicates. When doing this
we first compared whether the pop-only stack or the predicate would be faster and chose the
appropriate one. Finally, we took the parameters that yielded the lowest estimated concrete gate
count for noisy max.

6.1 Microbenchmarks of datastructures

In this section we present the gate complexity of our cpush, pop, and creset operations, as
well as the complexity of our predicate implementations for different biases. To compute these,
we modified our Obliv-C implementation to report specific gate counts.

Complexity of push Here we empirically measure the gate complexity of our cpush implemen-
tation. We consider stacks of size n = 3 · 2t bits and then apply n conditional cpush operations
while measuring the number of gates required for each operation. Figure 2 graphs the number of
gates for the first 6141 operations as well the average number of gates for the first i operations.
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Figure 2: The top plot shows the exact number of AND gates in ith cpush operation. The bottom
plot show a running average number of gates for the first i operations, which fits closely the
amortized O(log n) complexity we analyze.

Crossover for pop In the section we compare the performance of our predicate versus the
pop operation for producing the jth bit of the binary expansion of a bias p. We compute the
average number of gates required for pop operations, and the size of our predicate solution for
increasingly long binary expansions of the bias. Our data is summarized in Table 2.

6.2 Two Party d-Sample Benchmarks

We benchmarked the action of generating d samples from Geo(2/ε) using the second version of
make-batch, which uses a predicate function to generate the bias. For comparison purposes,
we also benchmarked the ODO implementation. For both implementations we varied the number
of samples to make between 212 and 219. We also sampled with two different ε: one of the
form ε = 2−i ln 2 (ε = 2−3 ln 2), and one not in that form (ε = 0.1). For each value of ε,
we benchmarked for δ = 2−60 and δ = 2−80. We recorded the wall-clock time for the two
aforementioned network settings and present our results for this in Figures 3a and 3c. The total
number of bytes transmitted among both parties and the sum of the number of non-free Yao
gates and the number of unbiased coins used are shown in Figures 3b and 3d, respectively. We
note that cost and communication are static across different networks.
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λ pop Method Predicate method

64 43.6 16
128 52.2 24
192 60.8 32
256 60.8 39
320 60.8 47
384 69.3 54
448 69.3 61

512 69.3 69
576 69.3 77
640 69.3 84

Table 2: Amortized number of AND gates for pop vs predicate as the length of the bias λ
increases. For pop we took the average of 10000 iterations of calling pop and conditionally
resetting on a random bit. The crossover point is roughly λ > 512 which is a highly secure
setting, but certainly a reasonable parameter setting.

As we expected, our protocol scales very well with d in all categories. Despite the asymptotic
behavior with the second make-batch being sub-optimal, it is understandable that it scales well,
as for lower values of λ+ log d the cost of the predicate function is roughly constant, meaning
the complexity is just as good as our protocol with the first make-batch.

6.3 Two Party Noisy Max Benchmarks

Next we report on our full implementation of the noisy max algorithm using our improved
biased coin sampling procedure. We expect the performance for noisy-max to be dominated by
the cost of the sampling, and the data below supports this claim. In our two-party setup, we
have each party contribute half of the dataset. We vary the size of the dataset from 212 = 4096 to
219, using 32-bit integer entries for the data. The benchmarks are run with 2 machines running
in the same us-east1 datacenter. The results are presented in Table 3.

As predicted by our analysis, the cost grows slowly between δ = 2−60 and δ = 2−80; at
d = 219, the difference is only 10s or 2%. We note that the communication overhead is quite
high but feasible for moderate-sized domains.
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Figure 3: d-Sample Benchmark Results. We measure time and communication to produce
d samples from Geo(2/ε) in two network settings. In these graphs, d varies for two choices of ε
and two δ for each ε. We note that ODO does not change based on the form of ε, so we use one
plot for the two values of ε. Across all of these parameters, the MNM technique dominates the
ODO. In graph (c), the gray lines represent the same MNM performance lines from graph (a) for
comparison purposes.
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δ d and gates Comm (106 b) Time (s)

2−60

4096 8,349,483 340.3 4.40
8192 16,454,933 670.6 8.11
16384 32,751,039 1335.3 17.87
32768 64,584,144 2632.7 31.32
65536 129,371,034 5271.8 63.53
131072 259,005,597 105.5 126.31
262144 515,833,031 21020.8 242.69
524288 1,033,115,150 42099.7 488.05

2−80

4096 8,613,824 351.0 4.78
8192 16,841,275 686.2 8.91
16384 33,408,111 1360.9 16.07
32768 66,031,953 2691.0 32.45
65536 131,256,973 5347.8 62.46
131072 262,730,472 10704.4 124.87
262144 523,257,767 21320.0 254.11
524288 1,047,606,374 42683.8 493.63

Table 3: Summary of costs for running report-noisy-max mechanism with ε = 2−3 ln 2 = 0.0866
on datasets of increasing size and δ ∈ {2−60, 2−80}.
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