
Hardware Implementations of NIST Lightweight
Cryptographic Candidates: A First Look

Behnaz Rezvani and William Diehl

Virginia Tech, Blacksburg, VA 24061, USA
email: {behnaz, wdiehl}@vt.edu

Abstract. Security in the Internet of Things (IoT) is challenging. The
need for lightweight yet robust cryptographic solutions suitable for the
IoT calls for improved design and implementation of constructs such
as Authenticated Encryption with Associated Data (AEAD) which can
ensure confidentiality, integrity and authenticity of data in one algo-
rithm. The U.S. National Institute of Standards and Technology (NIST)
has embarked on a multi-year effort called the Lightweight Cryptog-
raphy (LWC) Standardization Process to evaluate lightweight AEAD
and optional hash algorithms for inclusion in U.S. federal standards. As
candidates are evaluated for many characteristics including hardware
resources and performance, obtaining results of hardware implementa-
tions as early as possible, i.e., even in round 1, is preferable. In this
research, we implement three NIST LWC round 1 candidate ciphers,
SpoC, Spook, and GIFT-COFB, in the Artix-7 FPGA. Implementations
are compliant with the previously-validated CAESAR Hardware Appli-
cations Programming Interface (API) for Authenticated Ciphers, and
are tested in actual hardware. Implementations show that GIFT-COFB
has the highest Throughput-to-Area (TPA) ratio, by a 4.4 factor margin
over Spook. Additionally, the results illustrate hardware implementation
challenges associated with integrating multiple cryptographic primitives
into one design, as well as complexities due to padding and truncation.

Keywords: Lightweight cryptography · FPGA · Authenticated cipher ·
Encryption

1 Introduction

Increasing use of very lightweight devices constituting the Internet of Things
(IoT) necessitates the development and adaptation of lightweight cryptographic
algorithms. Yet lightweight cryptography should not be less robust than existing
protections, as real-world events have shown IoT devices to be a potential “achilles
heel” of cybersecurity. For example, in the October 2016 Dyn cyber attack, Mirai
malware installed on millions of IoT devices (e.g., web cameras, baby monitors,
residential gateways) overwhelmed the Dyn Domain Name Server (DNS) with
DNS resolution requests, taking down large parts of major internet-enabled
companies in Europe and North America [22, 33].

2 B. Rezvani and W. Diehl

IoT devices, like all information technology, are vulnerable to theft of privacy
information, and are subject to potentially more destructive attacks such as
replay or man-in-the-middle attacks. To guard against the range of such attacks,
cryptographic solutions should ensure confidentiality (i.e., where an adversary
cannot read private communications), integrity (i.e., where any change in trans-
mitted data can be detected), and authenticity (i.e., where a receiver can verify
the identity of the sender). Authenticated Encryption with Associated Data
(AEAD) can ensure all of the above services in a single algorithm, while realizing
savings in cost and performance, and by avoiding security pitfalls of interactions
with separately-designed ciphers and hashes.

In August 2018, the U.S. National Institute of Standards and Technology
(NIST) issued a call for specifications for lightweight AEAD and optional hashes,
to be subjected to several rounds of evaluation as part of the Lightweight
Cryptography (LWC) Standardization Process, and eventually incorporated
into U.S. Federal Information Processing Standards (FIPS) [37]. Submissions
of specifications were permitted until February 2019, and 56 qualified round 1
candidates were publicized in April 2019. Round 2 selections are expected as
early as August 2019.

NIST LWC candidates are evaluated on several criteria, including cost (e.g.,
area, memory, energy consumption) and performance (e.g., latency, through-
put, power consumption) in resource-constrained environments representative of
emerging IoT devices. All submissions were required to include software reference
implementations. While several submissions included synthesis or implementation
results from the authors’ own hardware submissions in ASIC or FPGA, the
NIST LWC evaluation process specifically assigns higher weight to 3rd-party
implementations.

In this research, we provide an early evaluation of selected NIST LWC
AEAD candidate submissions through hardware implementations; optional hash
algorithms are not considered in this research. Given the large number of qualified
submissions (i.e., 56) and the short period of time between initial publication
of specifications and round 2 selection (i.e., less than 4 months), we select three
ciphers for evaluation: SpoC, Spook, and GIFT-COFB. The rationale for selection
of these ciphers is as follows:

1. According to analysis in [38], at least 47 submissions are composed of block- or
block-like primitives, out of which at least 20 are sponge-based. Additionally,
at least 22 ciphers (both block and stream) use 4-bit S-Boxes, and at least 9
ciphers use a logical AND or multiplication for non-linear transformations.
SpoC and Spook are sponge-based, while Spook and GIFT-COFB use 4-bit
S-Boxes, and SpoC uses a logical AND for non-linear transformations.

2. While SpoC and GIFT-COFB have author ASIC implementations, none
of the chosen ciphers has author-reported FPGA implementations in the
submissions.

3. No weaknesses or errors in specification had been publicly identified in the
selected ciphers at the time of implementation.

HW Implementations of NIST LWC Candidates 3

We implement the selected ciphers using Register Transfer Level (RTL)
methodology in Verilog or VHDL. Since no hardware Applications Programming
Interface (API) was specified for NIST LWC round 1 submissions, all implemen-
tations are fully compliant with the existing CAESAR Hardware Applications
Programming Interface (CAESAR HW API) [31, 29], and use the CAESAR
Hardware Developers Package (CAESAR HW DP) at [24]. Implementations are
functionally verified in Xilinx Vivado Simulator, and verified on actual hardware
using the Flexible Open-source workBench fOr Side-channel analysis (FOBOS)
[16]. Results are generated in the Artix-7 FPGA by Xilinx Vivado, and further
optimized using the Minerva Automatic Hardware Optimization Tool [20]. Im-
plementations are compared according to maximum frequency, area (Look-up
Tables (LUTs) and slices), throughput (Mbps), and Throughput-to-Area (TPA)
ratios.

Our contributions in this work are as follows:

1. We provide an accelerated look at fully-functional hardware implementations
of selected and representative NIST LWC AEAD candidates, before round 2
selections.

2. We provide a comparison with selected past and present authenticated
cipher implementations, in order to bridge the space between CAESAR
and NIST LWC processes, as well as API-compliant and API-non-compliant
implementations.

3. We show examples of features of cipher implementations which may be
resource-intensive and reduce performance, in order to illustrate design
pitfalls and help guide later-round tweaks.

The paper is organized as follows: We provide background on previous hard-
ware implementations, authenticated ciphers, the CAESAR API and associated
Developer’s Package in Section 2. We describe implementations of our chosen
cipher candidates in Section 3. We present implementation results in Section
4. We compare with previous results and discuss observations in Section 5. We
conclude in Section 6 and discuss future work in Section 7.

2 Background

2.1 Hardware implementations in cryptographic competitions

Public competitions for cipher standards began with the NIST call for AES sub-
missions in 1997 [35]. 15 candidates were submitted to round 1 of the competition
by 1998, with five candidates selected as finalists in 1999. The Rijndael algo-
rithm was chosen for AES standardization in 2000. Candidates in round 1 were
evaluated primarily based on software, with more intended focus on hardware in
round 2. Large-scale comparisons of hardware performance did not emerge until
near the end of the selection process, e.g., [23, 19]. This means that hardware
implementations were emphasized only in the last third of the competition. As
stated in [36], there is typically less data on hardware performance available to

4 B. Rezvani and W. Diehl

evaluators, even going into final deliberations, since the amount of time required
to explore each possible implementation is much greater.

Based on lessons-learned from the AES and subsequent SHA-3 competitions,
members of the cryptographic community sought to accelerate and standardize fair
and efficient benchmarking of hardware implementations of candidates submitted
to the Competition for Authenticated Encryption: Security, Applicability, and
Robustness (CAESAR) [15]. Hardware implementations were required from all
submission teams beginning with round 3, out of ultimately 4 rounds of selection.
A standard API for hardware implementations was validated by the CAESAR
committee, and a hardware developers package designed to help implementers
meet API compliance standards was made available. This resulted in CAESAR
HW API-compliant hardware implementation of 28 out of 29 round 2 candidates
before the end of round 2 [30].

However, the timeframe necessary to understand the design space of hardware
implementations was still relatively compressed. For example, round 1 submis-
sions were due in March 2014, announcement of round 2 candidates occurred
in July 2015, and most hardware submissions appeared only slightly before
the announcement of round 3 candidates in August 2016. As CAESAR finally
concluded in February 2019, nearly half of the competition had elapsed before
the accumulation of a critical mass of data on hardware implementations.

With each new cryptographic competition and standardization effort, there is
increasing interest on achieving early hardware benchmarks, however, the number
of submissions has increased, and while early round evaluation periods are short.
For example, the NIST LWC Standardization Process was announced in August
2018, with submission deadlines (including software reference implementations)
in February 2019. The call for specifications predicted a nearly one-year process
for a “first-phase evaluation” or candidates. However, the public announcement
of round 1 submissions, posted in April 2019, announced that round 2 selections
would be made “before September 2019,” leaving less than 4 months for round 1
evaluations.

The NIST call for submissions (like previous competitions) mandated calls
for software reference implementations, but left open the option to report hard-
ware implementations. Many NIST LWC submissions included author-reported
implementations in either ASIC or FPGAs, e.g., ACE, CiliPadi, DryGASCON,
ESTATE, Gimli, Lilliput, Limdolen, Oribatida, SAEAES, Subterranean, Sycon,
TRIFLE, HERN & HERON, WAGE, etc. [38]. However, [37] specifically high-
lights the value of 3rd-party evaluations of candidate submissions. To the best of
our knowledge, these are the first reported 3rd-party hardware implementations
of NIST LWC candidates following the publication of official specifications in
April 2019.

2.2 Authenticated encryption with associated data

Authenticated encryption is a way of ensuring confidentiality, integrity, and
authenticity of data by combining the use of a cipher primitive (e.g., block cipher)
with a keyed-hash or Message Authentication Code (MAC) to guard against

HW Implementations of NIST LWC Candidates 5

forgeries. AEAD is defined in [39], where certain header or protocol data should
not be encrypted, but should be considered in the integrity and authenticity of
transmitted data.

In both CAESAR and the NIST LWC Standardization Process, two operations
are defined on AEAD, authenticated encryption and authenticated decryption.
In encryption, inputs consist of a public message number Npub usually defined
as a “number used once” (nonce), a secret key K, plaintext PT, and associated
data AD (the secret message number Nsec is defined but not expected in NIST
LWC submissions). The outputs of authenticated encryption include Npub, AD,
ciphertext CT, and Tag, which provides for integrity and authenticity of all
transmitted data. In authenticated decryption, the inputs are Npub, AD, K,
CT, and Tag. CT is internally decrypted into PT, however, an internal Tag′ is
computed and checked against Tag prior to releasing PT, in a step called “tag
verification.”

Properly-defined and engineered authenticated encryption schemes are a way
to ensure provision of cryptographic services while avoiding pitfalls of attempting
to combine separate ciphers and hashes (e.g., [32]). However, they are much more
complex than individual block ciphers or secure hashes, and warrant the focus
of the cryptographic community on analysis of their strengths and weaknesses,
including physical hardware implementations.

2.3 Hardware applications programming interface

The top-level function prototypes for AEAD C-language software reference
implementations are specified in [37] as follows:

// aead_encrypt

int crypto_aead_encrypt(unsigned char *c,unsigned long long *clen,

const unsigned char *m,unsigned long long mlen, const unsigned char

*ad,unsigned long long adlen, const unsigned char *nsec, const

unsigned char *npub, const unsigned char *k);

// aead_decrypt

int crypto_aead_decrypt(unsigned char *m,unsigned long long *mlen,

unsigned char *nsec, const unsigned char *c,unsigned long long clen,

const unsigned char *ad,unsigned long long adlen, const unsigned

char *npub, const unsigned char *k);

Note that in the above prototypes, unsigned char *m corresponds to PT,
const unsigned char *ad corresponds to AD, etc. (however, unsigned char

*c actually represents CT ‖ Tag). These prototypes form the basis for an API
which determines how clients will interact with the program. This ensures compat-
ibility among all similar software implementations, and some fairness in evaluation
(other “fairness” measures include language, compiler, and optimization instruc-
tions).

6 B. Rezvani and W. Diehl

However, as in the case of CAESAR, no analogous hardware API was issued
in the call for specifications. In Spring 2016, close to the conclusion of CAESAR
round 2, the CAESAR committee endorsed the CAESAR HW API. Described
at [31, 29], the CAESAR HW API outlines interface standards and minimum
compliance criteria to ensure compatibility between different designers, fairness,
and ease of benchmarking and evaluation.

For example, external interfaces are aligned with the popular AMBA Advanced
eXtensible Interface 4 (AXI4) standard [5], and consists of three ports: public
data (pdi), secret data (sdi), and data output (do). Most data arrives and
departs on the public data interface, except for secret keys, which arrive on the
secret data interface.

Additionally, a protocol consisting of commands, headers, and data, as well
as a prescribed sequence of operations, is used to input and process types of data
required for authenticated encryption and decryption, including Npub, AD, PT,
CT, and Tag. An example of a message, including its representative encoding
based on a 32-bit external interface width (i.e., public data bus width PW = 32),
along with a brief interpretation, is provided in Table 1.

Table 1. Description of protocol to load and process one message using the CAESAR
Hardware API.

Protocol Coding Description

instruction = ACTKEY 70000000 Activate new key

instruction = ENC 20000000 Conduct aead encrypt

seg 0 header D2000010
Next data is 16 bytes of Npub, is the end of
type (Npub), but is not the end of input

seg 0 = Npub

2A9C6AD7

F8DE7374

A760388E

47E557F0

128-bit Npub (delivered on 4 consecutive
reads from the 32-bit pdi data)

seg 1 header 12000001
Next data is 1 byte associated data, is the
end of type (AD), but is not the end of input

seg 1=AD 93000000
1 byte of AD (0x93), delivered on 1 read
from 32-bit pdi data

seg 2 header 47000001
Next data is 1 byte of plaintext, is the end of
type (PT), and is the end of input

seg 2 Msg DD000000
1 byte of PT (0xDD), delivered on 1 read
from 32-bit pdi data

Since a hardware API has not been defined for the NIST LWC Standardization
Process at the time of writing, we implement ciphers using the CAESAR HW API.
As NIST LWC AEAD software function prototypes are identical to those used in

HW Implementations of NIST LWC Candidates 7

CAESAR, we expect similar compatibility with hardware implementations. Of
note, an API definition of hash was not included in the CAESAR HW API, but
is expected to be included in a future NIST LWC HW API.

2.4 Hardware Developer’s Package

Whereas external client interface through the software API is handled by typical
software tools such as compiler, loader, linker, and operating system, hardware
designers are responsible for their own formatted input and output. To facilitate
the hardware designer’s task of meeting CAESAR HW API requirements, a
Hardware Developer’s Package is provided at [24]. The package includes an
input processor (Pre-Processor) and output processor (Post-Processor), which
are encapsulated in a top-level module called AEAD. A designer can place a
custom design in a subordinate module called CipherCore, and use standardized
interfaces to communicate with Pre- and Post-Processors. A set of Python scripts
called aeadtvgen is used to generate representative test vectors directly from
the software reference implementation, and an accompanying HDL test bench
(AEAD TB) automatically verifies test vectors against expected results. An
implementer’s guide to assist in using the developer’s package is also available at
[28].

In this research, we use the HW Developer’s Package (v2.0), and develop
RTL implementations inside CipherCore. Software reference implementations
can be ported directly into aeadtvgen for generation of AEAD test vectors. A
representation of CipherCore, instantiated in AEAD with accompanying I/O
modules, is shown in Fig. 1. External signals defined in the CAESAR HW API
are the AXI-4 compatible signals associated with pdi, sdi, and do. Internal input
signals to CipherCore, defined only in the developer’s package, include bdi (block
data input), key (key input), bdi size and bdi valid bytes. Output signals to
the Post-Processor, defined only in the developer’s package, include bdo (block
data output), in which CT and Tag depart CipherCore, and msg auth (message
authentication), which is used to signal results of tag verification in authenticated
decryption. Other signals are defined in [28].

In the CAESAR HW API and the accompanying developer’s package, de-
crypted PT is released during authenticated decryption, regardless of whether
or not tag verification succeeds. While this represents a potential analytic vul-
nerability, it is necessitated by the practicality of internally buffering potentially
long messages (as long as 232 − 1 bytes in the case of CAESAR) and concurrent
evaluation by automated test benches.

3 Ciphers implemented in this research

3.1 SpoC

Description SpoC, described in [3], refers to “Sponge with a masked capacity.”
It is a sponge-based cipher based on the Beetle mode, where ciphertext is not

8 B. Rezvani and W. Diehl

pdi_valid

pdi_data

pdi_ready

sdi_data

sdi_valid

sdi_ready

PW=32

SW=32

bdi_ready

Cipher

Core

bdi
W=32

bdi_valid

bdi_valid_

bytes

4

key

key_ready

key_valid

msg_auth

msg_auth_

valid

msg_auth_

ready

bdo

W=32

W=32

bdo_ready

bdo_valid

do_valid

do_ready

do_data

PW=32

Pre-

Processo

r

Post-

Processo

r

AEAD

pdi

sdi

do

bdi_size

3

Fig. 1. Instantiation of CipherCore inside AEAD, together with modules and signals
from CAESAR HW Developer’s Package.

directed into the permutation, and where combined feedback in the first r-bits of
rate increases protections against forgery with smaller state size, thus leading to
more efficient implementations [18, 12, 13]. In SpoC, capacity is masked with data
blocks instead of rate which improves the security and allows larger rate value per
permutation call. We implement one of the authors’ primary recommendations,
SpoC-64, with capacity c = 128 bits, state size b = 192 bits, nonce size n = 128
bits, and tag size t = 64 bits. In a sponge-based cipher, the rate refers to the
number of keystream bits generated per permutation call, and the capacity
c = b− r.

This cipher is based around the sLiSCP-light[192] permutation; the ACE
(with 320 bits of state) and SPIX (with 256 bits of state) NIST LWC candidates
also use the sLiSCP permutation [2, 4]. The sLiSCP-light uses a combination of
a Type II Generalized Feistel Structure (GFS) and Simeck Box, and consists of
18 steps of 6 rounds each. Each step consists of three transformations, namely,
SubstituteSubblocks (SSb), AddStepconstants (ASc), and MixSubblocks (MSb).
The non-linear operations are applied in the SSb, or Simeck Box (SB). SBs
consist of XORs, bitwise rotations, and a 48-bit logical AND. Bitwise rotations
are especially advantageous in hardware. The implementation of each SB is shown
in Fig. 2.

In order to follow the basic-iterative construction, we construct two SBs (SB1
and SB3) on 48-bits each, which operates on a total of 96 bits out of 192 bits of
state. Round constants are supplied to SB1 and SB3 (corresponding to 48-bit
state words S1 and S3, respectively) at the start of each SSb transformation.
An SSb transformation requires 6 rounds, each of which executes in one clock
cycle. Local state variables, as well as updated round constants, are stored
during SSb transformations. The two round constants (rc0 and rc1) and two step
constants (sc0 and sc1), each 6 bits, are implemented using look-up tables. The
other two state words, S0 and S2, are XORed with step constants in the ASc
transformation. Finally, S0 is mixed with S1, and S2 with S3, using XOR in the
MSb transformation. One sLiSCP permutation is executed in 18× 6 = 108 clock
cycles. The sLiSCP-light[192] permutation is shown in Fig. 3.

HW Implementations of NIST LWC Candidates 9

1
23

||rc

48

<<<5

<<<1

in

out

state

24

Fig. 2. Simeck box construction.

Simeck

Box 1
rc0 rc1

sc0

Simeck

Box 3

sc1

S0' S1' S2' S3'

S0 S1 S2 S3

SSb

ASc

MSb

Fig. 3. sLiSCP permutation. Bus widths are 48 bits.

The duplex sponge construction of SpoC is shown in Fig. 4. At each point in
time, the state can be divided into a c-bit Y and r-bit Z, and represented as Y ‖ Z.
The initial state Y0 ‖ Z0 formed by interleaving Nonce and Key (f(N0,K)), and
performing a permutation. The tag is generated using an interleaved set of bytes
extracted from across the entire 192-bit state. Control bits ctrl are 4-bit constants
used for domain separation (i.e., to distinguish between authenticated encryption
or decryption phases), such as AD, PT, and Tag, and to differentiate between
full and partial blocks

10 B. Rezvani and W. Diehl

b=192

c=128

r=64

f(N0,K)

N1 Aa-1 Mm-1

ctrlAD ctrlPT ctrlTAG
Mm-1

Cm-1

Perm Perm Perm Perm
64

tag

Fig. 4. SpoC duplex sponge construction.

Implementation We implement a basic iterative architecture based on the
sLiSCP permutation, where 1 round of the SSb transformation executes in a
single clock cycle. This requires 108 clock cycles for the permutation. The SpoC
authors, who describe an ASIC implementation in [3], likewise use a basic iterative
architecture requiring 108 clock cycles per permutation.

The SpoC algorithm requires one-zero padding (10∗ padding) for AD, PT, and
CT. 10∗ padding is not provided as a service in the Hardware Developer’s Package
v2.0, so it is implemented in our CipherCore based on the number of valid input
bytes provided by bdi valid bytes. Additionally, |CT | must equal |PT | during
output, so we are required to mask non-output bytes. A mask consisting of FF ∗

is left-shifted once per clock cycle to truncate output to the desired length. Mask
adjustment is overlapped with permutation, so there is no effect on latency or
throughput. Our implementation of SpoC-64 is shown in Fig. 5.

3.2 Spook

Description Spook uses Sponge one Pass (S1P), and is based on duplex sponge
construction [11]. The Spook AEAD algorithm uses two primitives, the Clyde-128
Tweakable Block Cipher (TBC), and the Shadow-512 permutation. The Clyde-128
TBC is similar to the block cipher used in the CAESAR candidate SCREAM
in that it is based on Tweakable-LS (TLS) construction, but with new L-Boxes,
S-Boxes, and round constants [25, 26]. The tweak is used to generate a tweaked
key (or “tweakey”), is updated once per step (with 2 rounds per step), and has
a period of 3. Therefore, encryption and decryption both start with the same
initial tweak given the authors’ primary recommendation of NS = 6 steps.

The Shadow-512 permutation uses the same definitions for L-Boxes and S-
Boxes, and similar definition for round constants, as the TBC. However, it is
performed across a b-bit state (e.g., b = 512 in our implementation), and employs
encryption only, i.e., there are no inverse L-Boxes or S-Boxes. Additionally, there
is a diffusion function, adapted from the Midori cipher, which acts across all
b-bits of state, and is implemented in 32-bit words according to Alg. 1 [6]. The
Shadow-512 permutation typically receives the most invocations in long messages

HW Implementations of NIST LWC Candidates 11

key

State(S)

Load-SpoC64init

SLiSCP

rc0

rc1

sc0

sc1

ctr

pad

0

bdi
npub key

4
4

bdi

= =

msg auth

bdo

mask

Y Z
128 64

PW

SW

S63..0

S63..48 S15..0

S41..16

bdipad

bdipad

S191

S190..64

ctrl

192

192

128 128

S191..188

S187..144

bdipad63..32
S143..112

S111..64

192

PW

1

tag

bdi

128

Fig. 5. Block diagram for SpoC-64.

consisting of many AD and PT blocks, where as there are always exactly two
TBC iterations in each AEAD encrypt or decrypt. A long-term secret key is
used only twice per encryption or decryption, which means that side-channel
protections can be used in the only primitive which interacts with key (i.e., the
TBC), and can be spared in the more expensive permutation.

Algorithm 1: Sequence for computing Shadow-512 diffusion based on
32-bit inputs w, x, y, and z and outputs a, b, c, and d

1: u← w ⊕ x;
2: v ← y ⊕ z;
3: a← x⊕ v;
4: b← w ⊕ v;
5: c← u⊕ z;
6: d← u⊕ y;

We implement the authors’ primary recommendation, Spook[128; 512; su],
with parameters block size n = 128, rate r = 256, capacity c = 256, tag size
τ = 128, and state size b = 512. The “su” denotes “single user;” the specification
also calls for “multiple user” (mu) instantiations, which are not addressed in this
research. We also used the recommended parameters for the TBC, consisting of
6 steps of 2 rounds each, and 12 rounds of Shadow-512 per permutation. Since

12 B. Rezvani and W. Diehl

the rate determines the amount of plaintext converted to ciphertext in every
block, we use an external block size of 256 bits for generation of test vectors
and computation of throughput. There are m blocks of plaintext (or message)
M, and a blocks of associated data A. There is a τ -bit nonce N (128 bits), a
key = K ‖ P , which consists long term secret K (128 bits), and public tweak
P . Following the software reference implementation, P = 0 in this hardware
implementation.

In TLS cipher constructions, linear transformations are computed using linear
L-Boxes consisting of rotations and XORs, and non-linear S-Boxes. The L-Box
is an interleaved transformation applying jointly to pairs of 32-bit words, i.e.,
half of the 128-bit state is processed in each L-Box. L-Boxes can be implemented
using look-up tables or by arithmetic calculations. We follow the author’s formula
for L-Box calculations described in Alg. 2.

Algorithm 2: Sequence for computing L-Box based on 32-bit inputs w,
x, y, and z and intermediate variables or outputs a, b, c, and d, where Li

denotes left rotation by i bits.

1: a← x⊕ L12(x);
2: b← y ⊕ L12(y);
3: a← a⊕ L3(a);
4: b← b⊕ L3(b);
5: a← a⊕ L17(x);
6: b← b⊕ L17(y);
7: c← a⊕ L31(a);
8: d← b⊕ L31(b);
9: a← a⊕ L26(d);

10: b← b⊕ L25(c);
11: a← a⊕ L15(c);
12: b← b⊕ L15(d);

The S-Boxes are a variant of the 4-bit S-Box used in the Skinny block cipher
[10], and are implemented with look-up tables in this research.

The duplex sponge-based computational flow for authenticated encryption
is shown in Fig. 6. Authenticated decryption is not depicted, but is similar
in nature. The TBC is used twice – during initialization and tag generation.
Initialization consists of loading the upper 256 bits of the state variable with
P ‖ 0∗ ‖ N ‖ 0∗, and computing B = EP

K(N), where N is a 128-bit nonce. Upon
TBC completion, the lower 256 bits of the state are loaded with 0 ‖ B. Tag is

formed as Z = E
V ||1
K (U), where U is the upper 128 bits of state after the last

permutation, and V is the next highest 127 bits of state. During authenticated

decryption, the supplied tag Z ′ must be decrypted as U ′ = D
V ′||1
K (Z ′), and

compared to U (i.e., U == U ′) for tag verification. Inverse L-Boxes LBox−1 and
S-Boxes SBox−1 are required for decryption.

HW Implementations of NIST LWC Candidates 13

In between the initial and final TBC operations, the Shadow-512 permutation
is computed once to initialize the state, and once following the processing of each
block of A or M. 10∗ padding pad is applied to each final partial block of A, but
padding is not directly applied to a final partial block of M. In this case, the
resulting upper 256 bits of state are loaded as Cm−1 ‖ {State512−|Cm−1|−1..256}⊕
01 ‖ 0∗. State truncation is performed by remembering the number of valid bytes
loaded in the last block of plaintext (provided by bdi valid bytes) and by
applying variable masks to Cm−1 and {State512−|Cm−1|−1..256} ⊕ 01 ‖ 0∗.

tag
r=256

c=256

Aa-1||10*

Perm Perm

n=128

128

128

128
N
0*

0*

TBC

P=0

N

K

01||0*

M0 Mm-1

Perm

C0

10||0*

Perm

1

Cm-1

|Mm-1|

10||0*

256-|Mm-1|

01||0*

128
TBC

K

127

Z

B

Fig. 6. Spook duplex sponge construction.

Domain separation between blocks of A and M is accomplished by State255..0⊕
{01, 10, 11} ‖ 0∗, where the two-bit combination depends on whether the block is
processing A or M, and whether or not the last block is partial or full.

Implementation Since the authors state that “the need for two primitives
implies a larger cost in hardware,” we expect a more challenging task of imple-
menting and integrating multiple primitives in one design. The authors also state
that the use of the same S-box and L-box in Clyde-128 and Shadow-512 should
allow resource sharing. Therefore, we base our design strategy on an attempt
to reuse components such as L-Boxes, S-Boxes, and internal state registers, and
construct the equivalent of TBC or permutation calls using an Arithmetic Logic
Unit (ALU)-like microarchitecture approach.

We use a basic-iterative architecture with reference to the TBC. This means
that one round of TBC (encryption or decryption) will execute in one clock cycle,
including one set of 128-bit L-Boxes, 128-bit S-Boxes, and round constants. The
tweakey is updated at the end of each step, or every other round. This results in
12 clock cycles per TBC.

However, our target implementation is not strictly basic-iterative with respect
to the permutation, since we instantiate only 128-bit L-Boxes and S-Boxes, but
must call each module 4 times across a 512-bit state. With 6 steps and 2 rounds
per step, plus the diffusion, we have: Round A = 4 × 128 bit S-Boxes + 4 × 128
bit L-Boxes + 4 round count = 12 clock cycles; Round B = 4 × 128 bit S-Boxes
+ 4 round count = 8 clock cycles; and Diffusion = 4 × 128 rotations and XORs =
4 clock cycles, for a total of 144 clock cycles per permutation. The permutation

14 B. Rezvani and W. Diehl

can be reduced to 12 or even fewer clock cycles, but at much greater hardware
cost.

We first construct fully-functional but individual instances of TBC and
Shadow-512 permutation. Using a wrapper to account for limited output pins
on our target FPGA, we note implementation results in Xilinx Vivado. Our
144-cycle permutation requires 6379 LUTs (1753 slices), while the TBC requires
1483 LUTs (518 slices), for a total of 7862 LUTs (2271 slices). We make two
observations:

1. With nearly 8000 LUTs required for the two primitives, we should try to
reuse components between TBC and Shadow-512, and

2. Given that the 128-bit L-Boxes and S-Boxes require only 320 and 128 LUTs,
respectively, the majority of the resources of these two primitives are consumed
by non-shareable functions, such as control, routing structures, counters,
tweakey generation, etc.

There are other hardware challenges in this cipher. The need for truncation to
clear unused blocks of ciphertext prior to output, i.e., ensuring |C| = |M |, creates
additional overhead in hardware, including generation of masks (e.g., mask and
C∗). The bdo valid bytes feature in the LW Development package, although
designed for ciphertext expansion modes, could have assisted in truncating output
strings, but is not implemented in the current development package. In any case,
internal padding and state truncation is required during processing of the last
partial block of plaintext, as shown in Fig. 6.

Our implementation is shown in Fig. 7. All bus widths are 128 bits, unless
indicated. Terminology in addition to that explained above and in Subsection
2.3 include t′ (tweak register), tk (tweakey), r0, r1, r2 and r3 (128-bit state
registers), and mask′ (register for mask).

3.3 GIFT-COFB

Description GIFT-COFB is based on the COmbined FeedBack (COFB) mode
of operation with GIFT-128 as the underlying block cipher, which is described in
[8]. COFB mode is single-pass (one block cipher call per data block) and inverse-
free (no need for block cipher decryption). The GIFT-COFB recommendations
are data block size n = 128 bits, nonce size |N | = 128 bits, and tag size |T | = 128
bits.

GIFT-128 is a Substitution-Permutation Network (SPN) with a 128-bit key
length and a 128-bit cipher state length. Several NIST LWC candidates like
Simple [27] and SUNDAE-GIFT [7] also use GIFT-128 as their block cipher. This
iterative block cipher has 40 rounds and each round consists of 3 transformations,
namely, SubCells, PermBits, and AddRoundKey. The cipher state divides into
four 32-bit words and the key state divides into eight 16-bit segments. In SubCells,
thirty two 4-bit bitslice Sboxes are applied to every nibble of the state. Then, a
32-bit permutation is applied to every word of the state. In AddRoundKey, the
round key is XORed to the second and third words of the state, and a round

HW Implementations of NIST LWC Candidates 15

r0 r1 r2 r3

LBox SBox Diffuser Round

Constant

Lbox
-1

Sbox
-1

TBC

Round

Constant 0

r0 r1 r2 r3 r0 r1 r2 r3

r0 r1 r2 r3 r0 r1 r2 r3

bdi

pad bdi

r0 r3

r0 P N
{00, 01, 10, 11}

0

N r0 P||0 V||1

tk
t

key

keytweak

==

msg auth bdo

mask

Mask

C*

C*C*

msg tag

PW
SW

PW1

256

256

512
Round

Constant 0

Fig. 7. Block diagram for Spook[128;512;su]. Bus widths are 128 bits unless indicated.

constant is added to the last word of the state. The round constants are generated
by a 6-bit LFSR. Since the addition of the round key is done over only half of
the state and the key scheduling is merely a bit permutation, and as mentioned
in [9], GIFT-128 has a low footprint which makes it a good choice for lightweight
applications [8]. Fig. 8 shows the GIFT round function.

In Fig. 9, a simplified version of the encryption construction of GIFT-COFB
is depicted. At the beginning of the encryption, the state is loaded by a nonce
N and then, the 64 MSBs of the first EK output L are considered as the delta
state. Except for the last block of AD and M, the delta state is multiplied by 2 in
GF(264) for every block of AD and M. For the last block of AD or M, the delta
state is multiplied by 3i or 3j−i, where i, j − i ≤ 4. The G function is defined as
G(Y) = (Y [2], Y [1] <<< 1) [8].

Implementation A basic-iterative (i.e., round-based) architecture is used here,
i.e., every round of the GIFT round function is executed in one clock cycle. The
GIFT-COFB authors also used a round-based design which is implemented in
ASIC. GIFT has 40 rounds, thus it requires 40 clock cycles to process a block
of the input data. However, for processing AD and M, we need additional clock
cycles due to the delta state. As presented in [8], the required clock cycles for

16 B. Rezvani and W. Diehl

delta state is 4. In this work, we used the same 4 clock cycles for processing
an AD block and 2 clock cycles in our finite state machine for processing the
message blocks. The reason that we reduced the clock cycles for M is that the
exponent in 3j−i does not exceed 2 for an M block. As a result, we have 40, 44,
and 42 clock cycles for processing nonce, an AD block, and a block of message,
respectively. Note that these are the number of cycles that GIFT needs to process
one block of data.

Similar to SpoC and Spook, the 10∗ padding is applied to the last partial block
of AD and message. During the decryption, we need additional padding for the
plaintext before applying it to the feedback. We used the bdi size to accomplish
the padding function. Since modules in the CAESAR Hardware Developer’s
Package uses 32 bits of bdi and bdo data, we used a counter to track the number
of valid bytes that the last block of M contains. The truncating module is only
used for the last 32 bits of a 128-bit CT, and masks the CT with the required
amount of zeros by utilizing this counter. Our GIFT-COFB implementation is
shown in Fig. 10.

key

key'

||

W0W1W2W3W4W5W6W7

State

Xin

Sbox

Bit Permutation

||

16

16

W6

W7

32

32

16

16

W2

W3

32

32||

out

32

32

32

32

32

S

S

Round

Constant

||>>>2

>>>12W7

W6

W0W1W2W3W4W5

16

16 16

16 96

0

Yout

||
6

32
26

10...0}

25

Fig. 8. Block diagram for GIFT-128 round function. Bus widths are 128 bits unless
indicated.

HW Implementations of NIST LWC Candidates 17

EkN G

Trunc

L

A1 2L||0n/2

...Ek G

Aa 2a-13iL||0n/2

Y[a]

Y[a]
G

M1 2
a3iL||0n/2

... Ek

2a+m-23jL||0n/2

TagEk

Ek

CT1

G

Mm

CTm

Fig. 9. GIFT-COFB encryption construction.

bdi

GIFT128

key

SW PW

bdi'

G

Pad

key'

Y
||

x2x3

64 64 64

Y[127:64]

delta

64

64

64

64

64
00...0}

64

= = Trunc

PW
bdo

msg auth

1
out

Fig. 10. Block diagram for GIFT-COFB. Bus widths are 128 bits unless indicated.

3.4 Summary

Characteristics of implemented ciphers are summarized in Table 2. All imple-
mented ciphers have nonce and key size of 128 bits.

Latency and throughput formulas for the implemented ciphers are shown
in Table 3. Clock cycles for AEAD encryption and decryption operations are
shown as α + β × A + γ ×M , where α represents the sum of any initiation

18 B. Rezvani and W. Diehl

Table 2. Characteristics of implemented ciphers.

Cipher
block

(bits)
steps rounds steps×rounds

state

(bits)

rate

(bits)

capacity

(bits)

tag

(bits)

SpoC-64 64 18 6 108 192 64 128 64

Spook 256 6 2 12 512 256 256 128

GIFT-COFB 128 40 128 128

and tag generation cycles, β is the number of cycles to process 1 block of AD
(A), and γ is the number of cycles to process 1 block of PT (M). Latency is
the number of clock cycles required to process 1 block of PT from start to
finish. Throughput (TP) is computed as maximum achieved clock frequency
fclk× (bits/block)/(cycles/block).

Table 3. Latency and throughput formulas for selected ciphers.

SpoC Spook GIFT-COFB

Encrypt 219 + 109×A + 111×M 169 + 145×A + 145×M 112 + 50×A + 53×M

Decrypt 219 + 109×A + 111×M 169 + 145×A + 145×M 112 + 50×A + 53×M

Latency 330 314 165

TP fclk× 64/111 fclk× 256/145 fclk× 128/53

4 Results

FPGA implementations in this research are developed in Verilog or VHDL
using RTL design methodology. They are compliant with the CAESAR HW
API, and include modules in the CAESAR HW Developer’s Package (v2.0).
Results are implemented in Xilinx Vivado 2018.3 for the Xilinx Artix-7 FPGA
(xc7a100tcsg324-3), and optimized for TPA ratio using the Minerva Automated
Hardware Optimizaton Tool, introduced at [20] and available for download at [1].

Our implementations are also verified in actual hardware (xc7a100tftg256-3)
using the FOBOS [16] and representative test vectors generated by aeadtvgen

in the Developer’s Package. As discussed in [41], verification in actual hardware
is important, since unverified implementations might contain conditions (such as
combinational loops or latches) which render them ineffective on actual platforms.

Post-optimization results are shown in Table 4. Additionally, cipher implemen-
tations are available for inspection at [40]. As a disclaimer, our implementations
are baseline representations of select ciphers using basic-iterative architecture;
further optimizations may be possible along one or several dimensions, including
but not limited to improved throughput or reduced area.

Results indicate that SpoC has the highest maximum frequency of 265 MHz,
i.e., lowest sum of logic and routing delays, followed by GIFT-COFB (172 MHz)

HW Implementations of NIST LWC Candidates 19

Table 4. Benchmarking results on Artix-7 FPGA.

Cipher SpoC Spook GIFT-COFB

Max Freq (fclk)(MHz) 265 141 172

Bits/Block 64 256 128

Cycles/Block 111 145 53

Throughput (Mbps) 152.8 248.9 415.4

LUTs 1344 7082 2695

Slices 410 1901 1090

Registers 745 1805 1163

TPA (Mbps/LUT) 0.114 0.035 0.154

and Spook (141 MHz). In terms of area in FPGA LUTs, SpoC is the smallest
with 1344 LUTs, followed by GIFT-COFB with 2695 LUTs, and Spook with
7082 LUTs. GIFT-COFB has the highest TP at 415.4 Mbps, followed by Spook
(248.9 Mbps) and SpoC (152.8 Mbps). In terms of TPA ratio, GIFT-COFB is
the highest at 0.154 Mbps/LUT, followed by SpoC at 0.114 Mbps/LUT, and
Spook at 0.035 Mbps/LUT.

While improvements in any one of more of the above metrics are possible,
the fact that there are significant differences in an optimization metric such as
TPA ratio show that results of hardware implementations of candidates should
be considered as early as possible in any cryptographic contest.

5 Analysis

5.1 Comparison with selected previous authenticated cipher
implementations

Previous hardware implementations during CAESAR and those provided as
part of NIST LWC submissions provide some basis for comparison with cipher
implementations in this research. However, most CAESAR implementations,
even those that were compliant with the CAESAR HW API, used an earlier
version of the CAESAR HW Developer’s Package designed for High Speed (HS)
implementations. The HS package included functionality not used by many
ciphers, and exacted a larger toll on area overhead. The Lightweight (LW)
Developer’s Package only appeared at the end of 2017, and thus there are
fewer available examples. Some CAESAR API-compliant examples from [42, 21],
implemented using the LW Developer’s Package, are included in Table 5 for
purpose of comparison.

A full-scale comparison with NIST LWC candidate author implementations is
premature, since authors reported results for implementations not compliant with
the CAESAR API, and using a variety of FPGA platforms. Some representative
examples of block and sponge cipher FPGA implementations, e.g., ESTATE
(ESTATE-TweGIFT-128), SAEAES, and Oribatida (Oribatida-256-64), are in-
cluded in Table 5. All CAESAR and NIST LWC implementations provided for

20 B. Rezvani and W. Diehl

comparison use a 128-bit key; TP is computed based on the processing rate of
a large number of blocks of plaintext into ciphertext. The range of TPA ratios
(0.017 to 0.088) for the CAESAR candidates, all round 3 contenders or better,
is somewhat analogous to the range of TPA ratios for our implementations
(0.035 to 0.154). In contrast, the range of TPA ratios of sampled NIST LWC
candidates (0.547 to 0.757) is noticably higher. A judgement as to whether or not
these implementations are “better” than either our implementations, or previous
CAESAR implementations, is premature, since no uniform standards have been
established for benchmarking of hardware implementations in the NIST LWC
Standardization Process. For instance, an implementation “compliant with the
CAESAR API” is required to include hardware necessary for input and output
AEAD data in specified protocol, and must realize “corner cases” (e.g., null
blocks, partial blocks, padding, truncating, etc.) which often involve significant
resources.

Table 5. Comparison with CAESAR lightweight and NIST LWC candidates. The units
of Freq, Area, TP, and TPA are MHz, LUT, Mbps, and Mbps/LUT, respectively.

Cipher Type FPGA Freq Area TP TPA Ref

CAESAR

Ascon-128 Sponge Spartan-6 216.0 684 60.1 0.088 [42]

CLOC-AES Block Spartan-6 101.9 1604 68.7 0.043 [21]

SILC-AES Block Spartan-6 115.1 872 15.1 0.017 [21]

NIST LWC (AEAD)

ESTATE Block Virtex-7 580.1 1413 928.3 0.657 [17]

SAEAES Block Virtex-7 145.9 348 263.3 0.757 [34]

Oribatida Sponge Virtex-7 554.2 940 514 0.547 [14]

5.2 Observations

The use of two primitives in Spook, i.e., the Clyde-128 TBC and the Shadow-512
primitive, has a detrimental effect on the area of our Spook FPGA implementation.
While we have employed a strategy to reuse shared components among the
primitives, such as S-Box and L-Box, the increased use of multiplexers, control
structures, and resulting routing delays necessary to tie together all components
likely outweighs any advantages gained over the use of separate TBC and Shadow
permutation primitives in a “black box” approach. The fact that the TBC requires
encryption and decryption adds again to implementation complexity.

The necessity of applying one-zero (10∗) padding to input words of AD and
PT is a known factor in increasing complexity. However, cipher algorithms which
can make padding application features as similar as possible for both AD and PT
can reduce hardware complexity. While this is the case in SpoC and GIFT-COFB,
it is not the case in Spook, since the padding in Spook occurs on words of state
vice words of input when processing PT.

HW Implementations of NIST LWC Candidates 21

Additionally, truncation is also a well-known feature in cryptographic algo-
rithms, where |CT | should equal |PT | in order to assure invertibility and not
leak information. While truncation in software looks innocuous enough, it often
catches cryptographers by surprise in hardware. We employed a non-resource
intensive method in SpoC, to remove one unwanted byte at a time from ciphertext
output in a serial fashion. However, in Spook, truncated ciphertext is required to
be passed to the state input for subsequent permutations, in addition to being
routed directly to cipher output, which increases implementation complexity.

While the above issues primarily affect area (e.g., LUTs or slices), they can
also affect performance, as resulting routing delay in FPGA necessary to connect
more basic elements decreases the maximum achievable frequency, even without
a corresponding increase in logic delay.

6 Conclusion

We provided an accelerated look at fully-functional FPGA implementations of
selected NIST LWC Standardization Process round 1 candidates. Candidates
examined in this research, SpoC, Spook, and GIFT-COFB, are representative of
the many of the 56 NIST LWC round 1 accepted submissions. Implementations
are fully-compliant with the existing CAESAR Hardware API for Authenticated
Ciphers, use the associated Hardware Developer’s Package, are optimized using
the Minerva Automated Hardware Optimization Tool, and are verified to operate
in actual hardware using the FOBOS test bench.

Our results show that GIFT-COFB has the highest TPA ratio (4.4 × more
than Spook), followed by SpoC (3.3 × more than Spook). The magnitude of
differences in TPA ratios supports the rationale for gaining information on
hardware implementations as early as possible in any cryptographic contest. The
TPA ratio results of the implemented ciphers are similar to results reported
for CAESAR HW API compliant late-round CAESAR candidates, however,
have TPA ratios which are significantly less than TPA ratios reported for a
select group of NIST LWC submission author implementations of ciphers of
similar construction. However, no conclusion can be drawn regarding the relative
hardware merits of candidates implemented according to different compliance
standards, which reinvigorates the need for a standardized hardware API and
minimum compliance criteria for the NIST LWC Standardization Process.

Finally, we show that implementation complexities resulting from the need to
integrate two cryptographic primitives (e.g., a block cipher and sponge permuta-
tion) into one authenticated cipher, as well as padding and truncation strategies,
can affect area and performance of resulting implementations, and should be
considered by algorithm designers.

7 Future work

This was a first-look of NIST LWC FPGA hardware implementations delivered in
a compressed time-frame. Future work will include a larger number of implemented

22 B. Rezvani and W. Diehl

candidates, compliant with a speculated future NIST LWC API, developed with a
corresponding Developer’s Package, and integrated with optional hash capability.
Future research will also experiment with lighter-weight architectures, and include
verifiable countermeasures against side-channel attacks and fault analysis.

8 Acknowledgements

The authors would like to thank Kris Gaj, Jens-Peter Kaps, and Abubakr
Abdulgadir at George Mason University, and Michael Tempelmeier at Technical
University Munich, for suggestions and technical support.

References

1. Minerva: Automated Hardware Optimization Tool,
https://cryptography.gmu.edu/athena/index.php?id=Minerva

2. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R.: ACE: An Authenti-
cated Encryption and Hash Algorithm Submission to the NIST LWC Competition
(Mar 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-
Candidates

3. AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., Rohit, R.: SpoC:
An Authenticated Cipher Submission to the NIST LWC Competition (Feb 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

4. AlTawy, R., Gong, G., He, M., Mandal, K., Rohit, R.: Spix: An Au-
thenticated Cipher Submission to the NIST LWC Competition (Mar 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

5. ARM: AMBA Specifications, http://www.arm.com/products/system-ip/amba-
specifications.php

6. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) Advances in Cryptology – ASIACRYPT 2015. pp. 411–436. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)

7. Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S.M., Tischhauser,
E., Todo, Y.: SUNDAE-GIFT: An Authenticated Encryption and Hash
Algorithm Submission to the NIST LWC Competition (Mar 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

8. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB: An Authenticated Encryption
and Hash Algorithm Submission to the NIST LWC Competition (Mar 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

9. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A Small
Present - Towards Reaching the Limit of Lightweight Encryption. In: International
Conference on Cryptographic Hardware and Embedded Systems (CHES) (2017)

10. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The skinny family of block ciphers and its low-latency
variant mantis. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO
2016. pp. 123–153. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

HW Implementations of NIST LWC Candidates 23

11. Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G.,
Leurent, G., Levi, I., Momin, C., Pereira, O., Peters, T., Standaert, F.X., Wiemer, F.:
Spook: Sponge-Based Leakage-Resilient Authenticated Encryption with a Masked
Tweakable Block Cipher (Mar 2019), https://csrc.nist.gov/Projects/Lightweight-
Cryptography/Round-1-Candidates

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Selected Areas
in Cryptography. pp. 320–337 (2012)

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based Encryp-
tion, Authentication and Authenticated Encryption. DIAC, Stockholm, Sweden
(2012)

14. Bhattacharjee, A., List, E., Lpez, C.M., Nandi, M.: The Oribatida
Family of Lightweight Authenticated Encryption Schemes (Mar 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

15. CAESAR: Competition for Authenticated Encryption: Security, Appli-
cability, and Robustness: Cryptographic competitions (January 2016),
http://competitions.cr.yp.to/index.html

16. CERG: Flexible Open-source workBench fOr Side-channel analysis (FOBOS) (Oct
2016), https://cryptography.gmu.edu/fobos/

17. Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: ESTATE
(Mar 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-
Candidates

18. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight
and secure authenticated encryption ciphers. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2018(2), 218–241 (May 2018),
https://tches.iacr.org/index.php/TCHES/article/view/881

19. Elbirt, A., Yip, W., Chetwynd, B., Paar, C.: An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalists
(10 2002)

20. Farahmand, F., Ferozpuri, A., Diehl, W., Gaj, K.: Minerva: Automated Hard-
ware Optimization Tool. In: 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig)

21. Farahmand, F., Diehl, W., Abdulgadir, A., Kaps, J.P., Gaj, K.: Improved
lightweight implementations of caesar authenticated ciphers. pp. 29–36 (04 2018).
https://doi.org/10.1109/FCCM.2018.00014

22. Finjan Cybersecurity: IoT DoS Attacks – How Hacked IoT Devices Can Lead To
Massive Denial of Service Attacks (Aug 2018), https://blog.finjan.com/iot-dos-
attacks/

23. Gaj, K., Chodowiec, P.: Comparison of the Hardware Performance of the AES
Candidates Using Reconfigurable Hardware. pp. 40–54 (01 2000)

24. George Mason University: Development Package for the CAESAR Hardware API,
v2.0 (Dec 2017), https://cryptography.gmu.edu/athena/index.php?id=CAESAR

25. Grosso, V., Leuren, G., Standaert, F.X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: Scream iscream side-channel resistant authenticated encryption with
masking (2014)

26. Grosso, V., Leurent, G., Standaert, F.X., Varıcı, K.: Ls-designs: Bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
Fast Software Encryption. pp. 18–37. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015)

24 B. Rezvani and W. Diehl

27. Gueron, S., Lindell, Y.: Simple: An Authenticated Encryption and Hash
Algorithm Submission to the NIST LWC Competition (Mar 2019),
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

28. Homsirikamol, E., Diehl, W., Ferozpuri, A., Farahmand, F., Gaj,
K.: Implementers Guide to the CAESAR Hardware API v2.0 (Dec
2017), https://cryptography.gmu.edu/athena/CAESAR HW API/ CAE-
SAR HW Implementers Guide v2.0.pdf

29. Homsirikamol, E., Diehl, W., Ferozpuri, A., Farahmand, F., Yalla, P.,
Kaps, J., Gaj, K.: Addendum to the CAESAR Hardware API v1.0
(Jun 2016), https://cryptography.gmu.edu/athena/CAESAR HW API/ CAE-
SAR HW API v1.0 Addendum.pdf

30. Homsirikamol, E., , Diehl, W., Ferozpuri, A., Farahmand, F., Lyons, M.X.,
Yalla, P., Gaj, K.: Toward Fair and Comprehensive Benchmarking of
CAESAR Candidates in Hardware: Standard API, High-Speed Implemen-
tations in VHDL/Verilog, and Benchmarking Using FPGAs (Sep 2016),
https://cryptography.gmu.edu/athena/presentations/GMU DIAC 2016 RTL.pdf

31. Homsirikamol, E., Diehl, W., Ferozpuri, A., Farahmand, F., Yalla, P., Kaps, J.P.,
Gaj, K.: CAESAR Hardware API. Cryptology ePrint Archive, Report 2015/669
(2016)

32. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Commu-
nications (or: How Secure Is SSL?). In: Kilian, J. (ed.) Advances in Cryptology —
CRYPTO 2001. pp. 310–331. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

33. Lewis, D.: The DDoS Attack Against Dyn One Year Later (Oct 2017),
https://www.forbes.com/sites/davelewis/2017/10/23/the-ddos-attack-against-
dyn-one-year-later/2a2315031ae9

34. Naito, Y., Matsui, M., Sakai, Y., Suzuki, D., Sakiyama, K., Sugawara, T.: SAEAES
(Feb 2019), https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-
Candidates

35. National Institute of Standards and Technology: Announcing Request for Candidate
Algorithm Nominations for the Advanced Encryption Standard National Institute
of Standards and Technology (Sep 1997)

36. National Institute of Standards and Technology: Report on the de-
velopment of the Advanced Encryption Standard (AES) (Oct 2000),
http://csrc.nist.gov/archive/aes/round2/r2report.pdf

37. National Institute of Standards and Technology: Submission Requirements and
Evaluation Criteria for the Lightweight Cryptography Standardization Process
(Aug 2018), https://csrc.nist.gov/projects/lightweightcryptography

38. Rezvani, B., Diehl, W.: Detailed Characteristics of NIST Lightweight Cryptography
Project Round 1 Submissions (v2) (Jul 2019), https://rijndael.ece.vt.edu/wdiehl/

39. Rogaway, P.: Authenticated-encryption with associated-data. p. 98 (01 2002).
https://doi.org/10.1145/586123.586125

40. SAL: NIST Lightweight Cryptography Project (Jul 2019),
https://rijndael.ece.vt.edu/wdiehl/

41. Tempelmeier, M., De Santis, F., Sigl, G., Kaps, J.P.: The caesar-api in the real
world towards a fair evaluation of hardware caesar candidates. pp. 73–80 (04 2018).
https://doi.org/10.1109/HST.2018.8383893

42. Yalla, P., Kaps, J.P.: Evaluation of the CAESAR Hardware API for Lightweight Im-
plementations. In: International Conference on Reconfigurable Hardware (ReConFig
2017). pp. 1–6 (Dec 2017)

