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Abstract 

Blockchains such as bitcoin rely on reaching global consensus for the distributed ledger, and suffer from well know 

scalability problems. We propose an algorithm which can avoid double-spending in the short term with just O(√n) 

messages, relying on the fact that the velocity of money in the real world has coins circulating through at most a few wallets 

per day. The k-root-n algorithm is suitable for an environment with synchronous or asynchronous (but fairly low latency) 

communication and with Byzantine faults. The “k-root-n” algorithm presented should be practical to avoid double-

spending with arbitrarily high probability, while feasibly coping with all world commerce, provided there is a suitable cap 

on failure modes and network latency. It is resistant to Sybil attacks even well beyond 50%. This k-root-n algorithm is less 

efficient in the long term, once money circulates through a significant proportion of the world’s wallets, and should, 

therefore, preferably be used as a complement, and not a replacement, to a global distributed ledger. With this two-tier 

system, global consensus on the ledger may be reached periodically and with a considerable time lag, while money may be 

safely spent, with rapidly confirmed transactions, in-between. The algorithm works best if every wallet is also a node which 

is online with fairly high availability. 
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Introduction 

In blockchains such as bitcoin, all n nodes reach Nakamoto Consensus [1] on each block of 

transactions, creating a scalability problem [2] [3] [4] which notoriously limits the entire bitcoin 

network to a few transactions per second while consuming massive power [5]. Nakamoto Consensus 

is considered the first digital currency algorithm to solve the double-spending problem without the 

need of a trusted authority or central server. It can cope with Byzantine faults (e.g. [6] [7]) including 

a Sybil attack [8] of up to 50% dishonest nodes. However, it requires O(n) communication messages 

per transaction which limits its scale. 



In practice, bitcoin transactions suffer from a lag time of between 15 minutes to several hours 

before being included in a block on the bitcoin blockchain [9] (this lag time has a complex 

dependency on how high a fee is offered by transaction participants to the miner [10]), and then an 

hour longer to reach the commonly desired threshold of six-block confirmation [11]. Thus, there is 

typically a several hour latency, before received bitcoin transfers are confirmed and are safe to re-

spend. 

At the time of writing, the typical fee paid to the miner for a single bitcoin transaction, is tens of 

thousands of Satoshi or about US$0.50 - $5 [9], a price similar to most domestic bank transactions. 

There are ongoing efforts to redesign the blockchain algorithm itself for greater scalability such as 

SCP [12], Algorand [13], Bitcoin-NG [14] all of which involve selecting a subset of users 

(committees, or a rotating leader) in various configurations to reduce the number of messages 

required to reach consensus. In an alternative approach, a subset of nodes transact with each other 

off-chain for a time [15] as in the Lightning Network [16]. 

In this paper we consider an approach to protecting against a double spending [26], possibly 

combined with a Sybil attack, without the need for global consensus. There are other forms of 

attacks not considered in this paper such as eclipse attacks [17], routing attacks [18], attacks based on 

time advantage [19], incentive attacks [20], quantum computing attacks [21]. Relevant surveys and 

discussions of attack formats are [22] [23]. Some previous discussions of avoiding double spending 

include [24] [25]. 

We propose an alternative approach, a scalable low-latency algorithm which can run in parallel to a 

global consensus mechanism such as blockchain, protecting against double-spending in the short-

term, while the n nodes are working to reach consensus on transactions, possibly with a lag of some 

hours from the transaction time. With this algorithm, we can also accept a situation where consensus 

is achieved infrequently. Therefore we could accept longer blockchain blocks which are created 

every hour, or every few hours, rather than bitcoin’s average of 10 minutes, thus increasing 

blockchain’s transactions per second [27], while compensating for the longer latency with our 

alternative algorithm for preventing short-term double spending. 



For example, each morning the nodes may reach consensus on the valid transaction histories and 

wallet balances as of the preceding midnight GMT, and they may do so asynchronously, reaching 

the consensus by, say, 6 am the next morning. For example, in the specific case of bitcoin, by 6 am 

all the transactions from the previous day will typically have achieved six-block verification and may 

be considered final. We now present an algorithm to allow fast transactions in the 30 hours from say 

Sunday midnight, till Tuesday 6am, when consensus is finalized for the ledger as of Monday 

midnight. Thus in this example we allow for a situation where the distributed ledger is relaxed, 

relative to bitcoin, to reach consensus every 24 hours with a 6-hour lag. 

This 24-hour cycle and 6-hour lag is just a useful example. The purpose of the present algorithm is 

that global consensus on transactions is only reached periodically, and with a considerable lag from 

the transaction time, and, in the meantime, we propose a solution to allow people to trade, in 

particular to pass on received coins safely, with next to zero latency. 

The proposed algorithm, called k√n or “k-root-n”, can avoid double-spending in the short to 

medium term, while there is no global consensus on the ledger, with an arbitrarily high probability of 

detecting double-spend, with just O(√n) messages per transaction. This is under the assumption 

that specific money balances only circulate through O(constant) wallets in 24 hours. This 

assumption is realistic, as in the real economy money circulates with a velocity measured in one or 

two transactions per month [28], and bitcoin specifically is already practically constrained by lag 

times to circulating a few times per day, and in practice rarely more than once or twice a day. 

In this algorithm, every transaction can eventually be on-chain. But the initial transaction verification 

is off-chain, allowing transactions to continue off-chain at high speed, while waiting for the 

blockchain to catch up. The algorithm only involves O(√n) nodes and messages in each transaction; 

typically, we will assume that we pick a number of verification messages around 10√n. 

Overview of k√n random double-spending detection 

Suppose we have n nodes, each of which is also a wallet, connected to a network, and they achieved 

consensus on the global distributed ledger (or at least on the balance of each node) using blockchain 

(or another algorithm) as of some time in the recent past, a time we shall call the consensus 

checkpoint. 



We assume for now that every wallet is also a node, which is online and available most of the time, 

and provides basic verification services to the network. The core idea is that any honest node that 

wants to verify that the funds it receives have not been double-spent, will demand from the sender 

the “pedigree” of those funds, namely the sender’s own transaction history since the last global 

consensus, and in case the sender is depending on incoming funds to have balance to cover the 

transaction, the receiver will recursively demand the source of funds right back to funds that were 

available as of the last consensus checkpoint. 

Since querying all the nodes to verify each transaction is prohibitive, an honest node will check the 

pedigree of each inbound transaction with a random k√n other nodes. We will see that on average if 

two nodes query a random k√n nodes, the probability of zero common nodes is extremely small for 

suitable k, even if some proportion of nodes are failing or malicious.  

Each honest node provides verification services by keeping a history of the transaction pedigrees it 

has been asked to verify, so that when two honest nodes query random nodes, any one common 

queried honest node will immediately raise the alarm if the two receiving nodes are victims of a 

double spending attempt. 

Here k is a small number greater than 1, we will generally assume k=10. Assuming we are in an 

environment with Byzantine faults, say 10% of nodes may not respond due to node or network 

failure, and assuming up to 50% of nodes are malicious, we would have an effective k=4.5 i.e. k√n 

responsive, honest nodes. When two honest nodes each receive funds and successfully query 4.5√n 

honest nodes each, this k=4.5 is sufficient to ensure an average of >20 common, honest, responsive 

nodes. We will see that there is a probability of just ~10-9 of zero common, honest, responsive 

nodes. Therefore, the chances of getting away with double-spending are negligible, and there is a 

probability very close to 1 that any double spending will be detected as soon as both branches of the 

spend reach honest nodes.  

The penalty for double-spending should be at least forfeiting the wallet, so if each wallet has a 

minimum stake m of $1, and each transaction is limited to well under $1 billion, say to a maximum 

M=$1,000,000, then there is no expected gain from double-spending, as there is a probability of just 

~10-9 of not getting caught. 



Of course, a dishonest node may not be checking its inbound transactions or may be maliciously 

collaborating with other nodes. This is why the receiving honest node need to check not only the 

transaction history of the immediate sender for forked history/double-spending, but also to 

recursively check any of sender’s sender’s transactions, at least in any case that the immediate sender 

is relying on the sender’s sender (recursively) to have balance to cover the current transaction. That 

is, the receiver will treat any inbound transaction (since the last global consensus of the network) as 

suspicious, and if any of its source transactions are critical to providing cover for the current 

transaction, that transaction will be recursively validated before the transaction is accepted. We call 

this recursive tree of inbound transactions, the pedigree of the transaction. This is why the k-root-n 

algorithm is less efficient for the long term, as the pedigree of transactions may become large over a 

longer period of time. 

To see how well a 10√n algorithm scales, assume n=10 billion people (the projected world 

population for 2050 [29] and much more than bitcoin’s current 32m wallets [30]). Suppose people 

are each transacting on average once per hour, 24-hours per day (higher than the average rate of 

commerce). Each transaction will involve messages to 10√n=1 million nodes. We will see that this 

gives a probability of p≈10-9 of getting away with double-spending, even if half the nodes are 

fraudulent and 10% of the nodes are unavailable (i.e. 4.5√n honest, responsive, validating nodes).  

So, each transaction only burdens 1 out of 10,000 nodes, and with 10 billion transactions per hour 

globally, or 2.77million transactions per second globally, each node has to be involved in just 278 

transactions per second, which is feasible for a modern computer (especially in 2050). 

Thus, it seems practical that this algorithm could securely cope not only with Visa/Mastercard 

volumes but with all the commerce in today’s world and in the foreseeable future. Visa’s volumes 

have been widely misquoted in bitcoin articles as 24,000 per second, although that appears to be 

mythical [31], with apparently more reliable sources talking about 78.95 billion Visa transactions in 

the first half of 2018 [32] which averages 5,000 per second, although peak times would of course be 

higher. 

We now introduce some definitions, and then specify the k-root-n algorithm more formally. 



Formal preliminaries to the k-root-n algorithm 

Definition 1  A transaction T=(x,t,S,R,s1,s2) is an agreement to transfer a balance from a sender 

node/wallet to a receiver node/wallet, comprising a positive amount x=x[T], a time stamp t=t[T], 

identifiers (public keys) of the sender user S=S[T] and the receiver user R=R[T] and their respective 

digital signatures s1 and s2 of the data tuple (x,t,S,R). ■ 

Definition 2  The balance b[u,t1] of a user u at time t1 assuming s/he had a balance of b0 at the 

time t0 of the last known global consensus is 𝑏0 + ∑ 𝑏[𝑇𝑖]𝑡0<𝑡[𝑇𝑖]<𝑡1,𝑅[𝑇𝑖]=𝑢 −

∑ 𝑏[𝑇𝑖]𝑡0<𝑡[𝑇𝑖]<𝑡1,𝑆[𝑇𝑖]=𝑢  i.e. the last known global consensus balances plus all received amounts, 

minus all spent amounts. A transaction is fraudulent if it would leave the sender with a balance 

below a minimal balance of m. ■ 

Definition 3  The Lineage (LIN[T] of a Transaction T) is the Transaction History for the Sender 

u[T] from the last known consensus checkpoint at time t0 before t[T], and up to the time of T  

𝐿𝐼𝑁[𝑇] = {𝑇𝑖 | 𝑡0 < 𝑡[𝑇𝑖] < 𝑡[𝑇] , S[𝑇𝑖] = S[T] ⋁  R[𝑇𝑖] = S[T]}. ■ 

These are the transactions relevant to establishing that user has sufficient balance to afford T. 

Definition 4  The Critical Lineage (CLIN[T] of a transaction T) is an ordered list of transactions 

whose elements are a minimal subset of LIN[T] critical to the balance which allows the sender to 

afford T. Formally, suppose a Sender S makes a payment of amount x in a Transaction T and 

suppose s’s last known consensus balance was b0 and suppose the set of transactions which s 

participated in since the last Global Consensus, LIN[T] includes inbound payments r1...rn in 

descending order of amount (and chronologically when equal) and outbound payments s1...sm. Now 

the critical inbound payments are the smallest subset CLIN[T]=(r1...rj) of inbound payments with j 

minimal such that 𝑏 + ∑ 𝑟𝑖 
𝑗
𝑖 − ∑ 𝑠𝑖

𝑚
𝑖  ≥ 𝑥 +  𝑚. ■ 

Thus {r1...rk} is a minimal subset of inbound transactions which are sufficient to provide balance 

coverage for this payment of $x, given that the Sender has opening balance $b and has spent the si. 

Validating by Receiver of these critical inbound payments CLIN[T] of Sender is sufficient to ensure 



Sender can afford $x, even if the other inbound payments rj+1...rn derive directly or indirectly from 

fraud. Therefore, the minimum due diligence of the receive R[T] is to check that LIN[T] is complete 

and then recursively check the lineage of each transaction in CLIN[T]. We now formalize this 

recursive set of transactions. 

Definition 5  The Pedigree (PED[T] of a Transaction T) - is a set of transactions defined as the 

recursive closure of all transactions reachable from T using CLIN[T].  To compute this: 

• Start with the Set of CLIN[T].  

• Recursively for each new T1 added for the first time to the Set add also PED[T1] to the 

Set. 

• That’s it.           ■ 

It may also be helpful to think of PED[T] as the nodes of a directed acyclic graph for each 

transaction showing recursively the inbound transactions, since the last known global consensus, 

that the sender depended on for covering the transaction. 

k-root-n algorithm 

Suppose we have n nodes, each of which is also a wallet, connected to a network, and the nodes 

achieve consensus on the global ledger (or at least on the balance of each node) as of some time in 

the recent past, a time we shall call the consensus checkpoint. Each consensus checkpoint may 

become known with some latency after the time which the consensus ledger relates to. 

The nodes transfer balances to each other by mutually digitally signing transactions. According to 

the algorithm, each receiving honest node, before accepting and signing a transaction T, will do the 

following 

● Demand sender’s recursive list of dependent transactions PED[T] and a Transaction History 

LIN[T1] for each T1 in PED[T].  

● Validate that each such transaction was properly formed and signed by known nodes, and 

had balance to cover it based on the last known global consensus balance plus the provided 

LINs. 



● Randomly choose k√n (or the nearest integer) validating nodes on the network, send each 

(directly or by communicating through a cascading tree of nodes) all the LINs and ask the 

validating nodes to validate that they have not seen any alternative LIN history for any of the 

transactions in this recursive list PED[T]. 

○ Any honest node receiving this request will validate that they have not seen a 

contradictory LIN history for any of the transactions. The nodes then store every 

LIN transaction history they are asked to validate till the next achieved global 

consensus, for future validation. 

● If the validating nodes have seen an alternative history, they inform the receiver and the 

transaction should be rejected. Proof of fraud for the wallet with two alternative histories is 

broadcast to all nodes. The wallet will be blacklisted and any balance forfeited.  

○ In such a case the two honest receivers will also check if they consulted any other 

validating nodes in common, and if they did and that node failed to report the 

double-spending, it should also be blacklisted. 

● Otherwise the transaction is accepted by receiver. 

Periodically all nodes will take the time to reach a global consensus on the distributed ledger e.g. 

using Nakamoto Consensus. All recipients will request that the transactions they received be added 

to the global ledger. In the case a node has double spent it will be disqualified. All fraudulent 

transactions will be iteratively removed from the ledger and any transaction which has any 

fraudulent transaction in its pedigree. These concepts are now defined more formally. 

Definition 6  Fraudulent transaction (A) any transaction T where the sender provided the receiver 

with a LIN[T] which was missing any transaction which the sender had signed; and (B) any 

transaction which the sender subsequently failed to disclose when providing a LIN of a later send.  

■ 

Thus, if Malory sends money to Alice and later double spends by sending the same money to Bob 

without disclosing to Bob the earlier payment to Alice, both payments are considered fraudulent. It 

is not sufficient to cancel the second transaction, the one which directly involved the fraud, as Alice 

may be a co-conspirator of Malory, and Bob the only victim. Cancelling both transactions ensures 

there is a significant penalty for fraud. This does mean that in theory Bob could lose out due to 



becoming a victim of double spending in retrospect, but in practice this arrangement ensures that 

double spending has a negative expected value and so is very unlikely to occur at all. 

Definition 7  An Invalid transaction is a transaction which is not fraudulent but where the sender 

in retrospect did not have balance to cover the transaction, after removing fraudulent transactions. 

Equivalently, these are transactions which turn out to have a fraudulent transaction in their pedigree. 

■ 

When achieving global consensus, invalid transactions must be iteratively identified till all invalid 

transactions are identified and they are all excluded from the global ledger. The process must be 

iterative, as invalidating one transaction may cause the receiver to have had no cover for subsequent 

spends thereby invalidating further transactions. 

In the k-root-n algorithm there is a need for honest nodes to be online most of the time. It is 

recommended to have a protocol where an honest node commits to a Service Level Agreement 

(SLA e.g. [33] [34]) of say u=90% uptime and a node which doesn’t comply may receive warnings 

and eventually financial penalties or disqualification by consensus of all nodes. A node which tries to 

consult k√n nodes and receives less than uk√n responses in a specified target latency time, should 

pick other nodes and retry till receiving the target uk√n validations. 

An example of detection of double spending via k-root-n algorithm 

Suppose during Monday morning the network reaches consensus that as of Sunday midnight the 

balances on the distributed ledger after all valid transactions were 

Chuck (malicious)   $100 

Mallory (malicious)   $100 

Alice (honest)   $100 

Bob (honest)   $100 

The ledger also shows that at Sunday midnight there were a total of n valid nodes, each with at least 

a minimum stake of m=$1. 



We analyze the scenario where Chuck conspires with Mallory to double-spend, by giving the same 

money to Alice and also to Bob. The payment to Bob will be passed by Chuck via co-conspirator 

Mallory, in an effort to conceal the double-spend. 

 

Figure 1: Example of detecting an attempted double spending 

1. Mallory sends $99 to Bob (in exchange for some goods or services). Mallory declares her 

transaction history from the last consensus, which is empty, so she has $99 to spare. Bob 

first confirms Mallory had $100 as of the last known consensus checkpoint. Bob being 

honest then queries k√n network nodes (either directly or through a cascading tree of 

nodes) to confirm that none of them have heard of Mallory signing any other transactions 

since consensus. They have not. Bob accepts the $99 and they both digitally sign the 

transaction and submit it for eventual inclusion on the main distributed ledger. 

2. Chuck sends $99 to Mallory. Mallory being malicious and complicit with Chuck tells no one 

about this transaction. They both sign the transaction and may or may not submit it to the 

main ledger. Chuck is passing this $99 through Mallory attempting to mask the double-

spending he is planning. He might potentially pass this money through further nodes.  

3. Chuck now sends $99 to Alice in return for some value. This is a fraudulent double-spend. 

He tells Alice fraudulently that he has no other transactions since the last consensus. Alice 

being honest queries k√n network nodes. They all tell Alice that they are not aware of any 

forked transaction histories (since transaction #2 was not broadcast) for Chuck, and so Alice 

accepts the payment. Thus, the double-spend is not yet detected (until both instances of 

double-spent money reach honest nodes). 

4. Mallory gives another $99 to Bob in return for some value, and provides Bob with a copy of 

Mallory’s transaction history since consensus namely transaction #1 (-$99 which Bob already 

        Chuck                 Mallory                            Alice                          Bob 

#1: $99 

#2: $99 
#3: $99 

#4: $99 

Chuck’s double spend not yet 

detected since Mallory complicit 

Double spend now detected by Alice 

and Bob, once both sums reach 



knows about) and transaction #2 (+$99) thereby evidencing Mallory’s balance of $100 

allowing Mallory to spend $99.  At this point, Chuck’s double-spent money has, via Mallory, 

reached the honest Bob. 

○ Bob notices that Mallory has $100 but only when depending on money from Chuck 

(so transaction #2 is in the critical lineage CLIN[#2] and therefore in PED[#2]). Bob 

will, therefore, want to validate transaction #2 and will require Mallory to provide 

Chuck’s transaction history LIN[#2] as part of the pedigree. (Further, in case Chuck, 

in turn, was relying on incoming transactions for his balance in transaction #2, which 

is not the case here, Bob would recursively ask for sender’s sender’s sender’s 

transaction history until he has a transaction history for every transaction since the 

last consensus which is required to justify Mallory’s balance sufficiently to cover the 

current transaction). 

○ Chuck now queries k√n random network nodes providing both Mallory’s and 

Chuck transaction history (and any other recursively requested history).  

○ Some of these nodes (k2 on average but at least 1 with an incredibly high probability) 

had previously been told about Chuck’s alternative transaction history of transaction 

#3 where he gave $99 to Alice. They raise the alarm of double-spending and 

broadcast a fraud-proof. The proof of fraud comprises the two divergent transaction 

histories both signed by Chuck. 

○ Bob rejects the fraudulent transaction.  

• Chuck has his wallets blacklisted and forfeits his $1 minimum stake. 

• The fraudulent transaction from Chuck to Mallory (which was later hidden 

from Alice) will also be rejected from the distributed ledger. 

• Preferably the network should ask Mallory to evidence that he queried k√n 

network nodes and when failing to do so, Mallory should also be blacklisted 

and forfeit his balance. 

• Alice and Bob should compare notes and find all the common nodes they 

had consulted and ensure none of them failed to report the double-spending. 

If any common node failed to raise the alarm that node should also be 

blacklisted for fraud, with proof of fraud showing that the node received two 



alternative histories of Chuck and in both cases approved them (such 

approvals being signed by the node evidencing the verification fraud). 

The next morning consensus is established again around the following balances: 

End balances 

Chuck (malicious)  $1 (blacklisted with balance forfeited) 

Mallory (malicious)   $1 (blacklisted with balance forfeited) 

Alice (honest)   $199 

Bob (honest)   $199 

Once this new consensus checkpoint is known, future senders need only provide shorter transaction 

histories back to the newer consensus checkpoint. 

Algorithm correctness 

Theorem 1  For any two honest nodes receiving and successfully validating payments with k/√n 

random nodes each, there will be an average of k2 common nodes queried by both (any one of 

which can detect double-spending and raise the alarm). 

Proof  The first honest node queries randomly k√n nodes representing a proportion k/√n of all n 

nodes. So, when the second honest node queries k√n random nodes, on average a proportion of 

k√n * (k/√n) = k2 will overlap. ■ 

This result is key to the strength of the algorithm, as both transactions involve O(√n) validating 

nodes, and the expected value of the number of overlapping nodes is significant allowing any double 

spend to be detected. 

Since it only requires one common node to detect fraud, we now focus on the probability of at least 

one node in common versus the probability of zero common nodes, which we require to be very 

small. 



Lemma 1   The probability 𝑝0(𝑛, 𝑟) of zero clashes (zero common nodes) between two random 

sets of r = k√n nodes, satisfies 𝑝0(𝑛, 𝑟) < 𝑒−𝑘2
 with 𝑝0(𝑛, 𝑟) ≈ 𝑒−𝑘2

 for large n and 𝑟 ≪ 𝑛. 

Proof   

First 𝑝0(𝑛, 𝑟) =
(𝑛−𝑟

𝑟 )

(𝑛
𝑟)

 since there are (𝑛
𝑟
) ways for the second node to choose r validating nodes of 

which (𝑛−𝑟
𝑟

) combinations involve zero of the same r validating nodes which the first node chose. 

So 

𝑝0(𝑛, 𝑟) =
(𝑛−𝑟

𝑟 )

(𝑛
𝑟)

=
(𝑛−𝑟)!𝑟!(𝑛−𝑟)!

𝑟!(𝑛−2𝑟)!𝑛!
=

(𝑛−𝑟)…(𝑛−2𝑟+1)

𝑛…(𝑛−𝑟+1)
< (

𝑛−𝑟

𝑛
)

𝑟

=  (1 −
𝑟

𝑛
)𝑟  with ≈ for 𝑟 ≪ 𝑛 

Now let 𝑟 = 𝑘√𝑛 and we can approximate 

𝑝0(𝑛, 𝑟) = (1 −
𝑘√𝑛

𝑛
)

𝑘√𝑛

= ((1 −
𝑘

√𝑛
)

√𝑛

)

𝑘

< (𝑒−𝑘)𝑘 = 𝑒−𝑘2
 again with ≈ for the limit of large 

n ■ 

So 𝑒−𝑘2
 is a safe upper bound for 𝑝0 and a good approximation in the realistic case of large n and 

small k. By substitution we can see that k=4.5 gives p0~10-9 for all large n, and for convenience we 

therefore typically assume k=4.5. We must take k large enough to allow for the level of Byzantine 

faults in the network. A typical practical value would be k=10 to allow for 10% unavailable nodes 

and 50% fraudulent nodes so that we have k=4.5 of honest available nodes. 10% unavailability 

seems generous for most modern networks while 50% fraudulent nodes is typically anyway the most 

supported by the Distributed Ledger Technology used for global consensus. 

The appendix shows values of 𝑝0(𝑛, 𝑟) and confirms that the approximation is excellent for large n 

and small k while providing a valid upper bound in all cases. 

Now, double spending with co-conspirators is in itself of no value as the co-conspirators will not 

provide any value in return for a payment which they know is fraudulent and will be later rejected 

from the global ledger. Therefore, the algorithm depends on ensuring a negative expected value 



when double spent money arrives directly or indirectly at honest nodes, catching the fraud in time 

before honest nodes naively provide value in return for fraudulent payments. 

Theorem 2  Let M be the maximum transaction amount, m be the minimum wallet balance, n be the number of valid 

nodes as of the last global consensus, h be the proportion of nodes assumed to be honest, and u be the proportion of 

uptime required from nodes. Assuming the network is designed such that  

𝑝0(𝑛, 𝑘√𝑛) <  
𝑚

𝑀+𝑚
≈

𝑚

𝑀
 , 

where 𝑘 = 𝑘ℎ𝑢, the expected return on any combination of double spending to honest nodes is 

negative. 

Proof  The maximum amount of a double-spend transaction is the maximum transaction amount M. 

By Lemma 1, the probability of two honest nodes not detecting a double spend is  𝑝0(𝑛, 𝑘√𝑛), in 

which case there is a gain of M so . In case a double spend is detected, the double-spender will at 

least forfeit the minimum wallet balance m. Therefore, the maximum expected gain is  

 𝑝0(𝑛, 𝑘√𝑛) 𝑀 − (1 − 𝑝0(𝑛, 𝑘√𝑛)) 𝑚. 

Given 𝑝0(𝑛, 𝑘√𝑛) <  
𝑚

𝑀+𝑚
≈

𝑚

𝑀
 this expected value is negative.  ■ 

As discussed, practical values are m=$1, M=$1,000,000, k=4.5 which gives 𝑝0~10−9 ≪
𝑚

𝑀
. 

Assuming h=50% honest nodes (the algorithm can handle less than 50% honest nodes, but 

blockchain cannot) and u=90% uptime, we need k=10 to ensure a negative expected value of any 

double spend. 

Algorithm message space complexity 

The number of messages per transactions is k√n. These may be transmitted directly or cascaded 

through a tree of nodes to avoid the receiving node becoming a network bottleneck. 

Before discussing message size, we introduce a couple of definitions. 



Definition 8  The critical inbound transaction size j[T] is the number of inbound transactions 

(since the last global consensus) which a sender relies on for their balance when spending money in a 

transaction t that is  

j[T] = |CLIN[T]|. ■ 

An upper bound for j[T] is the total number of inbound transactions the node has participated in 

since the last global consensus. In most cases, j might be zero. That is, a person spending money 

typically already had that money that morning. In extreme cases though, v might be large, for 

example a grocery store starting the day with zero balance, accepting hundreds of small transactions, 

and spending all their accumulated money on a large capital item or on payroll that same evening. 

The large spend may depend on every one of the small inbound transactions. 

Definition 9  The critical velocity of money v[T] for a transaction T is the maximum depth of the 

recursion in PED[T].  ■ 

v[T] is the number of nodes the specific balance of coin circulated through in the time period 

between consensus checkpoints, until it landed in transaction T, where it is only considered 

circulation if the nth transaction was dependent for its balance on the (n-1)th. v is generally 

assumed to be small, most often 1 and only rarely more than 2. It is defined more narrowly than the 

economic concept of the velocity of money [35] which includes all circulation of currency, whether 

critical to the spender’s balance or not, and the velocity of money itself tends to average a very 

modest rate of 4-11 per year [36] so that v>2 in a single day between consensus checkpoints would 

be rather rare. That is, in real commerce in say 24 hours, a specific amount of currency will rarely 

change hands more than once or twice and at most a handful of times. 

Now, the number of transactions in the pedigree of a transaction T is the size of all transactions in 

the pedigree, and we can see that |PED[T]| = 𝑜(𝑗
𝑣

) where 𝑗 and 𝑣 represents the maximum values 

of j and v for transactions in the pedigree recursion. 

In the vast majority of transactions, we expect v=1 and occasionally v=2, but rarely more, while j 

will probably most often be 0, but may hit a few hundred occasionally. Thus, the message sizes in 

realistic commerce will typically be small, but on rare occasions we may have tens thousands of 



transactions and require some megabytes of message size, which is still quite a practical message size 

for a modern network. 

However, if the algorithm is continuously used for days and weeks without a global consensus, the 

message size v may grow prohibitively large. 

Sybil attack 

In a Sybil attack, a fraudster can create a large number of fraudulent nodes hoping to reduce the 

chance of two honest nodes detecting the fraudster’s double-spending. We already saw that a ~50% 

attack does not provide a positive expected value of double spending with the recommended 

network parameters. What about a still larger attack? 

It should be noted that the global consensus algorithm will typically fail with a 51% attack [37], but 

regardless we investigate whether such an attack could pay off in the k-root-n algorithm. 

Suppose again that m=$1 and M=$1m and k=10.  Suppose there are initially n nodes all of which 

are honest, and the fraudster creates another n fraudulent nodes, for control of 50%, and suppose 

further that 10% of nodes are unavailable.  So, as we already saw that k=4.5 and the fraudster has 

successfully reduced p0≈10-44 to p0≈10-9. But with M/m=106 there is no incentive to double-

spend with p0≈10-9.  

In fact, as seen in the Appendix, the fraudster needs to get k<3.5 approximately, to obtain p0>10-6 

and achieve a positive expected value for double-spending. For this, the criminal would need ~2n 

fraudulent nodes. But now the fraudster has another problem. The loss from a single unsuccessful 

double-spend is not limited to forfeiting the double-spending wallet, but also the loss of all the 

fraudulent nodes that failed to detect the double-spend, namely according to Theorem 1, (10-3.5)2 = 

42.25 nodes for a loss of at least 42.25m. Thus, even in this case, double spending will have a 

negative expected value. 

Consider more generally that a fraudster creates (f-1)n fraudulent nodes for a total of n=fn nodes. 

Now, when a user consults k√n = k√(fn) nodes, a proportion of 1/f of the nodes, or k√(n/f) 

nodes, will be genuine, this being a proportion k/√(fn) of all the n honest nodes. Two honest nodes 



will therefore have an expectation of consulting (𝑘/√𝑓𝑛)( 𝑘𝑛/√𝑓)  =  𝑘2/𝑓 common honest 

nodes, i.e. k=k/√f. They will also consult on average k2- k2/f dishonest nodes, and if the double-

spending is caught these k2(1-1/f) nodes will be disqualified. 

So the expected payoff from a single double-spend is p0(k, n)M ≈ 𝑒−𝑘2/𝑓𝑀 against an expected 

cost of  

(k2(1-1/f)+1)m ≈  k2m (the fraudulent nodes who fail to report the double-spending, plus one for 

the double-spending wallet) for every unsuccessful transaction, against a setup cost of (f-1)nm. 

In practice, the number of fraudulent nodes required for double-spending to pay off is huge. For 

k=10 we can find numerically that we need approximately f>10.5 for a positive payoff!  With say 

f=11 the fraudster would have to create a massive 10n fake nodes to control ~91% of the network, 

this at a cost of $10nm, say $10m for n=1 million. Now k=k/√f≈3 and so p0 = 𝑒−𝑘2/𝑓 = 𝑒−9 ≈

0.00012. So a double-spend of M=$1,000,000 would have an expected value of $120 while the 

expected cost would be losing k2(1-1/f)+1 = 91 nodes at a cost of 91m=$91 giving an expected 

profit of $29. So, after such an extreme attack, a single fraudulent transaction does have a positive 

expected value. 

However, even this strategy is doomed to fail in realistic scenarios. If n=1 million, the cost of the 

setup of 10 million nodes would be $10 million and the user would have to repeat the double-

spending three hundred thousand times in order to recoup the initial investment.  However, they 

would lose on average 91 nodes each time they fail, meaning they would lose the vast majority of the 

fraudulent nodes before recouping their investment and so the whole scheme is not feasible. 

Now if we increase f further say f ≈ k2 = 100 then fraud can pay off. p0 gets closer to 1 and the 

fraudster earns a payback tending to M as f increases. However, this requires creating O(100n) 

nodes to dominate ~99% of the network. Several strategies can help to defend against such an 

extreme attack including 

• Reducing M/m. Reducing M will also force honest people to have more wallets increasing n. 

• Increasing k 



• Biasing the k√n random nodes towards nodes that have been around for longer or have 

higher balances. 

• Monitoring for suspicious behavior such as the creation a huge number of wallets with 

minimum stake. 

In summary, we have found that with the recommended parameters of k, m, M, the algorithm is 

immune to 51% attacks and even 90% attacks, and in fact resilient to all but the most extreme of 

Sybil attacks.   

Variations on the algorithm for further research 

k-root-n without global consensus 

There would be an option of running k-root-n on its own without any common consensus on a 

ledger. As time goes on, j increases slowly and the verifications will become exponentially heavier. 

But also, each node can cache everything it knows about other nodes’ verified transaction histories. 

Over time if money circulates throughout the entire network, every node will end up verifying every 

transaction at some time or another just once with k√n other nodes, creating in the long term a 

complexity of kn√n per transaction which seems unattractive. However, there is room for a lot of 

optimization which could make this approach of standalone k-root-n feasible. 

Nodes v wallets 

The assumption so far is that every wallet is a node and that providing node verification services is 

part of the cost of being a wallet. This may be feasible as we rapidly move to a world where all 

devices are online all the time, but it could also be a limitation. 

There could be an alternative variation of the algorithm where not every wallet is a node. This may 

be helpful, as people may want their wallets to be offline or to be stored on a machine with limited 

processing power, bandwidth or memory. In this scenario, nodes might be paid a fee to provide 

verification services with a penalty for failing to report a double-spend they were aware of. The 

nodes could be the same machines as the nodes of the underlying blockchain. Further research is 

required to formally define such a network. 



Forced validation  

An alternative idea may be considered where even dishonest nodes are forced to consult O(√n) 

nodes. It is critical in this situation that the dishonest nodes are not given the opportunity to select 

which nodes they consult as they could pick collaborating dishonest nodes. So, we may introduce a 

pseudorandom formula to dictate which nodes are consulted, while also ensuring balancing the load 

between all nodes. The idea in this situation is that if Alice sends money to Bob, and Bob sends the 

same money to Charlie, then Charlie will again ask k√n nodes to validate that Bob didn’t double 

spend, but Charlie will not need to ask the network to validate the transaction from Alice to Bob. 

Instead Charlie will simply ask Bob to see the k√n digital signatures for the appropriate nodes that 

signed off on the transaction with Alice, and thus Bob can verify that Bob indeed consulted the right 

set of k√n and received all of their approval, creating less traffic and processing demands on the 

network. 

We therefore propose that when two people do a transfer, they must notify a formulaically 

determined pseudorandom selection of k√n other nodes and get each of their digitally signed 

approval. The pseudorandom selection is based on a predetermined formula which is known to all 

and takes as input e.g. sender’s ID and timestamp. Preferably we take timestamp to the second or 

minute (rather than a more fine-grained time slot) to reduce sender’s ability to pick and choose a 

specific time when the pseudorandom formula happens, in order to limit their ability to select many 

fraudulent nodes. As before, each of those nodes if honest will check that the sender has not 

double-spent. 

Now for the recursive check of sender’s sender etc. as needed, the receiver can simply check that all 

the recursive transactions have the necessary sign-off from all the nodes as determined by the 

pseudorandom formula. Thus, the receiver does not have to burden the network with validating the 

recursive transactions. Such an algorithm will scale better over longer periods of time. 

This scheme suffers from some clear vulnerabilities. There is a high chance in a real network that 

some nodes are not available and so the sender could feasibly calculate which k2 nodes would detect 

his double-spending and simply claim that those specific nodes were not available. This would have 

to be mitigated by common monitoring of node availability or the honest nodes will self-monitor so 

that anyone can later validate the claim that a certain node was unavailable at a certain time. 



The sender may also have multiple wallets and multiple available time slots allowing them some 

choice of sending node and time slot with which choice they can try to plan a double-spend without 

any clashes by choosing the specific wallet and time slots where they can double-spend without any 

clash of the honest pseudorandom nodes. Of course, if we choose high enough k we can make this 

infeasible, for example with k=10, p0=3.70x10-44 so the user would have to consider O(1044) 

combinations of wallets and time slots to find one with no clashes to an earlier transaction, which is 

not feasible.  

Therefore, it should be feasible to design an algorithm where each node (honest or not) is forced to 

consult a specific set of k√n nodes based on a function of the sender and time slot, and where there 

is no feasible way to create a positive expected value of double spending. 

Conclusion 

Reaching consensus for a distributed ledger is expensive and may involve a long lag time. We have 

explored a two-tier system where the primary algorithm ensures global consensus is reached for the 

distributed ledger, but perhaps only periodically and with high latency. In the meantime, a secondary 

k-root-n algorithm allows parties to transact rapidly and protect against double-spending with a 

more efficient O(√n) probabilistic algorithm which involves validating each transaction, and 

recursively the transactions it depends on (the transaction’s pedigree) with a random selection of 

k√n nodes. We showed that it is feasible for such a network to cope with all the world’s commerce, 

while always having a negative expected value of double spending, and being resistant to even 

aggressive Sybil attacks. 

Further research is required to investigate the practicality of each wallet being a highly available 

node, or to develop the idea of separating wallets and nodes, as well as the alternative idea of 

choosing validating nodes formulaically.  
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Appendix: Table of k and p0 

This table shows p0, the chances of zero clashes when two honest nodes consult k√n random 

nodes, for various values of k  (in practice we should use k net of any fraudulent and unavailable 

nodes) for a couple of values of n. We see that for large n, 𝑒−𝑘2
gives an excellent approximation for 

p0 and for small n and large k there is divergence from the estimate, but in the direction of the 

probabilities being even smaller than the estimate as per Lemma 1. Thus, in all cases we can safely 

ignore n and plan our network based on 𝑝0 = 𝑒−𝑘2
. We also see that p0 drops rapidly with small 

increases in k, meaning we can substantially increase the certainty of no double spending, and 

further increase the negative expected value of double spending, by modestly increasing k and hence 

k. 

k p0(n=104, k√n) p0(n=1010, k√n) 𝒆−𝒌𝟐
 

1 0.36 0.37 0.37 

1.5 0.1 0.11 0.11 

2 0.017 0.018 0.018 

2.5 0.0016 0.0019 0.0019 

3 9.30E-05 1.20E-04 1.20E-04 

3.5 3.10E-06 4.80E-06 4.80E-06 

4 5.80E-08 1.10E-07 1.10E-07 

4.5 6.10E-10 1.60E-09 1.60E-09 

5 3.70E-12 1.40E-11 1.40E-11 

5.5 1.20E-14 7.30E-14 7.30E-14 

6 2.30E-17 2.30E-16 2.30E-16 

6.5 2.30E-20 4.50E-19 4.50E-19 

7 1.30E-23 5.20E-22 5.20E-22 

7.5 3.70E-27 3.70E-25 3.70E-25 

8 5.60E-31 1.60E-28 1.60E-28 

8.5 4.60E-35 4.20E-32 4.20E-32 

9 1.90E-39 6.60E-36 6.60E-36 

9.5 4.10E-44 6.30E-40 6.40E-40 

10 4.40E-49 3.70E-44 3.70E-44 

Bibliography 

 

[1]  S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2009.  



[2]  S. S. R. Network, "The Limits to Blockchain? Scaling vs. Decentralization.," Cybersecurity, Privacy 
& Networks eJournal, 2019.  

[3]  "Scalability https://en.bitcoin.it/wiki/Scalability," Bitcoin wiki, 2015. 

[4]  J. Garzik, "Making decentralized economic policy http://gtf.org/garzik/bitcoin/BIP100-
blocksizechangeproposal.pdf," 2015. 

[5]  A. d. Vries, "Bitcoin's Growing Energy Problem," Joule, vol. 2, no. 15, pp. 801-805, 2018.  

[6]  R. Canneti and T. Rabin, "Optimal Asynchronous Byzantine Agreement," Technical Report #92-
15, Computer Science Department, Hebrew University, 1992.  

[7]  M. Castro and B. Liskov, "Practical Byzantine Fault Tolerance," Proceedings of the Third Symposium 
on Operating Systems Design and Implementation, New Orleans, 1999.  

[8]  J. R. Douceur, "The Sybil Attack," Peer-to-Peer Systems. Lecture Notes in Computer Science., vol. 
2429, p. 251–60, 2002.  

[9]  L. S.A., "Blockchain Unconfirmed Transactions. 
https://www.blockchain.com/btc/unconfirmed-transactions". 

[10]  D. Azzolini, F. Riguzzi and E. Lamma, "Studying Transaction Fees in the Bitcoin Blockchain 
with Probabilistic Logic Programming," Information, 2019.  

[11]  B. Wiki, "Irreversible Transactions https://en.bitcoin.it/wiki/Irreversible_Transactions". 

[12]  L. e. a. Luu, "SCP: A Computationally-Scalable Byzantine," IACR Cryptology, 2015.  

[13]  Y. Gilad, R. Hemo, S. Micali, G. Vlachos and N. Zeldovich, "Algorand: Scaling Byzantine 
Agreements," SOSP '17 Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51-68, 
2017.  

[14]  I. Eyal, A. Efe Gencer, E. Gün Sirerr and R. van Renesse, "Bitcoin-NG: A Scalable Blockchain 
Protocol," e Proceedings of the 13th USENIX Symposium on Networked Systems Design and 
Implementation (NSDI ’16), 2016.  

[15]  L. Apeltsin, "A CryptoCubic Protocol for Hacker-Proof Off-Chain Bitcoin Transactions," 
Cornell University , vol. arXiv:1408.2824, 2014.  

[16]  J. P. a. T. Dryja, "The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments," 
2019.  

[17]  E. Heilman, A. Kendler, A. Zohar and S. Goldberg, "Eclipse attacks on Bitcoin's peer-to-peer 
network," SEC'15 Proceedings of the 24th USENIX Conference on Security Symposium, pp. 129-144, 
2015.  

[18]  M. Apostolaki, A. Zohar and L. Vanbever, "Hijacking Bitcoin: Routing Attacks on 
Cryptocurrencies," IEEE Symposium on Security and Privacy, 2017.  

[19]  C. Pinzón and C. Rocha, "Double-spend Attack Models with Time Advantange for Bitcoin," 
Electronic Notes in Theoretical Computer Science, vol. 329, 2016.  

[20]  E. Ittay, G. Peter, J. Aljosha, M. Sarah, S. Nicholas, T. Itay, W. Edgar and Z. Alexei, "Pay-To-
Win: Incentive Attacks on Proof-of-Work Cryptocurrencies," IACR Cryptology ePrint Archive, 
2019.  

[21]  I. Stewart, D. Ilie, A. Zamyatin, S. Werner, M. F. Torshizi and W. J. Knottenbelt, "Committing 
to quantum resistance: a slow defence for Bitcoin against a fast quantum computing attack," 
Royal Society Open Science, 2018.  

[22]  M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang and A. Mohaisen, "Exploring 
the Attack Surface of Blockchain: A Systematic Overview," arXiv, vol. 1904.03487, 2019.  



[23]  G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais and S. Čapkun, "Misbehavior in 
Bitcoin: A Study of Double-Spending and Accountability," ACM Transactions on Information and 
System Security (TISSEC), vol. 18, no. 1, 2015.  

[24]  C. Pérez-Solà, S. Delgado-Segura, G. Navarro-Arribas and J. Herrera-Joancomartí, "Double-
spending prevention for Bitcoin zero-confirmation transactions," International Journal of 
Information Security, vol. 18, no. 4, p. 451–463, 2019.  

[25]  K.-Y. Kang, "Cryptocurrency and Double Spending History: Transactions with Zero 
Confirmation," Munich Personal RePEc Archive (MPRA), vol. 96875, 2019.  

[26]  U. W. Chohan, "The Double Spending Problem and Cryptocurrencies," Banking & Insurance 
Journal, Social Science Research Network (SSRN), 2017.  

[27]  J. Göbel and A. E. Krzesinski, "Increased block size and Bitcoin blockchain dynamics," 27th 
International Telecommunication Networks and Applications Conference (ITNAC), 2017.  

[28]  N. R. Ericsson, D. F. Hendry and S. B. Hood, "Milton Friedman and Data Adjustment," IFDP 
Notes, Board of Governors of the Federal Reserve System.  

[29]  "The World Population Prospects 2019: Highlights," Population Division of the UN Department of 
Economic and Social Affairs, 2019.  

[30]  A. Lielacher, "How Many People Use Bitcoin in 2019?," Bitcoin Market Journal, 2019.  

[31]  K. Sedgwick, "No, Visa Doesn’t Handle 24,000 TPS and Neither Does Your Pet Blockchain," 
https://news.bitcoin.com/no-visa-doesnt-handle-24000-tps-and-neither-does-your-pet-blockchain/.  

[32]  "Global General Purpose Cards - Midyear 2018," The Nilsen Report, vol. 1140, no. 
https://nilsonreport.com/upload/issues/1140_0321.pdf, p. 7, October 2018.  

[33]  J. Skene, D. D. Lamanna and W. Emmerich, "Precise Service Level Agreements," ICSE '04 
Proceedings of the 26th International Conference on Software Engineering, pp. 179-188, 2004.  

[34]  D. Lamanna, J. Skene and W. Emmerich, "SLAng: A Language for Defining," The Ninth IEEE 
Workshop on Future Trends of Distributed Computing Systems (FTDCS), 2003.  

[35]  I. Fisher, The Purchasing Power of Money, 1911.  

[36]  Federal Reserve Bank of St. Louis, "Velocity of M1 Money Stock," Fred Economic Data, no. 
https://fred.stlouisfed.org/series/M1V, 2019.  

[37]  M. Bastiaan, "Preventing the 51 %-Attack : a Stochastic Analysis of Two Phase Proof of Work 
in Bitcoin," no. https://www.hmbastiaan.nl/martijn/docs/2015/preventing-the-majority.pdf, 
2015.  

 

 

 


