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Abstract. Collision side-channel attacks are efficient attacks against
cryptographic implementations, however, optimal collision side-channel
attacks and how to compute them efficiently is an open question. In this
paper, we show that collision side-channel attacks can be derived using
the maximum likelihood principle when the distribution of the values
of the leakage function is known. This allows us to exhibit the optimal
collision side-channel attack and its efficient computation. Finally, we
are able to compute an upper bound for the success rate of the optimal
post-processing strategy, and we show that our method and the optimal
strategy have success rates close to each other. Attackers can benefit
from our method as we present an efficient collision side-channel attack.
Evaluators can benefit from our method as we present a tight upper
bound for the success rate of the optimal strategy.

1 Introduction

Since the late 90’s and the first side-channel attacks by Kocher, various tech-
niques of side-channel attacks have been proposed in the literature. Side-channel
attacks are attacks against cryptographic implementations, the goal of such at-
tacks is to link a physical property (e.g. power consumption, electromagnetic
radiation) of the device to some secret information used in the implementation.

The optimal manner to exploit side-channel leakages is known in general [11].
It requires knowledge of the leakage function (estimated through profiling), then
the maximum likelihood distinguisher is applied. However, the profiling step is
not always possible, in some context like banking the attacker may not have
access to an open device. Moreover, estimation of the leakage function can be a
hard task [4] and model errors can be made. For these settings where profiling
is difficult or impossible, it is interesting to look at optimal non-profiled attacks.

Among non-profiled attacks, collision attacks [10] are efficient side-channel at-
tacks. The idea of collision side-channel attacks is that the same code processing
the same data should have the same impact on monitored physical properties.
This allows the attacker to detect when two sensitive values are equal. From
this equality, the attacker extracts a relation between two different subkeys. Re-
peating this strategy for different couples of subkeys she ends with a system of
equations that involve all subkeys with degree of freedom of 1. Thus the set of
potential keys is reduced to a set of computationally enumerable candidates.



Actually, the number of equations the attacker can write is much higher than
the number of subkeys (unknowns of the system). Moreover due to noise in mea-
surements some equations might be incorrect. Thus performing a key recovery
attack can be tricky. Several algorithms have been proposed in literature in or-
der to extract information from the result of collision side-channel attacks. The
proposed methods are based on heuristic, e.g. LDPC decoding for the solution
of Gérard and Standaert [5] or branch-and-bound for the solution of Wiemers
and Klein [12]. While both approaches improve the success rate of the collision
attack the status of the optimality of these methods is not known, thus leaving
space for potentially more efficient exploitation of side-channel collision attacks.

Having an efficient attack is interesting for attackers and evaluation labs.
Security labs are also interested in computing security margins independent of
the adversarial strategy. Thus finding adversarial best strategy is important and
computing a bound for its success rate is essential for a fair evaluation. Due to
the dependence among the relations in collision side-channel attacks formulating
the best strategy and evaluation of security margins were an open problem.

Our contributions. We derive optimal collision side-channel attacks when the
attacker knows the distribution of the leakage function values. From the deriva-
tion of collision attacks using the maximum likelihood principle we extract an
evaluation of the distinguisher in an efficient manner. We show that the suc-
cess rate of this manner is in practice close to that of the optimal evaluation of
the distinguisher (the optimal evaluation is computationally unfeasible). This is
achieved thanks to bounding the success rate of the optimal evaluation of the
distinguishers. To the best of our knowledge, it is the first time an upper bound
for the first order success rate of optimal collision side-channel attacks is exhib-
ited. We compare our method to existing techniques and show that our method
achieved better performance than previous methods, and that its success rate is
close to the upper bound of success rate of optimal collision side-channel attack.

2 Background and model notations

2.1 Collision side-channel attacks

Collision side-channel attacks were invented to exploit the similarity between
leakages of similar computations over similar data values. Collision side-channel
attacks do not require profiling of the leakage or a hypothesis of the leakage
model. This is one of the main differences between collision side-channel attacks
and other side-channel attacks such as template attacks [3] or correlation at-
tacks [1]. Collision side-channel attacks have been introduced as attacks against
block cipher implementations in [10].

As collision attacks aim at detecting repeated code execution with the same
data we target in this paper block cipher implementations that reuse the same
instance of the S-box, like in several reference implementations of Present or of
AES. We denote by n the input size of the S-box (e.g. n = 8 for AES). We
denote by L the number of S-box calls in one round (e.g. L = 16 for AES-128).



For all l ∈ {1, . . . , L} we denote by k∗(l) the l-th secret key byte and by k(l)

any possible l-th key byte hypothesis. We denote by k = (k(1), . . . , k(L)) the full
key. The l-th byte of the plaintext corresponding to the q-th query is denoted by

t
(l)
q and the associated leakage is denoted by x

(l)
q . x(.) is the matrix with q − th

row corresponding to the L-variate leakage x
(1)
q , ..., x

(L)
q .

We assume an identical, but unknown, leakage model for all l ∈ {1, . . . , L}.
I.e.

x(l)q = ϕ(t(l)q ⊕ k∗(l)) +N,

where the noise N is independent among l and q and ϕ is a deterministic leakage
function.

The goal of collision side-channel attacks is to find links among the different

key bytes k(l). The main idea is to detect when ϕ(t
(l1)
q1 ⊕k∗(l1)) = ϕ(t

(l2)
q2 ⊕k∗(l2))

for l1, l2 ∈ {1, . . . , L}, l1 6= l2 and some know plaintext byte t
(l1)
q1 , t

(l2)
q2 .

In this paper, we consider only the case where we have a number of measure-
ments that is a multiple of 2n, and for each S-box calculation we have observed
the same number of traces for each value of the plaintext. This balanced setup
allows to remove the bias of the plaintext distribution and it can be easily im-
plemented using shuffling of batches. Hence, after performing averaging over the

traces x
(l)
q with the same plaintext values x(.) becomes a matrix of real num-

bers of dimension 2n × L, where the i-th row corresponds to the leakage of the
plaintext i− 1.

2.2 Stochastic and correlation enhanced collision attacks

Bruneau et al. combine flavours of collision and of stochastic side-channel attacks
[2]. Contrary to previous formulations, Bruneau et al. derive the attack rather
than inventing it. The derivation is based on maximizing the likelihood function
stated for the full key, given the measured leakages under assumption of the same
leakage function ϕ for each of the executions of the S-box and of the Gaussian
noise having the mean 0 and the same variance for each of the measurements.

Stochastic differential side-channel attacks [9] were introduced in order to
optimize the efficiency of DPA. The key idea of stochastic DPA is to approximate
the leakage function ϕ within a suitable vector subspace with a relatively “small”
basis to be efficient.

To use a stochastic approach in the collision context Bruneau et al. consider
the unknown leakage function ϕ as an additional part of the secret. Thus the
optimization problem, i.e. maximizing the likelihood function, is not only on
the key value k, but also on the leakage function. The stochastic approach for
the representation of the leakage function ϕ can be shown to be equivalent to
replacing the leakage function values in the likelihood function by their estimates
calculated for each key k as the arithmetic mean over l of the measured leakages



x
(l)

q⊕k(l) . Using these estimates maximizes the likelihood function values,3 as it

is also the case when using the stochastic approach utilizing the full basis for
the representation of the leakage function ϕ. Finally, Bruneau et al. obtain the
following distinguisher:

Dsto.coll = argmax
k∈(Fn2 )L

∑
u∈Fn2

(∑L
l=1

∑
q=1...Q|tq⊕k(l)=u x

(l)
q

)2
∑L
l=1

∑
q=1...Q|tq⊕k(l)=u 1

.

As the distinguisher is computed over L key bytes, the formula can be max-
imized over all keys only for small values L (e.g. up to 5).

When the data set is balanced and averaging of traces is performed we can
rewrite the distinguisher as a sum of scalar products between rows of the ma-
trix x(.) (re-indexed by the key). As a matter of fact, we have ∀u ∈ Fn2 ,∀l ∈
{1, . . . , L}

∑
q=0...2n−1|q⊕k(l)=u 1 = L, thus

Dsto.coll.bal = argmax
k∈(Fn2 )L

∑
u∈Fn2

 L∑
l=1

∑
q=0...2n−1
q⊕k(l)=u

x(l)q


2

= argmax
k∈(Fn2 )L

∑
u∈Fn2

(
L∑
l=1

x
(l)

u⊕k(l)

)2

= argmax
k∈(Fn2 )L

∑
u∈Fn2

L∑
l=1

(
x
(l)

u⊕k(l)

)2
+ 2

L∑
l1=1

L∑
l2=l1+1

(
x
(l1)

u⊕k(l1) × x
(l2)

u⊕k(l2)

)

= argmax
k∈(Fn2 )L

∑
u∈Fn2

L∑
l1=1

L∑
l2=l1+1

(
x
(l1)

u⊕k(l1) × x
(l2)

u⊕k(l2)

)
,

since
∑
u∈Fn2

∑L
l=1

(
x
(l)

u⊕k(l)

)2
is constant for every key.

We can notice that ∀i ∈ Fn2 ,

∑
u∈Fn2

L∑
l=1

L∑
l2=l1+1

(
x
(l1)

u⊕k(l1) × x
(l2)

u⊕k(l2)

)

=
∑
u∈Fn2

L∑
l=1

L∑
l2=l1+1

(
x
(l1)

u⊕k(l1)⊕i × x
(l2)

u⊕k(l2)⊕i

)
,

3 To see this we rewrite the Dopt from the equation (2) [2] in the balanced setup as

Dopt = argmax
k∈(Fn2 )L

2n−1∑
q=0

−(ϕ(t(l)q )− 1

L

L∑
l=1

x
(l)

q⊕k(l)

)2

+
2

L2

L∑
l1=1

L∑
l2=l1+1

x
(l1)

q⊕k(l1) × x
(l2)

q⊕k(l2)

 .



thus the keys are equivalent up to a byte i xor on every key byte, i.e.(
k(1), . . . , k(L)

)
∼
(
k(1) ⊕ i, . . . , k(L) ⊕ i

)
.

Moradi et al. proposed correlation-enhanced collision attack in [8]. They average
traces to reduce the impact of randomness (noise in measurement). Then, they
use correlation between every two rows of the matrix x(.) and for every re-
indexing of the coefficients due to the differential value of any two sub-keys.
To recover the full differential of the sub-keys of the key ad hoc solutions were
proposed. E.g. extract a system of independent equations [8], perform a branch-
and-bound on the sum of correlation coefficients [12], or use an adapted decoding
technique [5].

None of these techniques based on correlation enhanced collision attack ad-
dress the optimality of the approach, leaving the question about it open.

Actually, for any two key bytes we can link scalar product and correlation
coefficient as:

ρk(l1),k(l2)

(
x(l1), x(l2)

)

=

2n
2n−1∑
i=0

x
(l1)

i⊕k(l2) × x
(l2)

i⊕k(l2) −
2n−1∑
i=0

x
(l1)
i

2n−1∑
i=0

x
(l2)
i√

2n
2n−1∑
i=0

(
x
(l1)
i

)2
−
(

2n−1∑
i=0

x
(l1)
i

)2
√

2n
2n−1∑
i=0

(
x
(l2)
i

)2
−
(

2n−1∑
i=0

x
(l2)
i

)2
.

It can be seen from the above formula that for the balanced setup the couple
k(l1), k(l2) that maximizes the correlation coefficient is the same that maximizes
the scalar product. However, maximizing the sum of correlation coefficients or
of scalar products might not give the same relation between key bytes. The
reason for this are statistical fluctuations of the factors used as weights (see the
denominator in the above formula) when going from the sum of scalar products
to the sum of correlation coefficients.

3 Optimal distinguishers for random leakage functions

With reference to the equation (4) [2] and to the previously introduced notations
the maximum likelihood (ML) distinguisher can be written as:

Dopt = argmax
k∈(Fn2 )L

2n−1∏
q=0

L∏
l=1

fσ2

(
x(l)q − ϕ

(
t(l)q ⊕ k(l)

))
,

where fσ2 denotes Gaussian distribution with the mean value 0 and the stan-
dard deviation σ. Bruneau et al. maximize Dopt also over the leakage function
values. This approach is not sufficient for obtaining a provably optimal, i.e. one
that maximizes the likelihood of the key given the measured leakage, distin-
guisher for the key. However, in some practical situations the attacker might



have some a priori knowledge about the leakage function and using it she may
try to derive an optimal distinguisher, e.g. by considering each of the leakage
function values ϕ(x) as random variables with some guessed distribution. Using
such distinguisher maximizes the average success probability when repeating at-
tacks while each time the leakage function values are selected according to the
assumed distribution. In particular it is also expected that the attack succeeds
on some actual leakage function with higher success probability than in a case
of using the distinguisher Dsto.coll. This can be explained by the fact that the
actual leakage function might be a kind of a typical leakage function with respect
to the assumed distribution of the leakage function values and with respect to
the success probability of the derived distinguisher.

We verified in case of two 8 bit wide S-boxes the higher success rate of 0.90
when using the distinguisher derived (see below) using the knowledge of the
distribution of leakage function values as compared to the success rate of 0.50
when using the Dsto.coll.bal distinguisher. The following describes the used distri-
bution. Each leakage function ϕ is created randomly according to the following
rule: for each u ∈ {0, . . . , 255} assign to ϕ(u) a value v selected randomly from
a distribution given by the following histogram:

Hex =

{(
0,

246

256

)
,

(
1,

1

256

)
,

(
2,

2

256

)
,

(
3,

3

256

)
,

(
4,

4

256

)}
,

where (v, p) means that the value v has the probability p of being selected. The
higher success rate was also verified for some fixed leakage functions with values
drawn from that distribution. Note that the example is given only to show that
the Dsto.coll.bal or equivalently Dsto.coll distinguisher might be not optimal given
additional knowledge of the distribution of the leakage function values, and thus
to motivate further investigations. No other claims are made at that point.

The optimal distinguisher derived under known distribution p of leakage func-
tion values is given by:

Dopt.fun.p = argmax
k∈(Fn2 )L

2n−1∏
q=0

∫ ( L∏
l=1

fσ2

(
x
(l)

q⊕k(l) − ϕ
))

dp(ϕ), 4

where
∫
α(ϕ)dp(ϕ) means the expectation value of α(ϕ) given the distribution

density p(ϕ) of the variable ϕ.
In the example above the integral was just a sum over the values v ∈

{0, . . . , 4} and dp(v) was set to the probability of the occurrence of each of
the value v.
4 The derivation is based on the following equation with statistically independent K

and φ

P (K = k|X = x) =
∑
ϕ

P (X = x|(K = k, φ = ϕ))× P (K = k)× P (φ = ϕ)

P (X = x)
.

Without knowing the distribution P (φ) of the leakage function values we cannot
figure out the optimal distinguisher using the maximum likelihood principle.



Of special practical interest is the case of Hamming weight leakages. Even
without knowing the exact leakage model, it is reasonable in many situations to
assume a Hamming weight leakage, and therefore the distribution of the leakage
function values is binomial, e.g. it is given by the following histogram:

Hbin.4 =

{(
0,

1

16

)
,

(
m,

4

16

)
,

(
m× 2,

6

16

)
,

(
m× 3,

4

16

)
,

(
m× 4,

1

16

)}
,

in case of a 4 bit wide S-box, where the m is a parameter of the distribution.

While it is straightforward to write an exact formula for the optimal distin-
guisher Dopt.fun.binomial in that case, the parameters m of the leakage and the
standard deviation σ of the noise are still unknown. However, later on we will use
such distinguisher derived with known values of m and σ as a benchmark when
comparing the success rate of the related Dopt.fun.gauss distinguisher derived
for leakage function values distributed according to Gaussian distribution. We
expect similar success rates for both Dopt.fun.binomial and Dopt.fun.gauss because
Gaussian distribution is an approximation of the binomial distribution.

The integration in the formula for Dopt.fun.p can be performed with the stan-
dard deviation σ of the noise and dp taken as a density of Gaussian distribution
with the mean mϕ and the standard deviation σϕ.

The result in that case is

Dopt.fun.gauss

= argmax
k∈(Fn2 )L

2n−1∏
q=0

(∫ ( L∏
l=1

fσ2(x
(l)

q⊕k(l) − ϕ)

)
× fσ2

ϕ
(ϕ−mϕ)dϕ

)

= argmax
k∈(Fn2 )L

2n−1∏
q=0

e (σ2ϕ×
∑L
l=1 x

(l)

q⊕k(l)
+σ2×mϕ)2

2×σ2×σ2ϕ×(σ2+L×σ2ϕ)
−

m2
ϕ

2×σ2ϕ
−

∑L
l=1(x

(l)

q⊕k(l)
)2

2×σ2

×
∫
e
−
σ2+L×σ2ϕ
2×σ2×σ2ϕ

×(ϕ−
σ2ϕ×

∑L
l=1 x

(l)

q⊕k(l)
+σ2×mϕ

σ2+L×σ2ϕ
)2

dϕ


= argmax

k∈(Fn2 )L

2n−1∑
q=0

(
σ2
ϕ ×

L∑
l=1

x
(l)

q⊕k(l) + σ2 ×mϕ

)2

= argmax
k∈(Fn2 )L

2n−1∑
q=0

L∑
l1=1

L∑
l2=l1+1

(
x
(l1)

q⊕k(l1) × x
(l2)

q⊕k(l2)

)
.

Remarkably, this special result is independent of the parameters, i.e. of the
standard deviation σ of the noise, of the mean mϕ and of the standard deviation
σϕ of the leakage function values. It also shows the optimality in terms of max-
imum likelihood of the Dsto.coll.bal distinguisher in case of Gaussian distributed
leakage function values.



4 Optimal evaluation of distinguishers

The Dopt.fun.p distinguishers require to maximize over all k ∈ (Fn2 )L. Unfortu-
nately, the triple sum has no structure (local maximum does not lead to global
maximum), and to find the k maximizing the sums all cases need to be com-
puted. Thus the optimal solution to recover the key using an optimal collision
side-channel attack requires to compute all of the 2(n−1)L (e.g. 2120 in the case
of AES-128) values.5 We present here an algorithm that aims to find the maxi-
mizing k using random space exploration by looking only at a small number of
candidate keys k.

4.1 Random space exploration

The random space exploration algorithm is described in Algorithm 1.6

The algorithm returns a key candidate that maximizes the sum of scalar
products over the small set of key candidates we explore. Hence, the algorithm
tries to find the maximizing key k of the Dopt.fun.gauss distinguisher. We note

that the term
∑s−1
j=1 s(lj , ls, δ⊕k(lj)) in step 14: results in matching the leakage of

S-box ls with a kind of template given by the sum of the leakages of the S-boxes
l1 to l(s−1). If the guess for the keys k(l1) to k(ls−1) is correct, that template
converges for larger values of s to the true leakage function value and the chance
to recover the correct key ks increases with greater s. Actually this observation
could already have been the starting point for designing the algorithm. Another
design idea was based on the observation, that when having a set of different
pairs of S-boxes there is a good chance to have one pair for which the correct
key can be found. This pair then results in a better template for matching the
leakage of the third S-box, and so on.

The cost of the proposed algorithm is modest in terms of memory, we just
need to store the maximum key. In terms of time, the algorithm is also efficient
and it has a running time O(L× 2n ×max tries).
5 The minus 1 comes from the equivalence of the keys when xor-ing any fixed value

with each subkey.
6 The random space exploration algorithm can be seen as a repeated execution of the

Wiemers’ and Klein’s algorithm variant 1 with W = 1, the details of the algorithm
are given in [12]. While the algorithm of Wiemers and Klein was designed for entropy
reduction of collision attacks, the target of the random space exploration algorithm
was to enable the investigation of the limits of success rates for collision attacks. To
sum up, the differences between the Wiemers’ and Klein’s algorithm and the random
space exploration algorithm are:

– the repetition of the execution of variant 1 with W = 1 instead of one run with
W > 1,

– randomized order of S-boxes on each run instead of the fixed order,
– the output of only one candidate instead of a list of W > 1 candidates,
– the use of Dopt.fun.gauss distinguisher instead of a sum of correlation coefficients.



Algorithm 1 random space exploration

1: Input: The
L(L− 1)

2
lists of 2n scalar products s(l1, l2, δ) =

∑2n−1
q=0 x

(l1)
q × x(l2)q⊕δ

2: Output: A key candidate k

3: Notation:
$← means we pick a value in the set on the right randomly following a

uniform distribution
4: Max = −∞
5: for 1 ≤ try ≤ max tries do

6: l1
$← {1, . . . , L}

7: ktmp(l1) = 0

8: l2
$← {1, . . . , L}\{l1}

9: Sum = maxδ(s(l1, l2, δ))
10: ktmp(l2) = argmaxδ(s(l1, l2, δ))
11: for 3 ≤ s ≤ L do

12: ls
$← {1, . . . , L}\{l1, . . . , ls−1}

13: for 0 ≤ δ ≤ 2n do
14: Current(δ) = Sum+

∑s−1
j=1 s(lj , ls, δ ⊕ ktmp

(lj))
15: end for
16: Sum = maxδ(Current(δ))
17: ktmp(ls) = argmaxδ(Current(δ))
18: end for
19: if Sum > Max then
20: k = ktmp
21: Max = Sum
22: end if
23: end for
24: return k

We also use a modified version of the Algorithm 1 for the evaluation of the
Dopt.fun.binomial distinguisher, i.e. for finding its maximizing key k. First, the
algorithm receives as input the full matrix x(.), and the modification consists
also of replacing in line 9:

Sum = maxδ (s(l1, l2, δ))

by

Sum = maxδ

(
2n−1∑
q=1

log

(∫
fσ2

(
x
(l1)

q⊕k(l1) − ϕ
)
× fσ2

(
x
(l2)
q⊕δ − ϕ

)
dp(ϕ)

))

and in line 14:

Current(δ) = Sum+

s−1∑
j=1

s
(
lj , ls, δ ⊕ k(lj)

)



by

Current(δ) =

2n−1∑
q=1

log

∫ fσ2

(
x
(ls)
q⊕δ − ϕ

)
×
s−1∏
j=1

fσ2

(
x
(lj)

q⊕k(lj)
− ϕ

)
dp(ϕ)

 ,

where
∫
α(ϕ)dp(ϕ) means the expectation value of α(ϕ) given the distribution

density p(ϕ) of the variable ϕ. Here the distribution density p(ϕ) is the binomial
distribution of the n-bit Hamming weights and the integral is effectively a sum
(see also section 3).

4.2 Upper bound for the success rate

Interestingly, in an evaluation setup the random space exploration can also be
used to find an upper bound for the success rate of the optimal exploration, i.e.
the one that recovers the key by computing the maximum of the distinguisher
over all 2(n−1)L key candidates. As a matter of fact, in the evaluation setup the
correct key k∗ is known, thus the score

Sk∗ =
∑
u∈Fn2

L∑
l=1

L∑
l2=l1+1

(
x
(l1)

u⊕k∗(l1) × x
(l2)

u⊕k∗(l2)

)

is also known. According to the Max value (see line 21:, Algorithm 1) which we
find in random space after reaching line 23: we have two cases:

1. Sk∗ < Max, in that case, we know that the optimal exploration, and our
random space exploration, will fail. They both output a candidate key that
has a higher score than the actual key.

2. Sk∗ ≥Max, in that case, the optimal exploration might find the right key.

Thus, in the evaluation setup, we can count the number of times the case 2
happens and this way obtain an upper bound for the success rate of the optimal
exploration. This upper bound can be computed with almost no overhead, we
just need to additionally return the value Max in Algorithm 1. To the best of
our knowledge, it is the first time an upper bound for the first-order success rate
of optimal collision side-channel attack can be computed.

The value of the parameter max tries (see line 5:, Algorithm 1) of the attack
plays a role in the attack phase and also in the evaluation step. Higher values
of max tries result in higher success rates of the attack and in lower calculated
upper bound values.

We will also calculate the upper bound for the success rate of the modi-
fied Algorithm 1 for the evaluation of the Dopt.fun.binomial distinguisher using a
method similar to the method described above.



5 Simulation results

We present the upper bounds for success rates of collision side-channel attacks,
and we compare our method to these upper bounds and to the previous methods
in terms of success rate. We choose to evaluate the method using simulation to
highlight the differences between the methods without being blurred by slight
modifications of the leakage function according to key byte used [5]. For collision
side-channel attacks we compare:

– our method presented in Algorithm 1 (labelled ‘Prop.’) using the distin-
guisher Dopt.fun.gauss (labelled ‘scalar’) and using the Dopt.fun.binomial dis-
tinguisher (labelled ‘binomial’) with max tries = 128 (labelled ‘128 tries’)
and with max tries = 213 (labelled ‘213 tries’), and upper bounds (denoted
‘UB’) computed along the success rates;

– variant 1 of Wiemers’ and Klein’s algorithm [12] (labelled ‘Wiemers’) with
W = 128 7 and using the sum of correlation coefficients (labelled ‘corre.’)
and its modification using the sum of scalar products (labelled ‘scalar’).
Among all solutions in B16 we kept only the maximum to have only one
solution to test as for the other solutions;8

– Gérard’s and Standaert’s solution [5] (labelled ‘Best Gérard’) with normal-
ized correlation, we use six loops of message passing, that is greater that two
times the graph’s diameter.9

For a reference, we also plot template attacks (labelled ‘Template’), which in
case of the simulation are optimal profiled attacks.

We consider attacks on 16 key bytes, i.e. L = 16 and n = 8, similar to the
AES case. We assume that the attacker has an access to a balanced set of traces.
She observes each plaintext byte the same number of times, thanks to averaging
she can just use 28 plaintexts per S-box. We utilize the balanced setup, and
instead of varying the number of traces, we increase or decrease the variance of
the white Gaussian noise in our simulations.

For the leakage function we consider two cases. The first case is the setting
corresponding to derivation in Section 3, i.e. the distribution of the leakage
function values is 8 bit binomial (labelled ‘rand. leak’). As the second case we
consider Hamming weight (HW) leakage of the output of the AES S-box (labelled
‘HW leak’).

7 Algorithm 1 with max tries = 128 and the variant 1 of Wiemers’ and Klein’s algo-
rithm with W = 128 visit almost the same number of nodes of the search tree/trees.
These settings make comparing the two algorithms meaningful.

8 In our experiments using only the highest ranked solution or testing of all solutions
has a small impact on the success rate of the method.

9 In our experiments this setting provides the highest success rate compared to the
other methods described in the paper of Gérard and Standaert, i.e. Euclidean
distance vs. correlation coefficient and normalization vs. Bayesian extension. The
Bayesian extension is a boost for score combination, but its derivation uses Fisher
transform that is an asymptotic tool. Thus, the Bayesian extension can be counter-
productive for attacks which use a small number of traces like 28.



We compute all success rates based on 2500 experiments. This results in a
value of standard deviation of estimated success rates less then 0.01.

Fig. 1. Upper bounds and success rates of different techniques.

In figure 1, we plot results for the proposed method given in Algorithm 1
using the distinguishers Dopt.fun.gauss and Dopt.fun.binomial and for the previous
methods applied to the same set of data. We can make several observations from
the figure.

– For success rates greater than 0.90 the upper bound and the success rate
of the Algorithm 1 are close to each other for small value of max tries,
i.e. 128. For example, with σ2 = 11 and random leakage function values, the
success rates are 0.9064 for the upper bound and 0.8956 for Algorithm 1 when
using the Dopt.fun.binomial distinguisher, and the success rates are 0.9068 for
the upper bound and 0.8924 for Algorithm 1 when using the Dopt.fun.gauss

distinguisher. In the same scenario for Gérard’s and Standaert’s solution the
success rate is 0.6832, and for Wiemers’ and Klein’s solution the success
rates are: 0.7284 using the sum of correlation coefficients and 0.7292 using
the sum of scalar products.10

– For larger values of the parameter max tries, i.e. 213, the distance between
the upper bound and the success rate is small for all noise levels. In our ex-
periments performed using the Dopt.fun.gauss distinguisher and Algorithm 1
we obtained a maximum distance of 0.0088 between the upper bound and
the actual success rate for σ2 = 18.

10 When testing all elements in B16 we obtain respectively success of 0.7808 and 0.7824.



– The use of the distinguisher Dopt.fun.gauss instead of the optimal distin-
guisher Dopt.fun.binomial has only a very small impact on the upper bound
and on the success rate of the collision side-channel attacks performed using
Algorithm 1.

– The Hamming weight of the output of the AES S-box seems to lead only
to a bit higher success rates than the average success rate over random
leakage function values with binomial distribution. This indicates that the
AES S-box Hamming weight leakage can be considered as a kind of typical
leakage function for the set of random leakage function values with binomial
distribution.

– There exist a gap between success rates of template attacks and the upper
bounds for success rate of collision side-channel attacks. This gap cannot be
closed.

6 Summary

Our results provide new insights on collision side-channel attacks. We derive
optimal distinguishers for collision side-channel attacks and a computationally
efficient algorithm for the evaluation of these distinguishers. The developed eval-
uation algorithm can also be applied to Bruneau et al. [2] to make their attack
computationally feasible for large values of L. The proposed solution offers bet-
ter results than all previous solutions in terms of success rate. Our approach
provides an upper bound for the success rate of collision side-channel attacks.
We show experimentally that we are able to reach this upper bound for the op-
timal distinguishers. This result demonstrates the optimality of our approach to
collision side-channel attacks.

As a future work one may try to look at higher-order success rate of collision
side-channel attacks. To improve the post-processing of collision side-channel
attacks in that case, it might be worth to describe the problem as a depen-
dent knapsack problem, as it was proposed for divide and conquer strategy [7].
Another direction is to look at collision side-channel attacks for higher-order
leakage. The correlation collision side-channel attack exploits only first order
leakages.

Acknowledgments: The authors thank Wolfgang Thumser, Telekom Security for
fruitful discussions on the notion of optimality of collision side-channel attacks.
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