
Batch Binary Weierstrass

Billy Bob Brumley, Sohaib ul Hassan, Alex Shaindlin, Nicola Tuveri, and
Kide Vuojärvi

Tampere University, Tampere, Finland
{billy.brumley,n.sohaibulhassan,chloenatasha.shaindlin}@tuni.fi

{nicola.tuveri,kide.vuojarvi}@tuni.fi

Abstract. Bitslicing is a programming technique that offers several at-
tractive features, such as timing attack resistance, high amortized per-
formance in batch computation, and architecture independence. On the
symmetric crypto side, this technique sees wide real-world deployment,
in particular for block ciphers with naturally parallel modes. However,
the asymmetric side lags in application, seemingly due to the rigidity of
the batch computation requirement. In this paper, we build on existing
bitsliced binary field arithmetic results to develop a tool that optimizes
performance of binary fields at any size on a given architecture. We then
provide an ECC layer, with support for arbitrary binary curves. Finally,
we integrate into our novel dynamic OpenSSL engine, transparently ex-
posing the batch results to the OpenSSL library and linking applications
to achieve significant performance and security gains for key pair genera-
tion, ECDSA signing, and (half of) ECDH across a wide range of curves,
both standardized and non-standard.

Keywords: applied cryptography · public key cryptography · elliptic
curve cryptography · software implementation · batching · bitslicing ·
OpenSSL

1 Introduction

The use of Elliptic Curve Cryptography (ECC) was first suggested in 1985,
independently by Miller [23] and Koblitz [19]. Due to the fast group law on
elliptic curves and the absence of known sub-exponential attacks, ECC has since
gathered momentum as an alternative to popular asymmetric cryptosystems like
RSA and DSA, as it can provide the same security level with keys that are much
shorter, gaining both in computational efficiency and bandwidth consumption.

A prevalent assumption is that for software implementations, curves over
large characteristic prime fields are generally more efficient than their binary
field counterparts, and that, vice versa, the opposite applies for hardware imple-
mentations, i.e., that ECC scalar point multiplication (usually the most costly
operation in ECC cryptosystems) is much faster over binary extension fields.

As we will detail in the following sections, the first half of the above assump-
tion has been repeatedly challenged, especially considering the effect of alterna-
tive coordinate representations and the advances in the manufacturing processes

2 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

and design of general purpose CPUs, e.g. with the introduction of dedicated
units for carry-less multiplication and the widespread adoption of vector pro-
cessing (a.k.a. SIMD: Single Instruction, Multiple Data) in popular Instruction
Set Architectures (ISA).

In this work, we focus on bitsliced binary field arithmetic as a strategy to
take advantage of the characteristics of modern processors and provide fast batch
“fixed point”1 scalar multiplication for binary ECC.

Our Contribution. We propose a set of three tools

1. to optimize bitsliced binary field arithmetic, potentially supporting any ar-
chitecture, by selecting the performance-optimal configuration of the under-
lying finite field layer for a given platform;

2. to implement an ECC layer for any given binary curve, building on the layer
provided by the first tool, and providing constant-time fixed point scalar
multiplications that performs very competitively with existing state-of-the-
art results;

3. to integrate the generated ECC implementations in OpenSSL, overcoming
the restriction of batch computation at the application level.

The combined output of these tools transparently provides constant-time
and efficient implementations of bitsliced binary ECC for real-world applications
built on top of OpenSSL. This challenges once again the notion that binary ECC
are not well suited for software implementations, and at the same time overcomes
the main drawback of similar techniques, proving it is also practical for real-world
deployment.

Overview. In Section 2 we discuss the background for this work, recalling re-
lated works on top of which we build our contribution or that pursued similar
goals. In Section 3 and Section 4 we discuss definitions, challenges, the design,
and the analysis of our results related with the binary field and elliptic curve
arithmetic layers. Section 5 describes the third and last of our contributions,
integrating our implementations in OpenSSL to provide seamless support of
constant-time and fast bitsliced binary ECC to real-world applications. Finally,
we conclude in Section 6, with a discussion of the limits of our current contribu-
tion and future work directions for this research.

2 Background

2.1 Bitslicing

SIMD is a data parallelism technique that facilitates parallel computation on
multiple values. For example, processors featuring AVX2 contain 256-bit registers
1 In this paper we refer to scalar multiplication by the conventional generator point
for a given curve as “fixed point” scalar multiplication. In real world applications,
this is the fundamental operation for ECDH and ECDSA key generation, and for
ECDSA signature generation. This operation is opposed to “generic point” scalar
multiplication, intended as a scalar multiplication by any other point on the curve:
the latter is used in ECDH key derivation and ECDSA signature verification.

Batch Binary Weierstrass 3

ymm0 through ymm15. Viewing these as four 64-bit lanes, the instruction vpaddq
%ymm0, %ymm1, %ymm2 takes ymm0 = (a0, a1, a2, a3) and ymm1 = (b0, b1, b2, b3) then
produces their integer vector sum ymm2 = (a0 + b0, . . . , a3 + b3) where all sums
are modulo 264. There are several ways to split the register; e.g. as 8-bit, 16-
bit, etc. lanes, each requiring dedicated microarchitecture support and distinct
instructions for the register-size variants (e.g. add, subtract, multiply, etc.). Put
briefly, bitslicing takes this to the extreme and views any w-bit register as w
1-bit lanes. This lightens the microarchitecture requirements, as 1-bit addition
(or subtraction) is simply bitwise-XOR; 1-bit multiplication is bitwise-AND.
Bitwise operations are a fundamental feature in ISAs, and are in fact independent
of explicit SIMD support: any generic, non-SIMD w-bit architecture natively
supports 1-bit lane SIMD, i.e. bitslicing.

Deployments. Outside of primitives that integrate bitslicing into the design
such as Serpent, SHA-3, and Ascon, we are aware of two large-scale deploy-
ments of bitsliced software: one defensive and the other offensive. Käsper and
Schwabe [18] provide a bitsliced implementation for AES, mainlined by OpenSSL
in 2011. In the pre-AES-NI era and with only SSE2 as a prerequisite, this was
groundbreaking work that exceeded the performance of traditional table-based
AES software, yet additionally provided timing attack resistance. John the Rip-
per2 is a security audit tool that bitslices DES to batch password hashing. The
main application is to hashes utilizing the crypt portion of the standard library.

Obstacles. The ability to batch public key operations is the largest restriction
for bitsliced software. Real-world APIs (e.g. OpenSSL) do not support such a
seemingly narrow use case, as e.g. in ECC the most common operations are
single or double scalar multiplications, not w in parallel. Even research-oriented
APIs such as SUPERCOP do not have this feature. And for key agreement
on a typical single threaded application, there is no clear way how to utilize
such an implementation. On the engineering side, it is very tempting to directly
leverage academic results on minimizing gate count for bitsliced software, since
each gate will map to an instruction. However, this is only part of the story
since register and memory pressure impose constraints, as well as instruction
level parallelism, scheduling, and binary size. Indeed, both [8, 34] note the latter
disconnect. Binary finite field multipliers with low gate count [5] do not directly
map to efficient bitsliced multipliers, since arithmetic instruction count is only
a small part of overall performance on a platform.

2.2 OpenSSL and ENGINEs

As already mentioned, arguably the main drawback of batch operations for cryp-
tographic implementations is that they are generally seen as not practical: this
comes in part by the lack of support for batch public key operations in main-
stream cryptographic libraries. Among many others, one example supporting
this argument is BBE251 by Bernstein [5]: despite the high performance, we are

2 https://www.openwall.com/john/

https://www.openwall.com/john/

4 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

not aware of any deployments or standardization efforts supporting this curve
in the past decade. We hypothesize this is because it seemingly does not meet
the characteristics for mainstream cryptography software.

To counter this argument and to evaluate our work in a real-world scenario,
we decided to target OpenSSL, an open source project consisting of a general-
purpose cryptographic library, an SSL/TLS library and toolkit, and a collec-
tion of command line tools to generate and handle cryptographic keys and exe-
cute cryptographic operations. The project is arguably ubiquitous, providing the
cryptographic backend and TLS stack of a considerable portion of web servers,
network appliances, client softwares, and IoT devices. Thanks to the wide range
of supported platforms and more than twenty years of history, it has become a
de facto standard for Internet Security.

In the literature, a common pattern to integrate alternative implementa-
tions in OpenSSL consists in forking the upstream project to apply the re-
quired patches. This then requires maintaining the fork to include, alongside
the research-driven changes, patches from upstream to fix vulnerabilities, bugs,
or provide new features. As an example of this methodology, the Open Quan-
tum Safe project [30] maintains a fork3 of OpenSSL to evaluate candidates of
the NIST Post Quantum Project. The history of the repository shows the level
of effort required to maintain a fork of OpenSSL up to date with both research
work and upstream releases.

Considering how demanding this approach can be, it is not surprising that
most of the academic results often prefer to evaluate their results with ad-hoc
software or toolkits like SUPERCOP4, which generally operate in isolation and
are not necessarily representative of the performance or features of the applica-
tions of the research work in real-world use cases.

As an alternative to these two approaches, we build on top of the frame-
work proposed by Tuveri and Brumley [33], instantiated in libsuola5. This
framework allows to provide alternative implementations of cryptosystems to
OpenSSL applications, by using ENGINEs: OpenSSL objects that act as “contain-
ers for implementations of cryptographic algorithms”. Originally introduced to
support hardware cryptographic accelerators, the same construct can be used to
provide alternative software implementations. It offers a mechanism to configure
a whole system or individual applications to load ENGINEs at runtime, transpar-
ently providing their functionality to existing applications, without recompiling
them.

While we defer to Section 5 for a description of the ENGINE instantiated as
part of our contribution, we further motivate here our choice remarking that
this approach, on top of lowering maintenance costs, allows to reuse existing
applications with no effort, providing multiple and diverse ways to validate the
correctness and interoperability of our implementation. This also allows us to

3 https://github.com/open-quantum-safe/openssl
4 https://bench.cr.yp.to/supercop.html
5 https://github.com/romen/libsuola

https://github.com/open-quantum-safe/openssl
https://bench.cr.yp.to/supercop.html
https://github.com/romen/libsuola

Batch Binary Weierstrass 5

use existing projects to benchmark and evaluate our contribution in comparison
with state-of-the-art real-world implementations.

3 Binary Field Arithmetic

A binary extension field is a finite field of the form IF2m , where m is an integer
called the dimension of the field and m ≥ 2. Elements of the field IF2m can be
expressed as polynomials of degree less than m with coefficients in IF2, which
have an underlying set of {0, 1} and in which addition corresponds to binary XOR
and multiplication corresponds to binary AND. Any two finite fields with the same
number of elements are isomorphic to each other, but calculations in a particular
finite field are performed modulo an irreducible polynomial P of degree m, and
different choices of P produce different results. Since the underlying set of IF2 is
{0, 1}, elements of IF2m can also be represented as binary strings; for example,
with m = 8, the element x6 + x3 + x+ 1 can be written 010010112.

The simplest method of multiplying elements of IF2m is to multiply them as
polynomials using schoolbook multiplication and then reduce the result modulo
the field polynomial P by polynomial long division. Bernstein [5, Sect. 2] collects
many asymptotic improvements onM(n), the number of bit operations required
to multiply two n-bit polynomials, over this method: M(n) ≤ Θ(nlg 3) due to
Karatsuba,M(n) ≤ n2Θ(

√
lgn) due to Toom, andM(n) ≤ Θ(n lg n lg lg n) due to

Schönhage and Strassen. Bernstein also establishes tighter explicit upper bounds
on M(n) for n ∈ {128, 163, 193, 194, 512}, and provides6 straight-line code for
cases from n = 1 to n = 1000, and verified upper bounds on the number of bit
operations required in each case.

3.1 Splitting Strategies

For small n, the straight-line code can be very efficient, but for large n, it becomes
inefficient, partly because the compiled code becomes too large to fit in the
cache. Additionally, the algorithm that uses the fewest bit operations will not
necessarily take the fewest cycles to run when implemented, because in bitsliced
batch computations a nontrivial number of cycles are spent performing load and
store instructions, which is not accounted for in the bit operation count. There
are several conventional concerns about the correlation of bit operation count
and software performance, and while bitslicing relieves some of these concerns [5,
Sec. 1], the overhead incurred by loads and stores remains relevant. This is a gap
in the existing literature, which mostly reports results in terms of bit operations
[11, 10, 16].

Recursive algorithms for polynomial multiplication, such as Karatsuba and
Toom, have better asymptotic performance than straight-line multiplication, but
they incur more overhead, so for sufficiently small inputs, straight-line multipli-
cation is faster in practice. Due to these considerations, the fastest way (in terms

6 https://binary.cr.yp.to/m.html

https://binary.cr.yp.to/m.html

6 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

of cycle count) to batch multiply polynomials of cryptographic sizes in IF2m is
usually to begin with recursive splits, and then switch to straight-line multi-
plication when the subproblem size becomes small enough for this trade-off to
occur. The exact size at which this threshold is located may depend on both the
architecture and the field dimension.

For larger subproblems, there are many different recursive algorithms for
polynomial multiplication. Of the recursive multiplication strategies described
in [5], we use two: the one called “five-way recursion”, which corresponds to the
WAY3 macros in our implementation, and the one called “two-level seven-way
recursion”, which corresponds to the WAY4 macros. (There is also “three-way re-
cursion”, corresponding to WAY2 macros, but we omit them; since WAY4 splits the
current problem into four subproblems of roughly equal size, and WAY2 splits
it into two subproblems of roughly equal size, we expect that WAY4 is a more
efficient version of back-to-back WAY2 splits.) For simplicity, and in keeping with
the names of the macros, in this paper we refer to the WAY3 macros as “three-way
recursion” and to the WAY4 macros as “four-way recursion”. Different subproblem
sizes may have different optimal choices of recursion strategy (and again, these
can be architecture-dependent), so the complete collection of recursive multipli-
cation steps taken before dropping down to straight-line multiplication may be
both architecture- and dimension-dependent.

For a given field size, on a given architecture, a strategy to choose whether
to use a recursive algorithm or switch to a straight-line multiplication at each
intermediate step needs to be created. Said strategy aims to minimize the total
number of cycles required to multiply a batch of w polynomials of the given
degree. We refer to this result as the optimal splitting strategy for that size. The
strategy is generated for the library and necessary straight-line multiplication
files are included.

The functions for straight-line multiplication are called gf2_mul_M and the
functions for recursive multiplication are called karatmultM, where M is the size
of the input. Reading Figure 1 from the bottom line up, this code splits 251
four ways with a WAY4 macro (specifically WAY43 because 251 ≡ 3 mod 4) and
performs recursive multiplication on subproblems of size 62 and 63; 63 is split
four ways with a remainder of 3 and 62 is split four ways with a remainder of 2;
both 62 and 63 are split into subproblems of size 15 and 16, which are handled
with straight-line code.

/* (43K251 , 43K63 , 42K62 , G16 , G15) */
WAY42(62, gf2_mul_15 , gf2_mul_16)
WAY43(63, gf2_mul_15 , gf2_mul_16)
WAY43 (251, karatmult62 , karatmult63)

Fig. 1. Optimal splitting strategy on Skylake for m = 251.

Batch Binary Weierstrass 7

When reporting benchmarking results, we display the splitting strategy in a
concise format: a list of multipliers in descending order of subproblem size, with
recursive multipliers represented by the numbers after the WAY macro + K + the
input size, and straight-line multipliers represented by G + the input size.

Architectures. The purpose of the benchmarking tool we developed is to exper-
imentally determine the best splitting strategy for a particular field size running
on a particular architecture. The tooling currently supports AVX2, AVX-512,
and NEON, but is easily extendable to other ISAs. The bulk of our code utilizes
macros for C compiler intrinsics to emit architecture-specific instructions, so
adding an ISA consists mainly of internally defining these macros for the target
architecture. We used the following environments for the benchmarking: AVX-
512, a 2.1GHz Xeon Silver 4116 Skylake (24 cores, 48 threads across 2 CPUs) and
256GB RAM running 64-bit Ubuntu 16.04 Xenial (clang-8, w = 512); AVX2, a
3.2GHz i5-6500 Skylake (4 cores) and 16GB RAM running 64-bit Ubuntu 18.04
Bionic (clang-8, w = 256); AVX2-AMD, a 3.7GHz Ryzen 7 2700X (8 cores,
16 threads) and 16GB RAM running 64-bit Ubuntu 18.04 Bionic (clang-8,
w = 256); NEON, a Raspberry Pi 3 Model B+, 1.4GHz Broadcom BCM2837B0
ARMv8 Cortex-A53 (4 cores) and 1GB RAM running 64-bit Ubuntu 18.04 Bionic
(clang-7, w = 128).

3.2 Benchmarking

The benchmarking for the new software was done by recursively generating differ-
ent splitting strategies for the multiplication of the polynomials. The dimension
of the original field is recursively split three-ways and four-ways until the limits
for straight-line multiplication are reached. While within the limits, strategies are
generated for both recursive and straight-line multiplication, because we found
that using straight-line multiplication was not always the optimal solution even
when they were available. Thus we also generate many strategies that still use
the recursive split while within the limits of straight-line multiplication. While
Bernstein [5] has straight-line multiplications defined in a larger range, we de-
cided to limit it between polynomials of degree [5, . . . , 99] for the scope of this
paper.

We divided the generated splitting strategies into three categories, two of
which were eliminated from this paper. The two eliminated categories consisted
of mixed multiplication and non-strict recursion threshold. The nature of these
categories and the reasons for elimination is discussed below.

The mixed multiplication category includes all the strategies where at least
one subproblem of the recursive call is not handled like the others. An example of
this would be WAY43(251, karatmult62, gf2_mul_63), where one subproblem
is handled with a recursive call, and another with straight-line multiplication.
The benchmarking tool still supports this option, but our preliminary testing
showed no benefits for allowing mixed multiplication. The number of possible
strategies is also vastly larger (6 vs. 11 with degree 63, 14 vs. 62 with degree 127
and 193 vs. 4546 with degree 251), rendering the tool prohibitively slow with

8 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

higher values. Though there may be some edge cases where using a recursive call
for the higher value and straight-line for the lower value subproblem would yield
a more optimal result, we found none.

The non-strict recursion threshold category includes all the strategies where
the greatest value of straight-line multiplication is greater or equal to the least
value of a recursive multiplication. An example of this would be the strategy
(43K251, 30K63, 32K62, G23, 42K22, 41K21, G21, 40K20, G6, G5), where we
see both a G23 which has a greater value than K22, and K21 which is equal in
value to G21. Our assumption is that once we cross the threshold on straight-
line multiplication, using recursive multiplication will be slower. As is the case
with mixed multiplication, limiting the search space by excluding this category
considerably increases the efficiency of the benchmarking tool. We believe that
this elimination does not significantly reduce the chances of finding the optimal
strategy. If straight-line and recursive multiplication of the same subproblem
size, such as G21 and K21, is wanted inside one strategy, the current version of
the benchmarking software needs to be modified.

Unlike the mixed multiplication strategies, the strategies with non-strict re-
cursion threshold are only eliminated after all the strategies have been generated.
The final search space includes all the strategies that did not meet the criteria
for elimination in the previous two steps.

After the paths have been generated, the benchmarking tool takes one strat-
egy at a time, creates a configuration header file for the binary field arithmetic
C program, and compiles and runs the test harness, which outputs the number
of processor cycles it takes for a batch of polynomials to be multiplied. When
all the strategies for that field size have been tested, the program outputs a file
containing the strategies in ascending order of cycles, as well as the configuration
file for the best found strategy for a given platform. Our ECC layer (Section 4)
uses this configuration at build time to produce the most efficient solution.

Figure 2 shows the results of the best strategy in benchmarking on three
different processor architectures, and Table 1 selective data points on four dif-
ferent processor architectures. NEON has a register width of 128 bits, AVX2 has
a register width of 256 bits, and AVX-512 has a register width of 512 bits; these
are the denominators by which the total cycle counts are scaled.

In theory, AVX-512 should perform twice as fast as AVX2 in terms of scaled
cycle counts, because AVX-512 processes twice as many elements in one batch.
Performing linear regression on the data sets in Figure 2 with gnuplot indicated
that AVX-512 is faster than AVX2 by a factor of approximately 2.17 in practice.

We disabled Simultaneous multithreading (SMT) for all experiments in this
paper. While we used multiple cores during benchmarking to find the best split-
ting strategy, the results in Table 1 (and later in Table 2) were ran on a single
core.

3.3 Related Work

The cycle counts in this subsection are reported for m = 251 unless otherwise
noted, since it is a common field size in the literature to approach the 128-

Batch Binary Weierstrass 9

 50

 100

 150

 200

 250

 300

 350

 400

 450

 150 200 250 300 350 400 450 500 550

AVX2-AMD

AVX2

AVX-512

S
ca

le
d
 C

P
U

 c
y
cl

es

Field size

Fig. 2. Binary field multiplication performance in scaled CPU cycles.

Table 1. Selective binary field multiplication performance in scaled CPU cycles.

m 113 131 163 191 193 233 239 251 283 359 409 431 571
AVX-512 13 16 22 30 31 44 44 51 59 82 99 104 170
AVX2 24 30 43 54 55 84 77 91 121 166 216 214 351
AVX2-AMD 37 47 67 83 89 114 116 132 153 224 274 300 459
NEON 228 290 425 523 534 708 724 805 928 1340 1659 1819 2953

bit security level and therefore provides the best basis for comparison. We first
note that the comparison here (and later in Section 4.5) to previous work is not
without caveats, due to different computation models (i.e. parallel vs. serial) and
ISA availability over time.

Aranha et al. [4] benchmarked several field operations on three different Intel
platforms (Core 2 65nm, Core 2 45nm, and Core i7 45nm) Their best multiplica-
tion result was 323 cycles, achieved on the Core i7 platform with López-Dahab
multiplication.

Taverne et al. [31, 32] benchmarked López-Dahab multiplication on an Intel
Westmere Core i5 32nm processor, reporting 338 cycles for code compiled with
GCC and 429 cycles for code compiled with ICC (the Intel C++ Compiler), and
achieved a speedup to 161 cycles (GCC) and 159 cycles (ICC) by performing
Karatsuba multiplication with the new carry-less multiplication instruction.

10 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

Câmara et al. [9] report timings for an ARM Cortex-A8, Cortex-A9, and
Cortex-A15 processor, with code compiled with GCC. López-Dahab multiplica-
tion takes 671 cycles on A8, 774 on A9, and 412 on A15; their contribution is
the Karatsuba/NEON/VMULL multiplication algorithm, which takes 385 cycles
on A8, 491 on A9, and 317 on A15.

Oliveira et al. [25] benchmarked Karatsuba multiplication with carry-less
multiplication on Intel Sandy Bridge for field size m = 254 and achieved 94
cycles with GCC (and report similar results for ICC).

Seo et al. [27] achieve 57 cycles for m = 251 and 153 cycles for m = 571 on
ARMv8 by using the 64-bit polynomial multiplication instruction PMULL instead
of the 8-bit polynomial multiplication instruction VMULL used in [9].

4 Elliptic Curve Arithmetic

A non-supersingular elliptic curve E over the binary finite field IF2m is a set of
points (x, y) ∈ IF2m satisfying the short Weierstrass equation:

E(IF2m) : y2 + xy = x3 + ax2 + b

where the parameters a, b ∈ IF2m and the set of points in E(IF2m) is an additive
Abelian group with identity element as the point at infinity O i.e. P + O =
O + P = P and the inverse element at −P = (x1, x1 + y1). For the sake of
simplicity, the remainder of this paper will refer to this curve form as short
curves.

4.1 Scalar Multiplication

The elliptic curve point multiplication is seen as the most critical and compute-
intensive task, therefore a lot of emphasis is given on improving the algorithms
for efficiency and security. For a given `-bit scalar k ∈ ZZ and point P ∈ E, the
point multiplication can be formulated as:

kP =

`−1∑
i=0

ki2
iP

where ki is the ith bit of the scalar. This naive method, a.k.a. binary method,
scans the bits of the scalar one at a time, performing double operations for each
`− 1 bits in addition to the add operation where ki 6= 0.

An alternate approach was proposed by Montgomery [24]: where the same
number of double-and-add operations are repeated in each step. Although—in
terms of computational time—it seems more expensive as compared to the naive
method. However, the advantage is the resistance against side-channel analysis
by removing the conditional branches depending on the weight of scalar bits.

For performing fast ladder multiplication, differential addition and doubling
is applied, which computes P1 + P2 from P1, P2 and P2 − P1 and similarly

Batch Binary Weierstrass 11

2P1 from P1 for the doubling. The relation P2 − P1 = P here is the invariant,
i.e. the difference of these two points is known and constant throughout the
ladder step. Short curves have a nice property, by applying suitable coordinate
transformation, the knowledge of only x-coordinate is sufficient to perform the
entire ladder step. This considerably improves the performance, since there is
no need to evaluate the intermediate results of the y-coordinate at each ladder
step.

An important consideration—for the performance optimization of EC double
and add operations—is the representation of point coordinate system. The use of
projective coordinates in most cases is preferred over the affine coordinates, due
to the heavy inversion operations involved in the later. A number of coordinate
systems, in the context of binary curves, have been studied such as lambda
[25], Jacobian [12], and homogeneous projective [1]. Among them, López and
Dahab [21] is a popular choice in binary elliptic curves, with various performance
improvements proposed [2, 20, 7]. For a projective form of the short curves
equation defined as:

E(IF2m) : Y 2 +XY Z = X3Z + aX2Z2 + bZ4

the LD-projective point (X1 : Y1 : Z1) is equivalent to the affine point (X1/Z1 :
Y1/Z

2
1), where the inverse is (X1 : X1Z1 + Y1 : Z1). It is further assumed that

Z1 6= 0 and O is not among the points.

4.2 Differential Montgomery Ladder

For short curves, Bernstein and Lange7 provide a very efficient differential addi-
tion and doubling (ladder step) formulas, originally derived from [29]. The rep-
resentation, known as XZ, is a variant of the original LD coordinates. For each
scalar bit ki—assuming the invariant P2−P1 = P is known—the fast differential
addition and doubling takes 5 multiplications, 4 squares and 1 multiplication by
the constant

√
b. As mentioned by [14], this is the best case bound achieved for

Montgomery ladder also on other forms of curves, such as Hessian [15], Huff [13],
and Edwards [7], which means that choice of curve form is mostly irrelevant in
terms of the computational cost. It is still possible to achieve slight performance
gains over this bound by leveraging efficient forms of subfield curve constants
[3].

Given P1 6= ±P2, to compute the differential point addition P3 = P1 + P2 =
(X3 : Y3 : Z3) where P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) and, point
doubling P4 = 2P2 = (X4 : Y4 : Z4), the formulas are defined as follows.

A =X1Z2, B = X2Z1, C = X2
1 , D = Z2

1

Z3 =(A+B)2

X3 =XZ3 +AB

X4 =(C +
√
bD)

Z4 =CD

7 https://hyperelliptic.org/EFD/g12o/auto-shortw-xz.html

https://hyperelliptic.org/EFD/g12o/auto-shortw-xz.html

12 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

As previously mentioned, the Montgomery ladder differential addition and dou-
ble method does not take into account the y-coordinate during the compu-
tation, however to get back to the affine coordinates we need to recover the
y-coordinate. López and Dahab [22] presented a formula to retrieve the y-
coordinate, which enabled the complete point multiplication using the Mont-
gomery ladder method, i.e. also compute the resulting affine point. In our case
we applied a further optimization to the original formula by setting Z = 1 since
the invariant P2−P1 = P = (X : Y : Z) is fixed, the resulting simplified version
is formulated as:

x1 =
xZ2X1

xZ2Z1

y1 =y +
(X2 + xZ2)((X1 + xZ1)(X2 + xZ2) + Z1Z2x

2 + Z1Z2y)

Z1Z2x

The cost of recovering y is 10 multiplications and 1 inversion, which is small,
considering that it is performed just once at the end of the ladder.

4.3 Linear Maps

As a further optimization, we also considered replacing the multiplication by
the curve constants, and x-coordinate of the generator point during the ladder
step by a linear map. For a finite field IF2m represented as m-dimensional vector
space (IF2)

m, the linear map T : IF2m 7→ IF2m for multiplication by a constant
b is an (m × m) matrix B with entries in IF2. The elements bi in B can be
pre-computed: for a basis α of degree m, bi = αib for 0 ≤ i < m, where b is the
element of vector space (IF2)

m. The multiplication by an element a ∈ IF2m can
then be replaced by b · a = Ba, where each bit in the product can be written as∑
i:bi,j=1 ai.
This essentially means that if there are l non-zero bits for each row of the

matrix B, in total we need (l−1)m XOR gates for the entire matrix. This is not
the optimal number of gates, since common sub-expression elimination is not
accounted for. For this purpose we tried optimization as suggested by Bernstein
[6] which produces approximately ml/(log l− log log(l)) XORs, in addition to m
number of copies of the intermediate results.

For hardware implementations, this straight-line optimization makes sense.
However, in the software case this also increases both register pressure and,
more importantly, binary size. For the above ladder step formula, we applied
the tooling from [6] to replace multiplications by both the curve constant and
fixed generator x-coordinate by the straight-line code. The resulting binary far
exceeded the L1 cache size, and benchmark results showed it takes away any
performance gains when compared to generic finite field multiplication in the
ladder step.

4.4 Implementation

Our bitsliced ECC layer builds on our finite field layer from Section 3. As a li-
brary, it exposes a single function EC2_batch_keygen that takes four arguments:

Batch Binary Weierstrass 13

(1) EC2_CURVE pointer to an opaque object provided by the library to represent
a specific curve; (2) unsigned char pointer k, where it is assumed the caller
has filled this input with enough randomness for w scalars, and from which the
caller will retrieve the scalars as an output; (3) unsigned char pointer x stor-
ing the resulting x-coordinate of the scalar multiplication by G; and similarly
(4) unsigned char pointer y for the y-coordinate. Geared to ease real-world
deployment discussed further in Section 5, since our application is only to fixed
(generator) point scalar multiplication, EC2_batch_keygen internally makes a
number of optimizations.

We assume the scalars are provided in bitsliced form, simply viewing the first
w bits at k as bit 0 of the scalars, and so on for the rest of the bits. This imposes
no practical requirement on the caller—they are just random bytes, only viewed
differently.

As previously discussed, for the range of standardized curves under consider-
ation in this work, the linear maps for constant multiplications are not efficient
when bitslicing, hence we implement them as generic finite field multiplications
with fixed pre-bitsliced form stored in the binary. The exception to this case is
curve2251, which has small and sparse curve coefficients. Here we implemented
a dedicated ladder step using a slightly different formula involving the curve
coefficient b and replace the multiplication with a straight-line linear map. Since
this curve is not fixed by a standard, we found the lexicographically smallest x
such that the resulting generator satisfies ord(G) = n, the large prime subgroup
order. We then replaced this multiplication (by x-coordinate e) in the ladder step
with a straight-line linear map. Of course we could do the same for standardized
curves, but this would violate interoperability.

After scalar multiplication, EC2_batch_keygen recovers the y-coordinate,
since key generation is our motivating use case and not simply key agreement
where the x-coordinate is sufficient. Our finite field layer uses Itoh-Tsujii [17] in
the inversion step, where the addition chain for exponentiation is efficient and
fixed based on the finite field degree. Our finite field layer also supplies efficient
finite field squaring with a straight-line linear map.

Finally, EC2_batch_keygen converts the outputs for k, x, and y from bitsliced
form to canonical form for consumption by linking applications. Note for our use
case of key generation, there are no exceptions in the ladder step, the y recovery,
or scalar corner cases. We completely control all scalars and points.

4.5 Benchmarking

Our tooling for the ECC layer generates and exposes an EC2_CURVE object for
each fixed curve. We restrict to short curves with (1) no efficient endomorphism
and (2) field degrees that are prime. Table 2 reports the performance across our
four target architectures. Each curve was benchmarked using the best splitting
strategy for its respective underlying field, as measured by the benchmarking
process described in Section 3. Similar to Section 3, the reported cycle counts
are scaled, dividing by w.

14 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

Table 2. ECC performance on four architectures in scaled CPU cycles.

Curve AVX-512 AVX2 AVX2-AMD NEON
sect113r1 9547 18074 27470 153944
sect113r2 9540 17962 27487 153948
sect131r1 13684 26821 40478 227765
sect131r2 13639 26856 40466 228168
sect163r1 22849 45231 70046 427274
sect163r2 23175 46826 70413 448744
c2pnb163v1 23005 45017 74888 435651
c2pnb163v2 22881 45490 74413 426473
c2pnb163v3 22805 45380 74422 429631
c2tnb191v1 36094 66799 102005 632907
c2tnb191v2 36262 64963 101235 617958
c2tnb191v3 35680 64454 101325 629464
sect193r1 37899 67325 109376 639270
sect193r2 37936 67730 109434 640406
sect233r1 65491 125804 167761 1013458
c2tnb239v1 67144 119490 175914 1079930
c2tnb239v2 67105 117703 174388 1085560
c2tnb239v3 67181 120304 175676 1063116
curve2251 57756 106391 146031 870376
sect283r1 105304 218130 272544 1595423
c2tnb359v1 186680 362665 504219 2961857
sect409r1 260619 546690 697021 4229741
c2tnb431r1 283319 567608 780886 4812995
sect571r1 627668 1303759 1629335 10676160

For the sake of discussion, our results show it is more efficient to use canon-
ical representations of the curve constants, including curve coefficients and x-
coordinate of the generator point. This saves in terms of computational cost
during the differential addition step, allowing curve2251 to significantly outper-
form curves at comparable field sizes.

Finally, we briefly compare with selective results from the literature. Bern-
stein [5] reports 314K (scaled, SSE2, w = 128) Core 2 cycles for the binary
Edwards curve BBE251. Aranha et al. [4] report 537K, 793K, and 4.4M Core i7
cycles for curves curve2251, B-283, and B-571. Taverne et al. [32] report 225K
Sandy Bridge cycles for curve2251 in constant time, 100K cycles for B-233 in
non constant time, and 349K cycles for B-409 in non constant time. Oliveira
et al. [25] report 114K Sandy Bridge cycles for a 254-bit curve in constant time,
yet with a non-standard composite extension. Câmara et al. [9] report 511K,
866K, and 4.2M ARM Cortex-A15 cycles for constant time curve2251, B-283,
and B-571. Oliveira et al. [26] report 46K Skylake cycles for a 254-bit curve in
constant time, yet again with a non-standard composite extension.

Generally, even without focusing on a single curve yet imposing the batch
computation requirement, the results in Table 2 compare very favorably with the
existing literature. Considering it is automated tooling that generates the finite

Batch Binary Weierstrass 15

field layer, and the ECC layer utilizes a stock ladder with no fast endomorphisms
or precomputation, this demonstrates the tooling has wide applicability and can
provide a strong baseline for performance comparison.

5 ENGINE implementation

As mentioned in Section 2, we integrate our bitsliced implementation in OpenSSL
through an ENGINE, dubbed libbecc, modeled after libsuola [33].

We defer to [33] for a detailed description of the ENGINE framework and how
it integrates with the OpenSSL architecture, while in this section we provide an
overview of the design of libbecc in comparison to libsuola.

Our ENGINE provides implementations for most of the named8 binary curves
defined in OpenSSL and adds dedicated support to curve2251; this is achieved
building on top of the work described in Sections 3 and 4, which provide the
actual batch implementation for elliptic curve and binary field operations. The
libbecc code mainly provides an interface to query the underlying layers and
to dispatch to the relevant codepath when, through the OpenSSL library, an
application requests a cryptographic operation that requires computation over
a supported curve and field.

5.1 Providers

The other fundamental function of libbecc is to implement the logic to maintain
a state for each performed batch operation, so that following requests can be
served from the precomputed results rather than issuing a new batch operation.

We achieve support for batch ECC operations using the ENGINE API to
register libbecc as the default EC_KEY_METHOD: by doing so our ENGINE is
activated for any operation involving an EC_KEY object, including ECDH and
ECDSA key generation, ECDH shared secret derivation and ECDSA signature
generation and verification. libbecc retains a reference to the default OpenSSL
EC_KEY_METHOD, which is used to bypass our ENGINE for unsupported curves or
for operations such as ECDH derivation or ECDSA verification: these operations
are not supported by our bitsliced code, limited to “fixed point” scalar multi-
plications, i.e., limited to scalar multiplications by the conventional generator
point for a given curve.

Following libsuola approach and terminology, libbecc supports the no-
tion of multiple providers to interface with the OpenSSL API, by providing a
minimum set of functions to:
8 The term “named” here is used in contrast with curves described by arbitrary pa-
rameters: usage in real-world applications is dominated by curves that have been
assigned code points as part of standards, delivering both security assurances on the
cryptographic features and security evaluation of the group defined by the speci-
fied set of parameters, and saving the users from the need of performing expensive
validation of the group parameters during curve negotiation.

16 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

– match an EC object with any of the supported curves, returning either un-
supported or a provider specific integer identifier for the specific curve;

– generate one key for a given curve identifier, returning a secret random scalar
and the corresponding public point;

– perform the setup step of ECDSA signature generation for a curve identifier,
returning the modular inverse of a secret nonce scalar and the corresponding
r component of a (r,s) ECDSA signature.

Providers can then internally differ on the way the batch logic is implemented
to support a bitsliced scalar multiplication.

Provider: serial. Specifically, we instantiate one provider, dubbed serial,
that stores the internal state and buffers for key generation and signature setup
with a thread local model. In this model, each thread of an OpenSSL application
loading our ENGINE stores its own local state and buffers, and the batch results
are not shared across separate threads.

In our design, we opted to perform all the operations required by a specific
cryptosystem operation during the batch computation, including the conversion
of raw binary buffers in OpenSSL BIGNUM objects, and, during the batch com-
putation for sign_setup, also the batch inversion of the original nonces. To
improve performance, we implemented the batch inversion using the so-called
Montgomery trick [24, Sect. 10.3.1] which allows to compute simultaneously the
inverses of n elements at the cost of 1 inversion and (3n− 1) multiplications [28,
Sect. 3.1].

The design of the serial provider is the most straightforward strategy to
implement batch operations in OpenSSL. It avoids synchronization issues and
allows us to evaluate the performance of our implementation compared to the
baseline upstream implementation with classic benchmarking tools, as they usu-
ally consist of a serial loop of repeated operations.

On the other hand, we acknowledge that this is not the optimal implementa-
tion for real-world high-load multi-threaded or multi-process applications, which
would actually benefit the most from bitsliced operations, saving memory re-
sources and minimizing the number of batch operations to run, if a more clever
logic to share the results of batch operations were implemented. In particular,
although of limited academic value for this paper, it would be interesting to add
a provider supporting inter-process communication, to have a separate system-
wide singleton service in charge of running the batch operations and storing the
results, while applications using libbecc would simply request a fresh result
from the service. Such design would minimize memory consumption and the
number of batch operations across the whole system, and it would also provide
a stronger security model to protect the state and buffers in memory, as they
would be stored in a separate process space. Leveraging the access control ca-
pabilities of the underlying operating system, this would be inaccessible from a
compromised application.

Batch Binary Weierstrass 17

5.2 Benchmarking

To evaluate the actual practical impact of the presented improvements, we in-
stantiated a benchmarking application built on top of OpenSSL 1.1.1. Table 3
reports the average number of CPU clock cycles to compute a single ECD-
H/ECDSA key generation and ECDSA signature generation. We compare the
results recorded against the default implementation with a run of the same ap-
plication after loading libbecc at runtime; due to space constraints we limit this
analysis to the AVX2 platform. For comparison, we also include measurements
relative to operations on top of popular prime curves, namely ECDH/ECDSA
over secp256r1 (a.k.a. NIST P-256), and EDDSA over ED25519 and ED448.

The benchmarking application consecutively runs 216 operations for each
curve, recording the number of elapsed CPU cycles after each operation; Table 3
reports the average of such measurements. It should be noted that, for the default
implementation, each measure for a given operation on a given curve is relatively
close to the average reported on the table; for the libbecc implementation
instead, due to the nature of batch operations, we record execution time spikes
when a new batch is computed followed by a relatively low (between nine and
sixteen thousands of CPU cycles, depending on the field size of the curve) plateau
for each following operation until the batch is consumed.

6 Conclusion

In this paper, we developed a tool to optimize bitsliced binary field arithmetic
that can potentially support any architecture. Guided by benchmarking statis-
tics, at the finite field layer the tool tries different polynomial splitting strategies
to arrive at the performance-optimal configuration on a given platform. Building
on this layer, we developed a second tool that implements an ECC layer for a
given binary curve, and performs very competitively; e.g. 58K AVX-512 (scaled)
cycles for constant-time fixed point scalar multiplication on curve2251. Building
on both these results, our last layer links OpenSSL with the output, overcom-
ing the restriction of batch computation at the application level. Our approach
in libbecc seamlessly couples applications with the batch computation results,
facilitating real-world deployment of bitsliced public key cryptography software.

Future work. Our ECC layer is specific to short curves; a natural direction is
to extend with support for other binary curve forms, even using the birational
equivalence with short curves where applicable to maintain compatibility with
existing (legacy, X9.62) standards exposed by OpenSSL through libbecc. Lastly,
the architecture of libbecc has several applications outside binary ECC. Ex-
ploring similar functionality for traditional SIMD instead of bitslicing is another
research direction, providing batch computation for curves over prime fields.
Such an implementation would have much lower batch sizes, but potentially far
greater performance since it relaxes register and memory pressure.

Acknowledgments. This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and

18 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

Table 3. OpenSSL performance on AVX2: average CPU cycles for operations on se-
lected curves.

Curve
Average CPU cycles per operation

Key generation Signature generation
default libbecc default libbecc

sect113r1 309998 26758 (11.6x) 323163 25049 (12.9x)
sect113r2 309892 26810 (11.6x) 323586 25043 (12.9x)
sect131r1 515314 37617 (13.7x) 533484 35950 (14.8x)
sect131r2 519635 37293 (13.9x) 540221 35711 (15.1x)
c2pnb163v1 699094 54717 (12.8x) 718671 52785 (13.6x)
c2pnb163v2 690930 54603 (12.7x) 710865 52653 (13.5x)
c2pnb163v3 700345 54432 (12.9x) 722117 52709 (13.7x)
sect163r1 690258 53996 (12.8x) 719847 52548 (13.7x)
sect163r2 697992 54875 (12.7x) 725706 52635 (13.8x)
c2tnb191v1 673839 74407 (9.1x) 694368 72989 (9.5x)
c2tnb191v2 668479 74308 (9.0x) 695895 72811 (9.6x)
c2tnb191v3 669240 73836 (9.1x) 697687 73037 (9.6x)
sect193r1 762628 77378 (9.9x) 803603 76853 (10.5x)
sect193r2 758937 77109 (9.8x) 800200 76908 (10.4x)
sect233r1 940852 133436 (7.1x) 985741 133941 (7.4x)
c2tnb239v1 966659 127149 (7.6x) 1008116 126843 (7.9x)
c2tnb239v2 960048 126222 (7.6x) 1004913 126053 (8.0x)
c2tnb239v3 961976 125478 (7.7x) 1008270 125681 (8.0x)
curve2251 1139439 118368 (9.6x) 1198634 118661 (10.1x)
ED25519 130295 130254 (1.0x) 131174 129597 (1.0x)
secp256r1 35805 36741 (1.0x) 69228 68921 (1.0x)
sect283r1 1631437 226075 (7.2x) 1700907 225973 (7.5x)
c2tnb359v1 2016295 377226 (5.3x) 2126677 374781 (5.7x)
sect409r1 2731705 552476 (4.9x) 2880190 551485 (5.2x)
c2tnb431r1 2968140 587026 (5.1x) 3125245 579913 (5.4x)
ED448 960595 957772 (1.0x) 969825 969300 (1.0x)
sect571r1 6283098 1359731 (4.6x) 6624862 1311432 (5.1x)

innovation programme (grant agreement No 804476). The second author was
supported in part by the Tuula and Yrjö Neuvo Fund through the Industrial
Research Fund at Tampere University of Technology.

References

1. Agnew, G.B., Mullin, R.C., Vanstone, S.A.: An implementation of elliptic curve
cryptosystems over F2155 . IEEE Journal on Selected Areas in Communications
11(5), 804–813 (1993), https://doi.org/10.1109/49.223883

2. Al-Daoud, E., Mahmod, R., Rushdan, M., Kiliçman, A.: A new addition formula
for elliptic curves over GF(2n). IEEE Trans. Computers 51(8), 972–975 (2002),
https://doi.org/10.1109/TC.2002.1024743

3. Aranha, D.F., Azarderakhsh, R., Karabina, K.: Efficient software implementation
of laddering algorithms over binary elliptic curves. In: Ali, S.S., Danger, J., Eisen-

https://doi.org/10.1109/49.223883
https://doi.org/10.1109/TC.2002.1024743

Batch Binary Weierstrass 19

barth, T. (eds.) Security, Privacy, and Applied Cryptography Engineering - 7th In-
ternational Conference, SPACE 2017, Goa, India, December 13-17, 2017, Proceed-
ings. Lecture Notes in Computer Science, vol. 10662, pp. 74–92. Springer (2017),
https://doi.org/10.1007/978-3-319-71501-8_5

4. Aranha, D.F., López, J., Hankerson, D.: Efficient software implementation of bi-
nary field arithmetic using vector instruction sets. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) Progress in Cryptology - LATINCRYPT 2010, First International
Conference on Cryptology and Information Security in Latin America, Puebla,
Mexico, August 8-11, 2010, Proceedings. Lecture Notes in Computer Science, vol.
6212, pp. 144–161. Springer (2010), https://doi.org/10.1007/978-3-642-14712-8_9

5. Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) Advances in Cryptol-
ogy - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5677, pp. 317–336. Springer (2009), https://doi.org/10.1007/
978-3-642-03356-8_19

6. Bernstein, D.J.: Optimizing linear maps modulo 2. In: SPEED-CC: Software Per-
formance Enhancement for Encryption and Decryption and Cryptographic Compil-
ers, Workshop Record. pp. 3–18 (2009), http://cr.yp.to/papers.html#linearmod2

7. Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary Edwards curves. In: Oswald,
E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5154, pp. 244–265. Springer
(2008), https://doi.org/10.1007/978-3-540-85053-3_16

8. Brumley, B.B., Page, D.: Bit-sliced binary normal basis multiplication. In: Antelo,
E., Hough, D., Ienne, P. (eds.) 20th IEEE Symposium on Computer Arithmetic,
ARITH 2011, Tübingen, Germany, 25-27 July 2011. pp. 205–212. IEEE Computer
Society (2011), https://doi.org/10.1109/ARITH.2011.36

9. Câmara, D.F., Gouvêa, C.P.L., López, J., Dahab, R.: Fast software polynomial
multiplication on ARM processors using the NEON engine. In: Cuzzocrea, A.,
Kittl, C., Simos, D.E., Weippl, E.R., Xu, L. (eds.) Security Engineering and In-
telligence Informatics - CD-ARES 2013 Workshops: MoCrySEn and SeCIHD, Re-
gensburg, Germany, September 2-6, 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 8128, pp. 137–154. Springer (2013), https://doi.org/10.1007/
978-3-642-40588-4_10

10. Cenk, M.: Karatsuba-like formulae and their associated techniques. J.
Cryptographic Engineering 8(3), 259–269 (2018), https://doi.org/10.1007/
s13389-017-0155-8

11. Cenk, M., Hasan, M.A.: Some new results on binary polynomial multiplica-
tion. J. Cryptographic Engineering 5(4), 289–303 (2015), https://doi.org/10.1007/
s13389-015-0101-6

12. Chudnovsky, D., Chudnovsky, G.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Ap-
plied Mathematics 7(4), 385–434 (1986), http://dx.doi.org/10.1016/0196-8858(86)
90023-0

13. Devigne, J., Joye, M.: Binary Huff curves. In: Kiayias, A. (ed.) Topics in Cryptol-
ogy - CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011, San
Francisco, CA, USA, February 14-18, 2011. Proceedings. Lecture Notes in Com-
puter Science, vol. 6558, pp. 340–355. Springer (2011), https://doi.org/10.1007/
978-3-642-19074-2_22

https://doi.org/10.1007/978-3-319-71501-8_5
https://doi.org/10.1007/978-3-642-14712-8_9
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
http://cr.yp.to/papers.html#linearmod2
https://doi.org/10.1007/978-3-540-85053-3_16
https://doi.org/10.1109/ARITH.2011.36
https://doi.org/10.1007/978-3-642-40588-4_10
https://doi.org/10.1007/978-3-642-40588-4_10
https://doi.org/10.1007/s13389-017-0155-8
https://doi.org/10.1007/s13389-017-0155-8
https://doi.org/10.1007/s13389-015-0101-6
https://doi.org/10.1007/s13389-015-0101-6
http://dx.doi.org/10.1016/0196-8858(86)90023-0
http://dx.doi.org/10.1016/0196-8858(86)90023-0
https://doi.org/10.1007/978-3-642-19074-2_22
https://doi.org/10.1007/978-3-642-19074-2_22

20 B. B. Brumley, S. ul Hassan, A. Shaindlin, N. Tuveri, K. Vuojärvi

14. Farashahi, R.R., Hosseini, S.G.: Differential addition on binary elliptic curves. In:
Duquesne, S., Petkova-Nikova, S. (eds.) Arithmetic of Finite Fields - 6th Inter-
national Workshop, WAIFI 2016, Ghent, Belgium, July 13-15, 2016, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 10064, pp. 21–35 (2016),
https://doi.org/10.1007/978-3-319-55227-9_2

15. Farashahi, R.R., Joye, M.: Efficient arithmetic on Hessian curves. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) Public Key Cryptography - PKC 2010, 13th International
Conference on Practice and Theory in Public Key Cryptography, Paris, France,
May 26-28, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6056, pp.
243–260. Springer (2010), https://doi.org/10.1007/978-3-642-13013-7_15

16. Find, M.G., Peralta, R.: Better circuits for binary polynomial multiplication.
IEEE Trans. Computers 68(4), 624–630 (2019), https://doi.org/10.1109/TC.2018.
2874662

17. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inform. and Comput. 78(3), 171–177 (1988), https:
//doi.org/10.1016/0890-5401(88)90024-7

18. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-9, 2009, Pro-
ceedings. Lecture Notes in Computer Science, vol. 5747, pp. 1–17. Springer (2009),
https://doi.org/10.1007/978-3-642-04138-9_1

19. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

20. Lange, T.: A note on López-Dahab coordinates. IACR Cryptology ePrint Archive
2004, 323 (2004), http://eprint.iacr.org/2004/323

21. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n).
In: Tavares, S.E., Meijer, H. (eds.) Selected Areas in Cryptography ’98, SAC’98,
Kingston, Ontario, Canada, August 17-18, 1998, Proceedings. Lecture Notes in
Computer Science, vol. 1556, pp. 201–212. Springer (1998), https://doi.org/10.
1007/3-540-48892-8_16

22. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Em-
bedded Systems, First International Workshop, CHES’99, Worcester, MA, USA,
August 12-13, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1717,
pp. 316–327. Springer (1999), https://doi.org/10.1007/3-540-48059-5_27

23. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Ad-
vances in Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August
18-22, 1985, Proceedings. Lecture Notes in Computer Science, vol. 218, pp. 417–
426. Springer (1985), https://doi.org/10.1007/3-540-39799-X_31

24. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48(177), 243–264 (1987), https://doi.org/10.2307/2007888

25. Oliveira, T., López, J., Aranha, D.F., Rodríguez-Henríquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptographic Engineering
4(1), 3–17 (2014), https://doi.org/10.1007/s13389-013-0069-z

26. Oliveira, T., López, J., Rodríguez-Henríquez, F.: The Montgomery ladder on binary
elliptic curves. J. Cryptographic Engineering 8(3), 241–258 (2018), https://doi.
org/10.1007/s13389-017-0163-8

27. Seo, H., Liu, Z., Nogami, Y., Choi, J., Kim, H.: Binary field multiplication on
ARMv8. Security and Communication Networks 9(13), 2051–2058 (2016), https:
//doi.org/10.1002/sec.1462

https://doi.org/10.1007/978-3-319-55227-9_2
https://doi.org/10.1007/978-3-642-13013-7_15
https://doi.org/10.1109/TC.2018.2874662
https://doi.org/10.1109/TC.2018.2874662
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1016/0890-5401(88)90024-7
https://doi.org/10.1007/978-3-642-04138-9_1
http://eprint.iacr.org/2004/323
https://doi.org/10.1007/3-540-48892-8_16
https://doi.org/10.1007/3-540-48892-8_16
https://doi.org/10.1007/3-540-48059-5_27
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.2307/2007888
https://doi.org/10.1007/s13389-013-0069-z
https://doi.org/10.1007/s13389-017-0163-8
https://doi.org/10.1007/s13389-017-0163-8
https://doi.org/10.1002/sec.1462
https://doi.org/10.1002/sec.1462

Batch Binary Weierstrass 21

28. Shacham, H., Boneh, D.: Improving SSL handshake performance via batching. In:
Naccache, D. (ed.) Topics in Cryptology - CT-RSA 2001, The Cryptographer’s
Track at RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2020, pp. 28–43. Springer (2001),
https://doi.org/10.1007/3-540-45353-9_3

29. Stam, M.: On Montgomery-Like representations for elliptic curves over GF(2k).
In: Desmedt, Y. (ed.) Public Key Cryptography - PKC 2003, 6th International
Workshop on Theory and Practice in Public Key Cryptography, Miami, FL, USA,
January 6-8, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2567, pp.
240–253. Springer (2003), https://doi.org/10.1007/3-540-36288-6_18

30. Stebila, D., Mosca, M.: Post-quantum key exchange for the Internet and the Open
Quantum Safe project. In: Avanzi, R., Heys, H.M. (eds.) Selected Areas in Cryp-
tography - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada, Au-
gust 10-12, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol.
10532, pp. 14–37. Springer (2016), https://doi.org/10.1007/978-3-319-69453-5_2

31. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodríguez-Henríquez, F., Han-
kerson, D., López, J.: Software implementation of binary elliptic curves: Impact
of the carry-less multiplier on scalar multiplication. In: Preneel, B., Takagi, T.
(eds.) Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th In-
ternational Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 6917, pp. 108–123. Springer (2011),
https://doi.org/10.1007/978-3-642-23951-9_8

32. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodríguez-Henríquez, F., Hanker-
son, D., López, J.: Speeding scalar multiplication over binary elliptic curves using
the new carry-less multiplication instruction. J. Cryptographic Engineering 1(3),
187–199 (2011), https://doi.org/10.1007/s13389-011-0017-8

33. Tuveri, N., Brumley, B.B.: Start your ENGINEs: dynamically loadable contempo-
rary crypto. In: IEEE Secure Development Conference, SecDev 2019, McLean, VA,
USA, September 25-27, 2019. IEEE Computer Society (2019), https://eprint.iacr.
org/2018/354

34. Wiggers, T.: Energy-efficient ARM64 cluster with cryptanalytic applications: 80
cores that do not cost you an ARM and a leg. In: Progress in Cryptology -
LATINCRYPT 2017 - 5th International Conference on Cryptology and Information
Security in Latin America, La Habana, Cuba, September 20-22, 2017, Proceedings.
LNCS, Springer (2017), https://eprint.iacr.org/2018/888

https://doi.org/10.1007/3-540-45353-9_3
https://doi.org/10.1007/3-540-36288-6_18
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-642-23951-9_8
https://doi.org/10.1007/s13389-011-0017-8
https://eprint.iacr.org/2018/354
https://eprint.iacr.org/2018/354
https://eprint.iacr.org/2018/888

	Batch Binary Weierstrass

