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Abstract. This paper deals with (1) asymptotics of �strongly-multiplicative�
arithmetic secret sharing over an arbitrary �xed ring R` := Z/p`Z (p > 0
prime, ` > 0 an integer) and supporting an unbounded number of players n,
and with (2) its applications to communication complexity of arithmetic MPC
over this ring.
For each integer r > 0, let R`(r) be the degree-r Galois-ring extension of R`,
with maximal ideal p, residue �eld (R`(r))/p = Fpr , and |R`(r)| = p`r.
Using the theory of AG-codes over �nite �elds and over rings, combined with
nontrivial algebraic-geometric lifting techniques, we show that, for arbitrary
�xed ring R` = Z/p`Z, there is a �xed integer r̂ = r̂(p) > 0 and a (dense)
family of R`(r̂)-linear codes C of unbounded length such that:
� Denoting the reduction of C modulo p (an Fpr̂ -linear code) by C, each of

C, (C)⊥ (dual), (C)∗2 (�square under Schur-product�) is asymptotically
good.

� Each of C, C⊥, C∗2 is free over R`(r̂), with the same dimension as its re-
duction. Therefore, each has the same minimum distance as its reduction.
Particularly, each is asymptotically good.

� All constructions are e�cient.
This implies arithmetic secret sharing over the �xed ring Z/p`Z (rather, the
constant-degree extension) with unbounded (dense) n, secret-space dimension
Ω(n), share-space dimension O(1), t-privacy Ω(n) with t-wise share-uniformity
and 1/3 − t/n > 0 a constant arbitrarily close to 0, and, last-but-not-least,
�multiplicativity-locality� n− t. This extends Chen-Cramer (CRYPTO 2006),
which only works over any (large enough) �nite �elds, signi�cantly. Concrete
parameters we show here are at least as large.
We also show a similar lifting result for asymptotically-good reverse multipli-
cation-friendly embeddings (RFME) and we show how to get an asymptotically-
good alternative for the functionality of �hyper-invertible matrices� (essential
for e�cient active-security MPC), as the latter are inherently asymptotically-
bad.
Finally, we give two applications to general arithmetic MPC over Z/p`Z (in
the BGW-model with active, perfect security) with communication complexity
signi�cantly better than the obvious approach based on combining MPC over
Fp with added circuitry for emulation of the basic Z/p`Z-operations over Fp.
Concretely, recent results by Cascudo-Cramer-Xing-Yuan on amortized com-
plexity of MPC (CRYPTO 2018) are now achievable over these rings instead
of �nite �elds, with the same asymptotic complexity and adversary rates.



1 Introduction

1.1 Statement of the problem and main results in multiparty
computation

This paper deals with (1) asymptotics of �strongly-multiplicative� arithmetic
secret sharing over an arbitrary �xed ring R` := Z/p`Z (p > 0 prime, ` > 0
an integer) and supporting an unbounded number of players n, and with (2) its
applications to communication complexity of arithmetic (information-theoretic)
MPC over this ring.

In arithmetic MPC de�ned over Z/p`Z, the circuit that is to be evaluated
is de�ned over this ring and protocols are provided for (ongoing) secure addi-
tion and secure multiplication over the ring. From a practical perspective, this
model is motivated by the fact that secure computations involving e.g. many
comparisons or bit-wise operations, such as secure benchmarking based on linear
programming, are naturally expressed in terms of ring operations (with p = 2
being the most interesting case).

Arithmetic MPC typically being de�ned over �nite �eld, an obvious approach
to arithmetic MPC over Z/p`Z is to consider any standard arithmetic MPC over
�nite �elds and to emulate securely the ring operations in terms of the �nite
�eld operations but this incurs substantial overhead. In a recent line of work
on e�cient MPC over Z/p`Z with n large and p small (which is especially rel-
evant in the practically interesting case p = 2), signi�cant advances have been
made in order to avoid the overhead incurred by this emulation, by redesigning
basic arithmetic MPC so as to work �more directly�over the ring in question.
The �rst published paper [Cra+18] in this line introduces the SPDZ2k proto-
col, a full redesign of the well-known SPDZ-protocol [Dam+12], the benchmark
for the case of cryptographic security with dishonest majority in Beaver's pre-
processing model, that works directly over the rings in question and that is
essentially as e�cient as the most e�cient SPDZ-incarnation. For more discus-
sion about practical advantages, see [Cra+18] and its follow-up implementation
paper [Dam+19], which also reports on applications to machine-learning that
signi�cantly outperform approaches from �eld-based MPC.

Now, in a series of companion papers (besides the present one, this in-
cludes [Anoa; Anob]), the various cases of secret-sharing-based, information-
theoretic arithmetic MPC are studied in this light. Whereas in the case of [Cra+18]
the nontrivial hurdles to be overcome relate to homomorphic MAC's over the
rings in question instead of �nite �elds and several tricky technical issues con-
cerning the preprocessing phase, the nontrivial challenges arising here concern
the fact that, when p is small compared to n, it is not straightforward to design
arithmetic secret sharing over the rings in question and the fact that e�cient
amortization techniques for MPC based on so-called hyper-invertible matrices,
widely used in the case of active security, appear troublesome in the case of
the rings in question �even more in the asymptotic regime, for which hyper-
invertible matrices are inherently bad.
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Let us start with the main issues surrounding arithmetic secret sharing.
An arithmetic secret sharing scheme over a �nite �eld K is typically a K-
linear scheme where each share-space has dimension 1 over K and where the
secret-space may have dimension 1 or greater. Furthermore, �coordinate-wise�
(or Schur-) multiplication of two vectors in a space is considered. Whereas t-
privacy is de�ned in the usual way, reconstruction is de�ned with respect to this
multiplication. I.e., the scheme is said to be multiplicative if there is a K-linear
map that, when applied to the coordinate-wise product of two arbitrary and full
share-vectors, yields the coordinate-wise product of the two underlying secrets.
The scheme is said to be strongly-multiplicative if, in addition to the t-privacy,
the latter multiplicative condition holds even if an arbitrary selection of t play-
ers is removed from consideration (the linear map may depend on the selection).
As for MPC, the multiplicative notion is typically relevant to the passive se-
curity case and to the active security case with statistical security (i.e., small
error), whereas the strongly-multiplicative notion typically pertains to the case
of perfect, active security (i.e., no error).

Whereas the multiplicative notion in combination with secret-space of di-
mension 1 has strong connections with the classical theory of self-dual (self-
orthogonal) codes (and thus has many solutions in various parameter regimes),
the strongly-multiplicative notion is more intricate and restrictive. In a non-
asymptotic setting, e�cient solutions can be based on polynomial evaluation
codes such as Reed-Solomon (i.e., Shamir's scheme with t < n/3 and its varia-
tions) or related. The asymptotic case, where the �eld is �xed, n is unbounded
and strong-multiplication must hold with t in Ω(n) (optionally, the dimension of
the secret-space is Ω(n) as well), has achieved some level of notoriety: only solu-
tions making heavy use of algebraic-geometry are known, starting with [CC06].
In fact, the basis of such solutions is formed by algebraic-geometric construc-
tions of codes C such that each of C, C⊥ (its dual) and C2 (its square 4) are
asymptotically good, i.e., each dimension and minimum distance is linear in the
length. Note that the scheme from [CC06] has been shown to have numerous
applications in theoretical (two-party) cryptography, on account of the so-called
MPC-in-the-Head paradigm introduced by [Ish+07]. For a full account of results,
history and applications, please refer to [CDN15].

Now consider our ring case. For instance, for small p (say, the interesting case
p = 2) and for large number of players n, the standard polynomial interpolation
techniques underlying Shamir's scheme over �nite �elds fail. 5 In [Cra+03], it has
been shown how one can, in principle, work around this problem with the aid of
blackbox secret-sharing schemes de�ned over algebraic number �elds. In [Anoa],
which adresses the non-asymptotic regime, a much more direct approach based

4 the linear code (with the same length as C) generated by all vectors y such that y
is the coordinate-wise product of some vectors x, x′ in C.

5 It should be noted that, for very small n only, known combinatorial methods for
(arithmetic) secret sharing are essentially insensitive to any choice of ring or �eld,
but complexity grows exponentially in n and so this approach does not scale well.
See, e.g., Sharemind [BLW08].
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on Galois-rings is given that leads to (strongly-)multiplicative arithmetic secret
sharing schemes over these rings supporting much more e�cient (information-
theoretic) arithmetic MPC over Z/p`Z compared to [Cra+03] (honest-majority
with statistical security or t < n/3 corruption with perfect security).

Galois-rings are de�ned as follows. Let p be a positive prime number, let ` be
a positive integer and let r be a positive integer and let f(X) ∈ Z/p`Z[X] be a
monic polynomial of degree r such that its reduction modulo p is an irreducible
polynomial in Fp[X]. Then the degree-r Galois-ring extension of Z/p`Z is the
ring

(
Z/p`Z[X]

)
/(f(X)). 6 It is an extension ring of Z/p`Z, free as a module

over Z/p`Z, with polynomial basis 1, X, . . . ,X
r−1

. In particular, this means that
Z/p`Z is embedded in this extension ring in a natural, easy way, i.e., �in the �rst
coordinate�, so to speak. (This is important in the MPC applications). Moreover,
it is local, i.e., it has a unique maximal ideal (p). The residue-�eld (i.e., the �eld
obtained by modding out this extension ring by the maximal ideal) is precisely
the �nite �eld Fpr . 7

As shown in [Anoa], this enables the construction of (strongly-)multiplicative
arithmetic secret-sharing schemes de�ned over Galois-rings from polynomial in-
terpolation over rings (in the non-asymptotic regime), and, after overcoming
several technical hurdles in the corresponding protocols that are also caused by
the fact that they should operate over a ring instead of a �eld (e.g., hyper-
invertible matrices �which are inherently bad for the asymptotic regime� are
shown to exist here, as well as error-correction), this leads to e�cient arithmetic
MPC over Z/p`Z as discussed above.

In [Anob], the question is raised as to what extent linear secret sharing over
a �nite �eld can be �lifted� by elementary means to linear secret sharing with
similar parameters but de�ned e.g. over a Galois-ring whose residue �eld is the
given �nite �eld (in fact, a more general class of rings is considered but we do
not detail this here). The answer is as follows. De�ne a good lift (of a code)
as a code over the Galois-ring that is free and that, when reduced modulo the
maximal ideal, collapses to the given code �below.� . Then, such a good lift
inherits dimension and (at least) the minimum distance from the code below,
Moreover, �a good lift commutes with taking the dual�: the dual of a good lift
of a code is a good lift of the dual �below�. Thus, dual dimension and (at least)
dual distance are also inherited by a good lift.

Besides, dual distance of a good lift has the essential property, as in the
case over �elds, that projection on any coordinates whose number m equals the
dual distance minus 1 is the m-fold cartesian product over the ring in question.
(This enables control over secret-space dimension and privacy when used for
secret sharing; basically, it works if the sum of these two parameters equals m.)
Finally, a good lift can be obtained by taking a basis below, lifting it arbitrarily,

6 Thus, it is a �truncation� of the Witt-ring, which is the direct limit taken over the
Galois-rings.

7 Note that, with r �xed, choosing di�erent polynomials (subject to the same condi-
tions as above) leads to rings that are isomorphic. So there is essentially one degree-r
Galois-ring extension of Z/p`Z.
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and by letting the result generate a code over the ring. Moreover, there is a more
re�ned but still elementary lifting technique for self-dual (self-orthogonal) codes
(assuming the characteristic is greater than 2).

This essentially settles the case of asymptotically-good arithmetic secret shar-
ing over Galois-rings with multiplication, by using ideas from [CDM00] in com-
bination with classical results on codes and their duals. However, we show here
in �2.3 that this does not work in general for strong-multiplication: a class of
counter-examples is given where a good lift does not commute with taking the
square. Therefore, not much can be said about the minimum distance or dimen-
sion of the square of the lift.

It is in this present paper that we settle the asymptotic, strong-multiplication
case by devising a nontrivial algebraic-geometric �good lift� that, for a rather
general class of AG-codes over a �nite �eld is lifted to an AG-code over the
desired ring such that the square of this dedicated lift is a good lift (in the
sense above) of the square �below.� Thus, we also control the minimum distance
and dimension of the square of this dedicated lift, as opposed to the case of an
arbitrarily chosen good lift.

By combining this with appropriate asymptotically-good towers of algebraic
function �elds over �nite �elds, we get the following result.

Main Theorem 1. Fix any prime number p > 0 and any integer ` > 0. Write
R` = Z/p`Z. For each integer r > 0, denote the degree-r Galois-ring extension
of R` by R`(r). Then there is a �xed integer r̂ = r̂(p) > 0 and a (dense) family
of R`(r̂)-linear codes C of unbounded length such that:

1. Denoting reduction of C modulo p (an Fpr -linear code) by C, each of C,
(C)⊥, (C)2 is asymptotically good.

2. Each of C, C⊥, C2 is free over R`(r̂), with the same dimension as its re-
duction. Therefore, each has the same minimum distance as its reduction.
Particularly, each is asymptotically good.

3. All constructions are e�cient.

Corollary 2. This implies arithmetic secret sharing over the �xed ring Z/p`Z
(rather, the constant-degree extension) with unbounded (dense) n, secret-space
dimension Ω(n), share-space dimension O(1), t-privacy Ω(n) with t-wise share-
uniformity and 1/3 − t/n > 0 a constant arbitrarily close to 0, and, last-but-
not-least, �multiplicativity-locality� n − t. Moreover, the scheme obtained by
reduction modulo p may be assumed to be asymptotically good as well. 8

Moreover, being a good lift guarantees that we have linear reconstruction, so
multiplicative locality is e�cient here.

Let us overview the proof of Main Theorem 1. From standard lifting tech-
niques in algebraic geometry �known since Grothendieck's 1959 �GFGA�� we

8 This fact is quite useful in some practical protocol applications but it is not strictly
necessary for general arithmetic MPC
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have that smooth projective curves lift over Galois rings R`(r), along with their
points and divisors. From this data and Walker's theory [Wal99], we can deduce
algebraic geometric codes C(D), over R`(r), as (isomorphic) evaluations of Rie-
mann Roch spaces L(D) which are good lifts of the evaluation codes over �elds.
The key property of these good lifts is that they behave well with respect to
inclusions and squares:

(1) C(D)2 included in C(2D) ,

contrary to the square of an arbitrary good lift, which may �spread out� too
much. Here the code C(2D) is proven to be a �good lift�, that is to say it is
free and of same dimension as the reduced code �which is an AG code over
�elds. Hence by elementary theory, C(2D) has same minimum distance than the
reduced code, which thus nicely lower bounds the distance of C(D)2. 9 We then
show that inclusion (1) is actually an equality, which proves that C(D)2 is itself
a good lift, whence the equality of minimum distances claimed in Theorem 1
(and also uniformity of secret sharing deduced from C(D)2). First, equality is
shown over �elds by a theorem of Mumford which we extend to nonnecessary
algebraically closed �elds. Notice that it follows from straightforward arguments
in the case where degD ≥ 4g. Then equality is deduced over rings from the
elementary theory.

Finally, computing e�ciently multiplication-friendly lifts of algebraic geome-
try codes can be done by elementary ways. To start with, generating such codes
over �nite �elds has become computable in subquadratic time thanks to [NW17].
Then, we show that lifting multiplication-friendly these codes over R`(r) heuris-
tically boils down to solving ` instances of a linear system over Fpr with Ω(n6)
coe�cients. We illustrate e�ciency of our method by lifting a strongly multi-
plicative secret sharing scheme over F16 for 64 players and adversary threshold
t = 13, into a scheme over the Galois extension of degree four of Z/2100Z, in a
minute on a single processor.

Remark. Note that this extends the result from [CC06], which only works over
any (large enough) �nite �elds, signi�cantly. Concrete parameters we show here
are at least as large, given the same overhead r̂(p).

Before we discuss protocol applications, we need two more technical results.
First, we need the functionality of hyper-invertible matrices 10 over �xed

Galois-rings, with unbounded number of players and with asymptotically-good
quality of extraction (i.e., number of �correct� random sharings extracted) and

9 We can also conclude at this point that C(D)2 inherits the linear reconstruction

property of C(2D) because the latter is a good lift
10 A fundamental technique to extract many fully random sharings out of a pool of

sharings only a fraction of which are random to the adversary, while at the same
time exercising control over correctness of sharings, all in one go and at low amortized
cost per random sharing produced; a key-ingredient in many e�cient, secret-sharing-
based, information-theoretic MPC protocols with active security.
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similar privacy. In [Cas+18] (see Section 2.4) it is explained how to design alter-
natives for hyper-invertible matrices that avoid polynomial interpolation (thus
avoiding limitations posed by the theory of MDS-codes) yet enjoy the same func-
tionality. In fact, these alternatives, arising from a twist on codes and their duals,
can be based on a �xed �nite �eld in combination with unbounded number of
players, yielding asymptotically-good extraction and privacy if the right codes
are selected. To get what we want here, we just use the elementary lifting-theory
developped in �2 (generalized by [Anob] over any local ring) in order to lift these
alternatives �xed Galois-rings, with the desired parameters.

Second, we need asymptotically-good reverse multiplication-friendly embed-
dings (RFME) (see [Cas+18]) over �xed Galois-rings. This is a method to embed,
for unbounded (and dense) m (m a positive integer), Ω(m) copies of Z/p`Z into
a Galois-ring extension of degree O(m) such that the coordinate-wise product
of two elements in

(
Z/p`Z

)m
is recovered by applying a �xed Z/p`Z-linear map

to the product of their respective embeddings in the Galois-ring extension. (In
fact, this turns out to work for all m, e�ciently). This is useful in the context of
some parallellization of MPC computations. The asymptotics of the �nite-�eld
case was treated in [Cas+18]. Here, we use similar algebraic-geometric lifting as
in the case of arithmetic secret sharing to get the desired result.

Finally, we give two applications to general arithmetic MPC over Z/p`Z (in
the BGW-model with active, perfect security) with communication complexity
signi�cantly better than the obvious approach based on combining MPC over
Fp with added circuitry for emulation of the basic Z/p`Z-operations over Fp.
Concretely, recent results [Cas+18] on amortized complexity of MPC are now
achievable over these rings instead of �nite �elds, with the same asymptotic
complexity and adversary rates.

Concretely:

Main Theorem 3. In the BGW-model, for every ε > 0, there is an e�cient
MPC protocol for n parties over Z/p`Z secure against a submaximal number of
active corruptions t < (1− ε)n/3 with an amortized communication complexity
(per instance) of O(n) elements of Z/p`Z per gate. More precisely, the constant
communication overhead r̂(ε) grows in O(log(ε)) �the same as in the �elds case.

Main Theorem 4. In the BGW-model, there is an e�cient MPC protocol for
n parties secure against the maximal number of active corruptions t < n/3 that
computes Ω(log n) evaluations of a single circuit over Z/p`Z in parallel with an
amortized communication complexity (per instance) of O(n) elements of Z/p`Z
per gate. combining with the Franklin-Yung paradigm [FY92], we get:

In the BGW-model, for every ε > 0, there is an e�cient MPC protocol for n
parties secure against a submaximal number of active corruptions t < (1− ε)n/3
that computes Ω(n log n) evaluations of a single circuit over Z/p`Z in parallel
with an amortized communication complexity (per instance) of O(1) elements
of Z/p`Z per gate.

These theorems close a communication gap between secure computation in
�elds, and secure computation in rings emulated from �eld operations. For in-
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stance consider that so far, the state of the art protocols for secure comparison of
integers [Dam+06] in the ring Z/2`Z involved ` log ` secure multiplications in the
�eld F2, which means a non constant communication overhead log `. Whereas
our protocols have constant overhead per gate per element of Z/2`Z.

In section 2 we gather elementary results on good lifts over Galois rings,
building on [Wal99, �3]. In �2.3 we illustrate that the di�culty of the problem of
�nding codes with multiplication friendly lifts cannot be solved by elementary
methods. We �rst illustrate that solution are not guaranteed to exist, and in any
case very sparse. We come back later on this argument in Remark 3.5. Then
we illustrate on a special toy example, for which a multiplication friendly lift
exists, how to compute it. In �3.1 to �3.4 we prove the Main Theorem 1. In �3.5
we demonstrate practicality of lifting algebraic geometry codes on nontrivial
examples. In �4.1 we deduce Corollary 2 and sketch how to e�ciently share and
reconstruct with errors a secret over rings, then in �4.2 how to lift the alternative
to Beerliova-Hirt over constant rings. With these tools at hand, and from our
asymptotically good schemes over rings with strong multiplication, we deduce
in �4.3 our Main Theorem 3. Finally in 5 we show the existence and e�ciency
of liftings of the RMFE of [Cas+18]. We sketch how these can be applied to
hyperinvertible matrices over Galois rings to deduce Main Theorem 4.

In the appendices we give a more detailed proof (from more elementary
results) that furthermore yield projective systems of codes (33), from which
we deduce multiplication friendly lifts over Witt vectors - �C Explain how
Grothendieck's existence theorem gives the previous a geometric interpretation.

2 Codes over Galois rings, and the problem of �nding
multiplication-friendly lifts

This section introduces good lifts of codes, which are the natural object that
replaces linear codes, when working over rings such as Z/plZ, instead of �nite
�elds such as Fp. We continue the exploration of their elementary properties
begun in [Wal99, �3]. As will be recalled in Theorem 8 (ii) and Proposition 9
(iii), they have same dimension and distance than the codes reduced modulo p.
Our contributions are that these codes can be constructed from any lift of any
basis of reduced code (Thm 8 (ii)) and that, observing that Walker's results im-
ply that these codes are direct summands (Thm 8 (0')), we deduce in Corollary
13 that they have furthermore linear reconstruction. In addition, although we
observe that the highly technical result [Wal99, Theorem 5.10] yields equality of
dual distance with the one of the reduced code, for all the codes considered in �3
and yielding our Main theorem 1, we show with elementary arguments that this
fact actually holds for any good lift in Proposition 9 (iv). This last argument is
borrowed from the unpublished and unsubmitted work [Anob], which we repro-
duce for convenience. Notice that all these results are extended to any local ring
in [Anob], but then the de�nition of good lifts must be narrowed, since, e.g. over
p-adic rings, not all free codes have the desirable properties enumerated above.
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The second purpose of this section is to introduce the main problem of this
paper, which is to �nd codes with good lifts that are compatible with taking the
componentwise-square. In �2.3 we explain why the elementary methods fail to
solve this problem.

2.1 Notations

The simplest example of Galois ring is R` = Z/p`Z , where p is a prime and
` an integer, they all have m = (p) as unique maximal ideal, and residue �eld
Fp. Notice that [Anob] extends the theory over any local ring. In this larger
context, the de�nition of good lift is narrowed, although in our present context
it is synonym to be a free code.

More generally let us consider r a positive integer and the �nite �eld:

Fpr = Fp[X]/P ,

where P is a monic irreducible polynomial of degree r. Just as with Fp, we have
that Fpr is the reduction modulo (p) of the Galois rings:

R`(r) = Z/p`Z[X]
/
P (X)

where P (X) ∈ Z/p`Z[X] is any monic lift of P (and thus is also irreducible).
The rings R`(r) have also maximal ideal (p).

Throughout we let R be Galois ring, with maximal ideal m = (p) and the
quotient κ = R/m the residue �eld of R. It is standard that any element a in R
is invertible i� it is not in m i� its reduction a is invertible in κ.

A code C of length n over R is a submodule of Rn.
Let us note π : Rn −→ κn be the reduction modulo m map. When C is a

submodule of Rn, we also note π : C −→ C for the induced map onto the image
C, which is the code reduced modulo m.

The componentwise product of two codewords c and d of C is noted c∗d. The
square of C, noted C∗2, is the linear code generated by all the componentwise
products between elements of C.

The dual code of C is de�ned, as usual, as the submodule of Rn:

C⊥ :=
{
d ∈ Rn ,

n∑
i=1

cidi = 0 for all c ∈ C
}

2.2 Elementary theory of good lifts of codes over Galois rings

De�nition 5 (Good lifts). Let C be a code �i.e. a submodule of Rn. Then
we say that C is a good lift �or has good reduction� i� C is free, i.e. we have
C ∼= Rk for a (uniquely determined) k, called the rank �or dimension� of C.

For example, the sub-Z/p2Z-module pZ/p2Z ⊂ Z/p2Z is not free.
Before stating the elementary properties of good lifts, let us recall the fol-

lowing standard consequence of Nakayama's lemma:
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Lemma 6. Let M be a �nitely generated module over a local ring (R,m) with
residue �eld κ. Consider the �nite-dimensional κ-vector space M/mM . Take a
basis of it and lift arbitrarily to M . Then the lift constitutes a (minimal) set of
generators for M .

We will also often use the following result. Notice that matrix inversion is
e�ective over Galois rings, because they are principal ideal rings so we have the
Gauss pivot.

Lemma 7. Let M be a free R-module and φ : M → Rn a map such that the
map induced on the reductions

M/mM −→ κn

is an injection. Then φ has a linear left inverse (a �retraction�) Rn →M .

Proof. Consider the n×m matrix of φ, say where the columns are the image in
Rn of the m basis vectors of M . The map being an injection modulo m, there
exists an invertible m×m minor. Reordering the basis of Rn so that the indices
of this minor are {1 . . .m}, one obtains a retraction G := (N−1|0n−m).

Theorem 8. Let C be a code in Rn, then the following are equivalent:

(0) C is a good lift;
(0') C is a direct summand in Rn;
(i) the inclusion mC ⊂ mRn ∩ C is an equality;
(ii) C is free and generated by any lift in C of any basis of C. In particular the

rank equals dimension of the reduced:

rk (C) = dimC .

Proof. (0) => (0') is the �rst statement of [Wal99, Lemma 3.2] (notice that it
is speci�c to Artinian rings), applied to the inclusion C ↪→ Rn. Indeed recall
that a map �splits� means that it has a left retraction. In particular it is then
standard that the image of such a map, in Rn, is a direct summand.

(0') => (i) This is the second statement of [Wal99, Lemma 3.2]. Alternatively,
let us prove it under the friendlier form: if t ∈ R, z ∈ Rn are such that tz belongs
to C, then there exists c ∈ C such that tz = tc (thus when t is a non-zero divisor:
i� c ∈ C);

Proof: write C ⊕ C ′ = Rn (internal direct sum). Suppose tz in C. Write
z = c+ c′. Thus tz = tc+ tc′ in C. Hence, tc′ = 0. So tz = tc.

(i) => (ii) Take any basis (ei) of the k-vector space C/mC and lift it arbi-
trarily to (ei) in C. Then by Lemma 6, it forms a basis of C. But by assumption
we have

C̄ := C/(mRn ∩ C) = C/mC

(ii) => (0) is immediate. ut

The proof of the following proposition is extracted from another unpublished
and unsubmitted work, that we copy here for convenience.
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Proposition 9. If C is a good lift, then we have
(iii) d(C) = d(C);

(iv) C⊥ is a good lift of C
⊥
(thus is of rank equal to the co-rank of C).

Proof. The �rst statement is [Wal99, Theorem 3.4] (notice that equality is spe-
ci�c to Artinian rings, in general we have ≥).

For the second, take a basis of C and arrange it in an k × n matrix A over
R. It has a k × k minor B that is a unit in R (since C has good reduction by
assumption). Wlog, A = (B||B′) for some k × (n− k)-matrix B′ over R.

Let us show at once that Ax = 0 has a solution space (= the dual) that is

free of rank n− k. Clearly, this space is of the form: trans(−B−1B′y, y) where y

runs through Rn−k. So a basis is given by, e.g., the
trans

(−B−1B′ei, ei) where
the ei form the standard unit basis for Rn−k.In conclusion, the space is of the
form �free variables with the remaining ones uniquely determined by the free
variables�. This provides a retraction map Rn → C⊥ showing that C⊥ is a
direct summand, from which we conclude by Theorem 8 (0'). ut

Corollary 10. If E ⊂ G are two lifts Rn of the same code G, and G is a good
lift, then they are equal (in particular E is also a good lift).

Proof. Indeed E contains a lift of a basis of G which, by item (ii) Theorem 8,
generate the whole G. ut

2.3 Main di�culty: an arbitrary good lift of a code of small square
can fail to have its square being a good lift

Notice that for any lift C of a code C, then the square C∗2 is automatically a

lift of the square C
∗2
.

De�nition 11. We say that a good lift C is a multiplication friendly lift if and
only if the square C∗2 is also a good lift.

The main di�culty we deal with in this paper is to �nd codes C over �elds,
with interesting parameters, which have a multiplication friendly lifts C. The
purpose of this section is to illustrate why the elementary theory is helpless
here, but also that it can be applied to compute a multiplication friendly lift
once we are given such a code C with this property. Let us notice that the
problem can be narrowed: from Corollary 10, applied to the square D = C∗2,
we see that the problem boils down to �nding C such that we have an inclusion
of C∗2 in a good lift of C.

The easy case of generic codes, with large squares By a result of Cascudo-
Cramer-Mirandola-Zémor IEEE Trans Inf. Th. 2015, the squares of generic codes
being of large dimension, they are thus bad for secret sharing. More precisely they
show that, if C is a random code of dimension k in κn, then the square is typically
of maximal dimension (it �spreads maximally in the space�):

11



� either dimC
∗2

= n ,

� or dimC
∗2

= k(k+1)
2

Remark. Although such codes are not interesting for us, let us notice anyway
that if we take an arbitrary lift C, then the square C∗2 will be of good reduction
(this is precisely the property we would like for codes of small squares). Indeed:

� In the �rst case, extract from C∗2 a subcode B which is generated by a lift
of a basis of κn. By Lemma 6 the submodule B (and thus C2) equals Rn.

� In the second case, by construction C is generated by a lift of a basis (ei)i

of C. But the k(k + 1)/2 codeword products (ei ∗ ej) are a basis of C
∗2

by
assumption. So C∗2 is generated by a lift of a basis, so is a good lift.

A �rst counterexample One the other let us consider a code D whose square
is of dimension strictly smaller than the generic case, then we can build a coun-
terexample from it:

Counterexample 12. Let C and D be codes over κ of same dimension and

let us assume that dimD
∗2
< dimC

∗2
. Let us now build a code E over R and

of length equal to the sum of the lengths of C and D. Let (ci)i and (di)i be
bases of C and D, let (ci)i and (di)i be arbitrary lifts and de�ne E the code
generated by the vectors (di, pci)i. Then E is a good lift, because of dimension
dimD = dimE. But E2 is not a good lift, because of dimension

dimE∗2 ≥ dimC
∗2
> dimD

∗2
= dimE

∗2
.

Sparsity of solutions, if any, illustrated on a toy example We illustrate
the multiplicative lifting problem on a tiny AG code. Consider the elliptic curve
y2 + xy + y − x3 + 1 over

F23 = F2 < δ > with polynomial δ3 + δ + 1 = 0,

with 14 places, P0 the place at in�nity, the divisor D0 = 4P0 and the Riemann-
Roch space L(4P0), with basis equal to the functions (1, x, x2, y). Let us de�ne
the evaluation code C(D0) at the P0, . . . , P13, (see Remark 3.6 for evaluation at
P0) with basis ei, i = 1..4, which form the following generating matrix:

G =


1 1 1 1 1 1 1 1 1 1 1 1 1
δ δ δ2 δ2 δ3 δ3 δ4 δ4 δ5 δ5 δ6 δ6 1
δ2 δ2 δ4 δ4 δ6 δ6 δ δ δ3 δ3 δ5 δ5 1
1 δ 1 δ2 δ2 δ4 1 δ4 δ δ2 δ δ4 0


Out of the 10 componentwise products ei ∗ej , 8 of them: B := (ek ∗el)k,l∈B

generate C(D0)∗2, B being de�ned as all unordered tuples (k, l) (cardinality
10 = 4× 5/2) except (2, 2) and (4, 4). In particular e2 ∗ e2 and e4 ∗ e4 decom-
pose themselves on this basis B, with decomposition coe�cients (λ2,2,k,l)k,l∈B

12



and (λ4,4,k,l)k,l∈B given by the following 2 × 8 matrix, called �Reduc� in the
implementation:

(2) transp
(
λ2,2,k,l)k,l∈B , (λ4,4,k,l)k,l∈B

)
=

[
0 0 1 0 0 0 0 0
1 0 0 1 1 1 0 0

]
Then we repeated the following experiment 108 times: randomly lift the (ei)i

modulo 22, to obtain vectors (ei)i with coordinates in R4(8) = Z/22Z < ∆ >.
Let Cbad the code generated by these lifts. By Theorem 8 (ii), it is always a
good lift. But we observed in all the experiments that e2 ∗ e2 and e4 ∗ e4 do not
anymore decompose themselves on the lifts of the previous basis of C(D0)∗2:
B := (ek ∗ el)k,l∈B �see two paragraphs later for an explanation of how this
checks were done e�ciently with linear algebra. So in these situations C∗2bad is
not a good lift of the square C(D0)∗2, because if it were, then by Theorem 8 (ii)
the lifted basis B would generate it.

Why solutions may likely not exist at all Let us give a feeling of why most
codes with small squares are likely to have no multiplication friendly lift. We
will come over these arguments in more details in �3.5.

Let C be a code over, say, Fp = Z/pZ of dimension k and length n, such

that the square C
2
has small dimension, say, 3k < n. The goal is to �nd a

multiplication friendly lift. That is, a code C over Z/p2Z (namely: a free sub-
module of (Z/p2Z)n) of same rank k, that lifts C modulo p2, and such that the

square C2 is also a good lift of C
2
. As argued with the toy example, it follows

from Theorem 8 (ii) that these requirements are equivalent to the following: let
(ei)i be any basis of C lifting a basis (ei) of C; let B := (bl)l be a basis of C2;
then (bl)l lifts modulo p

2 to a basis of the square C2, in particular generates the
componentwise products (ei ∗ ej)i,j . This equivalent condition translates itself
into the fact that the equations expressing ei ∗ ej in terms of the (bl)l:

ei ∗ ej =
∑
l

λi,j,k,lbl (mod p)

lift modulo p2. The number of degrees of freedom (the unknowns) are: (i) the
choices of lifts for the ei, so a total of nk coordinates to lift in Z/p2Z; (ii) and
lifts for the coe�cients λl,i,j : a total of 3k×k(k+1)/2 unknowns in Z/p2Z. So the
number of unknowns is asymptotically equivalent to (ii): 3k×k(k+1)/2. Whereas
the number of equations is nk(k + 1)/2 (namely: k(k + 1)/2 vectorial equations
with n coordinates in Z/p2Z each). Notice that 3k < n, so that there are more
constraints than variables. Finally, as will be detailed in the next paragraph,
notice that this quadratic system over a ring simpli�es modulo p2 to a linear
system over the �eld Fp. Thus, the system being overdetermined, then a priori
no solution is likely to exist.

A technique to �nd them when they exist, illustrated on the toy ex-
ample We will formalize the general technique in �3.5 and justify that it returns
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all solutions when they exist. As a matter of fact, as will be demonstrated in
general in Theorem �16, it is a remarkable property of AG codes, in particular
the toy example, that they always have multiplication-friendly lifts �at least
for all practical parameters. Putting this in perspective with the previous para-
graph, this illustrates that AG codes seem highly non-generic among those with
small square.

First, �x a good lift Cbad of C(D0) by lifting arbitrarily the basis to (ei
′)i,

for example by lifting the coordinates from F2 < δ > to Z/22Z < ∆ > by the
dummy rule: 1→ 1 and δ → ∆. This gives formally the same generating matrix
as G, with δ replaced by ∆. With the same dummy rule, lift the decomposition
coe�cients (λ2,2,k,l)k,l∈B and (λ4,4,k,l)k,l∈B to λ′2,2,k,l and λ

′
4,4,k,l, so that their

matrix is formally the same as in (2). Now, there is no reason why e′2 ∗ e′2 and
e′4∗e′4 should decompose on B := (ek

′∗el′)k,l∈B , let alone with coe�cients equal
to λ′2,2,k,l and λ

′
4,4,k,l, as we illustrated with our random tests two paragraphs

above. As a matter of fact, we encounter nonzero error vectors 2D2,2 and 2D4,4

when trying to write the decompositions in Z/22Z < ∆ >:

(3) e′2 ∗ e
′
2 =

∑
k,l

λ′2,2,k,lek
′ ∗ el′ + 2D2,2 and likewise for e′4 ∗ e

′
4

Let us insist on the remarkable fact that the error vectors are multiples of 2,
since the equalities (3) do hold without error term modulo 2. �Dividing� by 2,
their coe�cients are

transp(D2,2,D4,4) =

[
0 0 δ4 δ4 δ δ 1 1 δ5 δ5 δ δ 0
0 0 δ δ 0 1 δ2 δ2 δ4 0 0 δ5 1

]
Which we express in F23 by abuse of notation (remember that an element 2x ∈
Z/22Z < ∆ > is determined by the residue x ∈ F23 mod 2). Now, let us look
for corrective terms 2f ′

i and 2µ′i,j,k,l, which we need only to �nd modulo 2:

(4) ei = e′i+ 2f ′
i and λi,j,k,l = λ′i,j,k,l + 2µ′i,j,k,l

So that, replacing ei
′ in (3) by the corrected ei of (17) �where the corrective

terms are treated as unknows�, simplifying and moding out the terms that are
multiples of (22), we observe �a reminiscence of Hensel's trick� that all the
terms remaining in the system are multiples of 2. So �dividing� the system by 2,
we fall back to the following linear system in F23 :
(5)

e2∗f ′
j+e2∗f ′

i−D2,2 =
∑
k,l

µ′2,2,k,lek∗el+λ2,2,k,l(ek∗f ′
l+el∗f ′

k) (same for e4∗e4 )

Solving this system for the correction terms, we deduce the corrected basis
(ei)i de�ned as in (4), that de�ne the corrected code Cgood, whose coordinates
are given in the big left-hand matrix in Appendix �A. Likewise we deduce the
corrected decomposition coe�cients (λ2,2,k,l)k,l∈B and (λ4,4,k,l)k,l∈B as given in
the centered right-hand formula.
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We can �nally check straightforwardly that, with these corrected values, then
e2∗e2 and e4∗e4 now decompose themselves on B with the corrected coe�cients,
without anymore parasitic error vectors. So with these corrected lifts (ei)i, we
have now that the square of the corrected code Cgood is also a good lift. That is,
we have succeeded in modifying the good lift Cbad into a multiplication-friendly
lift Cgood.

2.4 Decoding without errors and uniformly distributed projection
on d⊥ − 1 coordinates

Linear decoding without errors (reconstruction) Although theoretical
results for error correction over rings are shown in [Anoa, Construction 1 &
Proposition 1], it is not yet clear if there exists e�ective algorithms for even
the simple task of reconstruction of a secret with only erasures. This is not
a completely straightforward question: indeed we show in Counterexample 14
below that there doesn't exist a linear reconstruction map for a large class of
linear codes over rings which are not good lifts.

Applying Lemma 7 to the puncturing map of a good lift, we deduce that we
can linearly decode without error up to the minimal distance: i.e. there exists a
linear reconstruction map.

Corollary 13. Let C be a good lift over R, such that the reduced code C has
distance d. Then the puncturing map (e for �erasure�):

e : C −→ Rn−(d−1)

has a retraction, i.e. a linear left inverse Rn−(d−1) −→ C.

Proof. C being a good lift, we have C/mC = C by Theorem 8 (i). Thus the
reduced map

e : C = C/m −→ κn−(d−1)

is exactly the puncturing map on C, which is by assumption an injection. Thus
we can apply Lemma 7. ut

The following counterexample shows that, without the assumption to be a good
lift, there exists submodules of Rn for which the puncturing map is an injection
but for which there doesn't exists any retraction.

Counterexample 14. Let C be a code in Rn with d(C) ≥ 2 such that there

exists a punctured C∗ ⊂ Rn−(d−1) which is not a good lift. [For example
C = 〈(p, p, p, 0), (1, 0, 0, 1)〉 ∈ R4 (e.g. R = Z/p`Z), with d(C) = 2 and injec-
tivity in R3 when puncturing the last coordinate.] Then there doesn't exist any

linear reconstruction map, i.e. any retraction Rn−(d−1) → C. [Indeed otherwise,
compose the reconstruction map with the puncturing map: we obtain a retrac-

tion map to the inclusion C∗ ⊂ Rn−(d−1), so C∗ would be a direct summand,
thus a good lift by Theorem 8 (0'), a contradiction.]
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Uniformly distributed projection on d⊥ − 1 coordinates

Proposition 15. Let C be an arbitrary submodule (not necessarily free!) of

Rn, then projection on up to d(C
⊥

)− 1 coordinates is uniformly distributed.

Proof. Let U be an arbitrary index set with |U | = d
⊥ − 1. So CU = κU . Hence

CU contains |U | vectors so that the matrix formed by them has an invertible
determinant, thus has an inverse, thus these vectors generate RU . ut

3 Existence and e�cient construction of multiplicative
lifts of algebraic geometry codes

3.1 Roadmap of the proof of Main Theorem 1

We �rst prove the following algebraic-geometric theorem 16. Then, Main Theo-
rem 1 will follow from Corollary 19, as explained at the end of the section.

Theorem 16. Let X0 be a function �eld of genus g over any �nite �eld Fpr ,(
P

(j)
0

)
j
the rational places (i.e. of degree one) of X0 and P0 = P

(1)
0 , . . . , P

(n)
0 a

subset of them. Consider any divisor D0 on X0 with support on rational places11,
and degree

2g + 1 ≤ deg (D0) <
n

2
.

Then we can construct algebraic geometry codes C(D0) and C(2D0) de�ned by
evaluation of the Riemann-Roch spaces L(D0) and L(2D0) on P0, and good lifts
C(D) and C(2D) over R`(r) such that:

(6) C(D)∗2 = C(2D) .

For the proof, we �rst show in �3.2 below, that we have an inclusion in
(6). Namely, that the trivial inclusion C(D0)2 ⊂ C(2D0) over �elds carries
over some well chosen good lifts C(D) and C(2D) over Galois rings as soon as
deg (D0) < n.

We then show in �3.3 Theorem 18 that equality in (6) holds over �elds:
C(D0)∗2 ⊂ C(2D0) as soon as deg (D0) ≥ 2g + 1. This results from a hard
theorem of Mumford, which we generalize to nonnecessarily algebraically closed
�elds, as proven in appendix D, by standard arguments. Fortunately, we also ob-
tain an elementary proof of Theorem 18 in the interesting cases where deg (D0) ≥
4g: see �3.4. We then deduce equality over rings: (6) from the elementary Corol-
lary 10, �nishing the proof of Theorem 16.

From the elementary theory we deduce Corollary 19, which, instantiated e.g.
on Garcia Stichtenoth towers (or any other optimal family), immediatly yields
Main theorem 1.

11 Inluding possibly points of P0: see Remark 3.6
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3.2 Proof of inclusion in (6) of Theorem 16

This section concentrates the algebraic geometry over rings needed in the proof
of Main Theorem 1, which directly follows from the fundamental work [Wal99].
The goal is to justify that, as soon as we have deg (D0) < n, then we have good
lifts C(D) and C(2D) such that inclusion in 6 holds:

(7) C(D)∗2 = C(2D) .

Roadmap of the proof. We �rst show the existence of good lifts L(D) and L(2D)
of Riemann-Roch spaces, such that we have inclusions of products of spaces of
global sections

(8) L(D)⊗2 = L(2D) ,

where the traditional notation L(D)⊗2 stands for the space generated by all
products fg of pairs of sections (f, g) in L(D). Then, thanks to Judy Walker's
Theorem 17 below �which is actually a direct consequence of Lemma 7� we
deduce that the evaluation codes over rings C(D) and C(2D) arising from these
good lifts are also good lifts.

Let us follow Walker's [Wal99] notations. Note R = R`(r) the noetherian
local ring, with residue ring κ = R/(p) = Fpr . X0 being a smooth projective
curve over κ, then from [Ill05, Theorem 5.19 (ii)] (or [SGA1, III Corollaire 7.4]),
X0 has a smooth projective lift over the ring of Witt vectors W (κ). Which, after
reduction mod p`, yields a projective lift X over R (because these properties are
preserved by base change). Also, R being local, κ-points of X0 lift to R-points of
X by the formal smoothness criterion (see [Wal99, Remark 4.5] or next section
for details). As a consequence, divisors with support on rational points (actually
any divisor) lift to X �and thus also do the line bundles L0 arising from them.

An explicit procedure for simultaneous compatible good lifts of line bundles. By
[Wal99, Lemma 4.4] we can construct lifts of Cartier divisors D0 on X from the

following recipe. First, for every rational point P
(j)
0 of X0, �x a closed point

of degree one P (j) of X above P0, as described in [Wal99, Remark 4.5] (lift

arbitrarily P
(j)
0 to an R-point, then choose P (j) inside the image).

Then we can simultaneously lift divisors D0 and 2D0 on X0 as follows. For
every rational point P0 of X0 in the support of the line bundle D0, let m be
the valuation of D0 at P0 and let P be the closed point lying above P0 as �xed
earlier. Deduce from it a Cartier divisor mP , then sum over the points P0 in the
support of D0, to obtain a lift D of D0. Likewise for the Cartier divisor 2D, equal
to the same formal sum of R-points as in D and with twice the multiplicities.
In particular, note L := L(D) the line bundle associated to D, and likewise for
L(2D). Then in a neighborhood U of P excluding the other points of the support
of D, and small enough to have tU a uniformizer of P (as in [Wal, Proposition
4.9]), we have that

(9) LU = t−mU OU .
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Thus t−mU t−mU ∈ LU (2D), hence the claimed inclusion of products of global
sections (8).

Deducing algebraic geometry codes by evaluation of the global sections. We then
have the following compatibilities, as wrapped-up in [Wal99, Theorem 5.5]:

Theorem 17 (Lifts of Riemann-Roch spaces and AG codes). Consider

n rational points P0 =
(
P

(j)
0

)
j=1...n

on X0, D0 a divisor of degree:

2g − 2 < degD0 < n

with associated line bundle L0, and the injective evaluation map γ0 yielding an
algebraic geometry code C in κn. Then this data lifts to objects over R: X,P
and D, with associated line bundle L, yielding an evaluation code C, such that
we have the following commutative diagram:

(10) Γ (X,L) // //
_�

eval

��

Γ (X,L)⊗R κ
˜ // Γ (X0,L0)

_�

eval

��
⊕jΓ (P (j),L|P (j))

γ∼=

��

⊕jΓ (P
(j)
0 ,L0|P (j)

0
)

γ0
∼=

��
Rn

.⊗Rκ // κn

Where: - the top left horizontal arrow and the bottom horizontal arrow are
tensorisation by ⊗Aκ - the top right isomorphism is constructed canonically as
in the proofs of [Wal99, Lemma 4.6 & proof of Th 4.7]

- the top vertical arrows are the canonical restriction maps - the bottom left
vertical arrow is a collection of arbitrary isomorphisms for all j:

γj : Γ (P (j),L|P (j)) −→ A

that reduce to γ0 by tensorisation by ⊗Rκ (and if not, then rede�ne γ0 accord-
ingly without changing the code in κn).

Notice that the name �evaluation maps� of the top vertical arrows is abusive
in general (because of poles, etc: see the �rst example of �3.6), but anyway they
really play this role.

As explained in [Wal99], the code C is a good lift because it is the image of
a free module: Γ (X,L), under the evaluation map which is an injection modulo
m, and thus is a direct summand in Rn by Lemma 7.

3.3 Proof of equality in (6) of Theorem 16

Firstly, over �elds, the following theorem gives a criterion to have equality for
the reductions:

C(D0) ∗ C(D′0) = C0(D0 +D′0) .
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Theorem 18. Let D0, D
′
0 be two divisors of a function �eld X0 of genus g over

any �eld K. Suppose that degD0 ≥ 2g and degD′0 ≥ 2g + 1. Then

(11) L(D0)L(D′0) = L(D0 +D′0)

This theorem is deduced in Appendix D from Mumford's normal generation cri-
terion, which we extend to any �eld. See also the next section for more elementary
proofs of Theorem 18 in particular cases.

From the inclusion in (7), and under the degree assumptions of Theorem
(18), we can then apply Corollary 10 to

E := C(D) ∗ C(D) ⊂ G := C(2D)

to deduce that equality (11) holds over rings, which proves Theorem 16.

From the properties on the distance and dual distance of good lifts stated in
Theorem 8 (iii) and (iv), we can �nally state:

Corollary 19. Let X0 be a function �eld of genus g over any �nite �eld Fpr .
Let D0 be a divisor on X0 with support on rational points (i.e. of degree one)
and with degree

2g + 1 ≤ deg (D0) <
n

2
.

Let L(D0) be the Riemann-Roch space and P1, . . . , Pn a collection of rational
points on X0. De�ne the algebraic geometry code C as the isomorphic image of
L(D0) by the evaluation map on the (Pi)i.

Then for any positive integer `, C lifts to a free submodule C over the Galois
ring R`(r), of same dimension and dual distance than C, and such that the

square C∗2 is also free of rank dimC
∗2

and minimal distance d(C
∗2

).

Main Theorem 1 then follows as an immediate consequence (apply the previ-
ous to any asymptotically optimal family of curves, such as Shimura or Drinfeld
or optimal recursive towers of function �elds).

3.4 Elementary proof of Theorem 18 in a particular case

D0 = dP0 supported at a rational point, with degree d ≥ 4g We �rst
prove two lemmas on gaps between Riemann-Roch spaces.

Lemma 20. With the same assumptions, for any integer

v ∈
[⌈d

2

⌉
, . . . , d

]
Then there exists a rational function y0 ∈ L(D) with exactly a pole of order v
at P .
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Proof. Claim: for all i′ ≤
⌈
d
2

⌉
+ 1 , then we have that l(K − (D − i′)) = 0 for

degree reasons. Indeed:

deg (K − (D − i′)) ≤ 2g − 2− d+
⌈d

2

⌉
+ 1 < 2g − 1− 4g +

(d
2

+ 1
)
≤ 0 .

From the claim it follows that for all integer i ≤
⌈
d
2

⌉
, we have a gap in the

sequence of dimensions:

(12) l(D − iP ) < l(D − (i+ 1)P ) ,

thus the result. ut

Proof of the theorem: Consider f0 a function in L(2D) = L(2dP ). Either it is
in L(D), and we are done. Or it has a pole at P with order strictly larger than
d:

w := ordP (f) > d

(and by de�nition no other pole elsewhere). In this case, Lemma 20 implies that
there exist y0, y

′
0 in L(D) such that

ordP (y0) + ordP (y′0) = w

and thus, up to multiplying y0 by a constant ρ0, we have that the function:

f1 = f0 − y0y′0

has a pole at P strictly lower than w (and by construction no pole elsewhere).
Since y0y

′
0 is in L(D)2, we can conclude by recursion on the order of the pole of

f1 at P .

3.5 Practical method

The main result of this section, stated as Proposition 23, is that we can deduce
a good multiplicative lift C`+1 ∈ R`+1(r)n �if any� from a good multiplicative
lift C` ∈ R`(r)n, by just solving a linear system over Fpr of size O(n3)×O(n3),
so in polynomial time.

Furthermore, the key heuristic (unexplained) observation is that, for AG
codes C satisfying the criterion of Theorem 16, then we have the following ap-
parent stronger property than Theorem 16: any multiplicative lift C` of C over a
given R`(r), has itself a multiplicative lift over R`+1(r) (whereas what is proven
in Corollary 19 is only existence of such a multiplicative lift for the base code
C). Thus in practice we can lift C sequentially in L steps into RL(r)n, each of
these steps involving only one linear system (of same size in each step), so that
the overall complexity is linear in L. We illustrate e�ciency of our method by
lifting a strongly multiplicative secret sharing scheme over F16 for 64 players and
adversary threshold t = 13, into a scheme over Z/2100Z, in a minute on a single
processor.
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Lemma 21. Let C be a good lift in R`(r)
n. Then C∗2 is also a good lift if and

only if there exists a basis (ei)i of C, and a set B of unordered couples of indices
(k, l) of cardinality dimC∗2, such that the elementary products (ek ∗ el)(k,l)∈B
form a basis of C∗2. Namely, if and only if there exists coe�cients λi,j,k,l in R`(r)
such that the following equalities in R`(r)

n hold:

(13) ei ∗ ej =
∑
k,l

λi,j,k,l ek ∗ el for all i ≤ j

Proof. Let (ei)i be any basis of C. Let us chose (ei)i any lifts of the (ei)i in
C. By Theorem 8 (ii), C being a good lift, they form basis of C. The family

(ei ∗ ej)(i,j) is a generating set of C
∗2
. Extract from it a basis (ek ∗ el)(k,l)∈B

of C
∗2
. The family (ek ∗ el)(k,l)∈B is contained in C∗2 and is a lift of a basis

of C
∗2
. But C∗2 is by asumption a good lift, thus Theorem 8 (ii) implies that

(ek ∗ el)(k,l)∈B is a basis of C∗2.
As for the explicit equivalent conditions (13), let us simply call λi,j,k,l the

coe�cients of the decomposition of a given (ei ∗ ej)i,j over the basis (ek ∗
el)(k,l)∈B . ut

Lemma 22. Let C` be a good lift in R`(r)
n such that C∗2` is also a good lift.

Suppose that there exists a lift C`+1 of C` in R`+1(r)n such that the square C∗2`+1

is still a good lift. Consider a basis (ei)i of C
∗2
` , along with (ek ∗ el)(k,l)∈B a

basis of C∗2` and the explicit decomposition (13), as granted by previous lemma.
Then C`+1 has a basis (ẽi)i formed of lifts of the ei, such that there exists

lifts λ̃i,j,k,l of the coe�cients λi,j,k,l, such that all the equalities (13) lift over
R`+1(r)n:

(14) ẽi ∗ ẽj =
∑
k,l

λ̃i,j,k,l ẽk ∗ ẽl for all i ≤ j

Proof. Consider any lift (ẽi)i of the (ei)i in C`+1, and the corresponding family
(ẽk ∗ ẽl)(k,l)∈B in C∗2`+1. Modulo p, they are bases of C and C∗2, so by the same
argument (Theorem 8 (ii)), they are bases of C`+1 and C`+1.

Now, de�ne λ̃i,j,k,l as coe�cients of the decomposition (14), and let us show
that they reduce mod p` to the λi,j,k,l. For this, reduce the equations (14) mod

p`: we obtain a decomposition similar to (13), but with coe�cients λ̃i,j,k,l instead
of λi,j,k,l. By uniqueness of decomposition over a basis in a free module, they
coincide. ut

Proposition 23. Let C` be a good lift in R`(r)
n such that the square C∗2` is

also a good lift. Suppose we are explicitely given a basis of (ei)i, along with the
explicit decomposition (13) granted by Lemma 22. Then �nding �if any� a lift
C`+1 of C` in R`+1(r)n such that the square C∗2`+1 is still a good lift, falls back to
solving a linear of size O(n3)×O(n3). More precisely, the system returns all such
lifts C`+1, and for each of them a lift in R`+1(r)n of the explicit decomposition
(14).
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Proof. For sake of simplicity let us make the proof for ` = 1, with thus C1 = C
and we are looking for a lift C := C2 in R2(r)n such that C∗2 is a good lift.
The situation for higher levels ` being similar (the situation is reminiscent of
Hensel's lemma). By assumption we are given (ei)i a basis of C, and a basis

(ek ∗ el)(k,l)∈B of C
∗2

along with the following (quadratic) equalities

(15) ei ∗ ej =
∑
k,l

λi,j,k,l ek ∗ el for all (i, j)

in Fpr . Thanks to Lemma 22, the problem of �nding C boils down to �nding
lifts ei in R2(r)n and λi,j,k,l in R2(r), such that the equations (15) all lift to
R2(r)n. Fix arbitrary lifts ei

′ and λ′i,j,k,l of the ei and the λi,j,k,l, over/in R2(r).
We obtain error terms pDi,j when writing the system in R2(r):

(16) ei
′ ∗ ej ′ =

∑
k,l

λ′i,j,k,lek
′ ∗ el′ + pDi,j for all (i, j)

Solving the system means �nding correct lifts ei
′′ and λ′′i,j,k,l that anihilate

the error terms pDi,j . But e
′′i and λ′′i,j,k,l can always be deduced from ei

′ and
λ′i,j,k,l, by adding corrective terms pf ′

i and pµ
′
i,j,k,l, which we need only to �nd

modulo p:

(17) ei
′′ = e′i+ pf ′

i and λ
′′
i,j,k,l = λ′i,j,k,l + pµ′i,j,k,l

So that, replacing ei
′ in (16) by the corrected ei” of (17) (where the corrective

terms are treated as unknows), simplifying and moding out the terms that are
multiples of p2, we observe (Hensel's trick) that all the terms remaining in the
system are multiplies of p. So simplifying by p, we fall back to the following
linear system in Fpr :

(18) ei ∗f ′
j +ej ∗f ′

i −Di,j =
∑
k,l

µ′i,j,k,lek ∗el +λi,j,k,l(ek ∗f ′
l +el ∗f ′

k) ∀i ≤ j

Finally, as for the size of the system, each vectorial equation for (i, j) expands
in n scalar (quadratic) equations, so a total of nk(k+ 1)/2. The lifts of the (ei)i
are n unknowns and the lifts of λi,j,k,l are k(k + 1).dim (C∗2) unknowns. ut

Remark. Then if dim (C∗2) is smaller than n (which is the cases that we are
interested in for multiplicative secret sharing), then the linear system is overde-
termined. So it has a priori no solution, which further evidences the di�culty of
�nding multiplicative good lifts of codes.

Optimizations List the (i, j) for which the decomposition of ei ∗ ej is very
simple: one single nonzero coe�cient λi,j,k,l equal to one and the others equal
to zero. Which includes, but far from exclusively, the basis vectors ek ∗el them-
selves. Then ask for these relations to hold modulo p2, p3 etc: this removes all the
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variables µ′i,j,k,l from the system, for those �forced� relations on ei ∗ ej . In prac-
tice this divides by two the dimension of the kernel while the system still yields
solutions (actually one solution is enough for us, thanks to our lucky heuristic:
see below) In practice, for algebraic geometry codes, this seems to make the
number of equations drop from k(k+ 1)/2 to approximately dim (C∗2) ∼ 2k: see
in the examples below.

Observation 24. For all AG codes that we tried �such as those of Corollary
19, for which a multiplicative lift exists�, then every solution of the system
mod pi (i.e. a multiplicative lift in Ri(r)

n), lifts to a solution mod pi+1

Thanks to this unexplained fact, we need only solving the system ` times
to �nd a multiplicative lift of C in R`(r), hence the overall strategy runs in
polynomial time in n, and linear in `.

3.6 Examples of multiplication friendly lifts modulo 2100

The Magma program used to compute the two following examples (among oth-
ers) is available on [Ano19].

Hermitian curve over F16 Let X0 be the plane curve over F16 de�ned by
equation f(x, T ) = T 4 + T − x4+1. Then it is well known that this curve has
genus g = 4(4 − 1)/2 = 6 and n + 1 := |X0(F16)| = 1 + 43 = 65 rational
points (which reaches the Hasse-Weil upper-bound). Let us note these points
P0, . . . , Pn (so n = 64), consider the divisor D0 = 25P0, whose Riemann-Roch
space L(D0) is of dimension 20. We de�ne the algebraic geometry code C of
length n+ 1 de�ned as evaluations elements of L(D0) on all the rational points
of X0, including the support {P0} of D0.

Remark. So with the notations of [CC06, �3], we allow in addition to evaluate at
Q. We did this to make a little gain on the adversary bound. To be sure, solutions
to overcome the problem with evaluating at the support of D0 are well known. A
standard trick would have been to choose instead D0 equal to one point of degree
25, but this wouldn't �t in our simplistic assumption of Corollary 19, that D0 is
supported on rational points. So we do otherwise and keep D = 25P0, compute
t0 a uniformizing parameter at P0, and de�ne the evaluation of f ∈ L(D0) at P0

by:
(t230 f)(P0) .

The intrinsic meaning of this formula is that we �rst compute the restriction
(called �evaluation�, in Theorem 17) of L(D0) in a neighborhood of P0: multi-
plying L(D0) by t230 maps it to regular functions at P0. Then we evaluate . The
trick yields codes that still satisfy the conditions of Corollary 19 for the existence
of �nding multiplicative lifts 12

12 For the �rst trick they satisfy Corollary 19 since closed points of arbitrary degree
do lift. For the second trick, consider Z(0) a R100(4)-point of the lifted curve X
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For the sake of illustration notice that, with t = 13, we have degD0 = 2g+ t
so that the condition 39 = 3t < n−4g = 40 of [CC06, Proposition 2] is satis�ed,
thus from C we can deduce a secret sharing scheme with strong multiplication
for adversary bound t = 13.

Before going on, we compute the square code C
2
and the (a priori larger)

AG code associated to L(2D0), and check that both are equal �as predicted
by equality in (7) since degD0 ≥ 2g + 1 � of dimension 2.25 + 1 − 6 = 45.

From the generating set (ei ∗ ej)i≤j of C
2
we extract a basis (ek ∗ el)(k,l)∈B .

We now look at the matrix expressing the (ei ∗ ej)i≤j in terms of this basis
(with the previous notations, this is the matrix of the coe�cients λi,j,k,l). It has
(dim (C)(dim (C) + 1))/2 = 210 lines (all ordered pairs i ≤ j). Obviously the
lines where the index (i, j) belongs to B contain a single coe�cient, equal to one.
And obviously these coe�cients will remain equal to one in every lift mod p`

so we can remove these ndimC
2

= 64 × 45 relations (and the corresponding
variables) from the system from now on.

Remark. But to our surprise, even when removing these lines from the matrix,
the remaining matrix (which we call �Reduc" in the program) contains many
other lines (119, we call their list �Fixed� in the program) that have also this
property to have only one nonzero entry, equal to one. Looking at the global
sections in L(D0) corresponding to these equalities ei ∗ ej = ek ∗ el, we check
that these equalities also hold for the underlying functions (which we already
knew, since the evaluation map is injective). So, betting on the fact that this
simple relations will also hold on the curve lifted over rings, we force these
coe�cients λi,j,k,l = 1 to lift to 1 (and likewise the other coe�cients on the line
to lift to zero). Namely, in all iterations of the linear system mod 2`, we force all
the corresponding µ′i,j,k,l = 0, and λi,j,k,l = 1 for these special lines. As described
in the paragraph �Optimizations� in the previous section, it seems that we still
get many solutions to the system after this trick, which yields a signi�cant drop
in the number of unknowns in the system (18) .

Also, the rest of the matrix Reduc is also hollow, (O(1) nonzero coe�cients
per line, from the other examples we tested), thus the overall system (18) is
sparse.

Finally we end up with a system (18) of 10725 equations with 3305 unknowns
but, surprisingly, of (still) very large kernel: dimension 83 (dimension 200 before
applying the trick). We solve it in one second on a single processor.

Finally we repeat the operation, following the pattern of the proof of Propo-
sition 23: we reinject the solution (the lifted vectors ei and coe�cients λi,j,k,l) in
a system mod 23 (as in (14)), which is a multiple of 22 after simpli�cation, thus
falls back to a system mod 2 after �division by 22�. Note the general fact that
the matrix of the new system obtained is exactly the same as the initial one (18),

above P0 and t a uniformizing element as in [Wal, Proposition 4.9]. Then t23 is by
construction the local equation of the lifted Cartier divisor D at the closed point
P (0) in Z(0), and reduces to t0.
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because the coe�cients depend only on the values modulo 2 of ei and λi,j,k,l. To
which we �nd again a solution (the mysterious lucky heuristic) �in one second
as expected� then repeat exactly 97 times (always the lucky heuristic) to reach
a multiplication friendly lift over R100(4).

The ManyPoints.org curve of genus 3 over F25 Here we want a compara-
tively larger adversary threshold so take an extension of F2 of larger size. Let δ
be a root of the polynomial 1 + T 2 + T 5 in F2[T ]. Consider the plane curve X0

over F25 de�ned as follows: let x, y be the a�ne coordinates, put X := x2 + x,
Y := y2 + y then X0 is given by the equation:

X2 +XY + δ3Y 2 + Y + δ26

Its function �eld has

n = 64

places of degree one (i.e. a projective smooth model of X0 would have 64 rational
points). Consider the place at in�nity P0(0, δ, 1) and the divisor D0 = 22P0 (of
degree 2g+ 16). The Riemann Roch space L(D0) has dimension 22 + 1−3 = 21,
of which Magma can compute a basis E. We construct the AG code C obtained
by evaluating these basis elements at all the rational points except the support
P0 (this time, avoiding the support doesn't harm the adversary bound).

Here the square dimC2 is of dimension 42, after applying the same �special
rows� trick the system contains 10584 equations and 5817 variables, and half of
its rows are sparse. Surprisingly it (still) has very large kernel, of dimension 93.
This time we solve it in 100 seconds and, thanks again to the lucky heuristic,
need only iterating 98 times to �nish with a lift mod 2100.

4 Deducing arithmetic secret sharing schemes and MPC
protocols with constant communication rate

4.1 Arithmetic secret sharing and reconstruction over rings

The goal of this paragraph is to describe e�cient algorithms for secret sharing
and decoding with errors for codes which are good lifts (which are very simple
to construct, if we don't care about multiplicative properties). Recall also that
general results for decoding without errors and adversary bound were obtained
in �2.4 from the general theory of good lifts.

From multiplicative lifts (Main Theorem 1) to arithmetic secret shar-
ing schemes with strong multiplication and uniformity (Corollary 2)
From the elementary theory we can transpose easily over rings the general cri-
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terions of [Cas+09, �3-�4] 13 for Massey's secret sharing schemes with strong
multiplication and uniformity.

Given a code C in Rn+1, suppose that we want to use the 0-th coordinate to
store a secret s in R. We only need adapt the requirement of De�nition 5 (and
accordingly De�nition 7) of C(R) in loc. cit. by asking that

� (r, 0, . . . , 0) 6∈ C for any r ∈ R. Notice that when C is a good lift, then this
is equivalent to (1, 0, . . . , 0) 6∈ C by Theorem 8(i).

� And that (r, 0, . . . , 0) 6∈ C⊥ for all r ∈ R �which is equivalent to the ex-
istence of a codeword with invertible coordinate at 0-th position. Notice
that when C is a good lift, then this is equivalent to (1, 0, . . . , 0) 6∈ C⊥ by
Theorem 8 (i) and (iv).

Recall that we established both uniformity of the projection on d⊥(C) − 1
coordinates (Proposition 15) �hence the adversary threshold satis�es:

(19) t ≥ d(C
⊥

)− 2

� and, for good lifts, the existence of a linear reconstruction map up to d(C)−1
(Corollary 13). Thus, considering that the Main Theorem 1 provides simulta-
neous good lifts C, C⊥ and C2 (with asymptotically good parameters), we can
construct from them arithmetic secret sharing schemes with t-uniformity and
strong multiplication (e�cient reconstruction in C2 without errors from at least

n− d(C
2
) + 2 shares).

Secret sharing protocol

Property 25 (Systematic form). If C is a good lift then C has a generating
matrix in systematic form.

Proof. Choose a basis B of C under which C is in systematic form (Idk|N),
where k = dim (C). Consider any lift B in C: it is a basis of C by item (ii) of
Theorem 8. Its generating matrix is of the form (Idk|N) + (M1|N1) where M1

(and N1) has coe�cients in m. Notice that the diagonal elements of (Idk +M1)
are invertible: up to multiplication of the rows by their inverses, one can assume
that they are one. Then by elementary row operations, one can �nally cancel all
the terms outside of the diagonal. ut
Algorithm 26 (Secret share). On input s ∈ R and given C =< e1, . . . , ek > a
good lift in Rn+1 of dimension k in systematic form, do

� Select λ2, . . . , λk uniformly at random in R
� Compute the codeword c = se1 + λ2e2, . . . , λkek
� Send the �rst coordinate c1 to Player 1, ... , cn to Player n.

It is straightforward that the procedure above selects uniformly at random a
codeword in C conditionned to the 0-th coordinate be equal to s.

13 We could also recover arithmetic secret sharing over any Z/p`Z by the descent ar-
guments of Crypto 2009, via multiplication friendly embedding of R`(r) into several
copies of Z/p`Z. Will not discuss this since we focus here on an adversary threshold
close to n/3.
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Decoding with errors Recall that decoding with errors was described in
[Anoa] for the particular case of Reed-Solomon codes. Here we provide a general
algorithm for decoding with errors in any code C over any principal ideal local
ring (e.g. Galois or p-adic ring), as long as it is a good lift. It uses, as a black box
subroutine, any given decoding algorithm for the reduction C over the residue
�eld κ:

Proposition 27 (A compiler from error-correction over �elds to rings).
Let

(
R, (p)

)
be a principal ideal local ring and C be a code in Rn which is a

good lift. Then we can compile any decoding algorithm φ for the code C over
the residue �eld (up to half of the minimum distance), into an algorithm φ for
decoding-with-errors in C, with complexity equal to ` times the complexity of
φ, where ` is such that p` = 0.

[For p-adic rings we have ` = ∞: the decoding algorithm will return iter-
atively a solution, where the error term remains on the same support and has
smaller and smaller p-adic norm. ].

Let us describe informally the decoding algorithm (with justi�cations in-
line). Recall that the operation of lifting a codeword c ∈ C to C can be done
e�ciently, thanks to the existence of a generating matrix for C in systematic
form (Proposition 25).

Let c ∈ C be an unknown codeword, e ∈ Rn an error term with weight < d/2
and u = c + e the corrupted codeword to be decoded. Repeat the following
procedure:

� Decode u into c and deduce u− c = e.

� Choose any lift c1 ∈ C (mod p2) of c and e1 ∈ (R/p2)n any lift of e with
same support.

� Compute the di�erence u− (c1 + e1) modulo (p)2: it is equal to

(c− c1) + (e− e1)

where the left term is by construction a codeword in C ∩ (R/p2)n, and thus
in pC by Theorem 8 (i): let us call it pc2. Whereas the right term is in pRn

with at most the same support as e (so < d/2 nonzero coordinates): let us
call it pe2.

� the di�erence computed is thus of the form pu1: dividing by p (that is:
choosing any preimage under the multiplication by p) we obtain the equation
modulo p

u1 = c2 + e2

� Apply the decoding algorithm to u1, deduce c2 and e2, lift them arbitrarily
in C mod p3 and in (R/(p3))n etc.

As an alternative, one could possibly lift over any local ring the generic
decoding algorithm in [CDN15, �12.5.4].
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4.2 Lifting Crypto 2018's alternative to hyperinvertible matrices
for Beerliova-Hirt multiple random share

The arguments in Crypto 2018 �2.4 carry over local rings:

� d⊥ − 1 coordinates of a random codeword are uniformly distributed, by
Proposition 15.

� linear recoverability from 2n− d+ 1 coordinates follows from Corollary 13

� The existence of a systematic form follows from Proposition 25.

4.3 Consequence for amortized MPC: Main Theorem 3

Main Theorem 3 follows from the elementary protocols above, including the
alternative to Beerliova-Hirt, applied to the following secret sharing schemes
over rings. Recall �rst the tradeo� of [CC06, �5] for secret sharing in �nite �elds
Fp. Let us cast a secret in Fp, into the extension Fpr of degree r, such that

pr ≥ 49 .

Then for adversary threshold 1/3− ε, and for in�nitely many number of players,
there exists a secret sharing scheme over Fpr with strong multiplication and
constant size of shares, such that:

ε <
4

3(pr/2 − 1)
,

[CC06, �5] In particular, choosing r̂(ε) = −2 log(ε) yields an adversary bound
1/3− ε when ε is su�ciently small. Taking a good lift of the underlying AG code
and its (good) square over R`(r) �as provided by Corollary 19 and e�ciently
computed as above� yields the same adversary and reconstruction bounds, for
the same constant communication overhead r̂(ε), so we have exactly the same
parameters as in [CC06, �5].

5 E�cient constant rate lifts of reverse multiplication
friendly embeddings (RMFE) and application to
amortized MPC (Main theorem 4)

5.1 De�nition and main result

Reverse multiplication friendly embeddings were introduced in [Cas+18, De�-
nition 1]. They are the main tool for emulating several circuits in parallel over
small �nite �elds Fp, from a single circuit over a large extension Fpm . Let us
adapt the de�nition over the rings R` = Z/p`Z, for sake of simplicity, and their
extensions R`(m).
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De�nition 28. Let p be a prime and r a positive integer, let k, n ≥ 1 be inte-
gers. A pair (φ, ψ) is called an (k,m)r -reverse multiplication friendly embedding
(RMFE for short) i� φ : Rk` → R`(m) and ψ : R`(m) → Rk` are two R`-linear
maps satisfying

x ∗ y = ψ(φ(x)φ(y))

for all x, y ∈ Rk` .

The existence of RMFE over rings with the same rate than the algebraic-
geometry construction in [Cas+18, Theorem], also follows from Theorem 1.

Theorem 29. There exists a family of (k,m)q-RMFE with k → ∞ and m =
O(k). More concretely

4m→ 2 +
k

A(q)

Namely, following the construction done in the proof of loc. cit.: lift the
curve and the Riemann-Roch spaces L(D), and use Theorem 17 that states
that Riemann-Roch spaces are good lifts. In particular, Riemann Roch spaces
over rings arising from a divisor of strictly negative degree, e.g. the kernel of an
evaluation map L(G − R), are still equal to {0} (see also the last sentence of
�3.2).

5.2 An analogous linear system to e�ciently lift RMFE

The de�nition of a reverse multiplication embedding of Fkp (for sake of simplicity)
into Fpm may be rephrased as follows: Consider the multiplication tensor T in
Fpm , its components Ti=1..m are Fp-bilinear forms from

(
Fpm×Fpm

)
to Fp. Now

�x a linear map
φ : Fkp −→ Fpm

The pull back of T :

φ∗T = T (φ(.), φ(.))

decomposes in Fpm in m components which are symmetric bilinear forms

φ∗Ti = Ti(φ(.), φ(.)) , i = 1..m

in the symmetric tensor space S2((Fkp)∗).

De�nition 30. We say that φ is a reverse multiplication embedding i� these
m bilinear forms φ∗Ti generate the components (x∗1 ⊗ x∗1, ...x∗k ⊗ x∗k) of the com-
ponentwise multiplication tensor in the (nonintegral) algebra (Fp)k.

Lifting of an algorithm φ modulo p2: Suppose we are given a reverse multi-
plication friendly embedding φ, over Fp (r = 1 to make notations simple): for
each j = 1 . . . k, we have coe�cients λi,j such that:

(20) x∗j ⊗ x∗j =

m∑
i=1

λi,j . φ
∗Ti
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(it is a tensorial equality: it takes place in the space of symmetric bilinear
forms of length k, so expands on coordinates as a set of k(k+1)/2 equations). We
want to lift φ and the coe�cients λi,j such that the equalities (20) hold modulo
p2. (So we have mk+mk unknowns and m equations, each of them taking place
in a symmetric tensor space of dimension k(k + 1)/2 ). Consider arbitrary lifts
φ′ and λ′i,j of φ and λi,j over Z/p2Z, we thus obtain the (tensorial) equalities

modulo p2 for j = 1..k :

x∗j ⊗ x∗j =

m∑
i=1

λ′i,jφ
′∗Ti + p∆j

and we would like to eliminate the error terms p∆j modulo p
2 by choosing

better lifts of φ and of λi,j :

(21) φ′ + pψ and λ′i,j + pµi,j

After replacing (21) in (20) then simpli�cation, the equation becomes the
following (tensorial) linear equation modulo p (so with coordinates in Fp):

m∑
i=1

2λ′i,jTi
(
φ′(.), ψ(.)

)
+ µ′i,jTi

(
φ′(), φ′i(.)

)
= −∆j

where the unknowns are ψ and µ′i,j .
We will not state and prove that the previous systems returns all lifts modulo

p2, as it is very similar to Proposition 23, nor will we discuss again how to repeat
and compute higher lifts modulo p` 14.

5.3 Consequence for amortized MPC: Main Theorem 4

From the existence of RMFE with constant rate over rings as shown above (which
we also showed are e�ciently computable), we can now compile a protocol for
a circuit over a large Galois ring R`(r), into a protocol for many evaluations in
parallel of this circuit in Z/p`Z by casting over rings the protocols of [Cas+18].
This could be applied to Main Theorem 3. But here in Main Theorem 4 we
choose to restrict ourselves to the case of optimal adversary rate. So we really
need hyperinvertible matrices over Galois rings for any number of players (not
the previously discussed alternative with suboptimal adversary bound as used

14 Let us notice that a generic argument of Forney's PhD thesis, that proves the exis-
tence of a polynomially constructible family of codes matching the Zyablov bound
(i.e. optimal concatenated codes), could be instantiated to RMFE (but not to codes
with both small d⊥(C) and small d(C2)). The argument is recalled e.g. in [PW15,
�24.4] (or [GI05]), and consists in concatenating an �inner� good code, found via
exhaustive search, with an �outer� Reed-Solomon code. This idea was also applied
to MFE in [Ram15]: in Table 2, µ4(1, 4) and µ4(1, 5) are found via exhaustive search.
Here, one would apply concatenation Lemma 5 of [Cas+18] and perform exhaustive
search over (φ2, ψ2), then concatenate with a Reed-Solomon RMFE as in [Cas+18,
Remark 7].
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in Main Theorem 3). Their existence will be detailed in a leter work. . We can
thus cast the original protocol of Beerliova-Hirt over Galois rings, then compen-
sate their bad asymptotic communication overhead by amortizing it over several
instances in parallel, exactly as done in [Cas+18, Theorem 1 & 2], which thus
yields our Main Theorem 4.
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A Formulas for the toy example
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transp
(

(λ2,2,k,l)k,l∈B , (λ4,4,k,l)k,l∈B

)
=

[
0 0 1 0 0 0 0 0
1 0 0 1 1 1 2 0

]
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B Detailed proof with formal lifts of curves�from more
elementary arguments, and projective limits of codes

B.1 Lifting smooth projective curves and algebraic geometry codes
over local rings

Let us furthermore assume from now on that R is noetherian. Let S = SpecR
be the corresponding a�ne scheme, we call smooth projective curve over S an
irreducible scheme X with a smooth projective morphism f : X → SpecS of
relative dimension one [f being �at, Lemma [Sta18, 0AFE] implies that dimX =
dimR+1. So dimX = 2 (an "arithmetic surface") if R is a DVR, and dimX = 1
if R is a local Artinian ring].

Let us �x (A,m, κ) a local noetherian ring (although A is "morally" the
complete ring Zp or W (Fq), the assumptions for A are actually the same as for
the "generic" local noetherian ring R considered throughout, the completeness
assumption being not necessary until the appendix). Consider the projective
system of local Artinian rings:

. . . A3 → A2 → A1 → A0 = κ ,

where Ai = A/mi+1 and each arrow Ai+1 → Ai is the reduction modulo mi+1.
This corresponds to a direct system of a�ne schemes:

Specκ = S0 → S1 → S2 → S3 → . . . ,

where each arrow Si → Si+1 is a closed immersion de�ned by the ideal mi+1 of
square zero. Let X0 be any �at scheme over Specκ = S0, then a formal lift X
of X0 over this direct system is the data of �at schemes Xi over each Si, �tting
into an in�nite diagram where all squares are cartesian:

(22) X0
j0 //

f0
��

X1
j1 //

f1
��

X2

f2
��

j2 // · · ·

S0
// S1

// S2
// · · ·

In particular the Xi form a direct system and, by base-change, the maps
ji : Xi → Xi+1 are closed immersions. They are given locally on SpecBi+1 by
the ideal mi+1Bi+1 of square zero .

Our principal addition to [Wal99], which studies reduction of AG codes over
rings, is that we notice the possibility to go in the other direction:

Theorem 31 (Formal lifts of curves15 [SGA1, III Theorem 6.3] or
[Ill05, proof of 5.19 (i)]). Let (A,m) be a local ring and consider X0 a
smooth projective curve over S0 = Specκ, then X0 admits a formal lift X over
the direct system S0 → S1 → S2 → · · · . Moreover X is projective.
15 About references: of course the clearest is https://amathew.wordpress.com/2011/06/18/lifting-

smooth-curves-to-characteristic-zero/ . The small missing point is that he actually
doesn't prove how to obtain a compatible system of lifts in Corollary 9, he only
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Proof. Only the last point, about projectivity, is not stated in the references
mentionned in the theorem. It is stated in the full FGA's existence theorem
([Ill05, Theorem 5.19 (ii)] or [SGA1, III Théorème 7.3]). But it can also be
showed directly, as in the proof of [Ill05, Theorem 8.4.10], where a very ample
sheaf on X0 is lifted to each Xi by Nakayama.

Coming back to our generic (noetherian) local ring R and X a smooth pro-
jective curve over S = SpecR, let us de�ne an R-point of X as an S-morphism
Z : S → X.

Noting s the closed point of S and Z(s) its image in X, one can prove that Z
de�nes a regularly embedded subscheme of codimension one, which is contained
in any su�ciently small a�ne neighborhood U = SpecB of Z(s), and thus is a
Cartier divisor (also noted Z) de�ned by:{

(U, b), (1 outside of Z(S))
}

where b is a suitable non-zero divisor in B. But actually for practical purposes
(Main Theorem 1) we will only need the case where R is Artinian, whence Z is
just a closed embedding to one closed point Z(s): see [Wal99, Lemma 4.4], and
Lemma 34 for the general case.

Thus in the situation of Theorem 31, the smooth morphisms Xi+1 → Si+1

being in particular formally smooth, it is possible to lift any Ai-point Zi on Xi

to an Ai+1-point Zi+1 on Xi+1 with compatibility relations. This boils down
to [Wal99, Remark 4.5], see Proposition 36 below over general (local) rings.
From here, d being any positive integer and Li = [Zi]

⊗d (or O(d.Zi)) the line
bundle class corresponding to the Cartier divisor d.Zi, we immediatly deduce
a lift Li+1 = [Zi+1]⊗d of Li. 16 The key point is that the line bundles surject
to each other in a compatible way with the projective system of rings. More
precisely, considering a�ne open subsets where the line bundles become principal
fractional ideals, we see that for each i the identity map on OXi

induces the
isomorphism of line bundles:

(23) OXi
⊗OXi+1

Li+1 → Li

from which we deduce in particular the isomorphisms for all i:

(24) OX0
⊗OXi

Li → L0

shows that X0/k lifts to X1/A1. The trick that makes it possible is [Ill05, Remark
5.10 (b)] (see also [SGA1, p61]), which boils down to the standard base change
formula for modules of di�erentials: let B be an A-algebra and A→ A′ a morphism
of rings (here B is an a�ne subset algebra of Xi+1, A = Ai+1 and A′ = Ai), then
A′ ⊗ ΩB/A = ΩA′⊗B/A′ . We also mention that smoothness criterion [Ill05, 5.8 (ii)]
is false and should be replaced by [SGA1, �II 1.1 & 4.8]. Hartshorne's Deformation
theory, Corollary 10.3 recovers the result by more machinery (T functors).

16 Notice also that it is actually possible to lift any line bundle, by [Ill05, �5.2] (see also
Lemma 11 of Akhil Matthews' blog), although for our purpose it is enough to lift
points, as we just did.
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Finally, starting from a line bundle L0 = [Z
(0)
0 ]⊗d on X0 along with n distinct

points of degree one Z
(1)
0 , . . . , Z

(n)
0 outside of Z

(0)
0 , de�ning a κ-linear evaluation

code C0, then we can lift this data to all Xi/Si in a compatible way (the points
and the line bundles embed/surject to each other), and obtain Ai-linear evalua-
tion codes Ci of length n (see the explicit description of AG codes over Artinian
rings at the beginning of [Wal99, �5]). What then remains to be shown is that
these evaluation codes reduce to each other in a compatible way.

Theorem 32 (Projective systems of lifts of Riemann-Roch spaces and
AG codes). Consider the same situation as above: L0 any line bundle over X0,

n closed points Z
(j)
0 , j = 1 . . . n on X0 and the evaluation map γ0 yielding an

algebraic geometry code. Then this data lifts to every Xi, such that we have the
following commutative diagram:

(25) Γ (Xi+1,Li+1) // //

��

Γ (X,Li+1)⊗Ai+1 Ai
˜ // Γ (Xi,Li)

��
⊕jΓ (Z

(j)
i+1,Li+1|Z(j)

i+1
)

γi+1

��

⊕jΓ (Z
(j)
i ,Li|Z(j)

i
)

γi

��
Ani+1

.⊗Ai+1
Ai

// Ani

Where: - the top left horizontal arrow and the bottom horizontal arrow are
tensorisation by ⊗Ai+1

Ai - the top right arrow is constructed canonically as in
[Wal99, Lemma 4.6 & proof of Th 4.7]

- the top vertical arrows are the canonical restriction maps, - the bottom left
vertical arrow arizes from choices of isomorphisms for all j:

γi+1 : Γ (Z
(j)
i+1,L|Z(j)

i+1
)→ Ai+1

under the (recursive) condition that it induces the bottom right isomorphism γi
by tensorisation by ⊗Ai+1

Ai.

Proof. The lifting of L0 and of the points follows from the discussion above the
theorem.

The proof that the top right arrow is an isomorphism is mutatis mutandis
the arguments in [Wal99, Lemma 4.6 & proof of Th 4.7].

Maybe should I also explain how to obtain such a lift of γi for the bottom
left vertical arrow.

Corollary 33 (Good lifts of AG codes). The codes Ci form a projective
system of codes, more precisely we have surjections for all i:

(26) Ci+1 � Ci+1 ⊕Ai+1
Ai ∼= Ci

Moreover the codes Ci are all free of rank dimC0 and thus good lifts of C0:

(27) π(Ci) = C0
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thus their projective limit Ĉ = lim←−Ci over Â is also a good lift of C0.

Proof. The proof for (26) being the same as [Wal99, Theorem 5.5], let us describe
it quickly.

The freeness and equality of ranks follows from [Wal99, Th 5.4], thus they
are good lifts by de�nition, whence (27) (this is exactly the argument of [Wal99,
Th 5.7]).

For the last assertion, the projective limit being an additive functor, it pre-
serves direct summands so sends good lifts to good lifts. ut

C Realizing the projective limit of codes as an AG code,
thanks to the existence theorem

The following lemma states that [Wal99, Lemma 4.4] also holds over any local
ring R, and that the situation is equally explicit.

Lemma 34. AnR-point is a regular immersion of codimension one. There exists
a unique, well de�ned Cartier divisor (which we will also denote by Z) associated
to Z. Furthermore let s be the closed point of S and Z(s) be its (closed) image
in X, then Z factors through a closed immersion in SpecOZ(s) followed by the
open immersion in X. Thus there exists an a�ne neighborhood U = SpecB of
Z(s) and a regular element b ∈ B such that Z =

{
(U, b), (1 outside of Z(S))

}
.

Proof. We �rstly prove that the image of Z is contained in any (a�ne) neigh-
borhood of Z(s). Let SpecB be any a�ne neighborhood of the image Z(s) in
X, then Z−1(SpecB) is an open subset of S containing s so is the whole S .

Let us now show that Z de�nes a closed immersion in SpecB, which implies
in particular that the image Z(s) is a closed point. Let us restrict to SpecB the
structural morphism f : X → S, we now have the corresponding morphisms of

rings R
f]

−→ B
Z]

−−→ R which by assumption compose to the identity of R. Thus
in particular Z] : B → R is surjective.

Let us �nally show the Cartier divisor description of Z. Z being an immer-
sion, it is furthermore regular by [SGA1, II Corollaire 4.16]. In particular its
ideal IZ(s) ⊂ OZ(s) is generated by a regular sequence. Let us remind why the
codimension d �i.e. the size of this regular sequence� is one. The local ring
OZ(s) being noetherian, we have:

dimR = dimOZ(s)/IZ(s) = dimB − d = dimR+ 1− d ,

where the second equality follows from [Sta18, 00KW] (see also [Liu], theorem
2.5.15) . All the other closed points of X being outside of Z(S), Z is de�ned by
1 there. Thus by [Sta18, 00NX (5)] the sheaf of ideals of Z is locally free of rank
one. The claimed description of Z follows by choosing a su�ciently small open
a�ne neighborhood U = SpecB of Z(s) and such that a regular generator bB
of IZ(s) ⊂ OZ(s) is a regular element of B. ut
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Theorem 35 (the existence theorem [Ill05, Theorem 5.19 (ii)] or [SGA1,
III Corollaire 7.4]). Under the assumptions of Theorem 31, if furthermore

A = Â is complete (e.g. Zp or more generally W (Fq)), there exists a smooth

projective curve X over S = Spec Â that lifts X0/S0.

Proposition 36 (Lifts of points). Under the assumptions of Theorem 31, let
Z0 : A0 → X0 be a A0-point of X0, then there exists a compatible direct system
of Ai-points of Xi lifting Z0. Namely we have a family of Ai-points (Zi)i such
that, noting ji the closed immersion given by Theorem 31, then the following
diagrams commute:

(28) Xi
ji // Xi+1

Si

Zi

CC

// Si+1

Zi+1

>>

Proof. By induction, let us deduce Zi+1 assuming the existence of Zi. Consider
the composite map:

gi : Si
Zi−→ Xi

ji−→ Xi+1 ,

which by Theorem 31 �ts into the following commutative diagram:

(29) Xi+1

��
Si

gi
55

// Si+1

?

;;

id // Si+1

The vertical arrow being smooth and the bottom left arrow being a closed im-
mersion of Artinian local rings de�ned by an ideal of square zero, [SGA1, III
Th 3.1 (iii)] provides the existence of a dotted arrow Zi+1, which is indeed a
Ri+1-point making (28) commute. ut

Under the assumptions of Theorem 35 we can also lift S0 points of X0 to
S-points of X, this time as a consequence of [SGA1, III Th 3.1 (ii)]. Indeed as
noticed in the proof of Lemma 34, any a�ne neighborhood of the closed point
of S is actually the whole S.

Lifting n on X0 points and a line bundle (of the form OX0
(dZ0)), we obtain

an AG code C on X the smooth projective curve of 35. One can see that C
surjects in a compatible way to the projective system of Corollary 33.

Remark. One can also show directly that C is a good lift of C0. Indeed, we need
only show the saturation criterion of Proposition 8 (i): if a codeword w in C is
a multiple of p : w = pw1 then w1 is also a codeword of C . To prove this, use
that all local rings in X are UFD (because X is smooth over the regular local
ring R).

Question 1. So it would be very nice to �nd a counterexample of code C over
a non smooth curve over Zp (or Witt), such that C is not saturated (= the
criterion that we just checked).

38



D Proof of Theorem 18: extending Mumford's normal
generation criterion over any �eld

The following theorem is stated in [Mum11, Theorem 6] over any algebraically
closed �eld. The goal of this section is to deduce that the theorem holds over any
�eld, which is exactly the statement of Theorem 18 (formulated with function
�elds, see e.g. [AZ18, Theorem 6.1]).

Theorem 37. Let X be a smooth projective curve over an algebraically closed
�eld k. Let L andM be invertible sheaves on X, such that degL ≥ 2g + 1 and
degM≥ 2g. Then the morphism

Γ (L)⊗ Γ (M) −→ Γ (L ⊗M)

is surjective.

Lemma 38. Let k be a �eld, k ⊂ K a �eld extension, X a variety over K and
f : XK → X the K-variety deduced from X by base-change. Let F be a sheaf
of k-algebras over X (for example an invertible sheaf) and let FK = f−1F ⊗kK
be its pull-back over XK � where K is the constant sheaf over XK . Then the
morphism

Γ (F)⊗k K −→ Γ (FK)

is an isomorphism.

Let us �rst admit the lemma and prove Theorem 18. Let K be the algebraic
closure of k. The property of being a proper �resp. smooth� morphism being
stable by base change, the variety XK is still proper and smooth over K. Mum-
ford's Theorem 37, applied to the variety XK and to the pulled-back sheafs LK
andMK , thus states that the morphism:

Γ (LK)⊗ Γ (MK) −→ Γ (LK ⊗MK)

is surjective. By the lemma, one can move out the ⊗kK from both from the right
hand and left hand sides. The surjection therefore reads itself as:

Γ (L)⊗ Γ (M)⊗k K −→ Γ (L ⊗M)⊗k K.

But K being a k-vector space, it is faithfully �at, hence the theorem.
Let us now prove the lemma. Let ρUV : F(U) → F(V ) the restriction mor-

phisms of the sheaf F . By de�nition, FK is the sheaf associated to the following
presheaf over XK , whose sections over any open set U are the F(U) ⊗k K and
the restrictions equal to the ρUV,K = ρU,V ⊗k K : F(U)⊗k K → F(V )⊗k K.

Let us thus consider s̃ a section of FK . It consists in the data of a �nite open
covering (Ui)i of XK , and of a collection of sections s̃i ∈ F(Ui)⊗kK compatible
between each other by the restriction maps ρUV,K . Explicitly, let Ui and Uj be
two open sets. Let us abridge ρi and ρj the restriction morphisms ρUi, Ui∩Uj and
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ρUj , Ui∩Uj
. Let us express the sections under the form of �nite sums of elementary

tensors:
s̃i =

∑
p∈P

mi
p ⊗ λip

s̃j =
∑
q∈Q

mj
q ⊗ λjq ,

where P and Q are �nite sets of indices, the (λip)p and (λiq)q are elements of

the �eld K, and the mi
p (resp. m

j
q) sections of F(Ui) (resp. F(Uj)). The glueing

condition for the open sets Ui and Uj , noted (ij), is

(ij)
(
ρi ⊗k K

)(∑
p∈P

mi
p ⊗ λip

)
=
(
ρj ⊗k K

)(∑
q∈Q

mj
q ⊗ λjq

)
.

Let k ⊂ L ⊂ K a �nite extension of k, large enough to contain all the coe�cients
(λip) i,j,k,...

p,q,r,...
which show up in the previous expressions of all the sections s̃i, s̃j ,

s̃k etc. Let (l1, . . . , lN ) a basis of L over k and

λip = λip,1l1 + · · ·+ λip,N lN ,

λjq = λjq,1l1 + · · ·+ λjq,N lN

etc. The decompositions of each of these coe�cients over the basis (l1, · · · , lN ). L
being a vector space over k �of dimension N�, every F(U)⊗kL is a direct sum
of N copies of F(U) (by regrouping the components in ·⊗ ln, n = 1 . . . N). Con-
sequently, the set of glueing conditions (ij)i,j is satis�ed i� the set of projections
of these glueing conditions (ij, n)i,j,n, over all the components in (· ⊗ ln)n=1...N ,
is satis�ed. For example, let us �x n, then the projection over · ⊗ ln of a glueing
condition (ij) can be expressed as

(ij,n) ρi(
∑
p∈P

mi
p ⊗ λip,n) = ρj(

∑
q∈Q

mj
q ⊗ λjq,n)

(Where we recall that the coe�cients (λip,n)p, (λjq,n)q are in k). Consequently,
the collection of the projected conditions (ij, n)i,j , for a �xed n, de�nes a global
section sn ∈ F(X). But

s̃ = s1 ⊗k l1 + · · ·+ sN ⊗k lN ∈ F(X)⊗k K,

which is what was to be proven.
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