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Abstract. This paper studies information-theoretically secure multiparty com-
putation (MPC) over rings Z/p`Z. In the work of [ACD+19, TCC'19], a pro-
tocol based on the Shamir secret sharing over Z/p`Z was presented. As in
the �eld case, its limitation is that the share size grows as the number of
players increases. Then several MPC protocols were developed in [ACY+20,
Asiacrypt'20] to overcome this limitation. However, (i) their o�ine multiplica-
tion gate has super-linear communication complexity in the number of players;
(ii) the share size is doubled for the most important case, namely over Z/2`Z
due to infeasible lifting of self-orthogonal codes from �elds to rings; (iii) most
importantly, the BGW model could not be applied via the secret sharing given
in [ACY+20, Asiacrypt'20] due to lack of strong multiplication.
In this paper we overcome all the drawbacks mentioned above. Of independent
interest, we establish an arithmetic secret sharing with strong multiplication,
which is the most important primitive in the BGW model. Of independent
interest, the new multiplicative triples check, which we introduce for (i), has
better asymptotic complexity than the one of [GSZ20, Crypto'20], both in the
particular case of �nite �elds and when lifted over rings Z/p`Z. Finally, we
lift Reverse Multiplication Friendly Embeddings (RMFE) from �elds to rings,
with same (linear) complexity. Note that RMFE has become a standard amor-
tization technique for communication complexity in MPC in the regime over
many instances of the same circuit, as in [CCXY18, Crypto'18] and [DLN19,
Crypto'19]. We can thus compile existing MPC protocols over �elds, including
[PS21, EC'21], into ones over rings Z/2`Z with same complexity.
To obtain our theoretical results, we use the existence of lifts of curves over
rings, then use the known results stating that Riemann-Roch spaces are free
modules. To make our scheme practical, we start from good algebraic geometry
codes over �nite �elds obtained from existing computational techniques. Then
we present, and implement, an e�cient algorithm to Hensel-lift the generating
matrix of the code, such that the multiplicative conditions are preserved over
rings. On the other hand, a random lifting of codes over rings does not preserve
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multiplicativity in general. Finally we provide e�cient methods for sharing and
reconstruction over rings.

1 Introduction

MPC over rings Z/p`Z, is a model relevant for secure computation of functions
which are naturally expressed over rings of integers Z/p`Z. The most important
case is Z/2`Z with ` (a multiple of) the length of machines integers. In this
model, the computation complexity is counted in terms of elementary additions
and multiplications in Z/p`Z, and the communication complexity is the number
of elements of Z/p`Z sent. By contrast, the previous model of MPC are arithmetic
circuits in Fp. But computations modulo p are not natively done by processors.
Unless p = 2, which is the case studied by MPC for the functions expressed
naturally as binary circuits. It appears from the literature that emulating MPC
over the integers, from MPC in Fp, incurs a substantial overhead in complexity.
For instance, the protocol of [DFK+06] for bit decomposition of numbers mod-
ulo a large p, in order to perform secure comparisons, costs log(p) log(log(p))
secure multiplications modulo p. Whereas comparisons directly between integers
modulo a power of 2 are much more e�cient ([ABF+18]).

1.1 Related works

In a recent line of work on e�cient MPC over Z/p`Z, signi�cant advances have
been made in order to avoid the overhead incurred by this emulation, by re-
designing basic arithmetic MPC so as to work �more directly� over the ring in
question. The �rst published paper [CDE+18] in this line introduces the SPDZ2k

protocol, a full redesign of the well-known SPDZ-protocol [DPSZ12], the bench-
mark for the case of cryptographic security with dishonest majority in Beaver's
preprocessing model, that works directly over the rings in question and that is
essentially as e�cient as the most e�cient SPDZ-incarnation. See also the com-
pilers of [DOS18; ADEN19] from passive security over rings to active security
over rings. For more discussion about practical advantages, see [CDE+18] and
its follow-up [DEF+19], which also reports on applications to machine-learning
that signi�cantly outperform approaches from �eld-based MPC. Maliciously se-
cure machine learning directly over the integers is now becoming the standard
(e.g. [PS20]).

Closer to us is the line of work [ACD+19; ACY+20], that aims at answering
the question if information theoretically secure MPC over Z/p`Z, has complexity
equal to the one of MPC over Fp. The issue is simple: suppose that one has
the choice between two protocols with the same complexities: measured over
Fp for the former, and over Z/p`Z for the latter. Then the latter protocol is
automatically the most e�cient to securely compute any function over Z/p`Z,
since no emulation is needed. The present paper �rstly addresses this question
mainly in the plain model [CDN15, �5], denoted �BGW�, that is: assuming only
authenticated channels and requiring perfect security. So in particular, we have
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that the number of malicious corruptions is t < n/3, since no broadcast channel
is available beyond this bound in the BGW model. [ACD+19] considers MPC
in the BGW model over rings. It adapts the protocol of [BH08], including the
secret sharing over Z/p`Z adapted from Shamir, and thus inherits the amortized
suboptimal O(n log(n)) communication complexity of [BH08].

We then consider the setting of Rabin&Ben-Or, denoted as �honest major-
ity�, which assumes a broadcast and requires unconditional statistical security,
tolerating t < n/2 corruptions. Until recently the best amortized communication
complexity over �elds was [BFO12], in n log(n) bits per gate, plus a term in n2

times the depth of the circuit. Let us �rst discuss the n2 term, which was re-
moved over �elds by [GSZ20]. As noticed in [ACY+20] (at the beginning of �6),
the main tool of [GSZ20] is the Batched Triple Sacrifice protocol of [BFO12], that
checks correctness of shared Beaver triples. It runs in the o�ine phase, and has
O(n log(n)) communication complexity (to be sure, the notation φ in [GSZ20]
stands for the log of the size of the �eld, it is required to be φ ≥ log(n)). This
Batched Triple Sacrifice was then carried over rings in [ACY+20], resulting in an
overall amortized communication complexity in O(n log(n)) also over rings.

In addition to the above super-linear o�ine communication complexity, there
are some other drawbacks in [ACY+20]: (i) their secret sharing schemes with
(standalone) Multiplication are constructed with a double sharing, which thus
doubles the size (ii) their way around this doubling, only for p ≥ 3, uses asymp-
totically good families of self-dual codes, for which no practical construction is
known (by contrast with good families of codes from algebraic curves / function
�elds, whose computation is widely studied); (iii) most importantly, the secret
sharing scheme given in [ACY+20] cannot be adopted for the BGW model due
to lack of Strong multiplication.

1.2 Our focus

Our main focus are the two fundamental primitives for MPC in the BGW model
detailed below. Besdes, we also deal with the asymptotic complexity of MPC un-
der honest majority, especially the Batched Triple Sacrifice which costs the so-far
log(n) communication overhead. We are �nally concerned by the computational
e�ciency of general reconstruction methods of linear secret sharing schemes over
rings, which was not dealt with at all in previous works.

The �rst primitive for MPC in the BGW model is arithmetic secret sharing
with Strong multiplication (ASSSM). Recall that such a scheme with respect to
adversary bound t, guarantees both: secrecy from any t shares, and, reconstruc-
tion of the product of two shared secrets, from any list of n − t products of
pairwise shares of these secrets. By contrast, secret sharing with (standalone)
Multiplication only, requires all the n pairwise products of shares for recon-
struction of the product. The simplest example is the Veri�able secret sharing of
BGW itself. Importance of Strong multiplication is formalized in the Theorem
3 of [CDM00], as the building block of error-free MPC protocols. Namely, it is
emphasized in [CDN15, p114] as the tool enabling not to restart the execution
of the protocol, even when a player openly misbehaves. Notice that the log(n)
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overhead is inherited from Shamir's secret sharing, which operates in �nite �elds
of cardinality at least as large as the number of players. This limitation was
removed in the series of papers [CC06; CCCX09; CCX11] using algebraic geo-
metric codes over �elds. Notice that these state of the art ASSSM and constant
size of shares, motivated the �MPC in the head technique� [IKOS07], see [Cas16,
�5] for other applications. In this paper we ask if the same tight size of shares
is achievable over rings. We also ask if the same e�ciency of constructions is
achievable as over �elds [Hes02; Khu04; SAK+01; SG20]. Also, much optimi-
sation has been made for sharing/reconstruction algorithms over �elds [SW99;
GS99; NW17].

The second primitive are Reverse multiplication friendly embeddings (RMFE).
They enable to emulate several circuits in parallel over small �nite �elds Fp, from
a single circuit over a large extension Fpm . They are introduced in [CCXY18],
and are the main tool for the upper bounds of [DLN19; BMN18; DLS20; CG20;
PS21]. RMFE enable to linearize the amortized communication complexity of
perfectly secure MPC, over multiple instances of the same circuit (with possi-
bly di�erent inputs), while preserving an optimal corruption tolerance. Recall
that a RMFE [CCXY18, De�nition 1] (recalled in �5.4), is an embedding from
some vector space Fkq over Fq, into some �eld extension Fqm , which �carries� the
multiplication in Fqm into the component-wise multiplication of vectors in Fkq
(the same one as for multiplicative secret sharing). The larger the ratio k/m,
the better the complexity of MPC is amortized. Again, RMFE with polynomial
encoding (as in Shamir secret sharing) exist up to k ≤ q+1. And again, this limit
of the �eld size was removed in [CCXY18, Theorem 3] with constructions from
algebraic geometry coding. Namely, they achieve for any �x q, a slowly growing
in�nite family of parameters k,m such that the ratios k/m are lower bounded
by a constant, which is optimal. We thus ask if the same ratios are achievable
over rings, and if constructions are as e�cient.

1.3 Our contributions

1.3.1 Asymptotically optimal Strong multiplication over rings

Main Theorem 1. For every p and `, for any �xed even r larger than some
r̂(p), we have a slowly growing in�nite family of number of integers n, such that
there exists an ASSSM over the �xed ring Z/p`Z, with n shares, with constant
size of shares r and t-adversary bound such that 1/3 − t/n > 0 a constant
arbitrarily close to 0 (in O(p−r/2)).

More precisely and generally: all parameters (n, p, r̂(p), t) published in [CC06;
CCCX09] over �elds Fp, also hold over rings. We have stronger than privacy:
uniformity of the projection on any t shares of the space of vectors of shares of
any given �xed secret. Moreover, the scheme obtained by reduction modulo p
may be assumed to be asymptotically good as well. 6 Last but not least, sharing

6 This fact is quite useful in some practical protocol applications but it is not strictly
necessary for general arithmetic MPC
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and reconstruction over Z/p`Z have the same computational complexity than for
ASSSM over �elds Fp.

This thus closes the gap between the complexity of ASSSM over �elds, and
over rings. Since this result is tight, we do not further justify why our construc-
tion uses �Galois rings� extensions as an intermediary step. Although we hope
that it will be clear from �1.4, �2.1 (and also [ACD+19; ACY+20]) that these
objects play the same auxiliary role over rings, as �nite �elds extensions do over
�elds. Concretely, under the hood is that Fp is embedded into Fpr in order to ac-
cess ASSSM/RMFE with good properties, which are then lifted over Galois ring
extensions, then seen as free modules over Z/p`Z. But for simplicity, we refrained
from stating that the above theorem also holds for any Galois ring extension of
degree r, with the same parameters (n, p, r(p), t) than [CC06; CCCX09] over
Fpr . We also kept simple the formula and made explicit only the case where t is
close to n/3. To be sure, the parameters of [CCCX09] also enable smaller sizes of
shares, at the cost of a lower t (using multiplication friendly embeddings). The
last claim, on e�ciency, will follow from the algorithms of Theorem 5 below.
Technically, Theorem 5 applies here since the componentwise squares (see �3.1)
of the codes constructed are included in �free codes� of dimension as small as
the codes of the ASSSM over �nite �elds.

1.3.2 Optimal communication of MPC under honest majority. We re-
move the aforementioned amortized log(n) communication overhead in [ACY+20],
which also held over �elds up to recently (see �1.5 for an update with recent re-
lated works over �elds). The bottleneck comes from the o�ine phase, in the sub-
protocol of [BFO12] checking triples, e.g., as transposed over rings in [ACY+20,
�6.6]. Recall that the baseline method of [BFO12] proceeds by encoding many
triples in three polynomials, then succinctly check the multiplicative relation be-
tween these polynomials. We start by replacing it by an alternative construction
of Batched Triple Sacrifice over �elds of �xed size. This construction is closely re-
lated to the strong multiplication property, it is stated and proven in Proposition
16. Then we lift it over rings, thus removing the log(n) overhead of [ACY+20],
which results in MPC with a communication of O(n) bits per gate over rings. On
the face of it, it applies only to the model of [ACY+20], in which the adversary
bound is suboptimal. But actually, anticipating on the tools of the next section,
we observe in �1.5 that it is possible to reach the same O(n) complexity with an
optimal adversary bound, by lifting the recent results of [PS21].

Main Theorem 2. In the model of [RB89]: honest majority minus epsilon and
assuming broadcast, then there exists a statistically secure MPC protocol with
guaranteed output delivery and amortized communication complexity (both on-
line and o�ine) linear in the number of players per multiplication gate.

1.3.3 Amortized complexity of MPC over rings. We construct, in �5.2
an in�nite family of RMFE over rings with same constant asymptotic ratio as
the ones of [CCXY18]. Combined with the tight complexities of general LSSS
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proven in Theorem 5, this enables to carry over rings the results of [CCXY18]
with the same computational and communication complexities:

Main Theorem 3. In the BGW-model, there is an e�cient MPC protocol for
n parties secure against the maximal number of active corruptions t < n/3 that
computes Ω(log n) evaluations of a single circuit over Z/p`Z in parallel with an
amortized communication complexity (per instance) of O(n) elements of Z/p`Z
per gate, and same computational complexity than in [CCXY18, Thm 1 & 2].
Combining with the Franklin-Yung paradigm [FY92], we get:

In the BGW-model, for every ε > 0, there is an e�cient MPC protocol for n
parties secure against a submaximal number of active corruptions t < (1− ε)n/3
that computes Ω(n log n) evaluations of a single circuit over Z/p`Z in parallel
with an amortized communication complexity (per instance) of O(1) elements
of Z/p`Z per gate.

1.3.4 Optimal share sizes and computability under honest majority
The asymptotically good ASSSM of Theorem 1 have a fortiori standalone Mul-
tiplication. So they can be used as a replacement for the schemes constructed in
[ACY+20, �4.1]. Especially for p = 2, recall that Multiplication of their schemes
is obtained via a double sharing, which thus doubles the size of the shares (as
stressed in the roadmap of [ACY+20, �3]). Our construction thus divides their
sizes of shares by 2 for p = 2. A corollary of above, is that the active protocol
presented in Section 6 of [ACY+20], which requires standalone Multiplication,
now works with share sizes reduced to half, and now using computable families
of codes, including from AG/function �elds.

1.3.5 Practical computability (continued) Main Theorems 1, 2 and 3
rely on objects (ASSSM or RMFE or the related ones of Proposition 16) with
good asymptotic properties of which we prove existence. We then describe in �4
e�cient algorithms to construct these objects.

Theorem 4. Starting from any ASSSM over any �xed �eld Fp considered in
[CC06; CCCX09; CCX11], then, obtaining the lifts over Z/p`Z for any `, as
predicted by Main Theorem 1, boils down to solving ` instances of a linear system
over Fp with Ω(n6) coe�cients. Alternatively, log(`) linear systems: modulo

p, p2, p4, . . . , (p`)
1
2 .

We have an analogous system to obtain the RMFE predicted by Main The-
orem 3, from the ones of [CCXY18, Theorem 5].

A formal description is given in �4 (for ASSSM) and �5.4 (for RMFE), a toy
example in �3.1. A proof of Theorem 4 is given in the long version. It requires to
prove that AG codes have a free lift whose square is also free, which requires ad-
ditional methods than those given in �3.3. We illustrate e�ciency of our method
in �4.1 by lifting a strongly multiplicative secret sharing scheme over F16 for 64
players and adversary threshold t = 13, into a scheme over the Galois extension
of degree four of Z/2100Z, in a minute on a single processor.
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1.3.6 Tight computational complexity of linear secret sharing schemes
(LSSS) over rings Although theoretical results for error correction over rings
are shown in [ACD+19, Construction 1 & Proposition 1], it is not yet clear in the
literature if there exists e�ective algorithms for even the simple task of recon-
struction of a secret with only erasures. We �ll this gap by providing algorithms
for sharing and reconstruction of linear secret sharing schemes (LSSS) over rings
that arize from free codes. In particular it proves our e�ciency claims in the
Main Theorems above. A free code C over Z/p`Z is by de�nition the linear span
of independent vectors with coordinates in Z/p`Z, in particular it is of same di-
mension than its reduction C modulo p, which is a code over Fp. In particular,
all the ASSSM constructed in this paper have this property, as well as the ob-
jects studied in [ACY+20] and in [ACD+19] (which considers the speci�c case of
Shamir secret sharing over rings). On the other hand, LSSS arising from nonfree
codes have bad computational complexity, as we illustrate in Counterexample
10. We provide computational complexities that match the ones over �nite �elds,
so which are tight. For simplicity the following theorem is stated over Z/p`Z, but
it will be clear from the proof that it obviously also holds over any Galois ring
extension.

Theorem 5. Let n, ` be integers, consider a free code C in (Z/p`Z)n+1 and let
ψ the corresponding (LSSS) with n shares in Z/p`Z, such that (without loss of
generality) the secret is encoded in the 0-th coordinate of codewords. Denote C
the code reduced modulo p and ψ the corresponding LSSS (which is ψ modulo
p) over Fp. We have:

(A) The task of computing a generating matrix of C in systematic form, from
any generating matrix of C and, more generally, Gauss pivot, has same
computational complexity as modulo p, plus O((dimC)(log `)).

(A') Then, sharing a secret using ψ (thus of bitsize ` times larger) has same
computational complexity as using ψ. Same for share-wise multiplication.

(B) Let I ⊂ {1, . . . , n} be a set of n − d(C) + 2 indices of shares. Then, there
exists a linear map φI : (Z/p`Z)|I| −→ Z/p`Z that reconstructs the secret,
with the same complexity than a reconstruction map φI for ψ. Moreover,
φI can be compiled from a reconstruction map φI for the LSSS modulo p,
essentially for the cost of one matrix inversion in (Z/p`Z)|I|×|I|.

(C) Let I ⊂ {1, . . . , n} be a nonempty set of indices, such that there exists a
robust reconstruction algorithm φI tolerating up to τ errors. [That is: on
input shares of a secret s with indices in I initially obtained from ψ, such
that at most τ of them were arbitrarily modi�ed, then φI outputs s]. Then
there exists a robust reconstruction algorithm for ψI tolerating up to τ errors,
whose computational complexity consists in applying sequentially ` times φI .

Notice that the matrix inversion required in (B) can be computed using the
Gauss pivot of (A).
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1.4 Di�culties and intuitions of the constructions

Only algebraic-geometric (AG) constructions such as in [CC06] are so far known
to enable ASSSM over �elds of constant sizes for an arbitrarily large number
of shares. They follow the same pattern than the scheme of Shamir, which is a
particular case. First, select an algebraic curve (e.g. all the points in Fq plus the
�point at in�nity�, in the case of Shamir). Second, select a �Riemann-Roch� vector
space of functions (e.g. the polynomials of degree ≤ d in the case of Shamir: said
otherwise, the space L(d∞) of polynomials �vanishing at order at least d at
in�nity�). Then, select a particular point P0 on the curve (e.g. the point 0 in
Shamir). To share a secret s, select a function at random in the Riemann-Roch
space that evaluates to s at P0. Then evaluate it on n prede�ned points of the
curve to obtain the shares. In what follows we will instead take a coding-based
approach. This has both the advantage to make proofs which are more black
box in the AG codes used, and also, our e�cient methods will actually directly
lift the generating matrices of such AG codes over �elds.

For C a code (over a �eld or a ring), we denote as componentwise square
C∗2 the code of same length which is generated by all the products of any two
codewords of C component by component. Strong multiplication of the LSSS
from C thus requires that C∗2 has large distance, thus be of small size. The
central problem of this paper is thus brought down to: starting from a free code
C over a ring (typically a �nite �eld) which has free square of small dimension,
then �nd a code C̃ in a larger ring, that reduces to C mod p`, and has square
contained in a free code of small size. On the one hand, it is trivial to lift Reed-
Solomon (RS) codes over rings, in a way that preserves their remarkably small
componentwise square. Indeed, lifts of RS codes are given for free: these are the
RS codes over rings. RS codes over rings were studied in [ACD+19], but, as over
�nite �elds, these RS codes have a log(n) size overhead. This ine�ciency is one
of the main motivations of the present paper. On the other hand, when trying
to lift AG codes with larger genus, in order to remove this overhead, we hit the
main di�culty of this paper. Namely, we illustrate in �3.1 that lifting at random
(as done in [ACY+20]) almost certainly fails to preserve the small dimension of
the square.

But our theoretical results imply that a solution exists, which we are able to
compute e�ciently. Anticipating on them, we �rst present a toy example in �3.2.
Recall that RS codes are the simplest case of AG codes, namely, over the curve
P1 (the �projective line�), which is of genus 0. This is why our toy example �3.2
illustrates the simplest nontrivial example, which is a curve of genus 1.

To obtain our theoretical results over rings, we �rst use known theorems
that state the existence of lifts of curves over rings. We then apply results of
Judy Walker that state that Riemann Roch spaces are free modules, and also,
the codes deduced from their injective evaluation at points of the curve. On the
other hand, to compute the codes concretely, we will follow a direct approach.
Namely, instead of lifting curves over rings, we will directly lift a generating
matrix of the code, such that the multiplicative conditions are preserved. On
the face of it, there are more constraints than variables. But a result is always
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returned. Proving this fact requires strictly more than that C lifts with a small
square. Indeed, it also requires freeness of the square of the lift C̃∗2, which is
harder. This is why we prove it in the long version only.

The reader may wonder why we did not directly compute lifts of the curves.
The reason is that the theoretical results require that the curves be represented
with �smooth� equations, in particular, with many variables. But in practice,
good curves are expressed in terms of equations with two variables only. And
there is no e�cient method today to compute smooth lifts of such �plane� models,
that have many �non smooth� points. Let alone computing Riemann-Roch spaces
of smooth models curves over rings, which is out of the scope of existing research
(except Walker-Voloch, for smooth curves in the plane).

1.5 Comparison with two recent related works over �elds

[GSZ20]. Concurrently and independently from us, this paper describes a batch
check of multiplicative triples over �nite �elds. It achieves O(n2 log(N)κ) bits
of communication, where N is the number of multiplication triples and κ is the
security parameter. It requires logN rounds. By comparison, our batch check of
Proposition 16 achieves (both over �elds and over rings), a smaller asymptotic
communication complexity: of O(n2κ) bits for any N and one single round.

[PS21]. This paper achieves MPC in the model of [RB89] over �elds (honest
majority, assuming broadcast, with statistical security), with asymptotic com-
munication O(n) bits per gate. Contrary to what was incorrectly claimed in the
proceedings version of the present paper, our results do not enable to indepen-
dently recover those of [PS21] over �elds as a particular case. Indeed, [PS21] holds
under a strict adversary threshold. Whereas on the other hand, our batch mul-
tiplicative check alone is only able to remove the log(n) overhead of [ACY+20],
which holds only for the suboptimal adversary threshold. Indeed, in the strict
honest majority model of [RB89], other sources of log(n) overhead exist.

Nevertheless, let us make the observation that our tools enable to compile
[PS21] from �elds to rings. Indeed, the building blocks of [PS21] are:

� Shamir sharing and Vandermonde matrices, which were carried over rings
by [ACD+19];

� the tensoring up lemma of [CCXY18], which carries unchanged over rings;
� the RMFE with optimal rate of [CCXY18], which we carry over rings.

1.6 Roadmap

In �2 we show that LSSS derived from free codes over Galois rings have same
privacy and reconstruction threshold as over the �eld modulo p. In �2.3 and �2.4
we present e�cient sharing and reconstruction algorithms (proof of Theorem 5
(A) (A') and (B)). We show conversely in Counterexample 10 that there does
not exist a linear reconstruction map for a large class of linear codes over rings
which are not free. This is why we focus on LSSS derived from free codes. Let
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us mention for the hurry reader that the results in �2.3 and �2.5 are not used
for the proof of Main Theorem 1.

In �3 we highlight the nontriviality of Main Theorem 1 on a toy example in
�3.1, then illustrate in �3.2 how to compute a multiplicative lift of it. We then
prove the Theorem in �3.3.

In �4 we elaborate more on the Hensel lifting method illustrated in the toy
example.

In �5 we prove the aforementioned applications of the theory to MPC. First
with a proof of Proposition 16 (the triples sacri�ce algorithm over a �eld/ring
of constant size), then with a proof of Main Theorem 3. The proof involves
RMFE over rings with same asymptotically constant rate than over �elds: we
also describe the e�ective algorithm to construct them in �5.4.

In the Appendix �C.2 we �nally provide the e�cient robust reconstruction
algorithm claimed in Theorem 5 (C). The reasons for this ordering is that ro-
bust reconstruction is actually not needed in the primitives considered in this
paper, and that its proof requires the additional linear algebra of Theorem 22 in
Appendix �C.

2 LSSS from Free Codes have Optimal Complexity

In �2.1 we introduce Galois ring extensions, and highlight that they the same size
and computational overhead over Z/p`Z, than �nite �eld extensions have over
Fpr . The presentation should be self-contained, but the reader can also refer to
[ACY+20; ACD+19]. In �2.2 and �2.3 we consider general LSSS from free codes
over rings, and prove the tight complexity claims (A') and (B) of Theorem 5 for
sharing and reconstruction. In �2.5 we show that free codes are generated from
any lift of any basis. All the basics are recalled, but the reader can alternatively
refer to [ACY+20, �2-�4]

2.1 Optimal Complexities in Galois Rings Extensions R`(r)

2.1.1 Equal Computational and Sizes for Elementary Operations Let
p be a positive prime number and Fp := Z/pZ the �nite �eld. Then, when
operating on objects with coordinates in Fp, we say that the computational
complexity is the number of elementary operations in Fp (where one can possibly
weight di�erently additions, scalar multiplications and bilinear multiplications).
Now, ` ≥ 1 denoting an integer, the second context encountered in this paper
are objects with coordinates in Z/p`Z the ring of integers modulo p`. In these
cases, we say that the computation complexity is the number of elementary
operations in Z/p`Z (where one gives the same weights as before to additions,
scalar multiplications and bilinear multiplications). Likewise, the communication
(or size) complexity is, in the �rst context: the number of elements in Fp which
are sent by honest players; whereas in the second context it is the number of
elements in Z/p`Z which are sent.

10



Galois-rings are de�ned as follows. Let r ≥ 1 be a positive integer and f(X) ∈
Fp[X] a monic irreducible polynomial of degree r. This de�nes the �nite �eld
extension or degree r:

Fpr = Fp < δ >:= Fp[X]/f(X)

which is a vector space of dimention r over Fp with basis 1, δ, . . . , δr−1 and
multiplication rule de�ned by the multiplication modulo f(X). Now, consider
any monic polynomial f(X) ∈ Z/p`Z which reduces to f(X) modulo p. Then
this de�nes the Galois ring extension of degree r:

(1) R`(r) = Z/p`Z < ∆ >:= Z/p`Z[X]/f(X)

which is in particular equal to Z/p`Z when r = 1. This is a free module over
Z/p`Z of dimention r. That is: it is isomorphic to (Z/p`Z)r, with basis 1, ∆, . . . ,∆r−1.
Multiplication in R`(r) is de�ned by the multiplication modulo f(X). Notice that
an equivalent de�nition of R`(r) is to consider the unrami�ed extension of degree
r of the ring Zp of p-adic integers, which is denotedW (Fpr ) the �Witt ring�, then
reduce it modulo p`. This will be used in �3.3, and is also a useful point of view
for the Hensel lifting algorithm of �4.

We say that an element x ∈ R`(r) is invertible modulo p if its reduction
x̄ ∈ Fpr is invertible. A key property of Galois rings is that an element invertible
modulo p, is then also invertible in R`(r). Indeed, consider an arbitrary lift y of
x−1. Then we have a formula xy = 1− pλ which holds in R`(r) for some λ. But
the right hand side of the equation is invertible, of inverse 1+pλ+ · · ·+(pλ)`−1.
From this formula we see that inversion in R`(r) costs essentially one inversion
in Fpr , and O(log(`)) squarings in R`(r).

2.1.2 Embeddings, and their equal complexities than over �elds From
the previous, we see that considering Z/p`Z as embedded in R`(r), multiplies by
r the size (an element x is mapped to the vector (x, 0, . . . , 0) with r coordinates)
by the same factor than when embedding Fp in Fpr . It follows from the de�-
nition (1) that the naive schoolboy multiplication algorithm in R`(r) has the
same complexity than the one in Fpr . For large Galois rings, we have e�cient
multiplication algorithms, which are motivated by their usage in LWE. Hence,
the references pointed in [ACD+19, page 4] and [PC] show that they have also
the same complexity than in Fpr .

Finally, one may also need to make the converse operation, and �descend�
from secret sharing schemes over R`(r), to secret sharing schemes over Z/p`Z.
The technique to do this over �elds is introduced in [CCCX09, Theorem 7 &
8], and based on linear maps called �multiplication friendly embeddings (MFE)�:
Fpm −→ F2m−1

p , which have the property to bring the multiplication in Fpm , into
the componentwise product in F2m−1

p . For the same reason as Reed Solomon
codes lift trivially over rings, we have that the MFEs of [CCCX09, Theorem 8]
carry over Z/p`Z with the same parameters, and thus we have exactly the same
�expansion rates� ((2m− 1)/m).
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2.2 General LSSS & ASSSM over Rings

Let R be any �nite ring (including R = Fpr or R`(r)), and n, k be positive
integers. To share a secret s in R, one samples uniformly an element w ∈ Rk−1
(the randomness space) then applies a certain linear map ψ on the whole to
obtain n �shares� : ψ(s,w) ∈ Rn. For I ⊂ {1, . . . n} a set of indices, we denote
|I| the size of I and πI : Rn → RI the projection on these components. For
any vector x ∈ Rn, we denote for short xI := πI(x) this projection, i.e., the
components of x in I, and likewise, for any linear map ψ in Rn, we denote for
short ψI := πI ◦ψ the �components of ψ in I�. Let 0 ≤ t < n be a positive integer.
Let k, n ≥ 1 be integers, we say that a linear secret sharing scheme (LSSS) over
R with n shares and randomness space Rk−1, is an R-linear map:

ψ :R×Rk−1 −→ Rn

(s,w) −→ ψ(s,w)

We say that it has t-privacy if for any share vector, any t coordinates are
independent of the secret, and it has rec-reconstruction if any rec coordinates
of a vector of shares determine the secret s.

De�nition 6. We say that a LSSS with privacy threshold t, is furthermore
Arithmetic with Strong multiplication (ASSSM), if for any two secrets s, s′ ∈ R,
consider any sharings of them: (si) = ψ(s,u) and (s′i) = ψ(s′,u′), then for any
set I of indices of size n− t, the data of the �sharewise� products (ψ(si)ψ(s′i))i∈I
determines uniquely ss′. Said otherwise, I is a �reconstruction set� for ψ × ψ.

Notice that this a fortiori implies n− t reconstruction threshold. If one replaces
n−t by n in the de�nition above, then this is the weakerMultiplication property.

2.3 Complexity of Sharing

From now on we specialize to a Galois ring R := R`(r) as de�ned in (1), e.g.,
equal to Z/p`Z when r = 1.

2.3.1 Proof of Th 5 (A): Systematic Form Let C ⊂ R`(r)
n+1 be a free

submodule of rank k, i.e., which is isomorphic to R`(r)k. Making a choice of
n + 1 coordinates in R`(r)

n+1, we denote this a �free code�. Likewise, we say
that k elements in R`(r)

n+1 form a free family if they generate a submodule
isomorphic to R`(r)k (we then say: �freely generate�). Recall that this implies
that the reduction C of C modulo p is a vector space of same dimension k. [This
follows immediately from the fact that if a square matrix with entries in R`(r)
is invertible, then its reduction modp is invertible.] For the same reason, in the
other direction, starting from a code C over Fpr of dimension k, and considering
any basis, then arbitrary lifts in R`(r) of these basis vectors generate a free code
C of same rank k.

We denote that a matrix G ∈ R`(r)
k×(n+1) is in echelon form, if for each

row i ∈ {1, . . . , k}, there exists a column ji ∈ {0, . . . , n} containing a 1 entry
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on row i and 0 everywhere else. We say in particular that G is in systematic
form if of the form (Idk|N). We say that matrix G′ is deduced from matrix G by
�elementary row operations�, if there exists a sequence of elementary row opera-
tions that transforms G into G′. Equivalently, if there exists an invertible matrix
E ∈ R`(r)k×k such that G′ = EG. Let us restate for convenience existence the
systematic form of free codes, which is used at least since Calderbank-Sloane
[CS95] (see also [SAS17, �5.1.1]). We re-prove it with an explicit construction,
which has same complexity than over �elds, which thus proves Theorem 5 (A).

Proposition 7. Let G ∈ R`(r)k×(n+1) be a matrix such that the rows form a
free family. Then there exists a matrix in echelon form which is obtained from G
by elementary row operations. And thus, up to reordering the n+1, coordinates,
in systematic form.

Proof. Consider the reduction of G in Fpr . By the Gauss pivot, there exists an
invertible k × k matrix E and a matrix G′ in echelon form, such that G′ =
EG. Let E ∈ R`(r)k×k be an arbitrarily lift of E. E being invertible (since its
determinant is invertible modulo p), the matrix G′ := EG is deductible from G
by elementary row operations. G′ being a lift of G′, we have furthermore, for
each row i, existence of a column ji such that the entry G′i,ji is a lift of 1, and
thus invertible in R`(r). Using this entry as a pivot, we anihilate all the other
entries on this column ji by elementary row operations. Finally, we divide the
row i by G′i,ji , thus entry (i, ji) becomes 1. Repeating for all i yields a matrix
G′′ deduced from G′ by elementary row operations.

2.3.2 Sharing Up to permutation of the coordinates, we may now assume
G ∈ R`(r)k×(n+1) of C in systematic form. By Th 5 (A) (Prop 7), the (one-shot)
complexity of computing this form is essentially the same as over �elds. Then,
sharing a secret s ∈ R`(r) with respect to the 0-th coordinate of C, boils down
to the following. First, sample a vector w ∈ R`(r)

k−1, uniformly at random.
This has complexity O(k) (or in terms of bits: O(`k log2(p))). Then, deduce the
vector of shares from the left multiplication:

ψ : R`(r)×R`(r)k−1 −→ R`(r)
n(2)

(s,w) −→ (s,w)G[1,...,n].(3)

Where G[1,...,n] denotes the n last columns of G. The complexity claim of The-
orem 5(A') then follows from the fact that dim (C) = rk (C) = k, and thus that
the generating matrices have the same sizes, combined with the fact pointed in
�2.1, that complexity of the multiplication in R`(r) (by de�nition relatively to
elementary operations in Z/p`Z) is the same as the one in Fpr (by de�nition
relatively to Fp).
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2.4 Privacy (with Uniformity) and E�cient Reconstruction from
Free Codes

Let us now bound privacy and reconstruction. The following states that Theorem
11.77 and Corollary 11.79 [CDN15] also hold over rings. Moreover, we will also
prove computational e�ciency of (4) (reconstruction) along the proof.

Proposition 8. Let C be a free code in R`(r)n+1 of rank k. Denote C the code

over Fpr obtained by reduction modulo p, C
⊥
the dual, and d(C), d(C

⊥
) the

minimal distances. Consider the LSSS with n shares in R`(r) obtained from C.
Recall that rec denotes the reconstruction threshold. Then we have:

rec ≤ n+ 1− (d(C)− 1) = n− d(C) + 2(4)

For all t ≥ d(C
⊥

)− 2 , we have that:(5)

each set of t shares is uniformly random in R`(r)
t, in particular we have t-privacy.

2.4.1 Reconstruction: Constructive proof of (4), thus of Thm 5 (B)
Notice that Equation (4) is proven on a speci�c case in [ACY+20, Theorem
6]. But it actually holds in general. Let us take the opportunity to make a
constructive proof, which will thus support our complexity claim of Thm 5 (B).
We keep the notations of Equation (2).

Let I ⊂ {1, . . . , n} be a subset of n+ 1− (d(C)− 1) indices. By de�nition of
the minimal distance, the linear map ψI : Fpr × Fk−1pr −→ FIpr is injective. Since
it is de�ned over �elds, it thus has a linear left inverse. We conclude by applying
Lemma 9 to M := R`(r)

k, m := |I| and f := ψI .

Lemma 9. Let M be a free R`(r)-module (say of rank v) and f : M → R`(r)
m

be a R-linear map. Assume that the map modulo p:

f : (M mod p) = Fvpr −→ Fmpr

is an injection. Then f has a linear left inverse g : R`(r)
m −→M . In particular,

the image of f is a free R`(r)-module.

Proof. The matrix matf of f , of size m × v is such that, by assumption, when
we reduce it modulo p, then it contains a v × v invertible minor. But then this
minor in matf is also invertible (recall that (1 +λp)−1 = 1 +

∑
i λ

ipi). Inverting
this minor (e.g. with Gauss pivot over R`(r), for e�ciency), and completing with
m− v zero columns, yields a map g : R`(r)

m −→ R`(r)
v such that g ◦ f = Idv.

The last claim follow from the fact that f is in particular injective, so de�nes
an isomorphism between M , which is free, and its image inside R`(r)m.

Our claim about the computational complexity then follows as previously
from linearity of the reconstruction map ψI , and the fact (�2.1) that multiplica-
tions in R`(r) has same complexity than in Fpr .
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2.4.2 Warning: Loss of E�cient Reconstruction for Non-Free Codes
Recall that reconstructibility of a code means that, for any set of d − 1 coordi-
nates, the map consisting in puncturing these coordinates is an injection; and
that e�cient reconstruction means that it has a linear left-inverse, which we
denote a retraction, as known as the reconstruction map. In the following Coun-
terexample 10 we show that, without the assumption to be free, there exists
submodules of R`(r)n+1 for which the puncturing map is an injection, but for
which there does not exists any linear retraction. This motivates why we restrict
to free codes in R`(r)n+1 in order to construct LSSS.

Counterexample 10. Let C be a code in R`(r)
n+1 with d := d(C) ≥ 2 such

that there exists a punctured C∗ ⊂ R`(r)
n+1−(d−1) which is not free. [For ex-

ample

C = 〈(p, p, p, 0), (1, 0, 0, 1)〉 ∈ R`(r)4, (e.g. R`(r) := Z/p`Z )

with d(C) = 2 and injectivity in R`(r)
3 when puncturing the last coordinate.]

Then there does not exist any linear reconstruction map, i.e., any retraction

R`(r)
n+1−(d−1) −→ C.

The proof is that, supposing such a retraction, then, composing it on the left with
the puncturing map, yields a left-inverse to the inclusion C∗ ⊂ R`(r)n+1−(d−1).
Denoting G∗ ∈ R`(r)

k×(n+1−(d−1)) a generating matrix of C∗ (in rows) and
L ∈ R`(r)(n+1−(d−1))×k the matrix of this left-inverse, we would thus have by
assumption G∗L = Idk. In particular G∗ modulo p would be of maximal dimen-
sion, k, thus G∗ would generate a free module, a contradiction.

2.4.3 Privacy (with Uniformity): Proof of (5) The bound (5) is proven
in [ACY+20, Theorem 6]: although on a speci�c LSSS, the arguments actually
apply in general. The key to prove this formula over rings is their Lemma 3. Let
us recall it here, and provide a both shorter and self-contained proof for it.

Lemma 11. Let C be a submodule of R`(r)
n, denote d

⊥
the dual distance of

the reduction C modulo p. Let I be a set of indices with |I| = d
⊥ − 1. Then,

projection of C on the indices in I is the full space R`(r)
I .

Proof. By assumption, CI = FIq . Hence CI contains |I| vectors so that the
matrix formed by them has an invertible determinant, thus has an inverse, thus
these vectors generate R`(r)I .

Then, the bound (5) follows by applying the Lemma to any set IA of t
indices, to which we add the index {0}. Indeed, we then have surjectivity of the
projection C −→ C{0} × CIA . In particular, for any �xed secret s ∈ R`(r) (0th
coordinate), we have surjectivity of the projection from the a�ne submodule Cs
of codewords with 0th coordinate equal to s, onto any subset of t shares. Thus
by de�nition the shares of s under the LSSS are such that any t of them vary
uniformly in R`(r)t, which was to be proven.
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2.5 (Free) Generation from Any Lift of Any Basis

The following important fact is not formalized in the literature to our knowledge:

Theorem 12. Let C be a free code in R`(r)
n+1. Consider the reduced code

modulo p: C ⊂ Fpr , and any basis (e′i) of C. Then C is freely generated by any
lift of (e′i) inside C.

Proof. Let k denote the rank of C. The �freely� claim again follows from the
fact that a family whose reduction modulo p is free, is itself free (the generating
matrix containing an invertible k × k determinant). Now, consider (e′i=1...k) an
arbitrary lift of the (e′i) inside C. It generates a submodule in C, which is free
of rank k by the �rst part of the proof. But C is itself a free module of rank k.
Thus this de�nes an injection R`(r)k ↪→ R`(r)

k, which is by assumption also an
injection modulo k. Thus by Lemma 9 it has a left inverse, thus it is a bijection.

Corollary 13. If E ⊂ G are two lifts Rn of the same code G, and G is free,
then they are equal (in particular E is also free).

Proof. Indeed E contains a lift of a basis of G which, by Theorem 12, generate
the whole G. ut

3 Main Theorem 1

3.1 A Random Free Lift of a Code of Small Square mostly Fails to
Have a Small Square

For C a code (over a �eld or a ring), we denote as componentwise square C∗2 the
code of same length which is generated by all the products of any two codewords
of C component by component. Strong multiplication of the LSSS from C thus
requires that C∗2 has large distance, thus be of small size. The central problem
of this paper is, starting from a free code C ∈ R`(r)

n (typically ` = 1, i.e.,
R`(r) is a �nite �eld) which has free square of small dimension, then �nd a
code C̃ in a larger ring than C, that reduces to C mod p`, is also free, and has
square of small size. Ideally, the square C̃∗2 is desired to be also free, in which
case it is automatically of same rank as C∗2 (since the determinant is invertible
mod p`). We denote this desirable object informally as a �multiplication friendly
lift� in the exposition, whereas in the statements it will be replaced by precise
speci�cations. Let us revisit the family of [ACY+20, Example 2], and explain
why they provide also counterexamples where arbitrarily lifting fails to yield a
multiplication friendly lift.

Counterexample 14. Let C̄ and D̄ be codes over Fpr of same dimension and
let us assume that dim D̄∗2 < dim C̄∗2. Let us now build a code E over R`(r)
with ` ≥ 3 and of length equal to the sum of the lengths of C̄ and D̄. Let (c̄i)i
and (d̄i)i be bases of C̄ and D̄, let (ci)i and (di)i be arbitrary lifts and de�ne E
the code generated by the vectors (di, pci)i. Then E is free, because of dimension
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dim D̄ = dim Ē, and is a lift of Ē. Suppose by contradiction that the square E∗2

would be free, then we would have:

dimE∗2 ≥ dim C̄∗2 > dim D̄∗2 = dim Ē∗2 .

On the other hand if it was free, then it would be of same rank than Ē∗2 by
Theorem 12. So we have a contradiction. Thus E∗2 is not free, thus it is strictly
larger than some free lift of Ē∗2 inside him.

3.1.1 The desirable case of small square: sparsity of solutions, if
any, illustrated on a toy example Let us now illustrate hardness of the
multiplicative lifting problem on a tiny AG code. Consider the elliptic curve
y2 + xy + y − x3 + 1 over

F23 = F2 < δ > with polynomial δ3 + δ + 1 = 0,

with 14 places, P0 the place at in�nity, the divisor D0 = 4P0 and the Riemann-
Roch space L(4P0), with basis eii=1...4 equal to the functions (1, x, x2, y). Let us
de�ne the evaluation code C(D0) at the P1, . . . , P13, (not at P0, for simplicity).
We compute the following generating matrix:

G =


1 1 1 1 1 1 1 1 1 1 1 1 1
δ δ δ2 δ2 δ3 δ3 δ4 δ4 δ5 δ5 δ6 δ6 1
δ2 δ2 δ4 δ4 δ6 δ6 δ δ δ3 δ3 δ5 δ5 1
1 δ 1 δ2 δ2 δ4 1 δ4 δ δ2 δ δ4 0


Let us consider the 10 componentwise products ei ∗ ej , with indices (i, j)

ordered as: (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3) etc. (i.e.: j increases �rst). They
generate by de�nition C(D0)∗2. We verify that, removing (2, 2) and (4, 4) from
the indices in this list, then the remaining 8 products: B := (ek ∗ el)(k,l)∈B
generate C(D0)∗2, where B denotes the remaining indices ordered as before.
In particular e2 ∗ e2 and e4 ∗ e4 decompose themselves on this basis B, with
decomposition coe�cients (λ2,2,k,l)k,l∈B and (λ4,4,k,l)k,l∈B given by the following
2× 8 matrix, called �Reduc� in the implementation:

(6)
(
transp

(
λ2,2,k,l, λ4,4,k,l

))
(k,l)∈B

=

[
0 0 1 0 0 0 0 0
1 0 0 1 1 1 0 0

]
Then we repeated the following experiment 108 times: randomly lift the (ei)i

modulo 22, to obtain vectors (ei)i with coordinates in R2(3) = Z/22Z < ∆ >.
Let Cbad the code generated by these lifts. By Theorem 12, it is always free.
But we observed in all the experiments that e2 ∗ e2 and e4 ∗ e4 do not anymore
decompose themselves on the lifts of the previous basis of C(D0)∗2: B := (ek ∗
el)(k,l)∈B �see two paragraphs later for an explanation of how this checks were
done e�ciently with linear algebra. So in these situations C∗2bad is not a free lift
of the square C(D0)∗2, because if it were, then by Theorem 12 the lifted basis
B would generate it.
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3.1.2 Why solutions may likely not exist at all Let us give a feeling of
why most codes with small squares are likely to have no multiplication friendly
lift. Let C be a code over, say, Fp = Z/pZ of dimension k and length n, such that

the square C
2
has small dimension, say, 3k < n. We would like to �nd a code C

over Z/p2Z (namely: a free submodule of (Z/p2Z)n) of same rank k, that lifts

C modulo p2, and such that the square C2 is also a free lift of C
2
. As argued

with the toy example, it follows from Theorem 12 that these requirements are
equivalent to the following: let (ei)i be any basis of C lifting a basis (ei) of C;
let B be any basis of C2; then B lifts modulo p2 to a basis of the square C2, in
particular generates the componentwise products (ei ∗ ej)i,j . To �x ideas let us
choose a basis of the form B = (ek ∗ el)(k,l)∈B as in the toy example. Then the
previous equivalent condition translates itself into the fact that the equations
expressing ei ∗ ej on this basis:

(7) ei ∗ ej =
∑

(k,l)∈B

λi,j,k,l ek ∗ el (mod p)

lift modulo p2. The number of degrees of freedom (the unknowns) are: (i) the
choices of lifts for the ei, so a total of nk coordinates to lift in Z/p2Z; (ii) and lifts
for the coe�cients λi,j,k,l: a total of 3k× k(k+ 1)/2 unknowns in Z/p2Z. So the
number of unknowns is asymptotically equivalent to (ii): 3k×k(k+1)/2. Whereas
the number of equations is nk(k + 1)/2 (namely: k(k + 1)/2 vectorial equations
with n coordinates in Z/p2Z each). Notice that 3k < n, so that there are more
constraints than variables. Finally, as will be detailed in the next paragraph, and
then further in �4 notice that this quadratic system over a ring simpli�es modulo
p2 to a linear system over the �eld Fp. Thus, the system being overdetermined,
then a priori no solution is likely to exist.

3.2 A technique to �nd them when they exist, illustrated on the
toy example

We will formalize the general technique in �4. Existence of a solution to the
system for AG codes, is further evidence that these codes are highly non-generic
among those with small square.

First, �x a free lift Cbad of C(D0) by lifting arbitrarily the basis to (ei
′)i,

for example by lifting the coordinates from F2 < δ > to Z/22Z < ∆ > by the
dummy rule: 1→ 1 and δ → ∆. This gives formally the same generating matrix
as G, with δ replaced by ∆. With the same dummy rule, lift the decomposition
coe�cients (λ2,2,k,l)(k,l)∈B and (λ4,4,k,l)(k,l)∈B to λ′2,2,k,l and λ′4,4,k,l, so that
their matrix is formally the same as in (6). As the case for the huge majority
of arbitrarily chosen lifts (and illustrated with random tests two paragraphs
above), the vectors e′2 ∗ e′2 and e′4 ∗ e′4 do not decompose themselves on B :=
(ek
′ ∗ el′)(k,l)∈B , let alone with coe�cients equal to λ′2,2,k,l and λ′4,4,k,l. As a

matter of fact, we encounter nonzero error vectors 2D2,2 and 2D4,4 when trying
to write the decompositions in Z/22Z < ∆ >:
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(8) e′2 ∗ e
′
2 =

∑
(k,l)∈B

λ′2,2,k,lek
′ ∗ el′ + 2D2,2 and likewise for e′4 ∗ e

′
4

Let us insist on the remarkable fact that the error vectors are multiples of 2,
since the equalities (8) do hold without error term modulo 2. �Dividing� by 2,
their coe�cients are

transp(D2,2,D4,4) =

[
0 0 δ4 δ4 δ δ 1 1 δ5 δ5 δ δ 0
0 0 δ δ 0 1 δ2 δ2 δ4 0 0 δ5 1

]
Which we express in F23 by abuse of notation (remember that an element 2x ∈
Z/22Z < ∆ > is determined by the residue x ∈ F23 mod 2). Now, let us look
for corrective terms 2f ′

i and 2µ′i,j,k,l, which we need only to �nd modulo 2:

(9) ei = e′i + 2f ′
i and λi,j,k,l = λ′i,j,k,l + 2µ′i,j,k,l

So that, replacing ei
′ in (8) by the corrected ei of (9) �where the corrective

terms are treated as unknows�, simplifying and removing the terms that are
multiples of 22 �because they vanish in Z/22Z < ∆ >�, we observe that all
the terms remaining in the system are multiples of 2. So �dividing� the system
by 2, we fall back to a linear system in F23 :
(10)
e2∗f ′

2+e2∗f ′
2−D2,2 =

∑
(k,l)∈B

µ′2,2,k,lek∗el+λ2,2,k,l(ek∗f ′
l+el∗f ′

k) (same for e4∗e4 )

as could be expected from Hensel's Lemma. Solving this system for the cor-
rective terms, we deduce the corrected basis (ei)i de�ned as in (9), that de�ne
the corrected code Cgood, whose coordinates are given in the big left-hand rotated
matrix on the �rst formula page of the Appendix.

Likewise we deduce the corrected decomposition coe�cients (λ2,2,k,l)k,l∈B
and (λ4,4,k,l)k,l∈B as given in the centered right-hand formula.

We can �nally check straightforwardly that, with these corrected values, then
e2∗e2 and e4∗e4 now decompose themselves on B with the corrected coe�cients,
without anymore parasitic error vectors. So with these corrected lifts (ei)i, we
have now that the square of the corrected code Cgood is also a free lift. That is,
we have succeeded in modifying the free lift Cbad into a multiplication-friendly
lift Cgood.

3.3 Proof of Main Theorem 1

3.3.1 Roadmap of the proof.

First Consider a smooth curve over Fpr and a divisor D0 on this curve (that
is: a set of points with multiplicities), such that the degree (the sum of the
multiplicities) is deg (D0) < n. Then, the curve has a lift de�ned over the ring
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R`(r) (provided it is given under an equivalent form where equations have no
singular points). Lifting the points then applying Judy Walker's results, we have
the existence of lifts of the Riemann-Roch spaces: L(D) and L(2D) which are
free modules, and such that we have inclusions of products of spaces of global
sections

(11) L(D)⊗2 = L(2D) ,

where the traditional notation L(D)⊗2 stands for the space generated by
all products fg of pairs of sections (f, g) in L(D). Then, from Judy Walker's
Theorem 15 below, we deduce that the evaluation codes over rings C(D) and
C(2D), arising from evaluation of these free lifts of Riemann-Roch spaces, are
also free. We will detail this material in the two next subsections

Next The key property of these free lifts is that they behave well with respect
to inclusions and squares:

(12) C(D)∗2 ⊂ C(2D) .

Here the code C(2D) is free for the same reasons, with same rank as the classical
AG code C(2D0) below modulo p. So this forces the square C(D)∗2 to stay small,
contrary to the square of an arbitrary free lift, which may �spread out� too much
(as seen in Counterexample 14).

Deducing the parameters By freeness of C(D), Proposition 8 (5) implies that a
LSSS from C(D) has privacy threshold at least as large as a LSSS from the code
below modulo p: C(D0).

Likewise, by Proposition 8 (4), a LSSS from the free code C(2D) has full
reconstruction from any n − d(C(2D0)) + 2 shares. Thus, by inclusion (12), so
does a LSSS from the subcode C(D)∗2. Said otherwise, a LSSS from C(D) has
reconstruction of the product, from a number of pairwise products of shares which
is as small as for a LSSS from C(D0).

For sake of completeness we review the concrete parameters of these schemes
in �3.4, exampli�ed on the ones of [CC06].

3.3.2 Lift of curves, divisors and Riemann-Roch spaces Let us follow
Walker's [Wal99] notations. Note R = R`(r) the (Artinian local) Galois ring,
with residue ring R/(p) = Fpr .X0 being a smooth projective curve over Fpr , then
from [Ill05, Theorem 5.19 ii)] (or [SGA1, III Corollaire 7.4]), X0 has a smooth
projective lift over the ring of Witt vectors W (Fpr ). Which, after reduction
mod p`, yields a projective lift X over R (because these properties are preserved
by base change). Also, R being local, Fpr -points of X0 lift to R-points of X by
the formal smoothness criterion (see [Wal99, Remark 4.5] or next paragraph for
details). As a consequence, divisors with support on rational points (actually
any divisor) lift to X �and thus also do the line bundles L0 arising from them.
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An explicit procedure for simultaneous compatible free lifts of line bundles. By
[Wal99, Lemma 4.4] we can construct lifts of divisors D0 on X from the following
recipe. First, for every rational point P (j)

0 of X0, �x a closed point of degree one
P (j) of X above P0, as described in [Wal99, Remark 4.5] (lift arbitrarily P (j)

0 to
an R-point, then choose P (j) inside the image).

Then we can simultaneously lift divisors D0 and 2D0 on X0 as follows. For
every rational point P0 of X0 in the support of the line bundle D0, let m be
the valuation of D0 at P0 and let P be the closed point lying above P0 as �xed
earlier. Deduce from it a divisor mP , then sum over the points P0 in the support
of D0, to obtain a lift D of D0. Likewise for the divisor 2D, equal to the same
formal sum of R-points as in D and with twice the multiplicities. In particular,
note L := L(D) the line bundle associated to D, and likewise for L(2D).

Proof of (11) This formula well known for curves over �elds. Let us justify that
it also holds over rings. The reason is that, by smoothness of the lift of the curve,
this guarantees that, in a small enough neighborhood U of P , we also have a
uniformizer denoted tU (see [Wal, Proposition 4.9]). Thus, as long as U does not
contain the other points of the support of D, we have:

(13) LU = t−mU OU .

Thus t−mU t−mU ∈ LU (2D), hence the claimed inclusion of products of global
sections (11).

3.3.3 Deducing AG codes by Evaluation of Global Sections. For any
divisor D on X, we denote as the �Riemann-Roch space� Γ (X,L) the space
of global sections. In the rest of the paper it is denoted instead L(D). By the
argument above [Wal99, Theorem 4.7], f is a free R-module that reduces modulo
p to Γ (X0,L0). With slightly narrower conditions on the degree, then have the
following compatibilities, as wrapped-up in [Wal99, Theorem 5.5]:

Theorem 15 (Lifts of Riemann-Roch spaces and AG codes). Consider

n rational points P0 =
(
P

(j)
0

)
j=1...n

on X0, D0 a divisor of degree:

2g − 2 < degD0 < n

with associated line bundle L0, and the injective evaluation map γ0 yielding an
algebraic geometry code C in Fnpr . Then this data lifts to objects over R: X,P
and D, with associated line bundle L, yielding an evaluation code C, such that
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we have the following commutative diagram:

(14) Γ (X,L) // //
_�

eval

��

Γ (X,L)⊗R Fpr
˜ // Γ (X0,L0)

_�

eval

��
⊕jΓ (P (j),L|P (j))

γ∼=

��

⊕jΓ (P
(j)
0 ,L0|P (j)

0
)

γ0
∼=

��
Rn

.⊗RFpr // Fnpr

Where: - the top left horizontal arrow and the bottom horizontal arrow are
tensorisation by ⊗RFpr - the top right isomorphism is constructed canonically
as in the proofs of [Wal99, Lemma 4.6 & proof of Th 4.7]

- the top vertical arrows are the canonical restriction maps - the bottom left
vertical arrow is a collection of arbitrary isomorphisms for all j:

γj : Γ (P (j),L|P (j)) −→ A

that reduce to γ0 by tensorisation by ⊗RFpr (and if not, then rede�ne γ0 ac-
cordingly without changing the code in Fnpr ).

Notice that the name �evaluation maps� of the top vertical arrows is abusive
in general (because of poles, etc: see the �rst example of �4.1), but they do play
this role.

In conclusion, as explained in [Wal99], the code C(D) (likewise C(2D)) is
free because it is the image of a free module: Γ (X,L), under the evaluation
map which is an injection modulo (p), and thus its image is a free submodule of
R`(r)

n by Lemma 9.

3.4 Reminders on the asymptotic parameters

Recall �rst the tradeo� of [CC06, �5] for secret sharing in �nite �elds Fp. Let us
cast a secret in Fp, into the extension Fpr of degree r, such that

pr ≥ 49 .

Then for adversary threshold 1/3− ε, and for in�nitely many number of players,
there exists an ASSSM over Fpr and size r of shares, such that:

ε <
4

3(pr/2 − 1)
,

[CC06, �5] In particular, choosing r̂(ε) = −2 log(ε) yields an adversary bound
1/3− ε when ε is su�ciently small.

Notice that the classical bound for the dual distance of AG codes over �elds
is not stated explicitly in [CCCX09; CCX11]. But its parameters are well known
since Goppa (recalled e.g. in [Wal99, Theorem 2.1]), and also asymptocially
optimal in our regime 2g − 2 < degD0 < n. Which supports the claims of
[CCCX09; CCX11], and thus ours by Proposition 8.
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4 Computing Hensel Lift of a Code with a Small Square

Starting from any code C ⊂ Fpr , for any positive L, the following Hensel lifting
algorithm lifts the code to a free code CL ⊂ RL(r)n such that the square is

generated by a lift of a basis of the square C
∗2
. It proceeds in L recursive steps.

Each of the steps consists in solving one instance of the same linear system
over Fpr , of size O(n3)×O(n3) . Thus the overall complexity is linear in L and
polynomial in n. The algorithm was already illustrated in �3.2, let us formalize
it.

Let (ei)i∈[dimC] be a basis of the code C1 := C. By de�nition, the square C
∗2

is generated by the n(n+1)/2 distinct componentwise products (ei∗ej)(i,j). C
∗2
1

being a vector space, one can extract a basis from the previous family, which we
denote (ek ∗ el)(k,l)∈B , where

∣∣B∣∣ = dimC
∗2
1 .

A recursive step is as follows. The input is a free lift C` ∈ R`(r)
n of C,

together with a basis (ei)i∈[dimC], and coe�cients
(
λi,j,k,l

)
i≤j, (k,l)∈B in R`(r),

such that we have the following invariant. The family of componentwise products
(ek ∗ el)(k,l)∈B generates the square C∗2` . The coe�cients express the larger
generating family (ei ∗ ej)(i≤j) on the smaller generating family, namely:

(15) ei ∗ ej =
∑

(k,l)∈B

λi,j,k,l ek ∗ el for all i ≤ j

The output of a step is a lift C`+1 ∈ R`+1(r)n, together with a basis (ei
′′)i∈[dimC]

that lifts (ei)i∈[dimC], and coe�cients
(
λ′′i,j,k,l

)
i≤j, (k,l)∈B in R`+1(r) that lift the(

λi,j,k,l
)
i≤j, (k,l)∈B such that the same invariant holds (this time with respect to

the square C∗2`+1).
The computation of a step is as follows. Fix arbitrary lifts ei

′ of the ei in
R`+1(r)n, and λ′i,j,k,l of the λi,j,k,l in R`+1(r). We obtain error terms p`Di,j

when evaluating the equations in R`+1(r)n:

(16) ei
′ ∗ ej ′ =

∑
k,l

λ′i,j,k,lek
′ ∗ el′ + p`Di,j for all i ≤ j

Solving the system means �nding correct lifts ei′′ and λ′′i,j,k,l such that the
error terms p`Di,j are all equal to 0. We express ei

′′ and λ′′i,j,k,l from ei
′ and

λ′i,j,k,l, added with corrective terms p`f ′
i and p

`µ′i,j,k,l:

(17) ei
′′ = ei

′ + p`f ′
i and λ

′′
i,j,k,l = λ′i,j,k,l + p`µ′i,j,k,l

So that, replacing ei′ in (16) by the corrected ei
′′ of (17) (where the corrective

terms are treated as unknows), simplifying and moding out the terms that are
multiples of p`+1, we observe (Hensel's trick) that all the terms remaining in the
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system are multiples of p`. Thus, dividing by p`, we fall back to the following
linear system in Fpr :

(18) ei ∗f ′
j +ej ∗f ′

i −Di,j =
∑
k,l

µ′i,j,k,lek ∗el +λi,j,k,l(ek ∗f ′
l +el ∗f ′

k) ∀i ≤ j

which we notice is the same system for all steps. Finally, as for the size of
the system, each vectorial equation for (i, j) expands itself in n scalar equations,
so a total of nk(k + 1)/2. The lifts of the (ei)i are n unknowns and the lifts of

λi,j,k,l are k(k + 1).dim (C
∗2

) unknowns.

Complexity in log(L). It was suggested by a reviewer of Eurocrypt that, applying
the Hensel lifting method in its full version would enable a lifting complexity in
only O(log2 L) steps. This comes from the possibility to lift (15) directly modulo
p2` (full Hensel method). However, this requires to determine the corrective terms
modulo p`, and not anymore just modulo p as in (18). This thus requires the
task of solving a linear system modulo p`, not anymore just modulo p. This task
is e�ciently computable, as proven in �5 (A). But for simplicity, we nevertheless
implemented the method in L steps.

4.1 Example of a multiplication friendly lift modulo 2100

Here we illustrate e�ciency of our method by lifting a strongly multiplicative
secret sharing scheme over F16 for 64 players and adversary threshold t = 13,
into a scheme over Z/2100Z, in a minute on a single processor.

LetX0 be the �Hermitian" plane curve over F16 de�ned by equation f(x, T ) =
T 4+T−x4+1. Then it is well known that this curve has genus g = 4(4−1)/2 = 6
and n+ 1 := |X0(F16)| = 1 + 43 = 65 rational points (which reaches the Hasse-
Weil upper-bound). Let us denote these points P0, . . . , Pn=64, consider the divisor
D0 = 25P0, whose Riemann-Roch space L(D0) is of dimension 20. Let C be the
algebraic geometry code C of length n + 1 de�ned as evaluations of L(D0) on
all the rational points of X0, including the support {P0} of D0. Phrased with
the notations of [CC06, �3], this means that we allow in addition to evaluate
at Q. We do this to enable +1 on the adversary bound t. Evaluate at a point
P0 of the support of D0, simply proceeds by pre-multiplying the function to be
evaluated, by a uniformizer of P0 to the power the order of P0 in D0. For the
sake of illustration notice that, with t = 13, we have degD0 = 2g + t so that
the condition 39 = 3t < n − 4g = 40 of [CC06, Proposition 2] is satis�ed, thus
from C we can deduce a secret sharing scheme with strong multiplication for
adversary bound t = 13.

Before going on, we compute the square code C
2
and the (a priori larger)

AG code associated to L(2D0), and check that both are equal. By the Riemann-
Roch formula we have that C(2D0) is of dimension 2.25 + 1− 6 = 45. From the

generating set (ei ∗ej)i≤j of C
2
we extract a basis (ek ∗el)(k,l)∈B . We now look

at the matrix expressing the (ei ∗ej)i≤j in terms of this basis (with the previous
notations, this is the matrix of the coe�cients λi,j,k,l). It has (dim (C)(dim (C)+
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1))/2 = 210 lines (all ordered pairs i ≤ j). Obviously the lines where the index
(i, j) belongs to B contain a single coe�cient, equal to one. And obviously these
coe�cients will remain equal to one in every lift mod p` so we can remove these
ndimC

2
= 64× 45 relations (and the corresponding variables) from the system

from now on. This means that equality actually holds in (12). It is left outside
of the scope of the paper to prove why this equality is actually implied by the
condition degD0 ≥ 2g + 1.

After some optimizations described in Appendix �A.2, we end up with a
system (18) of 10725 equations with 3305 unknowns but, surprisingly, of (still)
very large kernel: dimension 83 (dimension 200 before applying the trick). We
solve it in one second on a single processor.

Finally we repeat the operation, following the Hensel-lift algorithm: we rein-
ject the solution (the lifted vectors ei and coe�cients λi,j,k,l) in a system mod
23 (as in (15)), which is a multiple of 22 after simpli�cation, thus falls back to
a system mod 2 after �division by 22�. Note the general fact that the matrix
of the new system obtained is exactly the same as the initial one (18), because
the coe�cients depend only on the values modulo 2 of ei and λi,j,k,l. To which
we �nd again a solution (the mysterious lucky heuristic) �in one second as
expected� then repeat exactly 97 times (always the lucky heuristic) to reach a
multiplication friendly lift over R100(4).

5 Applications to MPC

5.1 Proof of Main Theorem 2

Proposition 16. For any �xed p and `, consider any �x number n of players,
and choose any �xed even integer r such that pr ≥ 64, and security parameter κ.
Then there exists a slowly growing in�nite sequence of integers N such that: for
any set of N triples ai, bi, ci in Z/p`Z (resp. in Fp), which are shared between
the players using any linear secret sharing scheme, then there exists a protocol
that has the following properties

� The protocol consumes an additional number of triples, which is asymptoti-
cally N(1 + 2p−r/2), that are opened (so cannot be used anymore);

� Either all triples considered are correct: aibi = ci then it outputs true,
or at least one is incorrect, then it outputs false except with probability
O(p−(rκ−1)/2(1 + 4p−κ/2))

� The communication complexity is nr(N+2κ2) of elements of Z/p`Z (resp. of
Fp) sent, the computational complexity is O(N) linear operations in Z/p`Z
(resp. in Fp) per player.

For simplicity we prove it over �nite �elds. Then the same methods to lift it
over rings as in Main Theorem 1 apply. Consider the �nite �eld extension Fpr
and an optimal family of algebraic curves over Fpr with genera g slowly growing
to in�nity. The best existing asymptotic ratio of the number of rational points
divided by the genus g, is denoted A(pr) �the Ihara constant�. When r is even
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then Ihara showed existence of in�nitely many curves with slowly growing genera
such that it matches the upper-bound of Drinfeld-Vladuts: A(pr) = pr/2 − 1.
Recall that this bound is one order of magnitude lower than the Weil upper
bound (which is relevant only for �nite genera). Fix a curve C in this family,
with genus g, such that it has at least 2(N + 2g − 1) points. Such a curve
indeed exists, by the aforementionned Ihara's result, as soon as pr ≥ 64, with
g = O

(
N/(pr/2 − 4)

)
. Consider a �xed set of points P1, . . . , PN on this curve,

and G a point of degree N + 2g− 1 (existence is guaranteed by [Sti09, Theorem
5.2.10 c)]). Then there exists an interpolation formula with coe�cients linear in
the ai (resp. the bi), that builds rational functions f (resp. g) in the Riemann
Roch space L(G), such that they take the values ai (resp. bi) at the points
P1, . . . , PN . [The technique for this is as in Lagrange's interpolation formula:
one considers for every point Pi a �xed public function χi that vanishes at all
the Pj for j 6= i but not at Pi. Existence of χi is guaranteed by a consequence
of the Riemann-Roch formula: `(G −

∑
i 6=j Pj) − `(G −

∑
j Pj) > 0. Then, the

function f is deduced as the linear combination
∑
i(ai/χi(Pi))fi]. Players can

thus obtain a secret sharing of coe�cients of f seen as a linear combination of
the public χi's (same for g). De�ne h = fg in L(2G). Consider the remaining
points of the curve: PN+1, . . . , P2(N+2g−1). Players sacri�ce N + 2g− 1 auxiliary
triples (possibly incorrect), in order to compute with the Beaver passively-secure
protocol (so possibly incorrectly) secret sharings of the products c̃i = f(Pi)g(Pi)
at all those remaining points. At this point, if all triples are correct and no
cheating occured, then we should have h(Pi) = ci for all i = 1 . . . N and h(Pi) =
c̃i for all i = N + 1 . . . 2(N + 2g− 1). As above, players compute a secret sharing
of the unique function h̃ in L(2G) such that h̃(Pi) = ci and h̃(Pi) = c̃i for
all i = 1 . . . . . . 2(N + 2g − 1) (namely they locally compute a secret sharing
of the coe�cients of the linear decomposition of h̃ along the public χi). Then
they sample a random secret shared challenge value λ ∈ Fprκ , locally compute
secret shares of the evaluations f(λ), g(λ) and h̃(λ), compute a (possibly false)
secret sharing of the product f(λ)g(λ) by sacri�cing 2κ2 triples (multiplication
in Fprκ/Fpr being done with the schoolboy algorithm), then perform an equal-
to-zero check on f(λ)g(λ)− h̃(λ). If it passes, then they return accept.

5.2 Existence of lifts of RMFE over rings, with constant rate

Let p be a prime and r, k, m ≥ 1 be positive integers. ∗ denotes the component-
wise product. We adapt over rings [CCXY18, De�nition 1] (where q = pr).

De�nition 17. A pair (φ, ψ) is called an (k,m)pr -Reverse Multiplication Friendly
Embedding (RMFE) if φ : R`(r)

k → R`(rm) and ψ : R`(rm)→ R`(r)
k are two

R`(r)-linear maps satisfying

(19) x ∗ y = ψ(φ(x)φ(y)) for all x, y ∈ R`(r)k

Theorem 18. Consider the family of �Reverse multiplication friendly embed-
dings� (RMFE) of [CCXY18, Theorem 5] (where q := pr), then there exists a
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family of RMFE of (R`(r))
k into R`(rm), with k slowly growing to in�nity and

the same constant asymptotic expansion rates m/k.

Let us review the construction over �elds of [CCXY18, Lem 6 & Cor 1] that
provides [CCXY18, Theorem 5], and use the tools of �3.3 to show that it lifts.
We consider a smooth curve over Fq of genus g, with k distinct rational points
denoted P1, P2, . . . , Pk. Let G be a divisor such that degG ≥ k+ 2g+ 1 (and for
simplicity, with support outside of {P1, . . . , Pk}). By the Riemann-Roch formula
we thus have dim FqL(G)−dim FqL(G−

∑
i Pi) = k. By �3.3, the Riemann Roch

spaces in this equality lift to free modules of same rank. Consider the evaluation
map π : L(G) −→ Fkq : f −→ (f(Pi))i∈[k], which has kernel L(G −

∑
i Pi).

Then π is surjective, since dim Fq Im(π) = dim FqL(G)−dim FqL(G−
∑
i Pi) = k.

Surjectivity is preserved over rings (by the invertible determinant mod p trick).
Choose a subspace W of L(G) of dimension k such that π induces an iso-

morphism between W and Fkq . Choose R a point of degree m > 2 deg (G), which
exists for m large enough by [Sti09, Theorem 5.2.10 c)]. For any f ∈ L(G),
we denote by cf the evaluation vector (f(Pi)), and by f(R) the evaluation.
The previous isomorphism induces the Fq-linear map φ : π(V ) = Fkq −→ Fqm :
cf → f(R). Then φ is injective, since deg (R) > deg (G). Thus the lift over rings
is also injective, by Lemma 9.

De�ne the Fq -linear map τ : L(2G) −→ Fqm : f → f(R) . Then τ is injective,
since m = deg(R) > deg(2G), and likewise for the lift by Lemma 9. Bijectivity
of Im(τ) with L(2G) induces the Fq-linear map ψ′ : Im(τ) ⊆ Fqm −→ Fkq :
f(R) → (f(Pi)). Then ψ′ surjective (but not injective), by the same degree
reason than π, and likewise for surjectivity of the lift. We extend φ′ from Im(τ)
to all of Fqm linearly, and denote the resulting map ψ.

Finally, RMFE follows from the fact that, for any cf , cg ∈ Fkq we have:

ψ(φ(cf )φ(cg)) = ψ(f(R)g(R)) = ψ((f.g)(R)) = cfg = cf ∗ cg

where f, g ∈W are uniquely determined from cf , cg by the injectivities above.
Note that (fg)(R) belongs to Im(τ) since fg ∈ L(2G).

5.3 Proof of Main Theorem 3

We can now compile a protocol for a circuit over a large Galois ring R`(r), into
a protocol for many evaluations in parallel of this circuit in Z/p`Z by casting
over rings the protocols of [CCXY18]. Since we choose to restrict ourselves to
the case of optimal adversary rate, we really need hyperinvertible matrices over
Galois rings for any number of players (not the alternative with suboptimal ad-
versary bound discussed in [CCXY18, �2.4]). Fortunately their construction is
straightforward, see e.g. [ACD+19]. We can thus cast the original protocol of
Beerliova-Hirt over Galois rings, then compensate their bad asymptotic com-
munication overhead by amortizing it over several instances in parallel, exactly
as done in [CCXY18, Theorem 1 & 2]. Namely, the main tool are RMFE over
rings with asymptotically linear rate, which is solved above in �5.2. Whereas the
�tensoring-up� trick carries over rings without any technical di�culty.
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5.4 An analogous e�cient Hensel lift for RMFE

Again we consider for simplicity only the base �eld Fp, instead of Fpr . Let us
make the following useful rephrasing of the de�nition of a reverse multiplication
embedding (RMFE) of Fkp into Fpm Consider the �eld extension Fpm , equipped
with its internal multiplication law. Denoting the dual over Fp with ∗, this law is
captured by what is denoted as the multiplication tensor T ∈ F∗pm ⊗ F∗pm ⊗ Fpm
Its components Ti=1..m are Fp-bilinear forms from

(
Fpm × Fpm

)
to Fp. Now �x

a linear map
φ : Fkp −→ Fpm

The pull back of T :

φ∗T = T (φ(.), φ(.))

decomposes in Fpm in m components which are symmetric bilinear forms

φ∗Ti = Ti(φ(.), φ(.)) , i = 1..m

belonging by de�nition to the symmetric tensor space of the linear forms S2((Fkp)∗).

De�nition 19. Consider the (nonintegral) algebra Fkp, equipped with the multi-
plication law component-by-component. This law is captured by what is denoted
as the �multiplication tensor�, belonging to

(
Fkp
)∗⊗ (Fkp)∗⊗Fkp. We say that φ is

a reverse multiplication embedding i� these m bilinear forms φ∗Ti generate the
components (x∗1 ⊗ x∗1, ...x∗k ⊗ x∗k) of the multiplication tensor.

Lifting of an algorithm φ modulo p2: Suppose we are given a reverse multi-
plication friendly embedding φ, over Fp (r = 1 to make notations simple): for
each j = 1 . . . k, we have coe�cients λi,j such that:

(20) x∗j ⊗ x∗j =

m∑
i=1

λi,j . φ
∗Ti

(it is a tensorial equality: it takes place in the space of symmetric bilinear
forms of length k, so expands on coordinates as a set of k(k+1)/2 equations). We
want to lift φ and the coe�cients λi,j such that the equalities (20) hold modulo
p2. (So we have mk+mk unknowns and m equations, each of them taking place
in a symmetric tensor space of dimension k(k + 1)/2 ). Consider arbitrary lifts
φ′ and λ′i,j of φ and λi,j over Z/p2Z, we thus obtain the (tensorial) equalities
modulo p2 for j = 1..k :

x∗j ⊗ x∗j =

m∑
i=1

λ′i,jφ
′∗Ti + p∆j

and we would like to eliminate the error terms p∆j modulo p2 by choosing
better lifts of φ and of λi,j :

(21) φ′ + pψ and λ′i,j + pµi,j
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After replacing (21) in (20) then simpli�cation, the equation becomes the
following (tensorial) linear equation modulo p (so with coordinates in Fp):

m∑
i=1

2λ′i,jTi
(
φ′(.), ψ(.)

)
+ µ′i,jTi

(
φ′(), φ′i(.)

)
= −∆j

where the unknowns are ψ and µ′i,j .
How to repeat and compute higher lifts modulo p` then proceeds as in �4.
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A Completeness of Multiplicative lift with Hensel, and
Another Example

A.1 Completeness: proof of Theorem 4

Noticeably, the proof of correctness of the Hensel lifting algorithm does not
suppose any knowledge of the techniques deployed to prove existence of the
objects. The technicality consists in lifting the coe�cients from Fp to Z/p`Z, in
a way that preserves the Strong multiplication property. On the other hand, the
proof of termination does obviously rely on existence of such �lifts�, as guaranteed
by the previous results. It actually relies on a more hard to prove property, which
is that the lifts are free, as will be stated in Corollary 28.

Recall that Main Theorem 1 states existence of lifts of AG codes C ⊂ Fpr
over �elds with small square, modulo any p`, which is enough for ASSSM. Then,
the more advanced Corollary 28 of the Appendix states freeness of the square
of the lift. Finally, we have the following even stronger heuristic observed on
all examples considered. It is that, for the AG codes C ∈ Fpr satisfying the
criterion of Corollary 28, then, starting from any free lift C` of C over a given
R`(r), such that its square is free, then, C` itself has a free lift over R`+1(r)
with free square. On the other hand, Corollary 28 itself proves �only� freeness of
the lifts mod p` of codes C over �elds. This leads us to deploy a simple Hensel-
lifting method, whose recursion step is described in the proof of Proposition 21.
Starting from any C ⊂ Fpr satisfying Corollary 28, and lifting it step by step,
we obtain, in L, steps a lift in RL(r)n with free square. Each of the recursive
steps consists in solving one instance of the same linear system over Fpr , thus the
overall complexity is in L. The Proposition 21 states that each of these recursive
steps is complete. Namely, all such step-by step lifts mod p` (when they exist,
as strongly suggested by the heuristics), are returned by the solutions of a linear
system over Fpr of size O(n3) × O(n3), in particular in polynomial time. All
the ideas and arguments have been actually given in �3.1, in the discussion
above formula (7), except the hardest ingredient, which is freeness of the square
(Corollary 28). After the proof, we brie�y sketch how application of the full
Hensel lifting method would enable a lifting complexity in only O(log2 L) steps.
Another numerical example is described in �4.1. Then in the Appendix �A.2 we
provide optimization techniques, then a larger example in �A.3.

Lemma 20. Let C` ⊂ R`(r)
n be a free code such that the square C∗2` is also

free. Then, there exists a basis (ei)i=1...,dimC` of C`, and a set B of indices (k, l),
such that the componentwise products (ek ∗ el)(k,l)∈B form a basis of C∗2` .

Proof. Let (ei)i be any basis of C`. The reduction modp: (ei)i := (ei mod
p)i is a basis of the reduction of the code C1 := C` mod p. By de�nition, its

square: C
∗2
1 := C∗2` mod p is generated by the n(n+1)/2 distinct componentwise

products (ei ∗ ej)(i,j). C
∗2
1 being a vector space, one can extract a basis from

the previous family, which we denote (ek ∗el)(k,l)∈B , where
∣∣B∣∣ = dimC

∗2
1 . The

family B := (ek ∗ el)(k,l)∈B is by de�nition inside the square C∗2` . B being a lift
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of the basis (ek ∗ el)(k,l)∈B of the reduction C
∗2
1 , and C∗2` being free, Theorem

12 implies that B is a basis of C∗2` . ut

Proposition 21. Let C1 ⊂ Fnpr be a code, then there exists a linear system
over Fpr , of size O(n3)×O(n3), such that: consider C` ⊂ R`(r)n any free lift of
C1 such that the square C∗2` is free; then, all free lifts C`+1 ⊂ R`+1(r)n of C`
with free square, if any, are returned by resolution of this system (with constant
term depending on `).

Proof. By Lemma 20, there exists a basis (ei)i of C` and a set B of couples
of indices (k, l), of cardinality

∣∣B∣∣ = dimC∗2` , such that the componentwise
products (ek ∗el)(k,l)∈B form a basis of C∗2` . For any unordered couple of indices
(i, j) ∈ {1, . . . , n}2, denoting λi,j,k,l the coe�cients of the decomposition of (ei ∗
ej)i,j over this basis (ek ∗ el)(k,l)∈B , this translates into the vectorial equalities
in R`(r)n which were stated in (15), which we recall below:

(15) ei ∗ ej =
∑
k,l

λi,j,k,l ek ∗ el for all i ≤ j

Consider now any free lift C`+1 ⊂ R`+1(r)n of C` which has free square. It
is generated by lifts inside itself (C`+1) of the ei. The goal is to �nd them. By
Theorem 12, the square C∗2`+1 being free, it is generated by any lift inside itself
(C∗2`+1), of any basis of C

∗2
` . This holds in particular for the previously considered

basis (ek ∗ el)(k,l)∈B of C∗2` . In particular, the decomposition (15) lifts modulo
p`+1. We are thus brought back to �nding all possible such lifts of (15) modulo
p`+1. To achieve this, �x arbitrary lifts ei′ of the ei in R`+1(r)n, and λ′i,j,k,l of the
λi,j,k,l in R`+1(r). We obtain error terms p`Di,j when evaluating the equations
in R`+1(r)n. They were formalized in (16), which we recall below:

(16) ei
′ ∗ ej ′ =

∑
k,l

λ′i,j,k,lek
′ ∗ el′ + p`Di,j for all i ≤ j

Solving the system means �nding correct lifts ei′′ and λ′′i,j,k,l such that the
error terms p`Di,j are all equal to 0. But ei′′ and λ′′i,j,k,l can always be deduced
from ei

′ and λ′i,j,k,l, by adding corrective terms p`f ′
i and p

`µ′i,j,k,l, as formalized
in (17), which we recall below:

(17) ei
′′ = ei

′ + p`f ′
i and λ

′′
i,j,k,l = λ′i,j,k,l + p`µ′i,j,k,l

So that, replacing ei′ in (16) by the corrected ei
′′ of (17) (where the corrective

terms are treated as unknows), simplifying and moding out the terms that are
multiples of p`+1, we observe (Hensel's trick) that all the terms remaining in
the system are multiples of p`. Thus, dividing by p`, we fall back to the linear
system in Fpr stated in (18), which we recall below:

(18) ei ∗f ′
j +ej ∗f ′

i −Di,j =
∑
k,l

µ′i,j,k,lek ∗el +λi,j,k,l(ek ∗f ′
l +el ∗f ′

k) ∀i ≤ j
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Finally, as for the size of the system, each vectorial equation for (i, j) expands
itself in n scalar equations, so a total of nk(k+ 1)/2. The lifts of the (ei)i are n

unknowns and the lifts of λi,j,k,l are k(k + 1).dim (C
∗2

) unknowns. ut

Finally, the alternative recursive lift in a total log2 L steps, stated at the
end of Theorem 4, comes from the possibility to lift (20) directly modulo p2`

(full Hensel method). However, this requires to determine the corrective terms
modulo p`, and not anymore just modulo p as in (18). This thus comes at the
cost of solving a linear system modulo p`. This is e�cient, as proven in �5 (A).
But for simplicity, we instead implemented the method of Proposition 21.

A.2 Optimizations

Remark 1. List the (i, j) for which the decomposition of ei∗ej is very simple: one
single nonzero coe�cient λi,j,k,l equal to one and the others equal to zero. Which
includes, but far from exclusively, the basis vectors ek ∗el themselves. Then ask
for these relations to hold modulo p2, p3 etc: this removes all the variables µ′i,j,k,l
from the system, for those �forced� relations on ei∗ej . In practice this divides by
two the dimension of the kernel while the system still yields solutions (actually
one solution is enough for us, thanks to our lucky heuristic: see below) In practice,
for algebraic geometry codes, this seems to make the number of equations drop
from k(k + 1)/2 to approximately dim (C∗2) ∼ 2k: see in the examples below.

Let us now illustrate some more optimizations on the example of �4.1:

Remark 2. With the notations of [CC06, �3], we allowed in addition to evaluate
at Q. We did this to make a little gain on the adversary bound. To be sure,
solutions to overcome the problem with evaluating at the support of D0 are
well known. A standard trick would have been to choose instead D0 equal to
one point of degree 25, but this wouldn't �t in our simplistic assumption of
Corollary 28, that D0 is supported on rational points. So we do otherwise and
keep D = 25P0, compute t0 a uniformizing parameter at P0, and de�ne the
evaluation of f ∈ L(D0) at P0 by:

(t230 f)(P0) .

The intrinsic meaning of this formula is that we �rst compute the restriction
(called �evaluation�, in Theorem 15) of L(D0) in a neighborhood of P0: multi-
plying L(D0) by t230 maps it to regular functions at P0. Then we evaluate. The
trick yields codes that still satisfy the conditions of Corollary 28 for the existence
of �nding multiplicative lifts 7

7 For the �rst trick, notice that closed points of arbitrary degree do lift so the corre-
sponding divisors satisfy Corollary 28. For the second trick, consider Z(0) a R100(4)-
point of the lifted curve X above P0 and t a uniformizing element as in [Wal, Propo-
sition 4.9]. Then t23 is by construction the local equation of the lifted Cartier divisor
D at the closed point P (0) in Z(0), and reduces to t0.
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Remark 3. To our surprise, even when removing the lines of Remark 1 from the
matrix, the remaining matrix (which we call �Reduc" in the program) contains
many other lines (119, we call their list �Fixed� in the program) that have also
this property to have only one nonzero entry, equal to one. Looking at the global
sections in L(D0) corresponding to these equalities ei∗ej = ek∗el, we check that
these equalities also hold for the underlying functions (which we already knew,
since the evaluation map is injective). So, betting on the fact that this simple
relations will also hold on the curve lifted over rings, we force these coe�cients
λi,j,k,l = 1 to lift to 1 (and likewise the other coe�cients on the line to lift to
zero). Namely, in all iterations of the linear system mod 2`, we force all the
corresponding µ′i,j,k,l = 0, and λi,j,k,l = 1 for these special lines. As described
in Remark 2, it seems that we still get many solutions to the system after this
trick, which yields a signi�cant drop in the number of unknowns in the system
(18) .

Also, the rest of the matrix Reduc is also hollow, (O(1) nonzero coe�cients
per line, from the other examples we tested), thus the overall system (18) is
sparse.

A.3 Lifting an AG code from the manyPoints.org curve of genus 3
over F25

Here we want a comparatively larger adversary threshold than in �4.1, so take
an extension of F2 of larger size. Let δ be a root of the polynomial 1 + T 2 + T 5

in F2[T ]. Consider the plane curve X0 over F25 de�ned as follows: let x, y be
the a�ne coordinates, put X := x2 + x, Y := y2 + y then X0 is given by the
equation:

X2 +XY + δ3Y 2 + Y + δ26

Its function �eld has

n = 64

places of degree one (i.e. a projective smooth model of X0 would have 64 rational
points). Consider the place at in�nity P0(0, δ, 1) and the divisor D0 = 22P0 (of
degree 2g+ 16). The Riemann Roch space L(D0) has dimension 22 + 1−3 = 21,
of which Magma can compute a basis E. We construct the AG code C obtained
by evaluating these basis elements at all the rational points except the support
P0 (this time, avoiding the support doesn't harm the adversary bound).

Here the square dimC2 is of dimension 42, after applying the same �special
rows� trick the system contains 10584 equations and 5817 variables, and half of
its rows are sparse. Surprisingly it (still) has very large kernel, of dimension 93.
This time we solve it in 100 seconds and, thanks again to the lucky heuristic,
need only iterating 98 times to �nish with a lift mod 2100.
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B Reminders of [CC06; CCCX09]

B.1 Carrying the �multiplication friendly embeddings� of [CCCX09]
over rings

We consider any 2m − 2 ≤ p. We have an isomorphism of vector spaces φ :
Z/p`Z[X]<m −→ R`(m) given by X −→ ∆ with the notations of (1). Let us
take 2m− 2 elements in Z/p`Z: β1, . . . , β2m−2 that have pairwise distinct reduc-
tions modulo p. Consider the map ξ : Z/p`Z[X]<m −→ R`(2m − 1) given by
g −→ (g(β1), . . . , g(β2m−2), g(∞)) where the last component is the coe�cient
of degree m − 1 of g. Then the key property preserved is that for any poly-
nomials g and h in Z/p`Z[X]<m, then the image of the map ξ ∗ ξ : (g, h) −→
(gh(β1), . . . , gh(β2m−2), gh(∞)) determines uniquely gh. This is because one can
interpolate the polynomial gh, of degree 2m−2, from 2m−1 points with distinct
reductions modulo p. Indeed, one can write the Lagrange interpolation formula
since the denominators, which are products of βi − βj , are invertible modulo p,
and thus invertible.

C More on Free Codes, and Robust Reconstruction

C.1 A chain of Equivalences for Free Codes

Theorem 22. Let C be a code in Rn, then the following are equivalent:

(0) C is free;
(0') C is a direct summand in Rn;
(i) the inclusion pC ⊂ pRn ∩ C is an equality;
(ii) C is free and generated by any lift in C of any basis of C. In particular the

rank equals dimension of the reduced:

rk (C) = dimC .

Proof. (0) => (0') is the �rst statement of [Wal99, Lemma 3.2] (notice that it
is speci�c to Artinian rings), applied to the inclusion C ↪→ Rn. Indeed recall
that a map �splits� means that it has a left retraction. In particular it is then
standard that the image of such a map, in Rn, is a direct summand.

(0') => (i) This is the second statement of [Wal99, Lemma 3.2]. Alternatively,
let us prove it under the following friendlier form. Claim: if t ∈ R, z ∈ Rn are
such that tz belongs to C, then there exists c ∈ C such that tz = tc (which,
when t is a non-zero divisor, is equivalent to c ∈ C);

Proof: write C ⊕ C ′ = Rn (internal direct sum). Suppose tz in C. Write
z = c+ c′. Thus tz = tc+ tc′ in C. Hence, tc′ = 0. So tz = tc.

(i) => (ii) Take any basis (ei) of the k-vector space C/pC and lift it ar-
bitrarily to (ei) in C. Then by Nakayama's Lemma [See e.g. Corollary 2.7 of
Atiyah-MacDonald's Introduction to commutative algebra], the (ei) automati-
cally form a basis of C. But by assumption we have

C := C/(pRn ∩ C) = C/pC

(ii) => (0) is immediate. ut
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C.2 Proof of Theorem 5 (C) (robust reconstruction algorithm)

C.2.1 (C): Robust reconstruction (codes version) Here we quickly ex-
plain how to decode with errors in any free code, which thus generalizes the
algorithm of [ACD+19, �3.2] in Reed-Solomon codes. It uses, as a black box
subroutine, any given decoding algorithm for the reduction C over the residue
�eld Fpr , and uses it with a linear overhead in `. [For p-adic rings we have ` =∞:
the decoding algorithm will return iteratively a solution, where the error term
remains on the same support and has smaller and smaller p-adic norm. ].

Proposition 23 (A compiler from error-correction over �elds to rings).
Let

(
R, (p)

)
be a principal ideal local ring and C be a code in Rn which is a

free code. Then we can compile any decoding algorithm φ for the code C over
the residue �eld (up to half of the minimum distance), into an algorithm φ for
decoding-with-errors in C, with complexity equal to ` times the complexity of
φ, where ` is such that p` = 0.

Let us describe informally the decoding algorithm (with justi�cations in-
line). Recall that the operation of lifting a codeword c ∈ C to C can be done
e�ciently, thanks to the existence of a generating matrix for C in systematic
form (Proposition 7).

Let c ∈ C be an unknown codeword, e ∈ Rn an error term with weight < d/2
and u = c + e the corrupted codeword to be decoded. Repeat the following
procedure:

� Decode u into c and deduce u− c = e.
� Choose any lift c1 ∈ C (mod p2) of c and e1 ∈ (R/p2)n any lift of e with
same support.

� Compute the di�erence u− (c1 + e1) modulo (p)2: it is equal to

(c− c1) + (e− e1)

where the left term is by construction a codeword in C ∩ (R/p2)n, and thus
in pC by Theorem 22 (i) (in �C): let us call it pc2. Whereas the right term is
in pRn with at most the same support as e (so < d/2 nonzero coordinates):
let us call it pe2.

� the di�erence computed is thus of the form pu1: dividing by p (that is:
choosing any preimage under the multiplication by p) we obtain the equation
modulo p

u1 = c2 + e2

� Apply the decoding algorithm to u1, deduce c2 and e2, lift them arbitrarily
in C mod p3 and in (R/(p3))n etc.

As an alternative, we could notice that, since we obtained LSSS with strong
multiplication in Main Theorem 1, then we can lift over Galois rings the generic
decoding algorithm [CDN15, �12.5.4]
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D Stronger result: lifting to free codes over rings, with
multiplicativity

D.1 Statement and roadmap

Main Theorem 24. Fix any prime number p > 0 and any integer ` > 0. Write
R` = Z/p`Z. For each integer r > 0, denote the degree-r Galois-ring extension
of R` by R`(r). Then there is a �xed integer r̂ = r̂(p) > 0 and a (dense) family
of R`(r̂)-linear codes C of unbounded length such that:

1. Denoting reduction of C modulo p (an Fpr -linear code) by C, each of C,
(C)⊥, (C)∗2 is asymptotically good.

2. Each of C, C⊥, C∗2 is free over R`(r̂), with the same dimension as its re-
duction. Therefore, each has the same minimum distance as its reduction.
Particularly, each is asymptotically good.

3. All constructions are e�cient.

We begin with an elementary result on the freeness of the dual. The real proof
starts with the algebraic-geometric Theorem 26. Then, Main Theorem 24 will
follow from Corollary 28, as explained at the end of the section.

D.2 Freeness of the dual code

Judy Walker proved that minimum distance of a free code was inherited from
the code below (notice that equality is speci�c to Artinian rings, in general we
have d(C) ≥ d(C)), while Calderbank-Sloane [CS95, 3)] noticed that the dual of
a free code was also free8. These two properties combined imply that C also has
the same dual distance as C.

Proposition 25. [Wal99, Theorem 3.4] If C is a free code, then we have
(iii) d(C) = d(C);

(iv) [SAS17, Prop 5.5] C⊥ is a free lift of C
⊥
.

(thus:) C⊥ is of rank equal to the co-rank of C and C⊥ = d(C
⊥

).

D.3 Equality in equation (12)

Theorem 26. Let X0 be a function �eld of genus g over any �nite �eld Fpr ,(
P

(j)
0

)
j
the rational places (i.e. of degree one) of X0 and P0 = P

(1)
0 , . . . , P

(n)
0 a

subset of them. Consider any divisor D0 on X0 with support on rational places9,
and degree

2g + 1 ≤ deg (D0) <
n

2
.

8 Actually they didn't state this explicitly, but they were the �rst to establish the form
of a generating matrix of C⊥ over Z/p`Z, which clearly generates a free module when
C is free. So for convenience of the reader we instead quote the reference book, which
states this property explicitly over �in particular� any Galois ring

9 Inluding possibly points of P0: see Remark 2
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Then we can construct algebraic geometry codes C(D0) and C(2D0) de�ned by
evaluation of the Riemann-Roch spaces L(D0) and L(2D0) on P0, and free lifts
C(D) and C(2D) over R`(r) such that:

(22) C(D)∗2 = C(2D) .

We then show in �D.3 Theorem 27 that equality in (22) holds over �elds:
C(D0)∗2 ⊂ C(2D0) as soon as deg (D0) ≥ 2g + 1. This results from a hard
theorem of Mumford, which we generalize to nonnecessarily algebraically closed
�elds, as proven in appendix D.6, by standard arguments. Fortunately, we also
obtain an elementary proof of Theorem 27 in the interesting cases where deg (D0) ≥
4g: see �D.5. We then deduce equality over rings: (22) from the elementary Corol-
lary 13, �nishing the proof of Theorem 26.

From the elementary theory we deduce Corollary 28, which, instantiated e.g.
on Garcia-Stichtenoth towers (or any other optimal family), immediatly yields
Main theorem 24.

D.4 Proof of equality in (22) of Theorem 26

Firstly, over �elds, the following theorem gives a criterion to have equality for
the reductions:

C(D0) ∗ C(D′0) = C0(D0 +D′0) .

Theorem 27. Let D0, D
′
0 be two divisors of a function �eld X0 of genus g over

any �eld K. Suppose that degD0 ≥ 2g and degD′0 ≥ 2g + 1. Then

(23) L(D0)L(D′0) = L(D0 +D′0)

This theorem is deduced in Appendix D.6 from Mumford's normal generation
criterion, which we extend to any �eld. See also the next section for more ele-
mentary proofs of Theorem 27 in particular cases.

From the inclusion in (12), and under the degree assumptions of Theorem
(27), we can then apply Corollary 13 to

E := C(D) ∗ C(D) ⊂ G := C(2D)

to deduce that equality (23) holds over rings, which proves Theorem 26.
From the properties on the distance and dual distance of free lifts stated in

Proposition 8, we can �nally state:

Corollary 28. Let X0 be a function �eld of genus g over any �nite �eld Fpr .
Let D0 be a divisor on X0 with support on rational points (i.e. of degree one)
and with degree

2g + 1 ≤ deg (D0) <
n

2
.

Let L(D0) be the Riemann-Roch space and P1, . . . , Pn a collection of rational
points on X0. De�ne the algebraic geometry code C as the isomorphic image of
L(D0) by the evaluation map on the (Pi)i.

Then for any positive integer `, C lifts to a free submodule C over the Galois
ring R`(r), of same dimension and dual distance than C, and such that the

square C∗2 is also free of rank dimC
∗2

and minimal distance d(C
∗2

).
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D.5 Elementary proof of Theorem 27 in a particular case

D.5.1 D0 = dP0 supported at a rational point, with degree d ≥ 4g
We �rst prove two lemmas on gaps between Riemann-Roch spaces.

Lemma 29. With the same assumptions, for any integer

v ∈
[⌈d

2

⌉
, . . . , d

]
Then there exists a rational function y0 ∈ L(D) with exactly a pole of order v
at P .

Proof. Claim: for all i′ ≤
⌈
d
2

⌉
+ 1 , then we have that l(K − (D − i′)) = 0 for

degree reasons. Indeed:

deg (K − (D − i′)) ≤ 2g − 2− d+
⌈d

2

⌉
+ 1 < 2g − 1− 4g +

(d
2

+ 1
)
≤ 0 .

From the claim it follows that for all integer i ≤
⌈
d
2

⌉
, we have a gap in the

sequence of dimensions:

(24) l(D − iP ) < l(D − (i+ 1)P ) ,

thus the result. ut

Proof of the theorem: Consider f0 a function in L(2D) = L(2dP ). Either it is
in L(D), and we are done. Or it has a pole at P with order strictly larger than
d:

w := ordP (f) > d

(and by de�nition no other pole elsewhere). In this case, Lemma 29 implies that
there exist y0, y′0 in L(D) such that

ordP (y0) + ordP (y′0) = w

and thus, up to multiplying y0 by a constant ρ0, we have that the function:

f1 = f0 − y0y′0

has a pole at P strictly lower than w (and by construction no pole elsewhere).
Since y0y′0 is in L(D)2, we can conclude by recursion on the order of the pole of
f1 at P .

D.6 Proof of Theorem 27: extending Mumford's normal generation
criterion over any �eld

The following theorem is stated in [Mum11, Theorem 6] over any algebraically
closed �eld. The goal of this section is to deduce that the theorem holds over any
�eld, which is exactly the statement of Theorem 27 (formulated with function
�elds, see e.g. [AZ18, Theorem 6.1]).
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Theorem 30. Let X be a smooth projective curve over an algebraically closed
�eld k. Let L andM be invertible sheaves on X, such that degL ≥ 2g + 1 and
degM≥ 2g. Then the morphism

Γ (L)⊗ Γ (M) −→ Γ (L ⊗M)

is surjective.

Lemma 31. Let k be a �eld, k ⊂ K a �eld extension, X a variety over K and
f : XK → X the K-variety deduced from X by base-change. Let F be a sheaf
of k-algebras over X (for example an invertible sheaf) and let FK = f−1F ⊗kK
be its pull-back over XK � where K is the constant sheaf over XK . Then the
morphism

Γ (F)⊗k K −→ Γ (FK)

is an isomorphism.

Let us �rst admit the lemma and prove Theorem 27. Let K be the algebraic
closure of k. The property of being a proper �resp. smooth� morphism being
stable by base change, the variety XK is still proper and smooth over K. Mum-
ford's Theorem 30, applied to the variety XK and to the pulled-back sheafs LK
andMK , thus states that the morphism:

Γ (LK)⊗ Γ (MK) −→ Γ (LK ⊗MK)

is surjective. By the lemma, one can move out the ⊗kK from both from the right
hand and left hand sides. The surjection therefore reads itself as:

Γ (L)⊗ Γ (M)⊗k K −→ Γ (L ⊗M)⊗k K.

But K being a k-vector space, it is faithfully �at, hence the theorem.
Let us now prove the lemma. Let ρUV : F(U) → F(V ) the restriction mor-

phisms of the sheaf F . By de�nition, FK is the sheaf associated to the following
presheaf over XK , whose sections over any open set U are the F(U) ⊗k K and
the restrictions equal to the ρUV,K = ρU,V ⊗k K : F(U)⊗k K → F(V )⊗k K.

Let us thus consider s̃ a section of FK . It consists in the data of a �nite open
covering (Ui)i of XK , and of a collection of sections s̃i ∈ F(Ui)⊗kK compatible
between each other by the restriction maps ρUV,K . Explicitly, let Ui and Uj be
two open sets. Let us abridge ρi and ρj the restriction morphisms ρUi, Ui∩Uj and
ρUj , Ui∩Uj . Let us express the sections under the form of �nite sums of elementary
tensors:

s̃i =
∑
p∈P

mi
p ⊗ λip

s̃j =
∑
q∈Q

mj
q ⊗ λjq ,
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where P and Q are �nite sets of indices, the (λip)p and (λiq)q are elements of
the �eld K, and the mi

p (resp. m
j
q) sections of F(Ui) (resp. F(Uj)). The glueing

condition for the open sets Ui and Uj , noted (ij), is

(ij)
(
ρi ⊗k K

)(∑
p∈P

mi
p ⊗ λip

)
=
(
ρj ⊗k K

)(∑
q∈Q

mj
q ⊗ λjq

)
.

Let k ⊂ L ⊂ K a �nite extension of k, large enough to contain all the coe�cients
(λip) i,j,k,...p,q,r,...

which show up in the previous expressions of all the sections s̃i, s̃j ,

s̃k etc. Let (l1, . . . , lN ) a basis of L over k and

λip = λip,1l1 + · · ·+ λip,N lN ,

λjq = λjq,1l1 + · · ·+ λjq,N lN

etc. The decompositions of each of these coe�cients over the basis (l1, · · · , lN ). L
being a vector space over k �of dimension N�, every F(U)⊗kL is a direct sum
of N copies of F(U) (by regrouping the components in ·⊗ ln, n = 1 . . . N). Con-
sequently, the set of glueing conditions (ij)i,j is satis�ed i� the set of projections
of these glueing conditions (ij, n)i,j,n, over all the components in (· ⊗ ln)n=1...N ,
is satis�ed. For example, let us �x n, then the projection over · ⊗ ln of a glueing
condition (ij) can be expressed as

(ij,n) ρi(
∑
p∈P

mi
p ⊗ λip,n) = ρj(

∑
q∈Q

mj
q ⊗ λjq,n)

(Where we recall that the coe�cients (λip,n)p, (λjq,n)q are in k). Consequently,
the collection of the projected conditions (ij, n)i,j , for a �xed n, de�nes a global
section sn ∈ F(X). But

s̃ = s1 ⊗k l1 + · · ·+ sN ⊗k lN ∈ F(X)⊗k K,

which is what was to be proven.

E Alternative proof of Theorem 26 with only formal lifts
of curves, and projective limits of codes

E.1 Lifting smooth projective curves and algebraic geometry codes
over local rings

Let us furthermore assume from now on that R is noetherian. Let S = SpecR
be the corresponding a�ne scheme, we call smooth projective curve over S an
irreducible scheme X with a smooth projective morphism f : X → SpecS of
relative dimension one [f being �at, Lemma [Sta18, 0AFE] implies that dimX =
dimR+1. So dimX = 2 (an "arithmetic surface") if R is a DVR, and dimX = 1
if R is a local Artinian ring].
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Let us �x (A,m, κ) a local noetherian ring (although A is "morally" the
complete ring Zp or W (Fq), the assumptions for A are actually the same as for
the "generic" local noetherian ring R considered throughout, the completeness
assumption being not necessary until the appendix). Consider the projective
system of local Artinian rings:

. . . A3 → A2 → A1 → A0 = κ ,

where Ai = A/mi+1 and each arrow Ai+1 → Ai is the reduction modulo mi+1.
This corresponds to a direct system of a�ne schemes:

Specκ = S0 → S1 → S2 → S3 → . . . ,

where each arrow Si → Si+1 is a closed immersion de�ned by the ideal mi+1 of
square zero. Let X0 be any �at scheme over Specκ = S0, then a formal lift X
of X0 over this direct system is the data of �at schemes Xi over each Si, �tting
into an in�nite diagram where all squares are cartesian:

(25) X0
j0 //

f0
��

X1
j1 //

f1
��

X2

f2
��

j2 // · · ·

S0
// S1

// S2
// · · ·

In particular the Xi form a direct system and, by base-change, the maps
ji : Xi → Xi+1 are closed immersions. They are given locally on SpecBi+1 by
the ideal mi+1Bi+1 of square zero .

Our principal addition to [Wal99], which studies reduction of AG codes over
rings, is that we notice the possibility to go in the other direction:

Theorem 32 (Formal lifts of curves10 [SGA1, III Theorem 6.3] or
[Ill05, proof of 5.19 i)]). Let (A,m) be a local ring and consider X0 a smooth
projective curve over S0 = Specκ, then X0 admits a formal lift X over the direct
system S0 → S1 → S2 → · · · . Moreover X is projective.

Proof. Only the last point, about projectivity, is not stated in the references
mentionned in the theorem. It is stated in the full FGA's existence theorem
([Ill05, Theorem 5.19 ii)] or [SGA1, III Théorème 7.3]). But it can also be showed
directly, as in the proof of [Ill05, Theorem 8.4.10], where a very ample sheaf on
X0 is lifted to each Xi by Nakayama.
10 About references: of course the clearest is https://amathew.wordpress.com/2011/06/18/lifting-

smooth-curves-to-characteristic-zero/ . The small missing point is that he actually
doesn't prove how to obtain a compatible system of lifts in Corollary 9, he only
shows that X0/k lifts to X1/A1. The trick that makes it possible is [Ill05, Remark
5.10 b)] (see also [SGA1, p61]), which boils down to the standard base change
formula for modules of di�erentials: let B be an A-algebra and A→ A′ a morphism
of rings (here B is an a�ne subset algebra of Xi+1, A = Ai+1 and A′ = Ai), then
A′ ⊗ ΩB/A = ΩA′⊗B/A′ . We also mention that smoothness criterion [Ill05, 5.8 ii)]
is false and should be replaced by [SGA1, �II 1.1 & 4.8]. Hartshorne's Deformation
theory, Corollary 10.3 recovers the result by more machinery (T functors).
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Coming back to our generic (noetherian) local ring R and X a smooth pro-
jective curve over S = SpecR, let us de�ne an R-point of X as an S-morphism
Z : S → X.

Noting s the closed point of S and Z(s) its image in X, one can prove that Z
de�nes a regularly embedded subscheme of codimension one, which is contained
in any su�ciently small a�ne neighborhood U = SpecB of Z(s), and thus is a
Cartier divisor (also noted Z) de�ned by:{

(U, b), (1 outside of Z(S))
}

where b is a suitable non-zero divisor in B. But actually for practical purposes
(Main Theorem 24) we will only need the case where R is Artinian, whence Z is
just a closed embedding to one closed point Z(s): see [Wal99, Lemma 4.4], and
Lemma 35 for the general case.

Thus in the situation of Theorem 32, the smooth morphisms Xi+1 → Si+1

being in particular formally smooth, it is possible to lift any Ai-point Zi on Xi

to an Ai+1-point Zi+1 on Xi+1 with compatibility relations. This boils down
to [Wal99, Remark 4.5], see Proposition 37 below over general (local) rings.
From here, d being any positive integer and Li = [Zi]

⊗d (or O(d.Zi)) the line
bundle class corresponding to the Cartier divisor d.Zi, we immediatly deduce
a lift Li+1 = [Zi+1]⊗d of Li. 11 The key point is that the line bundles surject
to each other in a compatible way with the projective system of rings. More
precisely, considering a�ne open subsets where the line bundles become principal
fractional ideals, we see that for each i the identity map on OXi induces the
isomorphism of line bundles:

(26) OXi ⊗OXi+1
Li+1 → Li

from which we deduce in particular the isomorphisms for all i:

(27) OX0
⊗OXi Li → L0

Finally, starting from a line bundle L0 = [Z
(0)
0 ]⊗d on X0 along with n distinct

points of degree one Z(1)
0 , . . . , Z

(n)
0 outside of Z(0)

0 , de�ning a κ-linear evaluation
code C0, then we can lift this data to all Xi/Si in a compatible way (the points
and the line bundles embed/surject to each other), and obtain Ai-linear evalua-
tion codes Ci of length n (see the explicit description of AG codes over Artinian
rings at the beginning of [Wal99, �5]). What then remains to be shown is that
these evaluation codes reduce to each other in a compatible way.

Theorem 33 (Projective systems of lifts of Riemann-Roch spaces and
AG codes). Consider the same situation as above: L0 any line bundle over X0,

n closed points Z
(j)
0 , j = 1 . . . n on X0 and the evaluation map γ0 yielding an

11 Notice also that it is actually possible to lift any line bundle, by [Ill05, �5.2] (see also
Lemma 11 of Akhil Matthews' blog), although for our purpose it is enough to lift
points, as we just did.
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algebraic geometry code. Then this data lifts to every Xi, such that we have the
following commutative diagram:

(28) Γ (Xi+1,Li+1) // //

��

Γ (X,Li+1)⊗Ai+1 Ai
˜ // Γ (Xi,Li)

��
⊕jΓ (Z

(j)
i+1,Li+1|Z(j)

i+1
)

γi+1

��

⊕jΓ (Z
(j)
i ,Li|Z(j)

i
)

γi

��
Ani+1

.⊗Ai+1
Ai

// Ani

Where: - the top left horizontal arrow and the bottom horizontal arrow are
tensorisation by ⊗Ai+1

Ai - the top right arrow is constructed canonically as in
[Wal99, Lemma 4.6 & proof of Th 4.7]

- the top vertical arrows are the canonical restriction maps, - the bottom left
vertical arrow arizes from choices of isomorphisms for all j:

γi+1 : Γ (Z
(j)
i+1,L|Z(j)

i+1
)→ Ai+1

under the (recursive) condition that it induces the bottom right isomorphism γi
by tensorisation by ⊗Ai+1Ai.

Proof. The lifting of L0 and of the points follows from the discussion above the
theorem.

The proof that the top right arrow is an isomorphism is mutatis mutandis
the arguments in [Wal99, Lemma 4.6 & proof of Th 4.7].

Maybe could we also detail how to obtain such a lift of γi for the bottom left
vertical arrow.

Corollary 34 (Good lifts of AG codes). The codes Ci form a projective
system of codes, more precisely we have surjections for all i:

(29) Ci+1 � Ci+1 ⊕Ai+1
Ai ∼= Ci

Moreover the codes Ci are all free of rank dimC0 and thus free lifts of C0:

(30) π(Ci) = C0

thus their projective limit Ĉ = lim←−Ci over Â is also a free lift of C0.

Proof. The proof for (29) being the same as [Wal99, Theorem 5.5], let us describe
it quickly.

The freeness and equality of ranks follows from [Wal99, Th 5.4], thus they
are free lifts by de�nition, whence (30) (this is exactly the argument of [Wal99,
Th 5.7]).

For the last assertion, the projective limit being an additive functor, it pre-
serves direct summands so sends free lifts to free lifts. ut
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F Realizing the projective limit of codes as an AG code,
thanks to the existence theorem

The following lemma states that [Wal99, Lemma 4.4] also holds over any local
ring R, and that the situation is equally explicit.

Lemma 35. AnR-point is a regular immersion of codimension one. There exists
a unique, well de�ned Cartier divisor (which we will also denote by Z) associated
to Z. Furthermore let s be the closed point of S and Z(s) be its (closed) image
in X, then Z factors through a closed immersion in SpecOZ(s) followed by the
open immersion in X. Thus there exists an a�ne neighborhood U = SpecB of
Z(s) and a regular element b ∈ B such that Z =

{
(U, b), (1 outside of Z(S))

}
.

Proof. We �rstly prove that the image of Z is contained in any (a�ne) neigh-
borhood of Z(s). Let SpecB be any a�ne neighborhood of the image Z(s) in
X, then Z−1(SpecB) is an open subset of S containing s so is the whole S .

Let us now show that Z de�nes a closed immersion in SpecB, which implies
in particular that the image Z(s) is a closed point. Let us restrict to SpecB the
structural morphism f : X → S, we now have the corresponding morphisms of

rings R
f]−→ B

Z]−−→ R which by assumption compose to the identity of R. Thus
in particular Z] : B → R is surjective.

Let us �nally show the Cartier divisor description of Z. Z being an immer-
sion, it is furthermore regular by [SGA1, II Corollaire 4.16]. In particular its
ideal IZ(s) ⊂ OZ(s) is generated by a regular sequence. Let us remind why the
codimension d �i.e. the size of this regular sequence� is one. The local ring
OZ(s) being noetherian, we have:

dimR = dimOZ(s)/IZ(s) = dimB − d = dimR+ 1− d ,

where the second equality follows from [Sta18, 00KW] (see also [Liu], theorem
2.5.15) . All the other closed points of X being outside of Z(S), Z is de�ned by
1 there. Thus by [Sta18, 00NX 5)] the sheaf of ideals of Z is locally free of rank
one. The claimed description of Z follows by choosing a su�ciently small open
a�ne neighborhood U = SpecB of Z(s) and such that a regular generator bB
of IZ(s) ⊂ OZ(s) is a regular element of B. ut

Theorem 36 (the existence theorem [Ill05, Theorem 5.19 (ii)] or [SGA1,
III Corollaire 7.4]). Under the assumptions of Theorem 32, if furthermore

A = Â is complete (e.g. Zp or more generally W (Fq)), there exists a smooth

projective curve X over S = Spec Â that lifts X0/S0.

Proposition 37 (Lifts of points). Under the assumptions of Theorem 32, let
Z0 : A0 → X0 be a A0-point of X0, then there exists a compatible direct system
of Ai-points of Xi lifting Z0. Namely we have a family of Ai-points (Zi)i such
that, noting ji the closed immersion given by Theorem 32, then the following
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diagrams commute:

(31) Xi
ji // Xi+1

Si

Zi

CC

// Si+1

Zi+1

>>

Proof. By induction, let us deduce Zi+1 assuming the existence of Zi. Consider
the composite map:

gi : Si
Zi−→ Xi

ji−→ Xi+1 ,

which by Theorem 32 �ts into the following commutative diagram:

(32) Xi+1

��
Si

gi
55

// Si+1

?

;;

id // Si+1

The vertical arrow being smooth and the bottom left arrow being a closed im-
mersion of Artinian local rings de�ned by an ideal of square zero, [SGA1, III
Th 3.1 iii)] provides the existence of a dotted arrow Zi+1, which is indeed a
Ri+1-point making (31) commute. ut

Under the assumptions of Theorem 36 we can also lift S0 points of X0 to
S-points of X, this time as a consequence of [SGA1, III Th 3.1 ii)]. Indeed as
noticed in the proof of Lemma 35, any a�ne neighborhood of the closed point
of S is actually the whole S.

Lifting n on X0 points and a line bundle (of the form OX0
(dZ0)), we obtain

an AG code C on X the smooth projective curve of 36. One can see that C
surjects in a compatible way to the projective system of Corollary 34.

Remark 4. One can also show directly that C is a free lift of C0. Indeed, we need
only show the saturation criterion of Theorem 22 (i): if a codeword w in C is
a multiple of p : w = pw1 then w1 is also a codeword of C . To prove this, use
that all local rings in X are UFD (because X is smooth over the regular local
ring R).

Question 38. So it would be very nice to �nd a counterexample of code C over
a non smooth curve over Zp (or Witt), such that C is not saturated (= the
criterion that we just checked).
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