AES MixColumn with 94 XOR gates

Alexander Maximov
Ericsson Research, Lund, Sweden
alexander.maximov@ericsson.com

Abstract

In this short report we present a short linear program for AES MixColumn with 94 XOR gates.

Keywords: AES • MixColumn • Short Linear Program

1 Introduction

The part MixColumn of AES encryption round, applied to the AES state $\left\{r_{i, j}\right\}$ for $0 \leq i, j \leq 3$, is the following column-wise matrix multiplication.

$$
\left[\begin{array}{l}
r_{0, j}^{\prime} \\
r_{1, j}^{\prime} \\
r_{2, j}^{\prime} \\
r_{3, j}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
r_{0, j} \\
r_{1, j} \\
r_{2, j} \\
r_{3, j}
\end{array}\right], 0 \leq j \leq 3 .
$$

The classical circuit of MixColumn needs 108 2-input XOR gates and can be implemented as follows: for each $0 \leq j \leq 3$ do: $t_{0}=r_{0}+r_{1}, t_{1}=r_{1}+r_{2}, t_{2}=r_{2}+r_{3}$, $t_{3}=r_{3}+r_{0}$, and then $r_{0}^{\prime}=2 t_{0}+t_{2}+r_{1}, r_{1}^{\prime}=2 t_{1}+t_{3}+r_{2}, r_{2}^{\prime}=2 t_{2}+t_{0}+r_{3}$, $r_{3}^{\prime}=2 t_{3}+t_{1}+r_{0}$, where multiplication $2 t_{i}$ is the multiplication by x in the Rijndael field and can be implemented with three 2 -input XOR gates.

Previous results. There were several improvements to the classical circuit. At CHES 2017 a new circuit of MixColum with 103 XOR gates was presented in [JMPS17]. Later on, an improved version with 97 gates was given in [KLSW17]. Recently, there was a new paper published on IACR ePrint [EJMY19] where in Appendix F the authors presented MixColumn with 95 gates. We have also received the information that a paper presenting a circuit for MixColumn with 95 gates is accepted in the conference IWSEC-2019, which will be held on August 28-30, 2019.

Our results. In this short report we present a short linear program for AES MixColumn with 94 gates. At our best knowledge it is the smallest as of today.

2 Results

This work was mainly based on the parts of the algorithm given by Boyar et al [BP10], as well as our own techniques presented in [EM19]. We wrote a search program that combines Boyar's algorithm to compute the shortest distance, and our ideas for metrics and the search tree. In our simulations we used 5000 leaves of the search tree with 150 leaves being extended from each leaf.

Surprisingly, the best result was achieved when we tried to minimize the Euclidean norm metric. As it was mentioned in [EM19], the norm metric (ν) is not stable. When the norm is maximized, the algorithm tends to accept a gate that reduces distances $\left(\delta_{i}\right)$ to targets "unevenly", i.e., it is a greedy approach. When the norm is minimized, the
distances are reducing more evenly, thus giving more chances for shared gates on the final steps of the search. However, which approach is better (to maximize or to minimize the norm) is still unclear - for different input matrices different approaches work better.

In the circuit below, x is the 32 -bit input value, and y is the 32 -bit output value.

$\mathrm{t} 0=\mathrm{x} 15$ ~ x 23	$\mathrm{y} 16=\mathrm{t} 2$ ~ t 18	$\mathrm{t} 30=\mathrm{t} 2{ }^{-} \mathrm{t} 26$	$\mathrm{y} 5=\mathrm{t5}$ - t 42	$\mathrm{t} 52=\mathrm{x} 22$ ~ t 23
$\mathrm{t} 1=\mathrm{x} 7{ }^{-} \mathrm{x} 31$	$\mathrm{t} 19=\mathrm{t} 1{ }^{\text {- } \mathrm{t} 18}$	$\mathrm{t} 31=\mathrm{x} 3{ }^{\text {- }} \mathrm{t} 0$	$\mathrm{t} 43=\mathrm{x} 30{ }^{\text {- } \mathrm{t} 23}$	$\mathrm{y} 15=\mathrm{t} 44{ }^{\text {- }} \mathrm{t} 52$
$\mathrm{t} 2=\mathrm{x} 23$ - x31	$\mathrm{y} 24=\mathrm{t} 11{ }^{\text {- } \mathrm{t} 19}$	$\mathrm{t} 32=\mathrm{x} 19$ - t 6	$\mathrm{y} 31=\mathrm{t} 0{ }^{\text {- }} \mathrm{t} 43$	$\mathrm{t} 53=\mathrm{t} 39$ ~ y 17
$\mathrm{t} 3=\mathrm{x} 7^{\text {- }} \mathrm{x} 15$	$\mathrm{t} 20=\mathrm{x} 0$ - t 11	$\mathrm{t} 33=\mathrm{t} 1{ }^{\text {- } \mathrm{t} 32}$	$\mathrm{t} 44=\mathrm{t} 2^{\text {- }} \mathrm{t} 4$	$\mathrm{y} 25=\mathrm{t} 21$ ~ t 53
$\mathrm{t} 4=\mathrm{x} 6{ }^{\text {- }} \mathrm{x} 14$	$\mathrm{y} 8=\mathrm{t0}{ }^{\text {- }} \mathrm{t} 20$	$\mathrm{y} 27=\mathrm{t} 17$ - t 33	y 7 l x15 ~ t 44	$\mathrm{t} 54=\mathrm{x} 17{ }^{\text {- } \mathrm{t} 27}$
$\mathrm{t} 5=\mathrm{x} 4{ }^{-} \mathrm{x} 12$	$\mathrm{t} 21=\mathrm{t} 3{ }^{\text {- }} \mathrm{t} 7$	$\mathrm{t} 34=\mathrm{t5}{ }^{\text {- } \mathrm{t} 12}$	$\mathrm{t} 45=\mathrm{x} 28{ }^{\text {- } \mathrm{t} 34}$	$\mathrm{y} 10=\mathrm{x} 18$ - t 54
$\mathrm{t6}=\mathrm{x} 3{ }^{\text {- }} \mathrm{x} 11$	$\mathrm{y} 0=\mathrm{t} 20 \sim \mathrm{t} 21$	$\mathrm{t} 35=\mathrm{x} 27$ - t 30	$\mathrm{y} 20=\mathrm{t} 2{ }^{\text {- } \mathrm{t} 45}$	$\mathrm{t} 55=\mathrm{x} 9$ ~ t21
$\mathrm{t7}=\mathrm{x} 0$ ~ x 8	$\mathrm{t} 22=\mathrm{x} 22$ ~ t 4	$\mathrm{t} 36=\mathrm{x} 10$ - t35	$\mathrm{t} 46=\mathrm{t} 1{ }^{\text {- } \mathrm{t} 13}$	$\mathrm{y} 1=\mathrm{t} 14{ }^{\text {- }} \mathrm{t} 55$
$\mathrm{t} 8=\mathrm{x} 13$ - x 21	$\mathrm{y} 30=\mathrm{t9}$ - t 22	y19 = t6 - t36	$\mathrm{y} 23=\mathrm{x} 15{ }^{\text {- } \mathrm{t} 46}$	$\mathrm{t} 56=\mathrm{x} 12$ ~ y 21
t9 = x5 - x29	t 23 = $\mathrm{x} 6{ }^{\text {- }} \mathrm{x} 7$	$\mathrm{t} 37=\mathrm{t} 16{ }^{\text {- } \mathrm{t} 31}$	$\mathrm{t} 47=\mathrm{y} 27{ }^{\text {- } \mathrm{t} 37}$	$\mathrm{y} 13=\mathrm{t} 28$ ~ t 56
t 10 = x20 - x28	$\mathrm{t} 24=\mathrm{x} 5{ }^{\text {- } \mathrm{t} 13}$	$\mathrm{y} 11=\mathrm{t} 12$ ~ t 37	$\mathrm{y} 3=\mathrm{t} 36{ }^{\text {- }} \mathrm{t} 47$	$\mathrm{t} 57=\mathrm{t} 3$ - t 10
$\mathrm{t} 11=\mathrm{x} 16{ }^{-} \mathrm{x} 24$	$\mathrm{t} 25=\mathrm{x} 13{ }^{\text {- } \mathrm{t} 10}$	$\mathrm{t} 38=\mathrm{t} 14{ }^{\text {~ }} \mathrm{y} 8$	$\mathrm{t} 48=\mathrm{t} 14{ }^{\text {- }} \mathrm{t} 17$	$\mathrm{t} 58=\mathrm{t6}$ ~ t 57
$\mathrm{t} 12=\mathrm{x} 19$ - x27	y 21 = t9 - t25	$\mathrm{t} 39=\mathrm{t} 18{ }^{\text {- } \mathrm{t} 38}$	$\mathrm{y} 18=\mathrm{x} 10$ - t 48	$\mathrm{y} 4=\mathrm{x} 12$ - t58
t13 = x22 ~ x30	$\mathrm{t} 26=\mathrm{x} 26{ }^{\text {- } \mathrm{t} 16}$	y9 = x1 - t39	t 49 = $\mathrm{x} 6{ }^{\text {- }} \mathrm{t} 8$	$\mathrm{t} 59=\mathrm{t} 31-\mathrm{t} 32$
$\mathrm{t} 14=\mathrm{x} 17$ - x25	$\mathrm{y} 2=\mathrm{t} 15$ - t 26	$\mathrm{t} 40=\mathrm{t} 29$ ~ t30	$\mathrm{y} 14=\mathrm{t} 13$ - t49	$\mathrm{t} 60=\mathrm{x} 4{ }^{\text {- } \mathrm{t} 10}$
t 15 = $\mathrm{x} 1{ }^{\text {- }} \mathrm{x} 9$	t 27 = x9 - t 17	$\mathrm{y} 17=\mathrm{t} 11$ ~ t 40	t50 = x21 - y30	$\mathrm{y} 12=\mathrm{t} 59$ ~ t 60
$\mathrm{t} 16=\mathrm{x} 10$ - x 18	$\mathrm{t} 28=\mathrm{x} 28$ - t 8	$\mathrm{t} 41=\mathrm{x} 14{ }^{\text {- } \mathrm{t} 24}$	$\mathrm{y} 22=\mathrm{t} 24{ }^{\text {- } \mathrm{t} 50}$	$\mathrm{t} 61=\mathrm{y} 20$ ~ t58
$\mathrm{t} 17=\mathrm{x} 2{ }^{\text {- }} \mathrm{x} 26$	t 29 = x25 - y2	$\mathrm{y} 6=\mathrm{x} 13$ - t41	$\mathrm{t} 51=\mathrm{x} 4^{-} \mathrm{x} 5$	$\mathrm{y} 28=\mathrm{t} 59$ ~ t 61
$\mathrm{t} 18=\mathrm{x} 24{ }^{\text {- } \mathrm{t} 7}$	y26 = t27 - t29	$\mathrm{t} 42=\mathrm{x} 29$ - t 8	y 29 = t28 - t 51	

Listing 1: MixColumn with 94 gates
The analysis of the above circuit revealed that in the final steps of the search, when all distances are $\delta_{i} \leq 2$, there are 2 targets having 2 ending solutions each, involving different intermediate gates. This indicates that the found circuit might have a redundancy with 2 gates and, therefore, we can make the following conjecture.
Conjecture 1. We believe there exists a circuit for MixColumn with 92 XOR gates.

References

[BP10] Joan Boyar and René Peralta. A New Combinational Logic Minimization Technique with Applications to Cryptology. In Paola Festa, editor, Experimental Algorithms, pages 178-189, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
[EJMY19] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A new SNOW stream cipher called SNOW-V. Cryptology ePrint Archive, Report 2018/1143 version 20190603:135044, June 3, 2019. https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2018/ 1143\&version=20190603:135044\&file=1143.pdf.
[EM19] Patrik Ekdahl and Alexander Maximov. New Circuit Minimization Techniques for Smaller and Faster AES SBoxes. Cryptology ePrint Archive, Report 2019/802, 2019. https://eprint.iacr.org/2019/802.
[JMPS17] Jmy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding: A Generic Technique for Bit-Serial Implementations of SPN-based Primitives. In Cryptographic Hardware and Embedded Systems CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages 687-707. Springer, 2017.
[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter Linear Straight-Line Programs for MDS Matrices. IACR Transactions on Symmetric Cryptology, 2017(4):188-211, Dec. 2017.

